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Faulty requirements leading to design deficiencies 
have been shown to be an avoidable root cause 
of many product failures.  This paper is an effort 

to push the boundaries of system safety by proposing a 
novel approach for discovering faulty or missing software 
requirements by adapting a proven methodology here-
tofore used in circuit analysis. Karnaugh Mapping is em-
ployed in Application-Specific Integrated Circuit (ASIC) 
design to minimize power consumption, facilitate tem-
perature control, increase functionality and minimize the 
number of physical logic gates. Karnaugh Maps (K-Maps) 
are ideally suited to impose order on logical requirements 
that describe the operation of electronic circuits. With 
the assumption that software requirements are express-
ible as logical statements, this paper assesses the ability 
of Karnaugh Mapping to effectively deconstruct and 
rationalize developmental requirements in the analysis of 
software and seeks to demonstrate that K-Maps can be 
used not only to minimize the number of requirements, 
but also to detect missing requirements. The analysis con-
ducted in the course of developing this paper indicates 
that K‑Maps can effectively identify faulty requirements 
in two examples of varying complexity, provided that 
sematic conventions are established and observed.

Introduction
Faulty software requirements have been implicated 
in safety-related incidents over the years. Reference 
14 contains an example of a missing requirement for 
labeling the field for hours, minutes or seconds in the 
software used to program some SynchroMed implant-
able pumps. This led to two deaths and seven injuries. 
Medtronic recalled the software on September 24, 
2004 and replaced it with new software that labels the 
time fields.  

This paper presents K-Maps as a tool that can aid 
in meeting that challenge, particularly with regard to the 
detection of missing requirements and resolution of du-
plication of a set of related requirements. This paper will 
introduce techniques associated with K-Maps as used in 
other technical areas and demonstrate their applicability 
in software requirements analysis.

The objective of this paper is to assist the reader 
in using K-Maps as a requirements analysis tool. In par-
ticular, as a result of studying the techniques presented 
in this paper, the reader should be able to detect missing 

requirements and minimize a set of duplicate related 
requirements. 

This paper describes the use of K-Maps as an analysis 
tool for analyzing software requirements. The Karnaugh 
Map Background subsection reviews the history of K-Maps 
as a tool employed in circuit design. The Key Concepts 
subsection introduces five key concepts used in this paper: 
Boolean Algebra, minterms, the relationship between truth 
tables and K-Maps, mapping from truth tables to K-Maps, 
and Hamming Distance. The Requirements subsection 
discusses safety aspects of missing requirements, standard 
forms of requirements, the concept of related require-
ments, the relationship between Karnaugh Map use for 
switching circuits and requirements, and examples of how 
K-Maps are used for requirements analysis. The Applica-
tions of Karnaugh Maps in Requirements Analysis subsec-
tion presents a list of steps that can be used to map from 
requirements to K-Maps, and a discussion of using K-Maps 
for requirement minimization. The Other Uses of K-Maps 
subsection introduces another possible use of K-Maps in 
requirements analysis. The K-Maps and Complex System 
Requirements subsection discusses more complex system 
requirements and higher order K-Maps. The Conclusion 
subsection is a summary of the paper.

Karnaugh Map Background
K-Maps provide a convenient method for simplifying 
Boolean Algebra expressions. In 1881, Allan Marquand 
built a mechanical logical machine and developed logical 
diagrams (also known as Marquand diagrams) [Ref. 1] 
associated with his machine at Princeton University. The 
President of Princeton decided that Marquand’s approach 
to teaching logic was “unorthodox and uncalvinistic.” 
Hence, in 1883, Marquand was offered a position teach-
ing art history, a position he held until his death [Ref. 2].

In 1952, Edward Veitch rediscovered the Mar-
quand diagram, applying it to the problem of minimizing 
switching circuits. Maurice Karnaugh created what is 
now known as Karnaugh Maps in 1953 [Ref. 3], as a re-
finement of Edward Veitch’s Veitch chart [Ref. 4].

A K-Map [Ref. 13] is a table of cells, each cell 
containing a value of a Boolean expression for a unique 
combination of input Boolean variable values. K-Maps, a 
proven methodology commonly used in switching circuit 
analysis, are employed in ASIC design to minimize power 
consumption, facilitate temperature control, increase 
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functionality, detect possible race conditions, and minimize the number of physical logic gates. They are ideally suited 
to imposing order on logical requirements for electronic circuits.

Key Concepts
Boolean Algebra:  A short review of Boolean algebra is presented in this subsection. Boolean Algebra [Ref. 5] is a set 
of symbols that take binary values, such as True and False, or 0 and 1, along with two closed binary operations, denot-
ed by the symbols “+” and “·”. The symbol “+” indicates inclusive “or” and the symbol “·” indicates “and.” Juxtaposition 
is often used in place of “·” so that “ab” is considered equivalent to “a·b.” Two symbols are in juxtaposition when they 
are placed side by side without a binary operation symbol between them.  The binary operations satisfy the properties 
in Equations 1 through 6. The symbol “~”, placed before a symbol, is used to denote the complement of that symbol. 
For example, if “a” has the Boolean value True, then “~a” has the Boolean value False.

The following identities are useful when working with K-Maps: a, b and c are variables that take on Boolean 
values True or False; 1 or 0; or Yes or No.

a + b = b + a; ab = ba (Commutative laws of “+” and “·”)

(a + b) + c = a + (b + c); (ab)c = a(bc) (Associative laws of “+” and “·”)

a(b + c) = ab + ac (First distributive law: “·” distributes over “+”)

a + bc = (a + b)(a + c) (Second distributive law: “+” distributes over “·”)

Note that the second distributive law permits factoring expressions such as a + bc, which cannot be factored in ordinary 
algebra.
The following De Morgan’s Law identities are also helpful:

a + 0 = a; a + 1 = 1 (Annihilator for “+”)

a·0 = 0; a·1 = a (Annihilator for “·”)

Sums of Products and Minterms:  Boolean expressions can be written in two different useful forms, as Sums of 

~(a + b) = (~a) · (~b)

Products (SOP) and as Products of Sums (POS). Each form has its unique applications. K-Map applications are most 
conveniently done with the expressions being in the SOP form.

Any Boolean expression can be written in the SOP form [Ref. 10]. One method for doing this is to generate a 
truth table for the expression and pick out the product terms for which the output is True or 1. “Or-ing” these prod-
uct terms results in the SOP form. For example, if the generated truth table is as in Table 1, then the SOP form of the 
expression that generated this truth table is shown in Equation 11.

Output = ~A~B + ~AB + AB

A B Output
F F T
F T T
T F F
T T T

Table 1 — Generated Truth Table.

a + a = a (Idempotence of “+”)

a·a = a (Idempotence of “·”)

~(ab) = (~a) + (~b)

The products are called minterms [Ref. 5]. Each term of a Boolean expression, written in the form of an SOP of Boolean 
variables, is a minterm.

As another example, consider the Boolean expression A(B(C+D)+CD) +BC, where A, B, C and D are Boolean variables. 
Using the identities in the Boolean Algebra Subsection, this expression can be changed to an SOP expression either as shown in 
Table 1, using truth tables, or using Boolean Algebra.

A(B(C + D)  +CD) + BC = A(BC + BD + CD) + BC  (Eqn. 3)
= ABC + ABD + ACD + BC  (Eqn. 3)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9) (10)

(11)

(12)
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Truth Tables and K-Maps:  A K-Map is actually a 
type of Venn diagram [Ref. 8]. However, more important 
is the connection between K-Maps and truth tables. Truth 
tables are closely related to K-Maps. K-Maps are diagrams 
that contain cells, each of which correspond to a line in 
a truth table. There is a one-to-one correspondence [Ref. 
9] between lines in a truth table and cells in a K-Map. To 
illustrate, consider a truth table of the Boolean expression 
B + ~A (Table 2).

In this table, A and B are variables that take on Bool-
ean values, sometimes called “Boolean variables,” where 
T designates the Boolean value “True” and F designates 
“False.”

The corresponding K-Map of B + ~A is in Table 3.
An alternate way of drawing this K-Map, found in 

the literature [Ref. 3], is displayed in Table 4.
Table 3 is an array of four cells, each of which corre-

sponds to a line in the truth table shown in Table 2. The 
number of variables in the truth table is the dimension of 
the associated K-Map. Therefore, for a truth table of four 
rows, the number of variables is two, and the dimension 
of the associated K-Map is two. 

In the top row of symbols in the K-Map shown in 
Table 4, 0 and 1, are the possible Boolean values for A. 
In the left column, the symbols 0 and 1 are the possible 
Boolean values for B. In table 4, 0 and 1 correspond re-
spectively to F and T in table 3. This row and column of 
symbols in Table 3 are called “wings.” They are not really 
part of the K-Map. The Boolean value in each cell of the 
K-Maps in Table 3 and Table 4 corresponds to the value 
of the expression for which the K-Map is constructed. 
For example, the top left cell in the Table 3 K-Map con-
tains a T, which corresponds in the truth table to the 
value for B + ~A on the line for which A is True and B is 
True.

An example of the use of K-Maps in circuit analysis 
is the minimization of the components of the circuit as 
shown in Figure 1.

A B ~A B+~A
F F T T
F T T T
T F F F
T T F T

Table 2 — Truth Table of B + ~A.

A ~A

B T T

~B F T

Table 3 — K-Map of B + ~A.

1 0

1 1

A
0         1

B
0
1

Table 4 — Another K-Map of B + ~A.

OR

AND

AND

AND

~A

A

A

B

~B

B

OUT =

~AB+A~B+AB

Figure 1 – Simple Circuit.

A B ~AB+A~B+AB
0 0 0
0 1 1
1 0 1
1 1 1

Table 5 – Truth Table for Circuit in Figure 1.

K-Map A ~A
B 1 1

~B 1 0

A

B

Table 6 – K-Map for Circuit in Figure 1.
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Table 5 shows the associated truth table for the cir-
cuit in Figure 1. Table 6 shows the K-Map derived from 
the truth table in Table 5.  An analysis was performed, 
and it was determined that the circuit can be simplified 
so that the output is A + B, which is equivalent to ~AB + 
A~B + AB, in the sense that A + B will generate the same 
truth table for the same inputs A and B. The process for 
deriving this result will be reviewed later in this paper.

The circuit simplifies to what is shown in Figure 2.
Another example of the correspondence between the 

table and map is that the lower right cell in the K-Map, as 
shown in Table 3, corresponds to the first line in the truth 
table, shown in Table 2, the line for which the ~A and ~B 
variables are True, or A and B variables are False.

Table 7 illustrates a truth table of three variables, 
which will result in eight lines.

A truth table of three variables A, B and C can be 
illustrated with the Boolean expression ~AB + A~BC 
(Table 7). The variables A, B and C take on the Boolean 
values T (True) or F (False).

The associated K-Map (Table 8) is of dimension 
three, since it contains three variables and therefore 
eight cells.

Again, common in the literature [Ref. 3] is the 
alternative method of displaying the Table 8 K-Map 
(Table 9).

In Table 9, 00 corresponds to ~A~B, 01 to ~AB, 11 
to AB, 10 to A~B, 0 to ~C, and 1 to C.

Note the order of the column indices across the top 
of Table 9. The binary order (in reverse) would be 11, 10, 
01, 00. The order that appears in Table 9 is not the binary 
order. This order in Table 9 is called “Gray Code.” This 
particular method of numbering the indices guarantees 
that only one variable changes from any cell to any adja-
cent cell. This is also true in the form of the K‑Map used 
in this paper (Table 8). Across the top row, for example, 
the values for each cell are A~B, AB, ~AB and ~A~B. 
Only one variable changes for each step from a cell to an 
adjacent cell. To incorporate Boolean expressions in K-
Maps, the expressions must be in the SOP form.

Using wings in K-Maps seems to be the best of the 
alternative methods. The wings provide room to display 
the conditions associated with the requirements.

It will be seen later that the Gray Coding in K-Maps 
permits manipulations that make possible the simplifica-
tion of Boolean expressions representing the data in the 
truth tables. This is what makes it useful in circuit analy-
sis (See the Using a K-Map for Requirement Minimization 
subsection later in this paper). Even though K-Maps do 
not offer an advantage over truth tables for discovering 
missing requirements, mapping the requirements to a 
K-Map makes it possible to analyze requirements, which 
may lead to requirements minimization.

Mapping from Truth Tables to K-Maps:  The fol-
lowing steps can be used as a guide for constructing a 
K-Map from a truth table:

1. 	Acquire Data — Determine the number of unique 
variables in the Boolean. 

2. 	Process Data — Place the Boolean expression in the 
SOP format.

3. 	Determine Entries in the K-Map — Evaluate the 
Boolean expression for each possible combination 
of variables. If there are n variables, there will be 2n 
evaluations. The associated K-Map will contain 2n 
cells.

4. 	Populate the K-Map — Place each evaluation in a 
unique cell in the K-Map.

OR A+B

A

B

Figure 2 — Simplified Circuit from Figure 1.

A B C ~AB A~BC ~AB+A~BC
F F F F F F
F F T F F F
F T F T F T
F T T T F T
T F F F F F
T F T F T T
T T F F F F
T T T F F F

Table 7 — Truth Table for ~AB + A~BC.

A ~A
C T F T F

~C F F T F
~B B ~B

Table 8 — The Form of the K-Map Used in this Paper.

   10       11       01       00

1 0 1 0

0 0 1 0

1

0
C

AB

Table 9 — The Form of the K-Map Common in the 
Literature.
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Hamming Distance:  The Hamming distance [Ref. 
11] between two binary strings of the same length is 
the number of positions at which the binary values are 
different. For example, consider the two Boolean expres-
sions, each of length four, ~ABC~D and A~BCD. In the 
first position, ~A and A will differ in their binary values. 
This will be true in the second and fourth positions, also. 
Therefore, these two Boolean expressions differ in three 
positions, and the Hamming distance between these two 
strings is three. 

Requirements
Safety and Other Implications of Requirements Omis-
sions:  Design requirements furnish the “how,” which 
interprets the high-level system requirements and 
determines how to implement them. The process of 
developing design requirements is probably one of the 
most important tasks in the system development pro-
cess and also probably one of the least understood tasks. 
The components comprising a system are highly inter-
related and complex, which means they must be well 
understood and defined in order to properly function 
when built. The requirement specification process must 
correctly define the system as a whole, including archi-
tectures, functions, interrelationships, constraints, etc.

This paper concentrates on requirements expressed 
as conditions: If a condition is satisfied, an action is taken. 
These are identified as the subset of software require-
ments known as functional requirements. Conditional 
requirements are typically event-driven, behavior and 
state-driven (see Figure 3). Examples of key words that 
identify conditional requirements are “when,” “upon,” “if/
then,” “while” and “where.”

Requirements analysis is:

System
Requirement

Hardware
Requirement

Software
Requirement

Functional
Requirement

Non-Functional
Requirement

Conditional
Requirement

Non-Conditional
Requirement

Figure 3 – Requirements Hierarchy.

•	 A process of assuring that requirements are an ac-
curate decomposition of the system requirements

•	 A check that the requirements are complete, un-
ambiguous, correct, verifiable, concise, consistent, 
feasible, traceable and necessary

•	 A review to determine if there are any missing, 
duplicate or contradictory requirements

Missing software requirements are a common prob-
lem with writing specifications. How can one be sure all 
requirements essential to delivering a working solution 
have been included? Missing critical requirements intro-
duce project delays, scope creep, the possibility of deliv-
ering the wrong product, and worst of all, the possibility 
of mishaps. K‑Maps address this last safety-significant 
possibility by making available a tool to detect missing 
requirements that can arise in the design development 
process.

Common sources of missing requirements are:
•	 Failure to consider all phases of an operation
•	 Lack of specification of the sequence of operations
•	 Using an inappropriate Easy Approach to Require-

ments Specification (EARS) pattern
•	 Failure to include essential actors in the design lan-

guage, if used
•	 Overlooking the inverse of a requirement

The requirements specification provides a struc-
ture for organizing the large number of requirements 
necessary for designing a system. This structure ideally 
helps to minimize or eliminate duplication of require-
ments and provides a means for navigating through all 
of the requirements. 
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Standard Forms: For the purposes of this paper, a 
requirement is defined as a Boolean statement and a des-
ignated action with the following properties:  

•	 The Boolean statement is composed of conditions, 
each of which has a binary truth value.

•	 The conditions are combined by Boolean operators 
(and [binary operator “·”/ juxtaposition], inclusive or 
[binary operator “+”]).

•	 The Boolean statement is in the SOP form.
•	 The Boolean statement has a truth value, as com-

puted from its conditions.
•	 The truth value of the Boolean statement deter-

mines if the designated action will be carried out or 
not.

The standard form of a requirement is defined as 
one that is written in the form of an “if/then” statement 
with the Boolean expression following the “if” key word, 
in the SOP form, and the action following the “then” key 
word.

Consider this requirement: “If M then X,” where M 
can be one or more conditions connected by “or” or “and” 
and X is the action to perform. One must verify if M is in 
SOP form to ensure that this requirement is in the stan-
dard form.

•	 Example 1—  The requirement “if A and B then Y” 
is in the standard form because it is written in the 
form of the if/then statement and the Boolean ex-
pression “A and B” is in the SOP form. 

•	 Example 2—  The requirement “if A and (B or C) 
then Z” is not in the standard form because the 
Boolean expression A and (B or C) is not in the 
SOP form, even though the requirement is written 
in the form of an “if/then” statement.

Expression Equivalent (“if/then”)
B unless A If not A then B
B only if A If not A then not B

A provided that B, A in case B If A then B
While A do B If A then B

B if and only if A If A then B and if B then A

Switching Circuits Related Requirements
Input variables Conditions
Boolean expressions or statements, with Boolean 
operations connecting the variables

Boolean expressions with Boolean operations 
connecting the conditions in these expressions

Boolean value of an expression Indicates whether an action is performed or not

The requirement in Example 2 can be rewritten in 
the standard form by putting the Boolean expression A 
and (A or C) in the SOP form. A and (B or C) is equiva-
lent to A·(B + C), which is equal to A·B + A·C or (A and 
B) or (A and C). Thus the standard form of the require-
ment in example 2 is “if (A and B) or (A and C) then Z.”

Sometimes, a requirement is written with other 
keywords than “if/then.” One needs to convert that re-
quirement into the form of an “if/then” statement and 
verify that the Boolean expression is in the SOP form. 
The list in Table 10 provides some of the other keywords 
used in requirements writing, and their conversion to “if/
then” form.

Related Requirements: Requirements are related 
if they share one or more conditions. As a consequence, 
related requirements are generally requirements all of 
whose conditions are drawn from the same set of condi-
tions. This indicates that the requirements are dealing 
with different aspects of a single subsystem or related 
subsystems. Related requirements are of necessity related 
to each other by “or” because otherwise different values 
of the conditions would contradict each other.

Since related requirements share conditions, a single 
K-Map can be constructed with these shared condi-
tions, to which K-Map the related requirements may 
be mapped and analyzed. K-Maps are concerned with a 
limited and well-defined set of conditions. In the Applica-
tions of K-Maps in Requirements Analysis subsection later 
in this paper, we will see that one of the steps in the map-
ping methodology is to determine the number of unique 
conditions appearing in a set of requirements. This num-
ber is the dimension of the K-Map.

How to Interpret the Entries in a K-Map as a Re-
quirement: K-Maps were designed originally as an aid in 
minimizing switching circuit Boolean expressions. Table 

Table 10 — Other Keywords used in Requirements Writing.

Table 11 — Analogies Between Switching Circuit Artifacts and Related Requirements Artifacts.
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11 shows analogies between switching circuit artifacts 
and related requirements artifacts as seen from K-Maps.

Table 12 is a K-Map of two variables, A and B. The 
numbers 1, 2, 3 and 4 are inserted in the cells for ease of 
reference.

A ~A
B 1 2

~B 3 4

Table 12 — K-Map of Two Variables

A and B are the Boolean variables, and each cell 
designates a truth value for a Boolean expression of 
the variables A and B. In the corresponding truth table 
(Table 13), T and F correspond to the truth values for A 
and B. The cell numbers refer to Table 12. For example, 
in Table 13, cell number 4 corresponds to A and B both 
False (F). In Table 12, the cell occupied by “4” corre-
sponds to ~A and ~B, or to A and B both False (F).

A B Cell Number
F F 4
F T 3
T F 2
T T 1

Table 13 — Truth Table Corresponding to Table 12.

There is an association between these variables in 
a K-Map and the conditions in the Boolean statement 
found in a requirement. Table 14 shows this associa-
tion. The True/False value of the variable A corresponds 
exactly to the True/False value of a condition. Similarly, 
the concept of union in a K-Map corresponds to the 
concept of “or” or “+” in the Boolean statement in a 
requirement, and the concept of intersection in a K-
Map corresponds to the concept of “and” or “·” in the 
Boolean statement in a requirement.

K-Map Boolean Statement in a Requirement
Boolean variable Condition
Boolean expression Boolean combination of conditions, referred to as 

Boolean expression or Boolean statement
Union Or
Intersection And
SOP expression Set of related requirements
Products in an SOP expression Requirement

Table 14 — Association Between K-Maps and Requirements

This association between K-Maps and require-
ments is the key to the use of K-Maps for analyzing 
requirements.

Consider the following requirements with M and 
N as conditions:

If M is True and N is True, then <action 1>
If M is True and N is False, then <action 2>
If M is False, then <action 3>

For the requirement, “If M is True and N is True, 
then <action 1>,” associate condition M with the 
Boolean variable A, and condition N with the Boolean 
variable B. This association is reasonable because condi-
tions have Boolean values just as Boolean variables do. 
For two conditions, the corresponding K-Map is said 
to be of dimension 2, as it would be for two Boolean 
variables. Note that cell 1 (numbered as in Table 12) 
satisfies the condition “M is True and N is True” simul-
taneously; therefore, Table 15 is the K-Map for the first 
requirement.

M ~M
N <action 1>  

~N   

Table 15 — K-Map of the Requirement “If M is True and N 
is True, then <action 1>.”

Now consider the requirement “If M is True and N 
is False, then <action 2>.” Associating M with A and N 
with B, and identifying cell 2 as the only cell for which M 
is True and N is False simultaneously, the K-Map for the 
requirement is in Table 16.

M ~M
N  

~N <action 2>  

Table 16 — K-Map of the Requirement “If M is True and 
N is False, Then <action 2>.”
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Consider also the requirement “If M is False, then 
<action 3>.” Associating M with A and N with B, and 
identifying cells 2 and 4 as the cells for which M is true, 
the K-Map for the requirement is in Table 17.

M ~M
N <action 3> 

~N   <action 3>

Table 17 — K-Map of the Requirement “If M is False, 
Then <action 3>.”

Combining the above three K-Maps, a two-dimen-
sional K-Map is formed. See Table 18.

M ~M
N <action 1> <action 3> 

~N <action 2>  <action 3>

Table 18 — K-Map of the Requirements

30 M
iles

1 Mile

Space Debris in ISS Path

Do Not Penetrate
The “Pizza Box”

“Pizza Box” Shape
with ISS in Center

ISS Path

30
 M

ile
s

Let’s illustrate the above with actual requirements. 
Consider a K-Map containing requirements describing 
possible International Space Station (ISS) responses to 
safety threats from collision with earth debris and solar 
debris. The “Pizza Box” is an imaginary rectangular paral-
lelepiped drawn around the ISS defining a space that, 
when a threat of penetration arises, raises a hazard con-
cern (Figure 4).

Figure 4 — International Space Station (ISS) Collision Threats.

Not to scale
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Consider the following set of related requirements:

•	 S_1000 — If Detected Object is in Earth Orbit and Relative Velocity is greater than Threshold Velocity, then 
Calculate Elliptical Trajectory

•	 S_1001 — If Detected Object is in Earth Orbit and Relative Velocity is less than or equal to Threshold Velocity, 
then Take no Action

•	 S_1002 — If Detected Object is not in Earth Orbit, then Calculate Hyperbolic Trajectory

These requirements are assumed to be connected by “or,” which represents a union in a K-Map.
Requirement S_1000 is mapped to the upper left cell in the same way as the requirement “if M is True and N is 

True, then <action 1>” was mapped to the K-Map in Table 15. Wherever the conditions are connected with an “and,” 
this represents an intersection in the K-Map. Requirement S_1000 (detailed above) is in this form. The two condi-
tions “Detected Object is in Earth Orbit” and “Relative Velocity is greater than Threshold Velocity” are both true, so 
this represents an intersection in the K-Map. The first column and the first row intersect in the cell at the upper left 
corner of the K‑Map. Therefore, the action “Calculate Elliptical Trajectory” is placed there. Table 19 shows the place-
ment of this action.

Detected Object is in Earth 
Orbit

Detected Object is not in 
Earth Orbit

Relative Velocity is greater 
than

Threshold Velocity

Calculate Elliptical Trajectory 
S_1000

Relative Velocity is less than 
or equal to Threshold Velocity

Table 19 — Mapping Requirement S_1000.

Detected Object is in Earth 
Orbit

Detected Object is not in 
Earth Orbit

Relative Velocity is greater 
than

Threshold Velocity
Relative Velocity is less than 

or equal to Threshold Velocity
Take No Action

S_1001

Table 20 — Mapping Requirement S_1001.

Detected Object is in Earth 
Orbit

Detected Object is not in 
Earth Orbit

Relative Velocity is greater 
than

Threshold Velocity

Calculate Hyperbolic Trajectory 
S_1002

Relative Velocity is less than 
or equal to Threshold Velocity

Calculate Hyperbolic Trajectory 
S_1002

Table 21 — Mapping Requirement S_1002.

Requirement S_1001 is mapped to the lower left cell in the same way as the requirement “if M is True and N is 
False, then <action 2>” was mapped to the K-Map in Table 16. See Table 20.

Requirement S_1002 is mapped to the cells in the right-hand column in the same way as the requirement “if M 
is False, then <action 3>” was mapped to the K-Map in Table 17. See Table 21.
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Combining these mappings, we get Table 22, the final K-Map with these three requirements.

Detected Object is in Earth 
Orbit

Detected Object is not in 
Earth Orbit

Relative Velocity is greater 
than

Threshold Velocity

Calculate Elliptical Trajectory 
S_1000

Calculate Hyperbolic Trajectory 
S_1002

Relative Velocity is less than 
or equal to Threshold Velocity

Take No Action
S_1001

Calculate Hyperbolic Trajectory 
S_1002

Table 22 — K-Map of Two Conditions

Example of Three-Variable and Four-Variable K-
Maps with Requirements — Consider the related re-
quirements:

if AB is True then X1
if A~B is True then X2
if ~AC is True, then X3

where A, B and C are conditions and the X1, X2 and 
X3 are actions. See Table 23 for the three-variable K-Map.

Sets of requirements appearing in requirements 
documents are generally assumed to be connected by “or.”

A ~A

C X
2

X
1

X
3

X
3

~C X
2

X
1

~B B ~B

Table 23 — Three-Variable K-Map.

Note that in Table 23, it is necessary to stagger one 
of the variables (in the bottom wing) so that the eight 
cells representing all possible combinations of truth val-
ues for A, B and C appear in the map. That is, each cell 
in the three-variable K-Map should represent a unique 
combination of truth values for the three variables A, B 
and C. The variable B was the one staggered, although A 
or C could have been chosen. 

Some cells are blank because there are no require-
ments to define an action for those cells. Table 24 depicts 
another way to place three Boolean variables on the K-Map.

B ~B

C X
3

X
1

X
2

X
3

~C X
1

X
2

~A A ~A

Table 24 — Three-Variable K-Map With a Different Place-
ment of Boolean Variables.

If the format is different in this way, the definition 
of each of the cells would be changed, but all possible 
values of the Boolean variables in the K-Map would 
still be represented. The resulting K-Map would in this 
sense be equivalent to the original. That is, the K-Map 
representation of a Boolean expression is invariant with 
respect to the placement of the variables in the wings 
of the K-Map. 

In Table 23, there are only three possibilities for 
the placement of the variable B. Another possibility is 
if B were directly under the variable A, and ~B directly 
under ~A. But then it would not be possible to map 
the combination A~B to the K-Map. The third possibil-
ity is if ~B were directly under the variable A, and B 
directly under ~A. But then it would not be possible to 
map the combination AB to the K-Map.

The following example of a three variable K-Map 
contains simplified requirements involving responses to 
threats to the ISS from collision with orbital debris. 

Consider the following set of related require-
ments. See Table 25 of the resulting K-Map.

•	 MC_1957 — If object is detected, and Pizza Box 
will be penetrated, and there is time for Collision 
Avoidance maneuver, then MC shall display “Ma-
neuver.” 

•	 MC_1958 — If object is detected, and Pizza Box 
will not be penetrated, then MC shall display 
“Object Detected – no action.”

•	 MC_1959 — If object is detected, and Pizza Box 
will be penetrated, and there is no time for colli-
sion Avoidance maneuver, then MC shall display 
“Evacuate.”

•	 MC_1960 — If no object is detected, then MC 
shall display Debris Statistics.
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No Object Detected Object Detected

Time for Collision 
Avoidance 
Maneuver

MC displays 
Debris Statistics 

MC_1960

MC displays 
Debris Statistics 

MC_1960

MC displays 
“Maneuver” 
MC_1957

MC displays 
“Object Detected - 

no action” MC_1958

No Time for 
Collision Avoid-
ance Maneuver

MC displays 
Debris Statistics 

MC_1960

MC displays 
Debris Statistics 

MC_1960

MC displays 
“Evacuate” 
MC_1959

MC displays 
“Object Detected - 

no action” MC_1958

Pizza Box will not 
be Penetrated

Pizza Box will be Penetrated
Pizza Box will not 

be Penetrated

Table 25 — Example of Three Variable K-Map with Requirements.

By staggering the “Pizza Box will be Penetrated” condition on the bottom of the K-Map with respect to the 
“Object Detected” condition on the top of the K-Map, as illustrated in Table 25, each cell has a unique combination 
of values for the conditions associated with it, and the K-Map covers all possible combinations of values for the condi-
tions. To draw a four-variable K-Map, the fourth variable D would also be staggered with respect to the variable C so 
that each of the 16 cells in the K-Map would represent a unique combination of truth values for the four variables A, 
B, C and D. See the example in Table 26.

•	 MC_1947  If Radar Mode is enabled, object is detected, Pizza Box will be penetrated, and there is time for Colli-
sion Avoidance maneuver, then MC shall display “Maneuver.”

•	 MC_1948  If Radar Mode is enabled, object is detected, Pizza Box will not be penetrated, then MC shall display 
“Object Detected – no action.”

•	 MC_1949  If Radar Mode is enabled, object is detected, Pizza Box will be penetrated, and there is no time for 
Collision Avoidance maneuver, then MC shall display “Evacuate.”

•	 MC_1950  If Radar Mode is enabled, no object is detected, then MC shall display Debris Statistics.
•	 MC_1951  If Radar Mode is disabled, MC shall display “Enable Radar Mode.”

Radar Mode Enabled Radar Mode Disabled

Time for 
Collision 

Avoidance 
Maneuver

MC displays 
Debris Statistics 

MC_1950

MC displays 
“Object Detected 

- no action” 
MC_1948

MC displays 
“Enable Radar 

Mode” MC_1951

MC displays 
“Enable Radar 

Mode” MC_1951

Pizza Box will 
not be 

Penetrated

MC displays 
Debris Statistics 

MC_1950

MC displays 
“Maneuver” 
MC_1947

MC displays 
“Enable Radar 

Mode” MC_1951

MC displays 
“Enable Radar 

Mode” MC_1951 Pizza Box will 
be Penetrated

No Time for 
Collision 

Avoidance 
Maneuver

MC displays 
Debris Statistics 

MC_1950

MC displays 
“Evacuate” 
MC_1949

MC displays 
“Enable Radar 

Mode” MC_1951

MC displays 
“Enable Radar 

Mode” MC_1951

MC displays 
Debris Statistics 

MC_1950

MC displays 
“Object Detected 

- no action” 
MC_1948

MC displays 
“Enable Radar 

Mode” MC_1951

MC displays 
“Enable Radar 

Mode” MC_1951

Pizza Box will 
not be 

Penetrated

No Object 
Detected

Object Detected
No Object 
Detected

Table 26 — Example of Four-Variable K-Map.

Note that for a four-variable K-Map there are 16 possible combinations of the variables, i.e., 16 possible actions. 
In general, the number of actions is

Number of Actions = 2 number of conditions (13)
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Applications of K-Maps in Requirements Analysis
Mapping from Requirements to K-Map: A method that 
can be used for mapping requirements to K-Maps is 
presented in these steps:

1. 	Acquire Data (Determination of related conditional 
requirements): This step is concerned with deter-
mining sets of related requirements. Requirements 
associated with one subsystem or part of a subsys-
tem are usually related.

2. 	Process Data: This step is concerned with placing 
the requirements in standard form. This means 
writing the requirements in the form “if M then X,” 
where M is a Boolean expression and X is an action 
to be performed if M has the value “True,” and M is 
in SOP form.

3. 	 Identify Topography: In this step, the number of 
unique conditions is determined. This will be the 
dimension of the K-Map. The K-Map is constructed 
using wings, which contain the conditions.

4. 	Perform Analysis: In this step, the Boolean expres-
sion M is mapped to the K-Map for each require-
ment. If M is true, the condition X is placed in the 
cell corresponding to the value of the conditions in 
M. After all the requirements are mapped, missing 
requirements are detected at this step. An analysis to 
determine if minimization is possible is also done at 
this step.

5. 	Write a Report: This report details the results of the 
analysis. It should contain combinations of condi-
tions for which there is no action defined, and the 
existence of any duplicate or superfluous require-

ments. The report can also contain a recommenda-
tion to the reader on further actions.

Using a K-Map to detect Missing Requirements: 
Missing requirements are difficult to detect analytically, 
and can escape functional and structural tests, resulting in 
failures that are difficult to diagnose and that may possi-
bly cause human injury or system damage. 

Almost all accidents related to software components 
in the past 20 years can be traced to flaws in the require-
ments specifications, such as unhandled cases [Ref. 6, 12].

When there is a missing software requirement and 
the code does not anticipate the missing requirement, 
then requirement-level tests will pass with 100 percent 
coverage. Missing software requirements in the Produc-
tion and Deployment (P&D) phase can be both danger-
ous and expensive. 

Consider the following requirements:

•	 MC_1947 — If Radar Mode is enabled, object is 
detected, Pizza Box will be penetrated, and there is 
time for Collision Avoidance maneuver, then MC 
shall display “Maneuver.”

•	 MC_1948 — If Radar Mode is enabled, object is de-
tected, Pizza Box will not be penetrated, then MC 
shall display “Object Detected – no action.” 

•	 MC_1950 — If Radar Mode is enabled, no object is 
detected, then MC shall display Debris Statistics.

•	 MC_1951 — If Radar Mode is disabled, MC shall 
display “Enable Radar Mode.”

Mapping the above requirements to a K-Map results 
in Table 27.

Radar Mode Enabled Radar Mode Disabled

Time for 
Collision 

Avoidance 
Maneuver

MC displays 
Debris Statistics 

MC_1950

MC displays 
“Object Detected 

- no action” 
MC_1948

MC displays 
“Enable Radar 

Mode” MC_1951

MC displays 
“Enable Radar 

Mode” MC_1951

Pizza Box will 
not be 

Penetrated

MC displays 
Debris Statistics 

MC_1950

MC displays 
“Maneuver” 
MC_1947

MC displays 
“Enable Radar 

Mode” MC_1951

MC displays 
“Enable Radar 

Mode” MC_1951 Pizza Box will 
be Penetrated

No Time for 
Collision 

Avoidance 
Maneuver

MC displays 
Debris Statistics 

MC_1950
?

MC displays 
“Enable Radar 

Mode” MC_1951

MC displays 
“Enable Radar 

Mode” MC_1951

MC displays 
Debris Statistics 

MC_1950

MC displays 
“Object Detected 

- no action” 
MC_1948

MC displays 
“Enable Radar 

Mode” MC_1951

MC displays 
“Enable Radar 

Mode” MC_1951

Pizza Box will 
not be 

Penetrated

No Object 
Detected

Object Detected
No Object 
Detected

Table 27 — Example of Four-Variable K-Map with a Missing Requirement.
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The question mark (?) in Table 27 denotes the missing requirement. A system engineer or software engineer 
could have forgotten to write this requirement, or the action in this cell may be missing because the variable values at 
this cell location may represent an impossible combination of values. Only further analyses can resolve this ambiguity.

By examining the K-Map, we note that for the conditions “Radar Mode Enabled” and “Object Detected” and “No 
Time for Collision Avoidance maneuver” and “Pizza Box will be Penetrated,” there is no action. Consequently, there 
is a missing requirement of the form “If Radar Mode is enabled, object is detected, Pizza Box will be penetrated, and 
there is no time for Collision Avoidance maneuver, then <Action required>.” The system engineer needs to define an 
action for this combination of conditions. One example of a possible action is “MC displays ‘Evacuate.’”

Using a K-Map for Requirement Minimization: It is easier to execute requirements-level tests if the set of re-
quirements are smaller and contains fewer conditions. This subsection considers simplifying requirements by eliminat-
ing those that are unnecessary.

Consider the following set of related requirements:

•	 MC_1947 — If Radar Mode is enabled, object is detected, Pizza Box will be penetrated, and there is time for 
Collision Avoidance maneuver, then MC shall display “Maneuver.”

•	 MC_1948 — If Radar Mode is enabled, object is detected, Pizza Box will not be penetrated, then MC shall dis-
play “Object Detected – no action.” 

•	 MC_1949 — If Radar Mode is enabled, object is detected, Pizza Box will be penetrated, and there is no time for 
Collision Avoidance maneuver, then MC shall display “Evacuate.”

•	 MC_1952 — If Radar Mode is enabled, no object is detected, and there is time for collision Avoidance Maneu-
ver, then MC shall display Debris Statistics.

•	 MC_1953 — If Radar Mode is enabled, no object is detected, and there is no time for collision Avoidance Ma-
neuver, then MC shall display Debris Statistics.

•	 MC_1951 — If Radar Mode is disabled, MC shall display “Enable Radar Mode.”

The four-variable K-Map associated with this set of related requirements is in Table 28.

Table 28 — Four-Variable K-Map Example with Requirements.

Radar Mode Enabled Radar Mode Disabled

Time for 
Collision 

Avoidance 
Maneuver

MC displays 
Debris Statistics 

MC_1950

MC displays 
“Object Detected 

- no action” 
MC_1948

MC displays 
“Enable Radar 

Mode” MC_1951

MC displays 
“Enable Radar 

Mode” MC_1951

Pizza Box will 
not be 

Penetrated

MC displays 
Debris Statistics 

MC_1950

MC displays 
“Maneuver” 
MC_1947

MC displays 
“Enable Radar 

Mode” MC_1951

MC displays 
“Enable Radar 

Mode” MC_1951 Pizza Box will 
be Penetrated

No Time for 
Collision 

Avoidance 
Maneuver

MC displays 
Debris Statistics 

MC_1950

MC displays 
“Evacuate” 
MC_1949

MC displays 
“Enable Radar 

Mode” MC_1951

MC displays 
“Enable Radar 

Mode” MC_1951

MC displays 
Debris Statistics 

MC_1950

MC displays 
“Object Detected 

- no action” 
MC_1948

MC displays 
“Enable Radar 

Mode” MC_1951

MC displays 
“Enable Radar 

Mode” MC_1951

Pizza Box will 
not be 

Penetrated

No Object 
Detected

Object Detected
No Object 
Detected

Note that in 28, all cells in the first column (bracketed) on the left have the same action.  “MC displays 
Debris Statistics.” These cells are exactly the cells for the conditions “Radar Mode Enabled” and “No Object 
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Detected.” The requirement “If Radar Mode is enabled, and no object is detected, then MC shall display 
Debris Statistics” will be represented by these four cells. But these are exactly the cells that represent the re-
quirements MC_1952 and MC_1953. That is, the requirement “MC_1950  If Radar Mode is enabled, and no 
object is detected, then MC shall display Debris Statistics” is a combination of MC_1952 and MC_1953, and 
can replace these two requirements. The minimized set of requirements is:

•	 MC_1947 — If Radar Mode is enabled, object is detected, Pizza Box will be penetrated, and there is time 
for Collision Avoidance maneuver, then MC shall display “Maneuver.”

•	 MC_1948 — If Radar Mode is enabled, object is detected, Pizza Box will not be penetrated, then MC 
shall display “Object Detected – no action.” 

•	 MC_1949 — If Radar Mode is enabled, object is detected, Pizza Box will be penetrated, and there is no 
time for Collision Avoidance maneuver, then MC shall display “Evacuate.”

•	 MC_1950 — If Radar Mode is enabled, and no object is detected, then MC shall display Debris Statistics.
•	 MC_1951 — If Radar Mode is disabled, MC shall display “Enable Radar Mode.”

This minimization is possible because of the Gray Code ordering described earlier following Table 9. In 
Gray Code ordering, the Hamming distance between adjacent cells is always one. Therefore, exactly one con-
dition differs between those adjacent cells. Thus, two requirements whose actions are the same but in adjacent 
cells with Hamming distance 1 can be combined into one requirement, and the condition that differs can be 
eliminated.

The K-Map allows a few manipulations, as presented in the remainder of this section. The first and fourth 
columns of X1 can be combined into a single requirement with only a single condition, instead of two require-
ments, each of which has two conditions. The resulting requirement is “If B is false then X1.” See Table 29.

It helps to imagine that the K-Map wraps around a vertical axis to form a cylinder so that the right edge 

Table 29 — Combining Two Columns using Wraparound.

A ~A

C
X

1
X

2
X

1
X

1
~D

X
1

X
2

X
1

X
1 D

~C
X

1
? X

1
X

1

X
1

X
2

X
1

X
1

~D

~B B ~B

contacts the left edge. The first step is to visualize Ta-
ble 29 without the wings on the K-Map. Each cell in 
the map can display its own label as in Table 30.  The 
labels in the cells of Table 30 are derived from the 
values of the variables in the K-Map. For example, 
the label ~ABC~D in the upper right cell of Table 30 
corresponds to the cell on the first row, third from 
the left, in Table 29.

As a check, note that the Hamming distance be-
tween adjacent cells in Table 30 is 1. This makes pos-
sible the minimization of requirements as explained 
in the text following Table 28. 

If we wrap Table 30 around a vertical axis to 
form a cylinder so that the A~BC~D cell is adjacent 
to the ~A~BC~D cell, we see that the Hamming 
distance between these two cells is 1. These cells are 
actually adjacent cells. The cylindrical shape shown in 
Figure 5 emphasizes this. 

This is also true for the pairs (A~BCD, 
~A~BCD), (A~B~CD, ~A~BCD) and (A~B~C~D, 
~A~B~C~D). The consequence for adjacent cells 
having a common action is that one of the condi-
tions can be eliminated between them. The analogous 
Boolean expression is (using sum of minterms):

X
1

A~BC~D

X
2

ABC~D

X
1

~ABC~D

X
1

~A~BC~D

X
1

A~BCD

X
2

ABCD

X
1

~ABCD

X
1

~A~BCD

X
1

A~B~CD

?

AB~CD

X
1

~AB~CD

X
1

~A~B~CD

X
1

A~B~C~D

X
2

AB~C~D

~X
1

~AB~C~D

~X
1

~A~B~C~D

Table 30 —  Table 29 without Wings
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X1 A~B~C~D X1 ~A~B~C~D

X1 A~B~CD
X1 ~A~B~CD

X1 A~BCD X1 ~A~BCD

X1 A~BC~D X1 ~A~BC~D

Figure 5 — Cylindrical Representation of Table 30.

A~BC~D + ~A~BC~D = ~BC~D(A+~A) = ~BC~D(1) = ~BC~D (14)

Note that A~B and ~A~B in 
Table 29 represent the expression 
A~B+~A~B. Using Boolean alge-
bra, this expression can be reduced 
as follows:

Thus, the unnecessary condi-
tion A and the associated unneces-
sary requirement are eliminated.

The following set of require-
ments is mapped to Table 31.

1. 	If A and ~B then X1

2. 	If ~A and B then X1

3. 	If ~A and ~B then X1

4. 	If A and B and C then X2

5. 	If A and B and ~C and ~D 
	 then X2

The third and fourth columns 
of X1 in Table 31 can be combined 
into a single requirement with only 
a single condition, instead of two 
requirements, each with two con-
ditions (If A is false, then X1). This 
new requirement replaces require-
ments 2 and 3, and the unneces-
sary condition A is eliminated.

Table 32 is a repeat of Table 
31. In the second column of Table 
32, the top and bottom X2 can be 
combined into a single require-
ment with three conditions, in-
stead of two requirements, each 
having four conditions (If A is true 
and B is true and D is false, then 
X2).

It helps to imagine that the 
K-Map wraps around a horizontal 
axis so that the top edge contacts 
the bottom edge, as shown in Fig-
ure 6.

A~B+~A~B = (A+~A)(~B) = ~B (15)

Table 31 — Combining Two Columns.

A ~A

C
X

1
X

2
X

1
X

1
~D

X
1

X
2

X
1

X
1 D

~C
X

1
? X

1
X

1

X
1

X
2

X
1

X
1

~D

~B B ~B

Table 32 — Combining Two Cells using Wraparound.

A ~A

C
X

1
X

2
X

1
X

1
~D

X
1

X
2

X
1

X
1 D

~C
X

1
? X

1
X

1

X
1

X
2

X
1

X
1

~D

~B B ~B
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X2 ABC~D

X2 AB~C~D

Figure 6 — Cylindrical Representation of Table 32.

Thus, ABC~D and AB~C~D are adjacent cells representing the Boolean expression ABC~D+AB~C~D. 

Using Boolean algebra, it can be confirmed that this expression can be reduced as follows:

Thus, the unnecessary condition C and the associated unnecessary requirement are eliminated.

As indicated, the combinations in Table 29 and Table 32 become obvious if one imagines the alternate cylinder 
representation of the K-Map. Actually, the wraparounds in both Figure 5 and Figure 6 can be illustrated simultane-
ously by wrapping the four-condition K-Map into a torus shape. This is done by forming a cylinder as shown in Figure 
5, then bringing the ends of the cylinder together. See Figure 7 [Ref. 7].  Note that the cells with the dots in the torus 
are each 1 Hamming distance from the  adjacent cells with dots.

ABC~D+AB~C~D = AB~D(C+~C) = AB~D(1) = AB~D. (16)

1010
0010

0000
1000

1011

1110

0110 0011

0001
0111

0101

1111

1101

1100

0000

0001

0011

0010 0110 1110 1010

1000

1001

10111111

1101

11000100

0101

0111

Figure 7 — Toroidal Representation of Figure 5 and Figure 6.
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Other Uses of K-Maps
Although it is beyond the scope of 
this paper, it is worthwhile to consid-
er that K-Maps can help with detect-
ing conflicting requirements. These 
considerations will not be discussed 
in this paper.

K-Maps and Complex System 
Requirements
Requirements with more than four 
conditions are frequently encoun-
tered. It is possible to construct K-
Maps with more than four variables 
that can handle such requirements, 
although, typically, these situations 
are better handled using advanced 
programming methods. 

Figure 8 is an example of a K-
Map with the five variables A, B, C, 
D and E. This five-variable K-Map 
can be drawn by combining two 
K-Maps, each with the four variables 
A, B, C, D, then defining each K-
Map as an E and ~E branch of the 
five-variable K-Map. This K-Map 
can be used to both discover missing 
requirements and for requirement 
minimization.

Consider the following two sets 
of four requirements:

1. 	 If A and C and E then X
2. 	 If ~A and B and ~C then Z
3. 	 If ~A and B and C and E then Y
4. 	 If ~B and C and E then X

1’. 	If A and C and ~D and ~E then X
2’. 	If ~A and B and C and ~E then Y
3’. 	If ~A and ~B and C and D and 

~E then X
4’. 	If A and B and C and ~E then X

Each set of requirements may 
be mapped to the five-condition 
K-Map shown in Figure 8. The map-
ping is done in a similar fashion 
as was done with a K-Map of four 
conditions, either in the E or in the 
~E branch depending on the require-
ment. Examining each of the eight 
requirements, note that each require-
ment specifies either E or ~E, except 
for requirement 2. Because E and ~E 
are not specified in requirement 2 it 
is mapped to both branches.

A ~A

C
X X Y X ~D
X X Y X

D

~C
Z

Z ~D

~B B ~B

A ~A

C
X X Y X ~D

X Y X
D

~C
Z

Z ~D

~B B ~B

~E

E

Figure 8 — Five-Variable K-Map

A ~A

C
~D

D

~C
~D

~B B ~B

A ~A

C
~D

D

~C
~D

~B B ~B

A ~A

C
~D

D

~C
~D

~B B ~B

A ~A

C
~D

D

~C
~D

~B B ~B

~E

~E

E

E

F

~F

Figure 9 — Six-Variable K-Map.
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It helps to visualize the E branch overlaying the ~E 
branch of this five-variable K-Map. Then, the cells in one 
branch that are a Hamming distance of one from cor-
responding cells in the other branch are adjacent to each 
other. On the K-Map the cells in the first branch that 
are adjacent to the cells in the second branch are directly 
above their adjacent cells. Requirements that map to the 
same cells in the upper and lower branches of the K-Map 
shown in Figure 8 can be combined, and the variable E 
can be eliminated. The following simplifications and re-
placements can be made:

Replace 1’ with 
If A and C and ~D then X (because AC~D have the 

same action X in E and ~E, and are adjacent in E and ~E)
Replace 3 and 2’ with
If ~A and B and C then Y (because ~ABC have the 

same action Y in E and ~E, and are adjacent in E and ~E)
Replace 3’ with 
If ~A and ~B and C and D then X (because 	

~A~BCD have the same action X in E and ~E, and are 
adjacent in E and ~E)

Replace 4’ with
If A and B and C then X (because ABC have the 

same action X in E and ~E, and are adjacent in E and ~E). 

In Figure 8, blank cells are an indication of require-
ments not yet defined, i.e., missing. However, the exam-
ple above is an exercise in minimization.

By extension, six- and seven-variable K-Maps can be 
constructed by employing duplication. An example of a 
six-variable K‑Map is shown in Figure 9.

Conclusion
In this paper, the authors have demonstrated that K-
Maps, a proven tool used in ASIC design, can be used 
to detect missing requirements and aid in the minimi-
zation of sets of requirements. Reviews of key concepts, 
including basic relationships in Boolean Algebra, the 
importance of minterms in the use of K-Maps, the re-
lationships of truth tables to K-Maps, mapping from 
truth tables to K-Maps, and how Hamming Distance 
makes K-Maps useful, were presented. Safety implica-
tions of missing requirements were discussed. Two-, 
three- and four-variable K-Maps, along with several 
examples, were presented. Other uses of K-Maps relat-
ing to requirements were noted. Techniques borrowed 
from K-Maps applications to circuit analysis were 
shown to be useful for detecting missing requirements 
and for minimizing requirements.
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