
In the past, it was not possible to update the under-
lying software in many industrial control devices. 
Engineering teams had to “rip and replace” obsolete 

components. However, the ability to make firmware 
updates has provided significant benefits to companies 
who use Programmable Logic Controllers (PLCs), 
switches, gateways and bridges, as well as an array of 
smart sensor/actuators. While these updates — which 
include security patches when vulnerabilities are identi-
fied in existing devices — can be distributed by physical 
media, they are increasingly downloaded over Internet 
connections. These mechanisms pose a growing threat 
to the cyber security of safety-critical applications, 
which is illustrated by recent attacks on safety-related 
infrastructures across the Ukraine. This paper explains 
how malware can be distributed within firmware up-
dates. Even when attackers cannot reverse engineer the 
code necessary to disguise their attack, they can under-
mine a device by forcing it into a constant upload cycle 
in which the firmware installation never terminates. In 
this paper, we present means of mitigating the risks of 
firmware attacks on safety-critical systems as part of 
wider initiatives to secure national critical infrastruc-
tures. Technical solutions, including firmware hashing, 
must be augmented by organizational measures to se-
cure the supply chain within individual plants, across 
companies and throughout safety-related industries.

Introduction
Industrial Control Systems (ICS) play a crucial role 
in national infrastructures. In the past, these networks 
were isolated from the Internet and relied on specialist 
protocols, including Profibus and Modbus. However, 
they are increasingly accessible through MODBUS 
TCP/IP, PROFINET and Ethernet/IP gateways. This 
helps companies to monitor and control massively 
distributed production processes without duplicating 
network infrastructures [Ref. 1]. Organizations create 
VPN links between their office-based enterprise infor-
mation systems and their operational networks using 
TCP/IP interfaces. This informs strategic decision-
making and enables managers to continually monitor 
the productivity of underlying applications. Partly in 
consequence, IP-based protocols now account for 80 
percent of all ICS installations [Ref. 2]. This illustrates 
a dilemma that is at the heart of this paper:
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•	 Previously, the serial protocols used in ICS applica-
tions were inherently insecure — they were never 
intended to support encryption or strong authenti-
cation. However, they provided a degree of protec-
tion from mass-market malware because they were 
not widely understood.

•	 Today, TCP/IP variants of industrial protocols sup-
port encryption and authentication. However, more 
attackers understand their underlying implementa-
tion. ICS applications are vulnerable to denial of 
service/ransom attacks that were never intended to 
target safety-related processes.

A number of recent attacks have focused on the 
firmware that is used in ICS devices. Malicious agents can 
change the underlying code installed on PLCs, switches, 
and smart sensor/actuators by first compromising the 
enterprise information systems and then using TCP/IP 
gateways to port their malware inside previously isolated 
industrial systems. PLCs are specialized microprocessor-
based industrial devices that can be programmed to au-
tomate control of several machines and processes. Smart 
devices are lower-level components that allow a degree of 
pre-programming/configuration in proprietary language. 
These devices include components such as protection 
relays, temperature controllers and pressure transmitters.

This paper explains how firmware verification tools 
have been developed and deployed to protect U.K. criti-
cal infrastructures. This is complicated because different 
manufacturers use a host of different mechanisms to 
structure, encode and verify the updates that are distrib-
uted by physical media, including CD-ROMs, as well as 
different Internet-based firmware servers. This paper later 
explains how technical innovations, including generalized 
firmware hashing tools, must be augmented by organi-
zational measures to secure the supply chain within in-
dividual plants, across companies and throughout safety-
related industries.

Firmware Attack Vectors 
for Safety-Critical Systems
The firmware that supports an embedded device in an 
industrial control system plays a similar role to that 
of an operating system in more conventional applica-
tions. It is stored in ROM, EEPROM or Flash memory. 
Without firmware, these devices are little more than 
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“bricks.” With firmware, they can be updated to im-
prove reliability, to address bug reports and, increas-
ingly, to provide security patches. Firmware updates 
are usually performed via interfaces provided by the 
device manufacturer, most often using Ethernet or RS-
232 connections.

In safety-critical systems, these update mechanisms 
pose new challenges. Traditionally, the firmware of many 
ICS components was never routinely updated because of 
the additional costs associated with the verification and 
validation required to demonstrate that the modifica-
tions did not compromise safety requirements. In such 
cases, critical processes remain vulnerable to previously 
published security exploits. Hence, there is a growing 
conflict between security requirements to install firm-
ware updates and the safety-related costs of ensuring that 
any updates do not undermine integrity requirements in 
industrial processes.

Some vendors now distribute Supervisory Control 
and Data Acquisition (SCADA) firmware updates from 
their websites. This exacerbates security concerns. Poten-
tial attackers can download a sample of the firmware for 
embedded devices, enabling them to experiment using 
second-hand devices that can be bought via Internet-
based marketplaces. Penetration testing of embedded 
firmware can potentially discover back doors. The distri-
bution of firmware patches over the Internet now also 
means that legitimate users have to ensure that any firm-
ware is not downloaded from a malicious site. “Watering 
hole” attacks rely on high-value targets being drawn to a 
compromised website. “Man-in-the-middle” attacks insert 
illegitimate firmware on the route from a vendor’s web-
site to the intended recipient — for example, by compro-
mising the addressing mechanisms used to identify the 
manufacturer’s server.

The following list summarizes several different types 
of firmware attacks [Ref. 3]; any single attack may bor-
row concepts from more than one category:

•	 System-Safety Patch Vulnerabilities — As men-
tioned, software system safety requirements mean 
that many ICS components are unpatched. Hence 
previously published vulnerabilities can be used and 
re-used on safety-critical systems.

•	 Zero-Day Exploits — There is a growing market-
place in zero-day vulnerabilities, or attack methods 
that have not yet been patched. The closer that ICS 
components move to conventional architectures, 
the more likely they are to be affected by these at-
tack methods. There is also a growing competence 
among state-sponsored actors who are focusing on 
national critical infrastructures.

•	 Reverse Engineering — These attacks build on as-
pects of the Stuxnet/Olympic Games attacks [Ref. 
4]. Penetration testing tools can be used to under-
stand elements of the architectures used by manu-
facturers in their firmware updates. If digital certifi-
cates can be forged or undermined, it is possible to 
inject malicious code in an update that would oth-
erwise leave the rest of the functionality unaffected 
until the attack is launched. Schuett et al. managed 
to modify functions identified during the disassem-
bly stage of reverse engineering and injected them 
into the PLC firmware, causing denial of service to 
the operator under certain conditions [Ref. 5].

•	 Code Mirroring — Malicious code may ensure that 
any attempt to query the firmware will make it 
seem that a valid installation is being used.

•	 Reload Death Spiral — A simpler and more direct 
form of attack can be triggered in some devices. If a 
validation step fails late in the firmware installation, 
the device may halt while a new version of the firm-
ware is downloaded. If that code is also corrupted, 
the device will repeat the download indefinitely.

•	 Firmware “Bricking” — A more general version of 
the reload-death spiral is an attack that success-
fully installs malformed firmware in a manner that 
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compromises the device. This is a simplified version 
of reverse engineering attacks. It is not necessary to 
understand how to hide malicious code in a valid 
installation — only to get the device to load the 
compromised code that need not implement any 
valid computation [Ref. 4].

It is important to stress that tools are being devel-
oped to automate aspects of these attacks. Costin et al. 
[Ref. 6] describe a system that conducts large-scale static 
analysis looking for vulnerabilities and correlations across 
families of firmware. Zhu et al. [Ref. 7] propose algo-
rithms to help determine the image base of firmware; for 
instance, by identifying literal pools within a firmware 
file. This can then be used to determine a candidate base 
address for the firmware image. Their work focuses on 
devices that exploit ARM processors; however, many of 
the underlying concepts have more general applications.

It is important to stress that at present, it is not pos-
sible to directly validate the firmware that is running on 
many ICS components. Each manufacturer alters the bi-
nary representation of executable and resource files that 
are transferred between installation environments and the 
underlying ROM/EEPROM/Flash as the firmware up-
date proceeds. The Glasgow group is actively engaged in 
developing forensic techniques that conduct this form of 
analysis on particular components. However, in general, 
this requires a low-level understanding of specific devices, 
including firmware architecture, memory encoding, etc. 
Painstaking reverse engineering can gradually piece this 
information together, but it must be repeated for differ-
ent manufacturers and devices. As a pragmatic interim 
step, we want to update firmware and application soft-
ware from a trusted source with a high degree of confi-
dence, even if we cannot prove that the software running 
on a device has not been modified.

To defend safety-related ICS components against 
firmware attacks, it is first necessary to understand the 
underlying vulnerabilities. Therefore, we focused our 
initial work on two very different devices. The first is a 
widely used PLC; this was chosen because PLCs are the 
computational workhorses of safety-related processes. 
The second device was an IP-based security camera; 
this was chosen because of the obvious consequences of 
undermining the physical security of safety-related ICS 
applications1. We started to determine whether minor 
modifications to the firmware of an embedded device can 
bypass firmware integrity checks.

The first step in attacking the PLC was to deter-
mine the version of firmware being run on the device, 
assuming that an attacker only had remote access to the 
ICS component. We were able to use public informa-

tion sources to determine how to do this by inspecting 
the binary firmware image for the PLC. The same tech-
niques also worked on the camera and PLCs from other 
manufacturers. Once the firmware version had been 
obtained for the devices, we downloaded valid firmware 
already running on both devices from the manufactur-
ers’ websites. We were then able to edit the binary files. 
Our analysis revealed a surprising range of responses on 
the devices when we made simple changes to the ver-
sion identifiers. We were able to map out the range of 
legal and illegal version numbers for the camera. Moving 
outside the permitted range elicited an error message 
from the firmware update interface, numbers inside the 
approved range but still invalid for that version were not 
reported and the firmware was passed directly to the 
camera for installation. With the PLC, our edits caused 
the device-upload interface to hang. We were forced to 
conduct a manual reset resembling the firmware spiral 
mentioned as item 5 in the previous list of attack meth-
ods. The key point here is that even relatively simple 
changes provoke inconsistent responses on different ICS 
components, some of which could be exploited within a 
malicious attack unless defenders take measures to pro-
tect their safety- related systems.

The Glasgow Firmware Defender
A growing number of papers describe firmware attack 
vectors; fewer provide potential solutions. McMinn uses 
MD5 hashing and bit wise comparisons on the firm-
ware for a PLC [Ref. 8]. Hashing algorithms calculate 
characteristic values from a file. Changes to a file can 
be identified because the hash value will change if it 
is recalculated. For example, if the number of charac-
ters in a file was used as the hash sum, any insertion 
or deletion would be identified because that value 
would change. However, if an attacker deleted a valid 
character and then inserted another one, this might 
not be detected using this simple algorithm. This is an 
example of hash collision where the values of the hash 
function cannot detect the change. Unfortunately, MD5 
suffers from a range of vulnerabilities, including known 
problems with hash collision. More formally, a suitable 
hash function should ensure:

•	 Pre-image Resistance: Given an unknown message 
of arbitrary length x and its corresponding hash 
value y (H(x) = y), then it should be computation-
ally infeasible for any other message n for its hash 
value m (H(n)= m) to match y — i.e., m ≠ y.

•	 Second Pre-image Resistance: Given a message x 
that produces a hash value y (H(x) = y), then it 
should be computationally infeasible for any differ-

1 Given the sensitivity of the topic, the identity of both devices is omitted. Further details are available from Chris Johnson, 
co-author of this paper.
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ent message n to produce the same hash value as x 
(H(x) ≠ H(n)).

•	 Collision Resistance: Given x; y in M where M is 
the set of all possible messages, then H(x) ≠ H(y).

Others have focused on a range of alternate meth-
ods — for instance, modeling hysteresis effects on low-
level transmissions from firmware servers. Xiao et al. [Ref. 
9] provide a more general architecture intended to secure 
ROM, RAM, boot-loader and processes within ICS de-
vices. This again illustrates the tensions that arise between 
safety and security when proposing detailed technical 
solutions to threats against critical infrastructures. Xiao 
et al. rely on encryption across the software stack. This 
would have enormous safety re-certification costs for leg-
acy systems that support European and North American 
industry. It would incur enormous overheads in the veri-
fication and validation processes that would be required 
to determine whether the upgrades had any impact on 
functional safety. As a specific example, many encryption 
techniques deliberately insert non-deterministic timing 
delays to disguise the algorithms they use. These delays 
undermine the timing analyses that are required to satisfy 
a host of safety-related requirements.

In the long term, it seems likely that vendors and 
systems integrators will adopt techniques similar to 
those proposed by Xiao et al., as legacy systems are 
gradually replaced by more secure counterparts. In the 
meantime, there are significant threats to our exist-
ing infrastructures. Therefore, we began to develop 
tools that could help secure the firmware that is be-
ing deployed in European infrastructures. Our tool’s 
sole purpose is to verify whether a given suspect file 
is genuine. It is possible to conduct byte-by-byte com-
parisons. The size of firmware images creates significant 
computational overheads for such an analysis, although 
hardware support can be provided. Therefore, we also 
built on the techniques pioneered by McMinn [Ref. 8]. 
Recall that both the MD-5 and SHA-1 algorithms have 
been found to have high collision probabilities [Ref. 
10]. Attackers can exploit these collisions by manipu-
lating a firmware image to produce the same MD-5 or 
SHA-1 hash value as the baseline. Rather than relying 
on a single algorithm with known vulnerabilities, our 
toolset exploits several hash functions, eventually trig-
gering byte-by-byte comparisons if doubts persist.

It is important to stress that many industrial process-
es rely on thousands of low-level devices, each running 
bespoke firmware. The techniques described in this paper 
create significant potential overheads if the Firmware 
Defender raises a large number of false alarms. This might 
occur if, for example, the tool was incorrectly configured 
using incorrect hash values for baseline versions of legal 
ICS firmware. Conversely, an attacker could undermine 
our system if they could register an illegal hash value that 

characterized their compromised version of the firmware. 
For this reason, we had to develop extensive verification 
and access control measures to protect the integrity of 
the tool itself.

Before the defender can be used, it is first necessary 
to survey all the valid versions of manufacturers’ software 
that might be deployed within a particular organiza-
tion. Although most suppliers compute their own hash 
values, they use different techniques both to encode the 
files needed to install the firmware and also to calculate 
characteristic values. Therefore, we developed common 
algorithms that can be applied in a consistent way across 
the archives being transferred between many different 
suppliers and their safety-related customers. We can then 
re-compute the hash functions across different forms 
of firmware for many different devices. However, for 
this approach to be successful, it is necessary to obtain a 
verified baseline copy. Safety-critical organizations must 
deploy physical and digital mechanisms to increase con-
fidence that initial hash values are computed from reli-
able sources for the manufacturers’ firmware. In the near 
term, this might be avoided if the ICS industry could 
agree on standard techniques for the generation of hash 
values across multiple suppliers.

Working with a number of industrial sponsors, 
we found that end users often operated many different 
firmware versions on a single family of devices deployed 
across a single production facility. Deployment of the tool 
helped these companies audit the firmware being used 
across a range of critical legacy processes.

The safety-critical nature of this project meant that 
acceptance testing of the tool had to involve authorized 
participants from critical infrastructure companies. Dur-
ing a pre-deployment study, we determined whether 
plant engineers could use the tool to identify modified 
firmware during a simulated update on ICS components. 
One issue that arose during this initial evaluation was 
the additional time that might be required to train a suf-
ficient number of staff to ensure that all updates were 
verified on a 24/7 basis. We initially focused on firmware 
— partly because this had been a target in recent attacks 
on critical infrastructures in the Ukraine2. The engineers 
involved in our evaluation argued that the same level of 
protection should be extended to other levels of the soft-
ware stack. In consequence, the application of our tools 
was extended in line with the Good Automated Manu-
facturing Practices (GAMP) [Ref. 11] software categories 
illustrated in Table 1. For example, our tool was extended 
to perform periodic checks on the configuration data 
associated with the smart sensor/actuators, mentioned 
in the opening paragraphs.Working with a number of 
industrial sponsors, we found that end users often oper-
ated many different firmware versions on a single family 
of devices deployed across a single production facility. 
Deployment of the tool helped these companies audit 
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the firmware being used across a range of critical legacy 
processes.

The safety-critical nature of this project meant that 
acceptance testing of the tool had to involve authorized 
participants from critical infrastructure companies. Dur-
ing a pre-deployment study, we determined whether 
plant engineers could use the tool to identify modified 
firmware during a simulated update on ICS components. 
One issue that arose during this initial evaluation was 
the additional time that might be required to train a suf-
ficient number of staff to ensure that all updates were 
verified on a 24/7 basis. We initially focused on firmware 
— partly because this had been a target in recent attacks 
on critical infrastructures in the Ukraine2. The engineers 
involved in our evaluation argued that the same level of 
protection should be extended to other levels of the soft-
ware stack. In consequence, the application of our tools 
was extended in line with the Good Automated Manu-
facturing Practices (GAMP) [Ref. 11] software categories 
illustrated in Table 1. For example, our tool was extended 
to perform periodic checks on the configuration data 
associated with the smart sensor/actuators, mentioned in 
the opening paragraphs.

Conclusions and Future Work
This paper describes work to defend European critical 
infrastructures against a growing range of cyber at-
tacks. Many industrial control systems rely on devices 
that are hard to protect; they were never designed to 
be resilient against the threats that are emerging. New 
ranges of PLCs and of sensors provide support for on-
board encryption and authentication. Unfortunately, 
it will be many years before these devices are used 
throughout the legacy systems that support national 

critical infrastructures [Ref. 12]. Such improvements 
also depend on the ability of engineers to identify 
ICS components that offer appropriate levels of secu-
rity — not only for the threats that we see today, but 
also for new forms of attack that will emerge over the 
lifetime of any devices that are procured for future 
systems. We are developing a systematic set of criteria 
that can be used to compare the levels of security that 
are provided by ICS components. The intention is that 
these questions will augment an existing set of char-
acteristics that are considered by a subset of European 
infrastructure providers when they implement the 
IEC 61508 standard. In other words, we are integrat-
ing questions about cyber security that are intended to 
guide the application of existing safety-related acquisi-
tion criteria.

Earlier in this paper, we identified longer-term ob-
jectives for research in this area. Many of these relate to 
the tensions between safety and security. In particular, 
we have argued that there is an urgent need for tech-
niques that can be used to speed up the validation and 
verification of firmware patches in safety-related appli-
cations. Without this, many ICS components will retain 
known security vulnerabilities because we cannot dem-
onstrate that these updates will preserve safety require-
ments. We have also identified specific concerns about 
conventional security techniques, including the insertion 
of non-deterministic delays to frustrate timing attacks on 
cryptographic algorithms. Further work should consider 
means of bounding these delays across complex systems 
so that the cumulative effect of these mechanisms does 
not undermine system safety.

In the meantime, we have the pragmatic aim of 
defending existing legacy infrastructures. To better under-

Category Extending the Scope of Software Authentication
1. Infrastructure software Verify infrastructure software tools, such as ladder logic interpreters, 

and commercially available software, such as anti-virus applications
2. Firmware Verify firmware in devices that present some form of risk to the system
3. Non-configured Products Verify non-configurable software, such as plug-in software, for certain 

applications that cannot be altered
4. Configured Products Verify configurable software such as software programs that are load-

ed onto PLCs, compute hash values on configuration data
5. Custom Applications Verify bespoke software, which is developed in-house or from a third 

party. Examples of such software include macros, scripts, tools and ap-
plications used to automate laborious procedures.

Table 1 – Using Good Automated Manufacturing Practices (GAMP) in the Validation of the Firmware Defender.

2 The recent attacks on Ukrainian infrastructures are presented in a companion paper for ISSC 2017 — C.W. Johnson, M. 
Evangelopoulou and T. Pavlova, “Applying Lessons from Cyber Attacks on Ukrainian Infrastructures to Secure the Gateways 
onto the Industrial Internet of Things.”
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stand the threat, we have described the effects of upload-
ing compromised malware onto a PLC and also onto a 
security camera used to preserve the physical security of 
ICS applications. We also described the design and high- 
level implementation of a tool that can detect firmware 
modifications. Ideally, this should be capable of reverse 
engineering the code running on a suspect device. How-
ever, this raises many of the intellectual property barri-
ers and manufacturer differences that complicate ICS 
forensics. In contrast, our tool integrates a broad range of 
hashing tools that can be used across the software supply 
chain to authenticate any code that is transferred onto 
particular components. The tool has been developed in 
close cooperation with field engineers. We claim that, 
although firmware verification is far from the perfect 
defense, it helps to increase confidence in the integrity of 
safety-critical infrastructures at a time when a growing 
array of state-sponsored cyber threats pose an existential 
threat to the systems on which we all depend.
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