
Using Karnaugh Maps
in Software Requirements Analysis

by Anthony S. Cantone and Yawa E. Adonsou
China Lake, California

Faulty requirements leading to design deficiencies
have been shown to be an avoidable root cause
of many product failures. This paper is an effort

to push the boundaries of system safety by proposing a
novel approach for discovering faulty or missing software
requirements by adapting a proven methodology here-
tofore used in circuit analysis. Karnaugh Mapping is em-
ployed in Application-Specific Integrated Circuit (ASIC)
design to minimize power consumption, facilitate tem-
perature control, increase functionality and minimize the
number of physical logic gates. Karnaugh Maps (K-Maps)
are ideally suited to impose order on logical requirements
that describe the operation of electronic circuits. With
the assumption that software requirements are express-
ible as logical statements, this paper assesses the ability
of Karnaugh Mapping to effectively deconstruct and
rationalize developmental requirements in the analysis of
software and seeks to demonstrate that K-Maps can be
used not only to minimize the number of requirements,
but also to detect missing requirements. The analysis con-
ducted in the course of developing this paper indicates
that K‑Maps can effectively identify faulty requirements
in two examples of varying complexity, provided that
sematic conventions are established and observed.

Introduction
Faulty software requirements have been implicated
in safety-related incidents over the years. Reference
14 contains an example of a missing requirement for
labeling the field for hours, minutes or seconds in the
software used to program some SynchroMed implant-
able pumps. This led to two deaths and seven injuries.
Medtronic recalled the software on September 24,
2004 and replaced it with new software that labels the
time fields.

This paper presents K-Maps as a tool that can aid
in meeting that challenge, particularly with regard to the
detection of missing requirements and resolution of du-
plication of a set of related requirements. This paper will
introduce techniques associated with K-Maps as used in
other technical areas and demonstrate their applicability
in software requirements analysis.

The objective of this paper is to assist the reader
in using K-Maps as a requirements analysis tool. In par-
ticular, as a result of studying the techniques presented
in this paper, the reader should be able to detect missing

requirements and minimize a set of duplicate related
requirements.

This paper describes the use of K-Maps as an analysis
tool for analyzing software requirements. The Karnaugh
Map Background subsection reviews the history of K-Maps
as a tool employed in circuit design. The Key Concepts
subsection introduces five key concepts used in this paper:
Boolean Algebra, minterms, the relationship between truth
tables and K-Maps, mapping from truth tables to K-Maps,
and Hamming Distance. The Requirements subsection
discusses safety aspects of missing requirements, standard
forms of requirements, the concept of related require-
ments, the relationship between Karnaugh Map use for
switching circuits and requirements, and examples of how
K-Maps are used for requirements analysis. The Applica-
tions of Karnaugh Maps in Requirements Analysis subsec-
tion presents a list of steps that can be used to map from
requirements to K-Maps, and a discussion of using K-Maps
for requirement minimization. The Other Uses of K-Maps
subsection introduces another possible use of K-Maps in
requirements analysis. The K-Maps and Complex System
Requirements subsection discusses more complex system
requirements and higher order K-Maps. The Conclusion
subsection is a summary of the paper.

Karnaugh Map Background
K-Maps provide a convenient method for simplifying
Boolean Algebra expressions. In 1881, Allan Marquand
built a mechanical logical machine and developed logical
diagrams (also known as Marquand diagrams) [Ref. 1]
associated with his machine at Princeton University. The
President of Princeton decided that Marquand’s approach
to teaching logic was “unorthodox and uncalvinistic.”
Hence, in 1883, Marquand was offered a position teach-
ing art history, a position he held until his death [Ref. 2].

In 1952, Edward Veitch rediscovered the Mar-
quand diagram, applying it to the problem of minimizing
switching circuits. Maurice Karnaugh created what is
now known as Karnaugh Maps in 1953 [Ref. 3], as a re-
finement of Edward Veitch’s Veitch chart [Ref. 4].

A K-Map [Ref. 13] is a table of cells, each cell
containing a value of a Boolean expression for a unique
combination of input Boolean variable values. K-Maps, a
proven methodology commonly used in switching circuit
analysis, are employed in ASIC design to minimize power
consumption, facilitate temperature control, increase

22 Journal of System Safety, Spring 2018	

(1)

functionality, detect possible race conditions, and minimize the number of physical logic gates. They are ideally suited
to imposing order on logical requirements for electronic circuits.

Key Concepts
Boolean Algebra: A short review of Boolean algebra is presented in this subsection. Boolean Algebra [Ref. 5] is a set
of symbols that take binary values, such as True and False, or 0 and 1, along with two closed binary operations, denot-
ed by the symbols “+” and “·”. The symbol “+” indicates inclusive “or” and the symbol “·” indicates “and.” Juxtaposition
is often used in place of “·” so that “ab” is considered equivalent to “a·b.” Two symbols are in juxtaposition when they
are placed side by side without a binary operation symbol between them. The binary operations satisfy the properties
in Equations 1 through 6. The symbol “~”, placed before a symbol, is used to denote the complement of that symbol.
For example, if “a” has the Boolean value True, then “~a” has the Boolean value False.

The following identities are useful when working with K-Maps: a, b and c are variables that take on Boolean
values True or False; 1 or 0; or Yes or No.

a + b = b + a; ab = ba (Commutative laws of “+” and “·”)

(a + b) + c = a + (b + c); (ab)c = a(bc) (Associative laws of “+” and “·”)

a(b + c) = ab + ac (First distributive law: “·” distributes over “+”)

a + bc = (a + b)(a + c) (Second distributive law: “+” distributes over “·”)

Note that the second distributive law permits factoring expressions such as a + bc, which cannot be factored in ordinary
algebra.
The following De Morgan’s Law identities are also helpful:

a + 0 = a; a + 1 = 1 (Annihilator for “+”)

a·0 = 0; a·1 = a (Annihilator for “·”)

Sums of Products and Minterms: Boolean expressions can be written in two different useful forms, as Sums of

~(a + b) = (~a) · (~b)

Products (SOP) and as Products of Sums (POS). Each form has its unique applications. K-Map applications are most
conveniently done with the expressions being in the SOP form.

Any Boolean expression can be written in the SOP form [Ref. 10]. One method for doing this is to generate a
truth table for the expression and pick out the product terms for which the output is True or 1. “Or-ing” these prod-
uct terms results in the SOP form. For example, if the generated truth table is as in Table 1, then the SOP form of the
expression that generated this truth table is shown in Equation 11.

Output = ~A~B + ~AB + AB

A B Output
F F T
F T T
T F F
T T T

Table 1 — Generated Truth Table.

a + a = a (Idempotence of “+”)

a·a = a (Idempotence of “·”)

~(ab) = (~a) + (~b)

The products are called minterms [Ref. 5]. Each term of a Boolean expression, written in the form of an SOP of Boolean
variables, is a minterm.

As another example, consider the Boolean expression A(B(C+D)+CD) +BC, where A, B, C and D are Boolean variables.
Using the identities in the Boolean Algebra Subsection, this expression can be changed to an SOP expression either as shown in
Table 1, using truth tables, or using Boolean Algebra.

A(B(C + D) +CD) + BC = A(BC + BD + CD) + BC (Eqn. 3)
= ABC + ABD + ACD + BC (Eqn. 3)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9) (10)

(11)

(12)

 Journal of System Safety, Spring 2018 23

Truth Tables and K-Maps: A K-Map is actually a
type of Venn diagram [Ref. 8]. However, more important
is the connection between K-Maps and truth tables. Truth
tables are closely related to K-Maps. K-Maps are diagrams
that contain cells, each of which correspond to a line in
a truth table. There is a one-to-one correspondence [Ref.
9] between lines in a truth table and cells in a K-Map. To
illustrate, consider a truth table of the Boolean expression
B + ~A (Table 2).

In this table, A and B are variables that take on Bool-
ean values, sometimes called “Boolean variables,” where
T designates the Boolean value “True” and F designates
“False.”

The corresponding K-Map of B + ~A is in Table 3.
An alternate way of drawing this K-Map, found in

the literature [Ref. 3], is displayed in Table 4.
Table 3 is an array of four cells, each of which corre-

sponds to a line in the truth table shown in Table 2. The
number of variables in the truth table is the dimension of
the associated K-Map. Therefore, for a truth table of four
rows, the number of variables is two, and the dimension
of the associated K-Map is two.

In the top row of symbols in the K-Map shown in
Table 4, 0 and 1, are the possible Boolean values for A.
In the left column, the symbols 0 and 1 are the possible
Boolean values for B. In table 4, 0 and 1 correspond re-
spectively to F and T in table 3. This row and column of
symbols in Table 3 are called “wings.” They are not really
part of the K-Map. The Boolean value in each cell of the
K-Maps in Table 3 and Table 4 corresponds to the value
of the expression for which the K-Map is constructed.
For example, the top left cell in the Table 3 K-Map con-
tains a T, which corresponds in the truth table to the
value for B + ~A on the line for which A is True and B is
True.

An example of the use of K-Maps in circuit analysis
is the minimization of the components of the circuit as
shown in Figure 1.

A B ~A B+~A
F F T T
F T T T
T F F F
T T F T

Table 2 — Truth Table of B + ~A.

A ~A

B T T

~B F T

Table 3 — K-Map of B + ~A.

1 0

1 1

A
0 1

B
0
1

Table 4 — Another K-Map of B + ~A.

OR

AND

AND

AND

~A

A

A

B

~B

B

OUT =

~AB+A~B+AB

Figure 1 – Simple Circuit.

A B ~AB+A~B+AB
0 0 0
0 1 1
1 0 1
1 1 1

Table 5 – Truth Table for Circuit in Figure 1.

K-Map A ~A
B 1 1

~B 1 0

A

B

Table 6 – K-Map for Circuit in Figure 1.

24 Journal of System Safety, Spring 2018	

Table 5 shows the associated truth table for the cir-
cuit in Figure 1. Table 6 shows the K-Map derived from
the truth table in Table 5. An analysis was performed,
and it was determined that the circuit can be simplified
so that the output is A + B, which is equivalent to ~AB +
A~B + AB, in the sense that A + B will generate the same
truth table for the same inputs A and B. The process for
deriving this result will be reviewed later in this paper.

The circuit simplifies to what is shown in Figure 2.
Another example of the correspondence between the

table and map is that the lower right cell in the K-Map, as
shown in Table 3, corresponds to the first line in the truth
table, shown in Table 2, the line for which the ~A and ~B
variables are True, or A and B variables are False.

Table 7 illustrates a truth table of three variables,
which will result in eight lines.

A truth table of three variables A, B and C can be
illustrated with the Boolean expression ~AB + A~BC
(Table 7). The variables A, B and C take on the Boolean
values T (True) or F (False).

The associated K-Map (Table 8) is of dimension
three, since it contains three variables and therefore
eight cells.

Again, common in the literature [Ref. 3] is the
alternative method of displaying the Table 8 K-Map
(Table 9).

In Table 9, 00 corresponds to ~A~B, 01 to ~AB, 11
to AB, 10 to A~B, 0 to ~C, and 1 to C.

Note the order of the column indices across the top
of Table 9. The binary order (in reverse) would be 11, 10,
01, 00. The order that appears in Table 9 is not the binary
order. This order in Table 9 is called “Gray Code.” This
particular method of numbering the indices guarantees
that only one variable changes from any cell to any adja-
cent cell. This is also true in the form of the K‑Map used
in this paper (Table 8). Across the top row, for example,
the values for each cell are A~B, AB, ~AB and ~A~B.
Only one variable changes for each step from a cell to an
adjacent cell. To incorporate Boolean expressions in K-
Maps, the expressions must be in the SOP form.

Using wings in K-Maps seems to be the best of the
alternative methods. The wings provide room to display
the conditions associated with the requirements.

It will be seen later that the Gray Coding in K-Maps
permits manipulations that make possible the simplifica-
tion of Boolean expressions representing the data in the
truth tables. This is what makes it useful in circuit analy-
sis (See the Using a K-Map for Requirement Minimization
subsection later in this paper). Even though K-Maps do
not offer an advantage over truth tables for discovering
missing requirements, mapping the requirements to a
K-Map makes it possible to analyze requirements, which
may lead to requirements minimization.

Mapping from Truth Tables to K-Maps: The fol-
lowing steps can be used as a guide for constructing a
K-Map from a truth table:

1. 	Acquire Data — Determine the number of unique
variables in the Boolean.

2. 	Process Data — Place the Boolean expression in the
SOP format.

3. 	Determine Entries in the K-Map — Evaluate the
Boolean expression for each possible combination
of variables. If there are n variables, there will be 2n
evaluations. The associated K-Map will contain 2n
cells.

4. 	Populate the K-Map — Place each evaluation in a
unique cell in the K-Map.

OR A+B

A

B

Figure 2 — Simplified Circuit from Figure 1.

A B C ~AB A~BC ~AB+A~BC
F F F F F F
F F T F F F
F T F T F T
F T T T F T
T F F F F F
T F T F T T
T T F F F F
T T T F F F

Table 7 — Truth Table for ~AB + A~BC.

A ~A
C T F T F

~C F F T F
~B B ~B

Table 8 — The Form of the K-Map Used in this Paper.

 10 11 01 00

1 0 1 0

0 0 1 0

1

0
C

AB

Table 9 — The Form of the K-Map Common in the
Literature.

 Journal of System Safety, Spring 2018 25

Hamming Distance: The Hamming distance [Ref.
11] between two binary strings of the same length is
the number of positions at which the binary values are
different. For example, consider the two Boolean expres-
sions, each of length four, ~ABC~D and A~BCD. In the
first position, ~A and A will differ in their binary values.
This will be true in the second and fourth positions, also.
Therefore, these two Boolean expressions differ in three
positions, and the Hamming distance between these two
strings is three.

Requirements
Safety and Other Implications of Requirements Omis-
sions: Design requirements furnish the “how,” which
interprets the high-level system requirements and
determines how to implement them. The process of
developing design requirements is probably one of the
most important tasks in the system development pro-
cess and also probably one of the least understood tasks.
The components comprising a system are highly inter-
related and complex, which means they must be well
understood and defined in order to properly function
when built. The requirement specification process must
correctly define the system as a whole, including archi-
tectures, functions, interrelationships, constraints, etc.

This paper concentrates on requirements expressed
as conditions: If a condition is satisfied, an action is taken.
These are identified as the subset of software require-
ments known as functional requirements. Conditional
requirements are typically event-driven, behavior and
state-driven (see Figure 3). Examples of key words that
identify conditional requirements are “when,” “upon,” “if/
then,” “while” and “where.”

Requirements analysis is:

System
Requirement

Hardware
Requirement

Software
Requirement

Functional
Requirement

Non-Functional
Requirement

Conditional
Requirement

Non-Conditional
Requirement

Figure 3 – Requirements Hierarchy.

•	 A process of assuring that requirements are an ac-
curate decomposition of the system requirements

•	 A check that the requirements are complete, un-
ambiguous, correct, verifiable, concise, consistent,
feasible, traceable and necessary

•	 A review to determine if there are any missing,
duplicate or contradictory requirements

Missing software requirements are a common prob-
lem with writing specifications. How can one be sure all
requirements essential to delivering a working solution
have been included? Missing critical requirements intro-
duce project delays, scope creep, the possibility of deliv-
ering the wrong product, and worst of all, the possibility
of mishaps. K‑Maps address this last safety-significant
possibility by making available a tool to detect missing
requirements that can arise in the design development
process.

Common sources of missing requirements are:
•	 Failure to consider all phases of an operation
•	 Lack of specification of the sequence of operations
•	 Using an inappropriate Easy Approach to Require-

ments Specification (EARS) pattern
•	 Failure to include essential actors in the design lan-

guage, if used
•	 Overlooking the inverse of a requirement

The requirements specification provides a struc-
ture for organizing the large number of requirements
necessary for designing a system. This structure ideally
helps to minimize or eliminate duplication of require-
ments and provides a means for navigating through all
of the requirements.

26 Journal of System Safety, Spring 2018	

Standard Forms: For the purposes of this paper, a
requirement is defined as a Boolean statement and a des-
ignated action with the following properties:

•	 The Boolean statement is composed of conditions,
each of which has a binary truth value.

•	 The conditions are combined by Boolean operators
(and [binary operator “·”/ juxtaposition], inclusive or
[binary operator “+”]).

•	 The Boolean statement is in the SOP form.
•	 The Boolean statement has a truth value, as com-

puted from its conditions.
•	 The truth value of the Boolean statement deter-

mines if the designated action will be carried out or
not.

The standard form of a requirement is defined as
one that is written in the form of an “if/then” statement
with the Boolean expression following the “if” key word,
in the SOP form, and the action following the “then” key
word.

Consider this requirement: “If M then X,” where M
can be one or more conditions connected by “or” or “and”
and X is the action to perform. One must verify if M is in
SOP form to ensure that this requirement is in the stan-
dard form.

•	 Example 1— The requirement “if A and B then Y”
is in the standard form because it is written in the
form of the if/then statement and the Boolean ex-
pression “A and B” is in the SOP form.

•	 Example 2— The requirement “if A and (B or C)
then Z” is not in the standard form because the
Boolean expression A and (B or C) is not in the
SOP form, even though the requirement is written
in the form of an “if/then” statement.

Expression Equivalent (“if/then”)
B unless A If not A then B
B only if A If not A then not B

A provided that B, A in case B If A then B
While A do B If A then B

B if and only if A If A then B and if B then A

Switching Circuits Related Requirements
Input variables Conditions
Boolean expressions or statements, with Boolean
operations connecting the variables

Boolean expressions with Boolean operations
connecting the conditions in these expressions

Boolean value of an expression Indicates whether an action is performed or not

The requirement in Example 2 can be rewritten in
the standard form by putting the Boolean expression A
and (A or C) in the SOP form. A and (B or C) is equiva-
lent to A·(B + C), which is equal to A·B + A·C or (A and
B) or (A and C). Thus the standard form of the require-
ment in example 2 is “if (A and B) or (A and C) then Z.”

Sometimes, a requirement is written with other
keywords than “if/then.” One needs to convert that re-
quirement into the form of an “if/then” statement and
verify that the Boolean expression is in the SOP form.
The list in Table 10 provides some of the other keywords
used in requirements writing, and their conversion to “if/
then” form.

Related Requirements: Requirements are related
if they share one or more conditions. As a consequence,
related requirements are generally requirements all of
whose conditions are drawn from the same set of condi-
tions. This indicates that the requirements are dealing
with different aspects of a single subsystem or related
subsystems. Related requirements are of necessity related
to each other by “or” because otherwise different values
of the conditions would contradict each other.

Since related requirements share conditions, a single
K-Map can be constructed with these shared condi-
tions, to which K-Map the related requirements may
be mapped and analyzed. K-Maps are concerned with a
limited and well-defined set of conditions. In the Applica-
tions of K-Maps in Requirements Analysis subsection later
in this paper, we will see that one of the steps in the map-
ping methodology is to determine the number of unique
conditions appearing in a set of requirements. This num-
ber is the dimension of the K-Map.

How to Interpret the Entries in a K-Map as a Re-
quirement: K-Maps were designed originally as an aid in
minimizing switching circuit Boolean expressions. Table

Table 10 — Other Keywords used in Requirements Writing.

Table 11 — Analogies Between Switching Circuit Artifacts and Related Requirements Artifacts.

 Journal of System Safety, Spring 2018 27

11 shows analogies between switching circuit artifacts
and related requirements artifacts as seen from K-Maps.

Table 12 is a K-Map of two variables, A and B. The
numbers 1, 2, 3 and 4 are inserted in the cells for ease of
reference.

A ~A
B 1 2

~B 3 4

Table 12 — K-Map of Two Variables

A and B are the Boolean variables, and each cell
designates a truth value for a Boolean expression of
the variables A and B. In the corresponding truth table
(Table 13), T and F correspond to the truth values for A
and B. The cell numbers refer to Table 12. For example,
in Table 13, cell number 4 corresponds to A and B both
False (F). In Table 12, the cell occupied by “4” corre-
sponds to ~A and ~B, or to A and B both False (F).

A B Cell Number
F F 4
F T 3
T F 2
T T 1

Table 13 — Truth Table Corresponding to Table 12.

There is an association between these variables in
a K-Map and the conditions in the Boolean statement
found in a requirement. Table 14 shows this associa-
tion. The True/False value of the variable A corresponds
exactly to the True/False value of a condition. Similarly,
the concept of union in a K-Map corresponds to the
concept of “or” or “+” in the Boolean statement in a
requirement, and the concept of intersection in a K-
Map corresponds to the concept of “and” or “·” in the
Boolean statement in a requirement.

K-Map Boolean Statement in a Requirement
Boolean variable Condition
Boolean expression Boolean combination of conditions, referred to as

Boolean expression or Boolean statement
Union Or
Intersection And
SOP expression Set of related requirements
Products in an SOP expression Requirement

Table 14 — Association Between K-Maps and Requirements

This association between K-Maps and require-
ments is the key to the use of K-Maps for analyzing
requirements.

Consider the following requirements with M and
N as conditions:

If M is True and N is True, then <action 1>
If M is True and N is False, then <action 2>
If M is False, then <action 3>

For the requirement, “If M is True and N is True,
then <action 1>,” associate condition M with the
Boolean variable A, and condition N with the Boolean
variable B. This association is reasonable because condi-
tions have Boolean values just as Boolean variables do.
For two conditions, the corresponding K-Map is said
to be of dimension 2, as it would be for two Boolean
variables. Note that cell 1 (numbered as in Table 12)
satisfies the condition “M is True and N is True” simul-
taneously; therefore, Table 15 is the K-Map for the first
requirement.

M ~M
N <action 1>

~N

Table 15 — K-Map of the Requirement “If M is True and N
is True, then <action 1>.”

Now consider the requirement “If M is True and N
is False, then <action 2>.” Associating M with A and N
with B, and identifying cell 2 as the only cell for which M
is True and N is False simultaneously, the K-Map for the
requirement is in Table 16.

M ~M
N

~N <action 2>

Table 16 — K-Map of the Requirement “If M is True and
N is False, Then <action 2>.”

28 Journal of System Safety, Spring 2018	

Consider also the requirement “If M is False, then
<action 3>.” Associating M with A and N with B, and
identifying cells 2 and 4 as the cells for which M is true,
the K-Map for the requirement is in Table 17.

M ~M
N <action 3>

~N <action 3>

Table 17 — K-Map of the Requirement “If M is False,
Then <action 3>.”

Combining the above three K-Maps, a two-dimen-
sional K-Map is formed. See Table 18.

M ~M
N <action 1> <action 3>

~N <action 2> <action 3>

Table 18 — K-Map of the Requirements

30 M
iles

1 Mile

Space Debris in ISS Path

Do Not Penetrate
The “Pizza Box”

“Pizza Box” Shape
with ISS in Center

ISS Path

30
 M

ile
s

Let’s illustrate the above with actual requirements.
Consider a K-Map containing requirements describing
possible International Space Station (ISS) responses to
safety threats from collision with earth debris and solar
debris. The “Pizza Box” is an imaginary rectangular paral-
lelepiped drawn around the ISS defining a space that,
when a threat of penetration arises, raises a hazard con-
cern (Figure 4).

Figure 4 — International Space Station (ISS) Collision Threats.

Not to scale

 Journal of System Safety, Spring 2018 29

Consider the following set of related requirements:

•	 S_1000 — If Detected Object is in Earth Orbit and Relative Velocity is greater than Threshold Velocity, then
Calculate Elliptical Trajectory

•	 S_1001 — If Detected Object is in Earth Orbit and Relative Velocity is less than or equal to Threshold Velocity,
then Take no Action

•	 S_1002 — If Detected Object is not in Earth Orbit, then Calculate Hyperbolic Trajectory

These requirements are assumed to be connected by “or,” which represents a union in a K-Map.
Requirement S_1000 is mapped to the upper left cell in the same way as the requirement “if M is True and N is

True, then <action 1>” was mapped to the K-Map in Table 15. Wherever the conditions are connected with an “and,”
this represents an intersection in the K-Map. Requirement S_1000 (detailed above) is in this form. The two condi-
tions “Detected Object is in Earth Orbit” and “Relative Velocity is greater than Threshold Velocity” are both true, so
this represents an intersection in the K-Map. The first column and the first row intersect in the cell at the upper left
corner of the K‑Map. Therefore, the action “Calculate Elliptical Trajectory” is placed there. Table 19 shows the place-
ment of this action.

Detected Object is in Earth
Orbit

Detected Object is not in
Earth Orbit

Relative Velocity is greater
than

Threshold Velocity

Calculate Elliptical Trajectory
S_1000

Relative Velocity is less than
or equal to Threshold Velocity

Table 19 — Mapping Requirement S_1000.

Detected Object is in Earth
Orbit

Detected Object is not in
Earth Orbit

Relative Velocity is greater
than

Threshold Velocity
Relative Velocity is less than

or equal to Threshold Velocity
Take No Action

S_1001

Table 20 — Mapping Requirement S_1001.

Detected Object is in Earth
Orbit

Detected Object is not in
Earth Orbit

Relative Velocity is greater
than

Threshold Velocity

Calculate Hyperbolic Trajectory
S_1002

Relative Velocity is less than
or equal to Threshold Velocity

Calculate Hyperbolic Trajectory
S_1002

Table 21 — Mapping Requirement S_1002.

Requirement S_1001 is mapped to the lower left cell in the same way as the requirement “if M is True and N is
False, then <action 2>” was mapped to the K-Map in Table 16. See Table 20.

Requirement S_1002 is mapped to the cells in the right-hand column in the same way as the requirement “if M
is False, then <action 3>” was mapped to the K-Map in Table 17. See Table 21.

30 Journal of System Safety, Spring 2018	

Combining these mappings, we get Table 22, the final K-Map with these three requirements.

Detected Object is in Earth
Orbit

Detected Object is not in
Earth Orbit

Relative Velocity is greater
than

Threshold Velocity

Calculate Elliptical Trajectory
S_1000

Calculate Hyperbolic Trajectory
S_1002

Relative Velocity is less than
or equal to Threshold Velocity

Take No Action
S_1001

Calculate Hyperbolic Trajectory
S_1002

Table 22 — K-Map of Two Conditions

Example of Three-Variable and Four-Variable K-
Maps with Requirements — Consider the related re-
quirements:

if AB is True then X1
if A~B is True then X2
if ~AC is True, then X3

where A, B and C are conditions and the X1, X2 and
X3 are actions. See Table 23 for the three-variable K-Map.

Sets of requirements appearing in requirements
documents are generally assumed to be connected by “or.”

A ~A

C X
2

X
1

X
3

X
3

~C X
2

X
1

~B B ~B

Table 23 — Three-Variable K-Map.

Note that in Table 23, it is necessary to stagger one
of the variables (in the bottom wing) so that the eight
cells representing all possible combinations of truth val-
ues for A, B and C appear in the map. That is, each cell
in the three-variable K-Map should represent a unique
combination of truth values for the three variables A, B
and C. The variable B was the one staggered, although A
or C could have been chosen.

Some cells are blank because there are no require-
ments to define an action for those cells. Table 24 depicts
another way to place three Boolean variables on the K-Map.

B ~B

C X
3

X
1

X
2

X
3

~C X
1

X
2

~A A ~A

Table 24 — Three-Variable K-Map With a Different Place-
ment of Boolean Variables.

If the format is different in this way, the definition
of each of the cells would be changed, but all possible
values of the Boolean variables in the K-Map would
still be represented. The resulting K-Map would in this
sense be equivalent to the original. That is, the K-Map
representation of a Boolean expression is invariant with
respect to the placement of the variables in the wings
of the K-Map.

In Table 23, there are only three possibilities for
the placement of the variable B. Another possibility is
if B were directly under the variable A, and ~B directly
under ~A. But then it would not be possible to map
the combination A~B to the K-Map. The third possibil-
ity is if ~B were directly under the variable A, and B
directly under ~A. But then it would not be possible to
map the combination AB to the K-Map.

The following example of a three variable K-Map
contains simplified requirements involving responses to
threats to the ISS from collision with orbital debris.

Consider the following set of related require-
ments. See Table 25 of the resulting K-Map.

•	 MC_1957 — If object is detected, and Pizza Box
will be penetrated, and there is time for Collision
Avoidance maneuver, then MC shall display “Ma-
neuver.”

•	 MC_1958 — If object is detected, and Pizza Box
will not be penetrated, then MC shall display
“Object Detected – no action.”

•	 MC_1959 — If object is detected, and Pizza Box
will be penetrated, and there is no time for colli-
sion Avoidance maneuver, then MC shall display
“Evacuate.”

•	 MC_1960 — If no object is detected, then MC
shall display Debris Statistics.

 Journal of System Safety, Spring 2018 31

No Object Detected Object Detected

Time for Collision
Avoidance
Maneuver

MC displays
Debris Statistics

MC_1960

MC displays
Debris Statistics

MC_1960

MC displays
“Maneuver”
MC_1957

MC displays
“Object Detected -

no action” MC_1958

No Time for
Collision Avoid-
ance Maneuver

MC displays
Debris Statistics

MC_1960

MC displays
Debris Statistics

MC_1960

MC displays
“Evacuate”
MC_1959

MC displays
“Object Detected -

no action” MC_1958

Pizza Box will not
be Penetrated

Pizza Box will be Penetrated
Pizza Box will not

be Penetrated

Table 25 — Example of Three Variable K-Map with Requirements.

By staggering the “Pizza Box will be Penetrated” condition on the bottom of the K-Map with respect to the
“Object Detected” condition on the top of the K-Map, as illustrated in Table 25, each cell has a unique combination
of values for the conditions associated with it, and the K-Map covers all possible combinations of values for the condi-
tions. To draw a four-variable K-Map, the fourth variable D would also be staggered with respect to the variable C so
that each of the 16 cells in the K-Map would represent a unique combination of truth values for the four variables A,
B, C and D. See the example in Table 26.

•	 MC_1947 If Radar Mode is enabled, object is detected, Pizza Box will be penetrated, and there is time for Colli-
sion Avoidance maneuver, then MC shall display “Maneuver.”

•	 MC_1948 If Radar Mode is enabled, object is detected, Pizza Box will not be penetrated, then MC shall display
“Object Detected – no action.”

•	 MC_1949 If Radar Mode is enabled, object is detected, Pizza Box will be penetrated, and there is no time for
Collision Avoidance maneuver, then MC shall display “Evacuate.”

•	 MC_1950 If Radar Mode is enabled, no object is detected, then MC shall display Debris Statistics.
•	 MC_1951 If Radar Mode is disabled, MC shall display “Enable Radar Mode.”

Radar Mode Enabled Radar Mode Disabled

Time for
Collision

Avoidance
Maneuver

MC displays
Debris Statistics

MC_1950

MC displays
“Object Detected

- no action”
MC_1948

MC displays
“Enable Radar

Mode” MC_1951

MC displays
“Enable Radar

Mode” MC_1951

Pizza Box will
not be

Penetrated

MC displays
Debris Statistics

MC_1950

MC displays
“Maneuver”
MC_1947

MC displays
“Enable Radar

Mode” MC_1951

MC displays
“Enable Radar

Mode” MC_1951 Pizza Box will
be Penetrated

No Time for
Collision

Avoidance
Maneuver

MC displays
Debris Statistics

MC_1950

MC displays
“Evacuate”
MC_1949

MC displays
“Enable Radar

Mode” MC_1951

MC displays
“Enable Radar

Mode” MC_1951

MC displays
Debris Statistics

MC_1950

MC displays
“Object Detected

- no action”
MC_1948

MC displays
“Enable Radar

Mode” MC_1951

MC displays
“Enable Radar

Mode” MC_1951

Pizza Box will
not be

Penetrated

No Object
Detected

Object Detected
No Object
Detected

Table 26 — Example of Four-Variable K-Map.

Note that for a four-variable K-Map there are 16 possible combinations of the variables, i.e., 16 possible actions.
In general, the number of actions is

Number of Actions = 2 number of conditions (13)

32 Journal of System Safety, Spring 2018	

Applications of K-Maps in Requirements Analysis
Mapping from Requirements to K-Map: A method that
can be used for mapping requirements to K-Maps is
presented in these steps:

1. 	Acquire Data (Determination of related conditional
requirements): This step is concerned with deter-
mining sets of related requirements. Requirements
associated with one subsystem or part of a subsys-
tem are usually related.

2. 	Process Data: This step is concerned with placing
the requirements in standard form. This means
writing the requirements in the form “if M then X,”
where M is a Boolean expression and X is an action
to be performed if M has the value “True,” and M is
in SOP form.

3. 	 Identify Topography: In this step, the number of
unique conditions is determined. This will be the
dimension of the K-Map. The K-Map is constructed
using wings, which contain the conditions.

4. 	Perform Analysis: In this step, the Boolean expres-
sion M is mapped to the K-Map for each require-
ment. If M is true, the condition X is placed in the
cell corresponding to the value of the conditions in
M. After all the requirements are mapped, missing
requirements are detected at this step. An analysis to
determine if minimization is possible is also done at
this step.

5. 	Write a Report: This report details the results of the
analysis. It should contain combinations of condi-
tions for which there is no action defined, and the
existence of any duplicate or superfluous require-

ments. The report can also contain a recommenda-
tion to the reader on further actions.

Using a K-Map to detect Missing Requirements:
Missing requirements are difficult to detect analytically,
and can escape functional and structural tests, resulting in
failures that are difficult to diagnose and that may possi-
bly cause human injury or system damage.

Almost all accidents related to software components
in the past 20 years can be traced to flaws in the require-
ments specifications, such as unhandled cases [Ref. 6, 12].

When there is a missing software requirement and
the code does not anticipate the missing requirement,
then requirement-level tests will pass with 100 percent
coverage. Missing software requirements in the Produc-
tion and Deployment (P&D) phase can be both danger-
ous and expensive.

Consider the following requirements:

•	 MC_1947 — If Radar Mode is enabled, object is
detected, Pizza Box will be penetrated, and there is
time for Collision Avoidance maneuver, then MC
shall display “Maneuver.”

•	 MC_1948 — If Radar Mode is enabled, object is de-
tected, Pizza Box will not be penetrated, then MC
shall display “Object Detected – no action.”

•	 MC_1950 — If Radar Mode is enabled, no object is
detected, then MC shall display Debris Statistics.

•	 MC_1951 — If Radar Mode is disabled, MC shall
display “Enable Radar Mode.”

Mapping the above requirements to a K-Map results
in Table 27.

Radar Mode Enabled Radar Mode Disabled

Time for
Collision

Avoidance
Maneuver

MC displays
Debris Statistics

MC_1950

MC displays
“Object Detected

- no action”
MC_1948

MC displays
“Enable Radar

Mode” MC_1951

MC displays
“Enable Radar

Mode” MC_1951

Pizza Box will
not be

Penetrated

MC displays
Debris Statistics

MC_1950

MC displays
“Maneuver”
MC_1947

MC displays
“Enable Radar

Mode” MC_1951

MC displays
“Enable Radar

Mode” MC_1951 Pizza Box will
be Penetrated

No Time for
Collision

Avoidance
Maneuver

MC displays
Debris Statistics

MC_1950
?

MC displays
“Enable Radar

Mode” MC_1951

MC displays
“Enable Radar

Mode” MC_1951

MC displays
Debris Statistics

MC_1950

MC displays
“Object Detected

- no action”
MC_1948

MC displays
“Enable Radar

Mode” MC_1951

MC displays
“Enable Radar

Mode” MC_1951

Pizza Box will
not be

Penetrated

No Object
Detected

Object Detected
No Object
Detected

Table 27 — Example of Four-Variable K-Map with a Missing Requirement.

 Journal of System Safety, Spring 2018 33

The question mark (?) in Table 27 denotes the missing requirement. A system engineer or software engineer
could have forgotten to write this requirement, or the action in this cell may be missing because the variable values at
this cell location may represent an impossible combination of values. Only further analyses can resolve this ambiguity.

By examining the K-Map, we note that for the conditions “Radar Mode Enabled” and “Object Detected” and “No
Time for Collision Avoidance maneuver” and “Pizza Box will be Penetrated,” there is no action. Consequently, there
is a missing requirement of the form “If Radar Mode is enabled, object is detected, Pizza Box will be penetrated, and
there is no time for Collision Avoidance maneuver, then <Action required>.” The system engineer needs to define an
action for this combination of conditions. One example of a possible action is “MC displays ‘Evacuate.’”

Using a K-Map for Requirement Minimization: It is easier to execute requirements-level tests if the set of re-
quirements are smaller and contains fewer conditions. This subsection considers simplifying requirements by eliminat-
ing those that are unnecessary.

Consider the following set of related requirements:

•	 MC_1947 — If Radar Mode is enabled, object is detected, Pizza Box will be penetrated, and there is time for
Collision Avoidance maneuver, then MC shall display “Maneuver.”

•	 MC_1948 — If Radar Mode is enabled, object is detected, Pizza Box will not be penetrated, then MC shall dis-
play “Object Detected – no action.”

•	 MC_1949 — If Radar Mode is enabled, object is detected, Pizza Box will be penetrated, and there is no time for
Collision Avoidance maneuver, then MC shall display “Evacuate.”

•	 MC_1952 — If Radar Mode is enabled, no object is detected, and there is time for collision Avoidance Maneu-
ver, then MC shall display Debris Statistics.

•	 MC_1953 — If Radar Mode is enabled, no object is detected, and there is no time for collision Avoidance Ma-
neuver, then MC shall display Debris Statistics.

•	 MC_1951 — If Radar Mode is disabled, MC shall display “Enable Radar Mode.”

The four-variable K-Map associated with this set of related requirements is in Table 28.

Table 28 — Four-Variable K-Map Example with Requirements.

Radar Mode Enabled Radar Mode Disabled

Time for
Collision

Avoidance
Maneuver

MC displays
Debris Statistics

MC_1950

MC displays
“Object Detected

- no action”
MC_1948

MC displays
“Enable Radar

Mode” MC_1951

MC displays
“Enable Radar

Mode” MC_1951

Pizza Box will
not be

Penetrated

MC displays
Debris Statistics

MC_1950

MC displays
“Maneuver”
MC_1947

MC displays
“Enable Radar

Mode” MC_1951

MC displays
“Enable Radar

Mode” MC_1951 Pizza Box will
be Penetrated

No Time for
Collision

Avoidance
Maneuver

MC displays
Debris Statistics

MC_1950

MC displays
“Evacuate”
MC_1949

MC displays
“Enable Radar

Mode” MC_1951

MC displays
“Enable Radar

Mode” MC_1951

MC displays
Debris Statistics

MC_1950

MC displays
“Object Detected

- no action”
MC_1948

MC displays
“Enable Radar

Mode” MC_1951

MC displays
“Enable Radar

Mode” MC_1951

Pizza Box will
not be

Penetrated

No Object
Detected

Object Detected
No Object
Detected

Note that in 28, all cells in the first column (bracketed) on the left have the same action. “MC displays
Debris Statistics.” These cells are exactly the cells for the conditions “Radar Mode Enabled” and “No Object

34 Journal of System Safety, Spring 2018	

Detected.” The requirement “If Radar Mode is enabled, and no object is detected, then MC shall display
Debris Statistics” will be represented by these four cells. But these are exactly the cells that represent the re-
quirements MC_1952 and MC_1953. That is, the requirement “MC_1950 If Radar Mode is enabled, and no
object is detected, then MC shall display Debris Statistics” is a combination of MC_1952 and MC_1953, and
can replace these two requirements. The minimized set of requirements is:

•	 MC_1947 — If Radar Mode is enabled, object is detected, Pizza Box will be penetrated, and there is time
for Collision Avoidance maneuver, then MC shall display “Maneuver.”

•	 MC_1948 — If Radar Mode is enabled, object is detected, Pizza Box will not be penetrated, then MC
shall display “Object Detected – no action.”

•	 MC_1949 — If Radar Mode is enabled, object is detected, Pizza Box will be penetrated, and there is no
time for Collision Avoidance maneuver, then MC shall display “Evacuate.”

•	 MC_1950 — If Radar Mode is enabled, and no object is detected, then MC shall display Debris Statistics.
•	 MC_1951 — If Radar Mode is disabled, MC shall display “Enable Radar Mode.”

This minimization is possible because of the Gray Code ordering described earlier following Table 9. In
Gray Code ordering, the Hamming distance between adjacent cells is always one. Therefore, exactly one con-
dition differs between those adjacent cells. Thus, two requirements whose actions are the same but in adjacent
cells with Hamming distance 1 can be combined into one requirement, and the condition that differs can be
eliminated.

The K-Map allows a few manipulations, as presented in the remainder of this section. The first and fourth
columns of X1 can be combined into a single requirement with only a single condition, instead of two require-
ments, each of which has two conditions. The resulting requirement is “If B is false then X1.” See Table 29.

It helps to imagine that the K-Map wraps around a vertical axis to form a cylinder so that the right edge

Table 29 — Combining Two Columns using Wraparound.

A ~A

C
X

1
X

2
X

1
X

1
~D

X
1

X
2

X
1

X
1 D

~C
X

1
? X

1
X

1

X
1

X
2

X
1

X
1

~D

~B B ~B

contacts the left edge. The first step is to visualize Ta-
ble 29 without the wings on the K-Map. Each cell in
the map can display its own label as in Table 30. The
labels in the cells of Table 30 are derived from the
values of the variables in the K-Map. For example,
the label ~ABC~D in the upper right cell of Table 30
corresponds to the cell on the first row, third from
the left, in Table 29.

As a check, note that the Hamming distance be-
tween adjacent cells in Table 30 is 1. This makes pos-
sible the minimization of requirements as explained
in the text following Table 28.

If we wrap Table 30 around a vertical axis to
form a cylinder so that the A~BC~D cell is adjacent
to the ~A~BC~D cell, we see that the Hamming
distance between these two cells is 1. These cells are
actually adjacent cells. The cylindrical shape shown in
Figure 5 emphasizes this.

This is also true for the pairs (A~BCD,
~A~BCD), (A~B~CD, ~A~BCD) and (A~B~C~D,
~A~B~C~D). The consequence for adjacent cells
having a common action is that one of the condi-
tions can be eliminated between them. The analogous
Boolean expression is (using sum of minterms):

X
1

A~BC~D

X
2

ABC~D

X
1

~ABC~D

X
1

~A~BC~D

X
1

A~BCD

X
2

ABCD

X
1

~ABCD

X
1

~A~BCD

X
1

A~B~CD

?

AB~CD

X
1

~AB~CD

X
1

~A~B~CD

X
1

A~B~C~D

X
2

AB~C~D

~X
1

~AB~C~D

~X
1

~A~B~C~D

Table 30 — Table 29 without Wings

 Journal of System Safety, Spring 2018 35

X1 A~B~C~D X1 ~A~B~C~D

X1 A~B~CD
X1 ~A~B~CD

X1 A~BCD X1 ~A~BCD

X1 A~BC~D X1 ~A~BC~D

Figure 5 — Cylindrical Representation of Table 30.

A~BC~D + ~A~BC~D = ~BC~D(A+~A) = ~BC~D(1) = ~BC~D (14)

Note that A~B and ~A~B in
Table 29 represent the expression
A~B+~A~B. Using Boolean alge-
bra, this expression can be reduced
as follows:

Thus, the unnecessary condi-
tion A and the associated unneces-
sary requirement are eliminated.

The following set of require-
ments is mapped to Table 31.

1. 	If A and ~B then X1

2. 	If ~A and B then X1

3. 	If ~A and ~B then X1

4. 	If A and B and C then X2

5. 	If A and B and ~C and ~D
	 then X2

The third and fourth columns
of X1 in Table 31 can be combined
into a single requirement with only
a single condition, instead of two
requirements, each with two con-
ditions (If A is false, then X1). This
new requirement replaces require-
ments 2 and 3, and the unneces-
sary condition A is eliminated.

Table 32 is a repeat of Table
31. In the second column of Table
32, the top and bottom X2 can be
combined into a single require-
ment with three conditions, in-
stead of two requirements, each
having four conditions (If A is true
and B is true and D is false, then
X2).

It helps to imagine that the
K-Map wraps around a horizontal
axis so that the top edge contacts
the bottom edge, as shown in Fig-
ure 6.

A~B+~A~B = (A+~A)(~B) = ~B (15)

Table 31 — Combining Two Columns.

A ~A

C
X

1
X

2
X

1
X

1
~D

X
1

X
2

X
1

X
1 D

~C
X

1
? X

1
X

1

X
1

X
2

X
1

X
1

~D

~B B ~B

Table 32 — Combining Two Cells using Wraparound.

A ~A

C
X

1
X

2
X

1
X

1
~D

X
1

X
2

X
1

X
1 D

~C
X

1
? X

1
X

1

X
1

X
2

X
1

X
1

~D

~B B ~B

36 Journal of System Safety, Spring 2018	

X2 ABC~D

X2 AB~C~D

Figure 6 — Cylindrical Representation of Table 32.

Thus, ABC~D and AB~C~D are adjacent cells representing the Boolean expression ABC~D+AB~C~D.

Using Boolean algebra, it can be confirmed that this expression can be reduced as follows:

Thus, the unnecessary condition C and the associated unnecessary requirement are eliminated.

As indicated, the combinations in Table 29 and Table 32 become obvious if one imagines the alternate cylinder
representation of the K-Map. Actually, the wraparounds in both Figure 5 and Figure 6 can be illustrated simultane-
ously by wrapping the four-condition K-Map into a torus shape. This is done by forming a cylinder as shown in Figure
5, then bringing the ends of the cylinder together. See Figure 7 [Ref. 7]. Note that the cells with the dots in the torus
are each 1 Hamming distance from the adjacent cells with dots.

ABC~D+AB~C~D = AB~D(C+~C) = AB~D(1) = AB~D. (16)

1010
0010

0000
1000

1011

1110

0110 0011

0001
0111

0101

1111

1101

1100

0000

0001

0011

0010 0110 1110 1010

1000

1001

10111111

1101

11000100

0101

0111

Figure 7 — Toroidal Representation of Figure 5 and Figure 6.

 Journal of System Safety, Spring 2018 37

Other Uses of K-Maps
Although it is beyond the scope of
this paper, it is worthwhile to consid-
er that K-Maps can help with detect-
ing conflicting requirements. These
considerations will not be discussed
in this paper.

K-Maps and Complex System
Requirements
Requirements with more than four
conditions are frequently encoun-
tered. It is possible to construct K-
Maps with more than four variables
that can handle such requirements,
although, typically, these situations
are better handled using advanced
programming methods.

Figure 8 is an example of a K-
Map with the five variables A, B, C,
D and E. This five-variable K-Map
can be drawn by combining two
K-Maps, each with the four variables
A, B, C, D, then defining each K-
Map as an E and ~E branch of the
five-variable K-Map. This K-Map
can be used to both discover missing
requirements and for requirement
minimization.

Consider the following two sets
of four requirements:

1. 	 If A and C and E then X
2. 	 If ~A and B and ~C then Z
3. 	 If ~A and B and C and E then Y
4. 	 If ~B and C and E then X

1’. 	If A and C and ~D and ~E then X
2’. 	If ~A and B and C and ~E then Y
3’. 	If ~A and ~B and C and D and

~E then X
4’. 	If A and B and C and ~E then X

Each set of requirements may
be mapped to the five-condition
K-Map shown in Figure 8. The map-
ping is done in a similar fashion
as was done with a K-Map of four
conditions, either in the E or in the
~E branch depending on the require-
ment. Examining each of the eight
requirements, note that each require-
ment specifies either E or ~E, except
for requirement 2. Because E and ~E
are not specified in requirement 2 it
is mapped to both branches.

A ~A

C
X X Y X ~D
X X Y X

D

~C
Z

Z ~D

~B B ~B

A ~A

C
X X Y X ~D

X Y X
D

~C
Z

Z ~D

~B B ~B

~E

E

Figure 8 — Five-Variable K-Map

A ~A

C
~D

D

~C
~D

~B B ~B

A ~A

C
~D

D

~C
~D

~B B ~B

A ~A

C
~D

D

~C
~D

~B B ~B

A ~A

C
~D

D

~C
~D

~B B ~B

~E

~E

E

E

F

~F

Figure 9 — Six-Variable K-Map.

38 Journal of System Safety, Spring 2018	

It helps to visualize the E branch overlaying the ~E
branch of this five-variable K-Map. Then, the cells in one
branch that are a Hamming distance of one from cor-
responding cells in the other branch are adjacent to each
other. On the K-Map the cells in the first branch that
are adjacent to the cells in the second branch are directly
above their adjacent cells. Requirements that map to the
same cells in the upper and lower branches of the K-Map
shown in Figure 8 can be combined, and the variable E
can be eliminated. The following simplifications and re-
placements can be made:

Replace 1’ with
If A and C and ~D then X (because AC~D have the

same action X in E and ~E, and are adjacent in E and ~E)
Replace 3 and 2’ with
If ~A and B and C then Y (because ~ABC have the

same action Y in E and ~E, and are adjacent in E and ~E)
Replace 3’ with
If ~A and ~B and C and D then X (because 	

~A~BCD have the same action X in E and ~E, and are
adjacent in E and ~E)

Replace 4’ with
If A and B and C then X (because ABC have the

same action X in E and ~E, and are adjacent in E and ~E).

In Figure 8, blank cells are an indication of require-
ments not yet defined, i.e., missing. However, the exam-
ple above is an exercise in minimization.

By extension, six- and seven-variable K-Maps can be
constructed by employing duplication. An example of a
six-variable K‑Map is shown in Figure 9.

Conclusion
In this paper, the authors have demonstrated that K-
Maps, a proven tool used in ASIC design, can be used
to detect missing requirements and aid in the minimi-
zation of sets of requirements. Reviews of key concepts,
including basic relationships in Boolean Algebra, the
importance of minterms in the use of K-Maps, the re-
lationships of truth tables to K-Maps, mapping from
truth tables to K-Maps, and how Hamming Distance
makes K-Maps useful, were presented. Safety implica-
tions of missing requirements were discussed. Two-,
three- and four-variable K-Maps, along with several
examples, were presented. Other uses of K-Maps relat-
ing to requirements were noted. Techniques borrowed
from K-Maps applications to circuit analysis were
shown to be useful for detecting missing requirements
and for minimizing requirements.

Acknowledgment
We thank our office colleagues who provided insight
on the delivery of this paper. We also thank Ken-
neth Chirkis, our manager, for his contribution on
the safety issues related to the quality of software
requirements.

References
1. Marquand, Allan. “On Logical Diagrams for n Terms,” The London, Edinburgh, and Dublin Philosophical Magazine

and Journal of Science, Vol. 5, No. 12, 1881, pp. 266-270.
2. Lavin, Marilyn Aronberg. The Eye of the Tiger: The Founding and Development of the Department of Art and Archaeol-

ogy, 1883-1923, Princeton University, Princeton University, 1983.
3. Karnaugh, Maurice. “The Map Method for Synthesis of Combinational Logic Circuits,” Transactions of the Ameri-

can Institute of Electrical Engineers, Vol. 1 No. 72 , 1953, pp. 593-599.
4. Veitch, Edward W. “A Chart Method for Simplifying Truth Functions,” Electronic Switching Circuits: Boolean Alge-

bra and Mapping, edited by Matthew Mandl, Prentice-Hall, 1969, pp. 127-133.
5. Kuphaldt, Tony R. “Boolean Algebra,” Introduction to Boolean Algebra, All About Circuits, Accessed from: https://

www.allaboutcircuits.com/textbook/digital/chpt-7/introduction-boolean-algebra.
6. Leveson, Nancy G. Safeware: System Safety and Computers. Addison Wesley, Reading, Massachusetts, 1995.
7. Burghardt, Jochen. “Karnaugh6.gif,” Wikipedia, the Free Encyclopedia, Accessed from: https://en.wikipedia.org/

wiki/File:Karnaugh6.gif.
8. Lewis, Clarence Irving. A Survey of Symbolic Logic, Berkeley: University of California Press. Southern Illinois UP,

1995, pp. 80-99.
9. Weisstein, Eric W. “Bijection,” MathWorld — A Wolfram Web Resource, Accessed from: http://mathworld.wol-

fram.com/Bijection.html
10. Bender, Edward A. and S. Gill Williamson. A Short Course in Discrete Mathematics, Dover Publications, 2005.
11. Ayala, Jose L., et al. Integrated Circuit and System Design. Springer, Berlin, Heidelberg, 2012.
12. Firesmith, Donald. Engineering Safety and Security Related Requirements for Software Intensive Systems, p. 6. Ac-

cessed from: http://www.academia.edu/2891484/Engineering_safety_and_security_related_requirements_for_
software_intensive_systems.

13. Kleitz, William. Digital Electronics a Practical Approach with VHDL, 9th Edition, Pearson, 2012.
14. Williams, Lippincott. “Two Deaths, Multiple Infections Linked to Sterility Failure of Sublingual Sensors,” Journal

of Clinical Engineering, Vol. 30, No. 1, January/March 2005, pp. 12-13.

 Journal of System Safety, Spring 2018 39

