
In the past, it was not possible to update the under-
lying software in many industrial control devices.
Engineering teams had to “rip and replace” obsolete

components. However, the ability to make firmware
updates has provided significant benefits to companies
who use Programmable Logic Controllers (PLCs),
switches, gateways and bridges, as well as an array of
smart sensor/actuators. While these updates — which
include security patches when vulnerabilities are identi-
fied in existing devices — can be distributed by physical
media, they are increasingly downloaded over Internet
connections. These mechanisms pose a growing threat
to the cyber security of safety-critical applications,
which is illustrated by recent attacks on safety-related
infrastructures across the Ukraine. This paper explains
how malware can be distributed within firmware up-
dates. Even when attackers cannot reverse engineer the
code necessary to disguise their attack, they can under-
mine a device by forcing it into a constant upload cycle
in which the firmware installation never terminates. In
this paper, we present means of mitigating the risks of
firmware attacks on safety-critical systems as part of
wider initiatives to secure national critical infrastruc-
tures. Technical solutions, including firmware hashing,
must be augmented by organizational measures to se-
cure the supply chain within individual plants, across
companies and throughout safety-related industries.

Introduction
Industrial Control Systems (ICS) play a crucial role
in national infrastructures. In the past, these networks
were isolated from the Internet and relied on specialist
protocols, including Profibus and Modbus. However,
they are increasingly accessible through MODBUS
TCP/IP, PROFINET and Ethernet/IP gateways. This
helps companies to monitor and control massively
distributed production processes without duplicating
network infrastructures [Ref. 1]. Organizations create
VPN links between their office-based enterprise infor-
mation systems and their operational networks using
TCP/IP interfaces. This informs strategic decision-
making and enables managers to continually monitor
the productivity of underlying applications. Partly in
consequence, IP-based protocols now account for 80
percent of all ICS installations [Ref. 2]. This illustrates
a dilemma that is at the heart of this paper:

Defending Against Firmware Cyber Attacks
on Safety-Critical Systems

by Chris. W. Johnson DPhil, Mohammed Hashim Saleem, Maria Evangelopoulou,
Marco Cook, Rob Harkness and Tom Barker

Glasgow and Gloucester, U.K.

•	 Previously, the serial protocols used in ICS applica-
tions were inherently insecure — they were never
intended to support encryption or strong authenti-
cation. However, they provided a degree of protec-
tion from mass-market malware because they were
not widely understood.

•	 Today, TCP/IP variants of industrial protocols sup-
port encryption and authentication. However, more
attackers understand their underlying implementa-
tion. ICS applications are vulnerable to denial of
service/ransom attacks that were never intended to
target safety-related processes.

A number of recent attacks have focused on the
firmware that is used in ICS devices. Malicious agents can
change the underlying code installed on PLCs, switches,
and smart sensor/actuators by first compromising the
enterprise information systems and then using TCP/IP
gateways to port their malware inside previously isolated
industrial systems. PLCs are specialized microprocessor-
based industrial devices that can be programmed to au-
tomate control of several machines and processes. Smart
devices are lower-level components that allow a degree of
pre-programming/configuration in proprietary language.
These devices include components such as protection
relays, temperature controllers and pressure transmitters.

This paper explains how firmware verification tools
have been developed and deployed to protect U.K. criti-
cal infrastructures. This is complicated because different
manufacturers use a host of different mechanisms to
structure, encode and verify the updates that are distrib-
uted by physical media, including CD-ROMs, as well as
different Internet-based firmware servers. This paper later
explains how technical innovations, including generalized
firmware hashing tools, must be augmented by organi-
zational measures to secure the supply chain within in-
dividual plants, across companies and throughout safety-
related industries.

Firmware Attack Vectors
for Safety-Critical Systems
The firmware that supports an embedded device in an
industrial control system plays a similar role to that
of an operating system in more conventional applica-
tions. It is stored in ROM, EEPROM or Flash memory.
Without firmware, these devices are little more than

16 Journal of System Safety, Spring 2018	

“bricks.” With firmware, they can be updated to im-
prove reliability, to address bug reports and, increas-
ingly, to provide security patches. Firmware updates
are usually performed via interfaces provided by the
device manufacturer, most often using Ethernet or RS-
232 connections.

In safety-critical systems, these update mechanisms
pose new challenges. Traditionally, the firmware of many
ICS components was never routinely updated because of
the additional costs associated with the verification and
validation required to demonstrate that the modifica-
tions did not compromise safety requirements. In such
cases, critical processes remain vulnerable to previously
published security exploits. Hence, there is a growing
conflict between security requirements to install firm-
ware updates and the safety-related costs of ensuring that
any updates do not undermine integrity requirements in
industrial processes.

Some vendors now distribute Supervisory Control
and Data Acquisition (SCADA) firmware updates from
their websites. This exacerbates security concerns. Poten-
tial attackers can download a sample of the firmware for
embedded devices, enabling them to experiment using
second-hand devices that can be bought via Internet-
based marketplaces. Penetration testing of embedded
firmware can potentially discover back doors. The distri-
bution of firmware patches over the Internet now also
means that legitimate users have to ensure that any firm-
ware is not downloaded from a malicious site. “Watering
hole” attacks rely on high-value targets being drawn to a
compromised website. “Man-in-the-middle” attacks insert
illegitimate firmware on the route from a vendor’s web-
site to the intended recipient — for example, by compro-
mising the addressing mechanisms used to identify the
manufacturer’s server.

The following list summarizes several different types
of firmware attacks [Ref. 3]; any single attack may bor-
row concepts from more than one category:

•	 System-Safety Patch Vulnerabilities — As men-
tioned, software system safety requirements mean
that many ICS components are unpatched. Hence
previously published vulnerabilities can be used and
re-used on safety-critical systems.

•	 Zero-Day Exploits — There is a growing market-
place in zero-day vulnerabilities, or attack methods
that have not yet been patched. The closer that ICS
components move to conventional architectures,
the more likely they are to be affected by these at-
tack methods. There is also a growing competence
among state-sponsored actors who are focusing on
national critical infrastructures.

•	 Reverse Engineering — These attacks build on as-
pects of the Stuxnet/Olympic Games attacks [Ref.
4]. Penetration testing tools can be used to under-
stand elements of the architectures used by manu-
facturers in their firmware updates. If digital certifi-
cates can be forged or undermined, it is possible to
inject malicious code in an update that would oth-
erwise leave the rest of the functionality unaffected
until the attack is launched. Schuett et al. managed
to modify functions identified during the disassem-
bly stage of reverse engineering and injected them
into the PLC firmware, causing denial of service to
the operator under certain conditions [Ref. 5].

•	 Code Mirroring — Malicious code may ensure that
any attempt to query the firmware will make it
seem that a valid installation is being used.

•	 Reload Death Spiral — A simpler and more direct
form of attack can be triggered in some devices. If a
validation step fails late in the firmware installation,
the device may halt while a new version of the firm-
ware is downloaded. If that code is also corrupted,
the device will repeat the download indefinitely.

•	 Firmware “Bricking” — A more general version of
the reload-death spiral is an attack that success-
fully installs malformed firmware in a manner that

The firmware that supports an
embedded device in an industrial
control system plays a similar role
to that of an operating system in

more conventional applications. It is
stored in ROM, EEPROM or Flash
memory. Without firmware, these

devices are little more than ‘bricks.’
With firmware, they can be updated

to improve reliability, to address
bug reports and, increasingly, to

provide security patches.

“

“

 Journal of System Safety, Spring 2018 17

compromises the device. This is a simplified version
of reverse engineering attacks. It is not necessary to
understand how to hide malicious code in a valid
installation — only to get the device to load the
compromised code that need not implement any
valid computation [Ref. 4].

It is important to stress that tools are being devel-
oped to automate aspects of these attacks. Costin et al.
[Ref. 6] describe a system that conducts large-scale static
analysis looking for vulnerabilities and correlations across
families of firmware. Zhu et al. [Ref. 7] propose algo-
rithms to help determine the image base of firmware; for
instance, by identifying literal pools within a firmware
file. This can then be used to determine a candidate base
address for the firmware image. Their work focuses on
devices that exploit ARM processors; however, many of
the underlying concepts have more general applications.

It is important to stress that at present, it is not pos-
sible to directly validate the firmware that is running on
many ICS components. Each manufacturer alters the bi-
nary representation of executable and resource files that
are transferred between installation environments and the
underlying ROM/EEPROM/Flash as the firmware up-
date proceeds. The Glasgow group is actively engaged in
developing forensic techniques that conduct this form of
analysis on particular components. However, in general,
this requires a low-level understanding of specific devices,
including firmware architecture, memory encoding, etc.
Painstaking reverse engineering can gradually piece this
information together, but it must be repeated for differ-
ent manufacturers and devices. As a pragmatic interim
step, we want to update firmware and application soft-
ware from a trusted source with a high degree of confi-
dence, even if we cannot prove that the software running
on a device has not been modified.

To defend safety-related ICS components against
firmware attacks, it is first necessary to understand the
underlying vulnerabilities. Therefore, we focused our
initial work on two very different devices. The first is a
widely used PLC; this was chosen because PLCs are the
computational workhorses of safety-related processes.
The second device was an IP-based security camera;
this was chosen because of the obvious consequences of
undermining the physical security of safety-related ICS
applications1. We started to determine whether minor
modifications to the firmware of an embedded device can
bypass firmware integrity checks.

The first step in attacking the PLC was to deter-
mine the version of firmware being run on the device,
assuming that an attacker only had remote access to the
ICS component. We were able to use public informa-

tion sources to determine how to do this by inspecting
the binary firmware image for the PLC. The same tech-
niques also worked on the camera and PLCs from other
manufacturers. Once the firmware version had been
obtained for the devices, we downloaded valid firmware
already running on both devices from the manufactur-
ers’ websites. We were then able to edit the binary files.
Our analysis revealed a surprising range of responses on
the devices when we made simple changes to the ver-
sion identifiers. We were able to map out the range of
legal and illegal version numbers for the camera. Moving
outside the permitted range elicited an error message
from the firmware update interface, numbers inside the
approved range but still invalid for that version were not
reported and the firmware was passed directly to the
camera for installation. With the PLC, our edits caused
the device-upload interface to hang. We were forced to
conduct a manual reset resembling the firmware spiral
mentioned as item 5 in the previous list of attack meth-
ods. The key point here is that even relatively simple
changes provoke inconsistent responses on different ICS
components, some of which could be exploited within a
malicious attack unless defenders take measures to pro-
tect their safety- related systems.

The Glasgow Firmware Defender
A growing number of papers describe firmware attack
vectors; fewer provide potential solutions. McMinn uses
MD5 hashing and bit wise comparisons on the firm-
ware for a PLC [Ref. 8]. Hashing algorithms calculate
characteristic values from a file. Changes to a file can
be identified because the hash value will change if it
is recalculated. For example, if the number of charac-
ters in a file was used as the hash sum, any insertion
or deletion would be identified because that value
would change. However, if an attacker deleted a valid
character and then inserted another one, this might
not be detected using this simple algorithm. This is an
example of hash collision where the values of the hash
function cannot detect the change. Unfortunately, MD5
suffers from a range of vulnerabilities, including known
problems with hash collision. More formally, a suitable
hash function should ensure:

•	 Pre-image Resistance: Given an unknown message
of arbitrary length x and its corresponding hash
value y (H(x) = y), then it should be computation-
ally infeasible for any other message n for its hash
value m (H(n)= m) to match y — i.e., m ≠ y.

•	 Second Pre-image Resistance: Given a message x
that produces a hash value y (H(x) = y), then it
should be computationally infeasible for any differ-

1 Given the sensitivity of the topic, the identity of both devices is omitted. Further details are available from Chris Johnson,
co-author of this paper.

18 Journal of System Safety, Spring 2018	

ent message n to produce the same hash value as x
(H(x) ≠ H(n)).

•	 Collision Resistance: Given x; y in M where M is
the set of all possible messages, then H(x) ≠ H(y).

Others have focused on a range of alternate meth-
ods — for instance, modeling hysteresis effects on low-
level transmissions from firmware servers. Xiao et al. [Ref.
9] provide a more general architecture intended to secure
ROM, RAM, boot-loader and processes within ICS de-
vices. This again illustrates the tensions that arise between
safety and security when proposing detailed technical
solutions to threats against critical infrastructures. Xiao
et al. rely on encryption across the software stack. This
would have enormous safety re-certification costs for leg-
acy systems that support European and North American
industry. It would incur enormous overheads in the veri-
fication and validation processes that would be required
to determine whether the upgrades had any impact on
functional safety. As a specific example, many encryption
techniques deliberately insert non-deterministic timing
delays to disguise the algorithms they use. These delays
undermine the timing analyses that are required to satisfy
a host of safety-related requirements.

In the long term, it seems likely that vendors and
systems integrators will adopt techniques similar to
those proposed by Xiao et al., as legacy systems are
gradually replaced by more secure counterparts. In the
meantime, there are significant threats to our exist-
ing infrastructures. Therefore, we began to develop
tools that could help secure the firmware that is be-
ing deployed in European infrastructures. Our tool’s
sole purpose is to verify whether a given suspect file
is genuine. It is possible to conduct byte-by-byte com-
parisons. The size of firmware images creates significant
computational overheads for such an analysis, although
hardware support can be provided. Therefore, we also
built on the techniques pioneered by McMinn [Ref. 8].
Recall that both the MD-5 and SHA-1 algorithms have
been found to have high collision probabilities [Ref.
10]. Attackers can exploit these collisions by manipu-
lating a firmware image to produce the same MD-5 or
SHA-1 hash value as the baseline. Rather than relying
on a single algorithm with known vulnerabilities, our
toolset exploits several hash functions, eventually trig-
gering byte-by-byte comparisons if doubts persist.

It is important to stress that many industrial process-
es rely on thousands of low-level devices, each running
bespoke firmware. The techniques described in this paper
create significant potential overheads if the Firmware
Defender raises a large number of false alarms. This might
occur if, for example, the tool was incorrectly configured
using incorrect hash values for baseline versions of legal
ICS firmware. Conversely, an attacker could undermine
our system if they could register an illegal hash value that

characterized their compromised version of the firmware.
For this reason, we had to develop extensive verification
and access control measures to protect the integrity of
the tool itself.

Before the defender can be used, it is first necessary
to survey all the valid versions of manufacturers’ software
that might be deployed within a particular organiza-
tion. Although most suppliers compute their own hash
values, they use different techniques both to encode the
files needed to install the firmware and also to calculate
characteristic values. Therefore, we developed common
algorithms that can be applied in a consistent way across
the archives being transferred between many different
suppliers and their safety-related customers. We can then
re-compute the hash functions across different forms
of firmware for many different devices. However, for
this approach to be successful, it is necessary to obtain a
verified baseline copy. Safety-critical organizations must
deploy physical and digital mechanisms to increase con-
fidence that initial hash values are computed from reli-
able sources for the manufacturers’ firmware. In the near
term, this might be avoided if the ICS industry could
agree on standard techniques for the generation of hash
values across multiple suppliers.

Working with a number of industrial sponsors,
we found that end users often operated many different
firmware versions on a single family of devices deployed
across a single production facility. Deployment of the tool
helped these companies audit the firmware being used
across a range of critical legacy processes.

The safety-critical nature of this project meant that
acceptance testing of the tool had to involve authorized
participants from critical infrastructure companies. Dur-
ing a pre-deployment study, we determined whether
plant engineers could use the tool to identify modified
firmware during a simulated update on ICS components.
One issue that arose during this initial evaluation was
the additional time that might be required to train a suf-
ficient number of staff to ensure that all updates were
verified on a 24/7 basis. We initially focused on firmware
— partly because this had been a target in recent attacks
on critical infrastructures in the Ukraine2. The engineers
involved in our evaluation argued that the same level of
protection should be extended to other levels of the soft-
ware stack. In consequence, the application of our tools
was extended in line with the Good Automated Manu-
facturing Practices (GAMP) [Ref. 11] software categories
illustrated in Table 1. For example, our tool was extended
to perform periodic checks on the configuration data
associated with the smart sensor/actuators, mentioned
in the opening paragraphs.Working with a number of
industrial sponsors, we found that end users often oper-
ated many different firmware versions on a single family
of devices deployed across a single production facility.
Deployment of the tool helped these companies audit

 Journal of System Safety, Spring 2018 19

the firmware being used across a range of critical legacy
processes.

The safety-critical nature of this project meant that
acceptance testing of the tool had to involve authorized
participants from critical infrastructure companies. Dur-
ing a pre-deployment study, we determined whether
plant engineers could use the tool to identify modified
firmware during a simulated update on ICS components.
One issue that arose during this initial evaluation was
the additional time that might be required to train a suf-
ficient number of staff to ensure that all updates were
verified on a 24/7 basis. We initially focused on firmware
— partly because this had been a target in recent attacks
on critical infrastructures in the Ukraine2. The engineers
involved in our evaluation argued that the same level of
protection should be extended to other levels of the soft-
ware stack. In consequence, the application of our tools
was extended in line with the Good Automated Manu-
facturing Practices (GAMP) [Ref. 11] software categories
illustrated in Table 1. For example, our tool was extended
to perform periodic checks on the configuration data
associated with the smart sensor/actuators, mentioned in
the opening paragraphs.

Conclusions and Future Work
This paper describes work to defend European critical
infrastructures against a growing range of cyber at-
tacks. Many industrial control systems rely on devices
that are hard to protect; they were never designed to
be resilient against the threats that are emerging. New
ranges of PLCs and of sensors provide support for on-
board encryption and authentication. Unfortunately,
it will be many years before these devices are used
throughout the legacy systems that support national

critical infrastructures [Ref. 12]. Such improvements
also depend on the ability of engineers to identify
ICS components that offer appropriate levels of secu-
rity — not only for the threats that we see today, but
also for new forms of attack that will emerge over the
lifetime of any devices that are procured for future
systems. We are developing a systematic set of criteria
that can be used to compare the levels of security that
are provided by ICS components. The intention is that
these questions will augment an existing set of char-
acteristics that are considered by a subset of European
infrastructure providers when they implement the
IEC 61508 standard. In other words, we are integrat-
ing questions about cyber security that are intended to
guide the application of existing safety-related acquisi-
tion criteria.

Earlier in this paper, we identified longer-term ob-
jectives for research in this area. Many of these relate to
the tensions between safety and security. In particular,
we have argued that there is an urgent need for tech-
niques that can be used to speed up the validation and
verification of firmware patches in safety-related appli-
cations. Without this, many ICS components will retain
known security vulnerabilities because we cannot dem-
onstrate that these updates will preserve safety require-
ments. We have also identified specific concerns about
conventional security techniques, including the insertion
of non-deterministic delays to frustrate timing attacks on
cryptographic algorithms. Further work should consider
means of bounding these delays across complex systems
so that the cumulative effect of these mechanisms does
not undermine system safety.

In the meantime, we have the pragmatic aim of
defending existing legacy infrastructures. To better under-

Category Extending the Scope of Software Authentication
1. Infrastructure software Verify infrastructure software tools, such as ladder logic interpreters,

and commercially available software, such as anti-virus applications
2. Firmware Verify firmware in devices that present some form of risk to the system
3. Non-configured Products Verify non-configurable software, such as plug-in software, for certain

applications that cannot be altered
4. Configured Products Verify configurable software such as software programs that are load-

ed onto PLCs, compute hash values on configuration data
5. Custom Applications Verify bespoke software, which is developed in-house or from a third

party. Examples of such software include macros, scripts, tools and ap-
plications used to automate laborious procedures.

Table 1 – Using Good Automated Manufacturing Practices (GAMP) in the Validation of the Firmware Defender.

2 The recent attacks on Ukrainian infrastructures are presented in a companion paper for ISSC 2017 — C.W. Johnson, M.
Evangelopoulou and T. Pavlova, “Applying Lessons from Cyber Attacks on Ukrainian Infrastructures to Secure the Gateways
onto the Industrial Internet of Things.”

20 Journal of System Safety, Spring 2018	

About the Authors
Chris Johnson is Professor and Head of Computing
Science at the University of Glasgow in Scotland. He
leads a research group devoted to improving the cyber
security of safety-critical systems. He has developed
forensic guidance on behalf of the UK civil nuclear
industry and helped develop European policy for the
cyber-security of aviation — including ground-based
and airborne systems.

Maria Evangelopoulou is a Research Assistant work-
ing on a joint FAA/US Navy project in Glasgow Uni-
versity, looking at safety and security analysis of network
data. She attained her MSc in Intelligence and Security
Informatics from the University of Abertay and a BSc in
Technology Management from University of Macedonia
in Greece. Maria’s current research is concerned with
the investigation of Cyber Situation Awareness Methods
and Techniques in Cloud Networks and other kinds of
systems.

References

1.	 Johnson, C.W. “Securing the Participation of Safety-Critical SCADA Systems in the Industrial Internet of Things.
In C. Sandon,” R. Piggin, M. St. John Green, Paul Casely and Chris Johnson (eds.), Proceedings of the 11th Interna-
tional Conference on System Safety and Cyber Security, The IET, Savoy Place, London, U.K. October 11-13, 2016.

2.	 Zhang, L. An Implementation of SCADA Network Security Testbed, arXiv preprint arXiv:1701.05323, 2017.
3.	 Loukas, G. Cyber-Physical Attacks: A Growing Invisible Threat, Chapter 5, pp165-166. Butterworth Heinemann/

Elsevier, Waltham, Massachusetts, 2015.
4.	 Basnight, Z.H. Firmware Counterfeiting and Modification Attacks on Programmable Logic Controllers. Master’s the-

sis, Graduate School of Engineering and Management Air Force Institute of Technology Air University, Wright
Patterson Air Force Base, Ohio, 2013. Retrieved from: http://www.dtic.mil/cgi- bin/GetTRDoc?Location=U2&d
oc=GetTRDoc.pdf&AD=ADA583401.

5.	 Schuett, C., J. Butts, and S. Dunlap. “An Evaluation of Modification Attacks on Programmable Logic Controllers,”
International Journal of Critical Infrastructure Protection, 7(1):61-68, 2014.

6.	 Costin, A., J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis. “A Large-Scale Analysis of The Security of
Embedded Firmwares,” Proceedings of the 23rd USENIX Security Symposium, pp 95-110, August 20–22, 2014, San
Diego, California.

7.	 Zhu, R., Y.-A. Tan, Q. Zhang, Y. Li, and J. Zheng. “Determining Image Base of Firmware for ARM Devices
by Matching Literal Pools,” Digital Investigation, 16:19-28, 2016. Retrieved from: https://doi.org/10.1016/j.
diin.2016.01.002

8.	 McMinn, L.R. External Verification of SCADA System Embedded Controller Firmware, Master’s thesis, Graduate
School of Engineering and Management Air Force Institute of Technology Air University, Wright Patterson Air
Force Base, Ohio, 2012. Retrieved from: https://www.hsdl.org/?view&did=756306.

9.	 Xiao, M., Y.-Q. Li, S.-h. Chen, and J.-S. Su. “Security Enhancement on Firmware for the Internet of Things,”
DEStech Transactions on Computer Science and Engineering (WCNE), 2016. Retrieved from: http://dpi-proceed-
ings.com/index.php/dtcse/article/view/5146

10.	Gauravaram, P. and L. R. Knudsen. “Cryptographic Hash Functions,” Handbook of Information and Communica-
tion Security, Springer Verlag, Heidelberg, Germany, pp 59-79, 2010.

11.	DeSpautz, J., K.S. Kovacs, G. Werling. “GAMP Standards for Validation Of Automated Systems,” Pharmaceutical
Processing, March 11, 2008. Retrieved from: http://www.pharmpro.com/article/2008/03/gamp-standards-valida-
tion-automated-systems.

12.	Johnson, C.W., R. Harkness, and M. Evangelopoulou. “Forensic Attacks Analysis and the Cyber Security of Safe-
ty-Critical Industrial Control Systems,” Proceedings of the 34th International System Safety Conference, Orlando, FL
August 8-12, 2016, International System Safety Society, Unionville, Virginia.

stand the threat, we have described the effects of upload-
ing compromised malware onto a PLC and also onto a
security camera used to preserve the physical security of
ICS applications. We also described the design and high-
level implementation of a tool that can detect firmware
modifications. Ideally, this should be capable of reverse
engineering the code running on a suspect device. How-
ever, this raises many of the intellectual property barri-
ers and manufacturer differences that complicate ICS
forensics. In contrast, our tool integrates a broad range of
hashing tools that can be used across the software supply
chain to authenticate any code that is transferred onto
particular components. The tool has been developed in
close cooperation with field engineers. We claim that,
although firmware verification is far from the perfect
defense, it helps to increase confidence in the integrity of
safety-critical infrastructures at a time when a growing
array of state-sponsored cyber threats pose an existential
threat to the systems on which we all depend.

 Journal of System Safety, Spring 2018 21

