
There have been a series of challenges in develop-
ing appropriate safety standards and methodolo-
gies as technology evolves to ensure their safe 

implementation. These challenges, which fi rst arose at 
the dawn of the industrial revolution, will inevitably 
continue. New technologies will always forge ahead in a 
competitive marketplace; failure to do so will inevitably 
lead to organizational demise. However, these develop-
ments must be matched by a complement of research 
activity seeking to ensure that appropriate new safety 
standards and methodologies are put in place to main-
tain acceptable levels of risk. A new challenge now 
confronts us in the form of artifi cial intelligence (AI), 
where we stand at the frontiers of decision making in 
relation to what roles machines and humans should 
play in optimal decision making and how this will im-
pact safety. 

Introduction
We are all now aware of the now well established imple-
mentation of automation in industrial processes with its 
benefi t in relation to removing and/or reducing the load 
on humans, together with greater control of quality and 
effi ciency in product manufacture, especially in the con-
text of mass production and safety. By and large, these 
processes are set up and controlled by humans via “hard-
wired” or software-controlled methodologies. These 
implementations required the parallel development 
of safety methodologies and relevant safety standards 
together with associated regulation to ensure appropri-
ate levels of safety compliance. Of course, the safety 
standards and their required level of compliance will 
be related to the level of consequence if an inadvertent 
event (mishap) occurs. If this lies in the “catastrophic” 
range, which very much applies to the subject of nuclear 
warhead design, assembly and ownership, then the re-
quirements will be exceptionally onerous. It is for this 
reason — and not surprising — that such processes have 
not yet been automated in the assembly context but 
have in the context of individual components manufac-
ture. Such components may not be unsafe in themselves, 
but are nevertheless subject to intense human scrutiny 
prior to “incorporation” in the assembly process where 
their safety attributes can be paramount.
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However, the general field of automation is now de-
veloping rapidly and into areas where the control meth-
odologies are becoming very complicated and sometimes 
difficult for humans to fully visualize or understand. By 
extension, this is moving to the level where decisions, 
and hence control actions, are being taken out of human 
hands. That is handed over to machines via Artificial In-
telligence (AI). AI can have advantages when it exceeds 
human capability and where the information available 
may be too complex for humans to handle or understand 
or respond to in sufficient time. 

Currently, there is no clear vision of the rate of 
development or where AI may eventually get to. It has 
the potential for major, if not unbounded, levels of tar-
geted enhancement over human capability for advanta-
geous societal gain. On the other hand, it raises parallel 
concerns about the lack of human understanding of the 
complexity involved and whether there are sufficient 
elements of remnant human control to ensure that soci-
etal benefits offset any new detrimental threats that may 
arise. There is, of course, a half-way point where AI is 
seen as an information adjunct to human intelligence and 
where the human still has a prominent role in the deci-
sion loop. 

There is a growing awareness of the need for AI 
safety methodology research, together with the identifi-
cation and setting of new safety standards and regulation. 
The safety standards and regulations already in force for 
software applications are unlikely to meet the new chal-
lenges that AI will inevitably bring. For high-consequence 
industry applications, this is a paramount requirement; 
indeed, a research program staying ahead of AI imple-
mentation is needed. Therefore, we are likely to see the 
development of a whole new set of safety standards and 
requirements of this nature. The current view would sug-
gest that application of AI is unlikely to find its way into 
warhead design and assembly processes in any extensive 
way in the near future.

Elon Musk, CEO of Tesla Inc., has noted the dan-
gers arising from industry’s economic and survival inter-
ests, along with concerns that such research into associ-
ated safety may not be keeping pace. “You have companies 
that are racing — they kind of have to race — to build AI 
or they’re going to be made uncompetitive; if your competitor 
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is racing towards AI and you don’t, they will crush you,” he 
said during a 2017 address to the National Governors As-
sociation. This conflict is unlikely to manifest itself with 
respect to warhead assembly processes where we are not 
competing in the marketplace.

Technology Revolutions
Some would contend that the human race has seen three 
major revolutions of advancement technology in benefit-
ting societal aims. These have come with the added re-
sponsibility of ensuring that the application of these tech-
nologies is undertaken against a set of safety standards, 
safety assessments and demonstration methodologies.

The First Revolution — The Industrial Revolution 
enabled us to harness sources of energy to apply to ma-
chines, which enabled us to ease the burden of human 
physical effort in producing wanted products and even 
opened up the potential for new products. However, 
from a safety point of view, there was generally human-
maintained control over these activities — a human was 
clearly in the loop and had a prominent role in manag-
ing safety. 

One other property of this transition was that the 
activity was generally visual to humans in terms of how 
processes worked and, as such, there was transparency 
in the link between intent and action. Although special-
ist knowledge was necessary to develop the technology, 
general understanding of how it was implemented could 
be understood by non-specialists, given a reasonable ex-
planation. In addition, this visual transparency was a clear 
guide to assessing what could go wrong, together with its 
consequences and hence the potential impact of the ac-
tivity with regard to safety. This revolution was very much 
about human control, transparency and benefit to society.

The Second Revolution — The introduction of 
microelectronics and software with its associated control 
algorithms was the basis of our second revolution. Here, 
equipment operation was directly controlled by either 
hardwired instructions or software set into the machine, 
but in both instances control was still essentially vested 
in the human who was responsible for the design of the 
machine and its internal instructions. 

Of course, this transition changed the situation with 
regard to transparency and complexity. The internal con-
trol within the machine and what was happening was 
no longer explicitly visible, although perhaps the conse-
quences, should something go wrong, could be envisaged. 
Although the specialist could explain broadly the link 
between controls and action, it would no longer be trans-
parent (visibly obvious) to the non-expert. 

True understanding lay in the mysterious world 
of embedded hardwired instructions or the even more 
mysterious embedded software code. The latter took the 
form of a highly specialized language in the form of com-

plex information sheets together with its microelectronic 
physical implementation. This took the form of tiny 
interconnected physical items that gave no visual indica-
tion of what was happening inside. This led to a dilemma 
and the need to ensure that these agents of “mysterious 
control” did the correct things when required and would 
not inadvertently do the wrong things, giving rise to 
concerns for safety, as well as reliability and overall per-
formance. The human requirement of control should not 
be undermined by lack of complete visibility and under-
standing of the complexity involved. The “holy grail” took 
the form of seeking to produce an absolutely complete 
specification of what the controlling medium should do 
(and not do) under “all envisaged circumstances,” and that 
its implementation was certified to exactly and fully fol-
low the specification. 

The benefits from this technology took the form 
of enhancing automation. It became possible to add so-
phistication, replacing humans for machine precision and 
speed, further reducing the human burden and personal 
risk, and creating a greater range of product capability 
with consistent quality and cost efficiency arising from 
mass production. As the sophistication of embedded 
software increased, so did the need for enhanced under-
standing of how unwanted outputs (unforeseen) might 
occur so that they could be detected, eradicated or en-
sured that they could only occur with acceptable limited 
probability. This led to two general approaches: looking 
for a mathematical proof that the implementation per-
fectly matched a perfect specification, or using a more 
brute-force approach in which the system was exercised 
over “all possible circumstances” in a screening process 
to demonstrate a sufficiently low probability of incurring 
unwanted outputs. In addition, these were associated 
with a whole new set of safety standards and related 
requirements for assessment and demonstration, set to 
match the level of consequence of failure. This resulted 
in several universal standards and requirements which 
were necessary to ensure safe application. 

Application of this technology could take two 
forms: output actions were fully vested in the internal 
(but human-developed) instructions, or the processed 
information could be used as an adjunct to guide subse-
quent human control actions. In the latter case, humans 
clearly retained final control (tempered with some con-
cern about the probity of the supplied information) over 
safety. This revolution was still very much about human 
control of safety, including the need to develop new safety 
standards and methodologies to meet the overall goal of 
benefit to society but with some loss of transparency through 
complexity.

The Third Revolution — The next revolution is 
now potentially with us or “just around the corner,” but it 
is not clear what its ultimate potential might be or how 
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quickly it will be developed and implemented. The sec-
ond revolution showed the benefits to society that could 
be accrued from the application of control software and 
computing in terms of developing new, better and more 
sophisticated products — generally through its ability to 
deal in a “routine manner” with complex situations much 
faster than a human could. Much of this has found its 
way into automation and robotics.

It has been realized for some time that computing 
machines can partially mimic the human brain’s “neuron/
synapse structure” via the application of so-called artifi-
cial neural networks. But while in the second revolution 
the machine was still subject to human control (human-
based design and certification of the controlling soft-
ware), it is now accepted that further extensions of the 
brain/sensor analogue in machine/code development can 
give rise to machine-based learning and a “handing over” 
of control and decision making to machines themselves. 

Currently, AI is primarily based on a learning pro-
cess that is generally based on human supervision, and 
the neural network approach is no exception. Although 
there are other general AI approaches — for example, 
Decision Trees and Bayesian Networks — it is the neural 
network approach to AI that is the main subject area of 
this paper. This approach involves training the machine 
to recognize objects, conditions, etc. through a process of 
trial and error while still supervised by humans. This par-
allels human-based learning where “training and experi-
ence” leads to human-informed decision making. 

Just as the brain can process incoming information 
and, based on previous experience, use it to make deci-
sions, so ultimately could machines. For example, with 
the advent of ever-improving sensor and computing 
capabilities, the question arises: Is it possible to create 
machines that could match, or even eventually surpass, 

the capability of humans in terms of perceiving, decid-
ing and taking best-judged courses of action? By exten-
sion, the machine-learning process could even take place 
under internal machine, rather than human, supervision. 
This further development of AI, leading to its extension 
to so-called “Super Artificial Intelligence” (SAI) will bring 
its own advantages and concerns. For example, will it now 
become too complicated for full human understanding, 
and will this raise major concerns over control functions 
being allocated to the machines? Consider the following:

• “The unpredictability and complex nature of AI 
presents one of the biggest challenges for humans 
in understanding its behavior,” said Daniel Kroen-
ing, a professor of computer science at Oxford 
University. “This is why we need to develop AI that 
will be highly intelligent but transparent enough for 
humans to understand its complex decisions.” This 
may become more difficult to achieve as complex-
ity increases.

• There is already practical evidence. “…we can build 
models, but we don’t know how they work. No one 
really knows how the most advanced algorithms do 
what they do. That could be a problem,” wrote Will 
Knight, the senior editor for artificial intelligence for 
the MIT Technology Review, in his 2017 article, “The 
Dark Secret at the Heart of AI.”

• A wide range of future concerns were raised at the 
Beneficial AI 2017 Conference (See Appendix 1).

Difficulty arises mainly through the more-opaque 
statistical, rather than sequential, deterministic, machine- 
based decision algorithms. This is good in terms of pro-
viding unexpected benefits, but this “incomplete” knowl-
edge is a worry; it could produce detrimental unexpected 
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outputs, or not allow an understanding of why safety 
failures have occurred. Complexity and lack of transpar-
ency that gives rise to verification difficulties is of par-
ticular concern for high-consequence systems. Coupled 
with this is the concern that the reasons for failures may 
be difficult to understand, bottom out and eradicate even 
after they occur.

This revolution is still underway and there are real 
emerging concerns over transparency and lack of human 
control and how to treat its application appropriately.

Intelligence Evolution
Max Tegmark has suggested that the evolution of “what 
is called life” will fall into three major epochs [Ref.1].

Epoch 1 — This starts at the bacterial level, with 
little intelligence and some capability to respond to the 
environment. This progresses through the slow process of 
the “living” item’s evolution to change its form and capa-
bilities in response to environmental influence via natural 
selection.

Epoch 2 — This is broadly associated with evolu-
tion to the human physical form but now where the 
main and rapid development of capability is associated 
with wide spread access to technology and informa-
tion, enabling one to learn and be trained, and to 
specialize. This is now much more about training the 
brain, as opposed to further physical evolution of the 
human form itself.

Epoch 3 — This is broadly associated with the 
realm of SAI, where machines now surpass the human 
capability to perceive, decide and act, and where human 
control plays a smaller and smaller role (at least on the 
face of things). This presents a vision of a far greater ca-
pability to tackle what are seen as today’s major unsolved 
problems affecting humanity. This also begs the question 
of whether, with the decreasing understanding of how 
machines work and the gradual loss of human control, 
machines will continue to decide and act in the inter-
ests of human society or, alternatively, in the interests 
of the machines themselves? For example, the human 
vision may be the eradication of fundamental medical 
problems, but this may be of minor interest to machines. 
Without some overriding form of human control and 
directive this will not be catered for. By extension, there 
is the danger that machines might eventually develop 
their equivalent of “society” — a machine society with all 
the human characteristics of self-interest, competition, 
aggression and even direct conflict. Who knows? There 
is currently no consensus on the limits of AI and what it 
might eventually lead to in terms of the balance between 
human societal benefit and risk.

Of course, we are still in the foothills with regard to 
Epoch 3 with only a limited ability to look into the fu-
ture and see the possibilities and limits of future AI capa-

bilities, along with any full conception of the associated 
problems that may arise. With the continuing transfer of 
more and more decision-making responsibility to ma-
chines, new concerns are likely to arise in safety, security 
and ultimately ethics, coupled with potential concerns 
about a clash between human and machine interests. 
These concerns have always been with us in human form 
in Epoch 2 so in principle there will be no change as such 
for Epoch 3. Of course, the nature of these concerns will 
be markedly different.

Innovation
One may ask whether AI can match the human at-
tribute of innovation. Do human ideas turn up like the 
turning on of the proverbial “light bulb,” without any 
idea of where they come from? Or do they arise from 
the multitude of past experiences stored in the brain, 
which are formerly somewhat unrelated but subse-
quently are brought together in more cohesive fashion 
at some point in time to give rise to the new ideas — 
innovation? If it’s the latter, in principle, there appears 
to be no reason in principle why AI machines cannot 
progress to the state we humans call innovation, but 
Roger Penrose disagrees [Ref. 2]. The parallel machine 
process of learning, or even self-learning, and trial and 
error will generate such latent experiences and stored 
knowledge that it can give rise to the germinating of 
new ideas or the equivalent of innovation. Is there a 
machine analogue of the “light bulb” effect?

Currently AI machines are more directed toward 
answering questions already set by humans. Machines 
with the ability to decide for themselves which questions 
need to be posed and then answered, looks like yet a 
further step in AI evolution.

How Far Will AI Go? Software Aspects
Some suggest that there is nothing in the laws of phys-
ics that identifies any limits to the development of SAI. 
The brain is a vast collection of neurons and synapses, 
with stored information and linked pathways influ-
enced by past experience (memory) sensed through 
our range of sensor systems and modified (trained) by 
success or otherwise in correct decision making. 

In short, at any time the brain’s operation is funda-
mentally based on the laws of physics (and chemistry) 
given what exists. This process is mirrored in AI through 
the application of neural networks or so-called “deep 
learning,” similarly governed by the array of storage ele-
ments and linkages modified by “past experience.” This 
past “experience” gained through the seeing, testing and 
learning processes (memory) gives rise to the associated 
algorithms that enable the decision-making process. Such 
algorithms can aid in the recognition of targeted features, 
detect other unsuspected features and aid in finding the 
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optimum path to reaching a given requirement. AI suc-
cess or otherwise comes from the level of correctness and 
completeness of the training information that acts as a 
moderating influence on the neural network approach. 
The analogy of human judgement and common sense? 
As such, there appears to be no limit to the sophistica-
tion and complexity associated with computation and AI 
decision algorithms, given a suitably sophisticated hard-
ware platform. However, there are limits to the level of 
problem complexity that so called “classical” computers 
can handle. 

Eventually, such complexity will push machines 
into conditions where quantum interference arises that 
may limit further capability. In fact, this takes us into the 
next dimension, with so-called quantum computers that 
are based on quantum principles 
and associated quantum-based 
algorithms. These offer even 
greater capabilities for handling a 
wide range of problems and spe-
cifically enhanced AI. Of course, 
once machines have reached a 
superintelligence standard, it is 
difficult to see how such learn-
ing and enhanced AI algorithms 
development can continue to 
be based on human intelligence 
intervention. In fact, such learn-
ing will need to be machine 
self-initiated rather than through 
human intervention because 
humans may no longer have the 
level of intellect to develop ar-
tificial intelligence further. Will 
there be no end to this?

How Far Will AI Go? 
Hardware Aspects
There has been a steady and dramatic enhancement 
of sensor and computing technologies over the last 
few decades with Moore’s Law broadly describing 
how computing speeds and capability increase as the 
computing elements — and expense — get smaller 
and smaller, and with greater efficiency seen in the 
interconnection and parallel processes. Will these pro-
cesses reach a limit when the elements involved in 
sensing, storage and computing operations themselves 
approach some physical limit? Currently, “switch-
ing” elements have reached the “few atoms” scale and 
memories are possible even at the subatomic particle 
regime. For example, there are already memory ele-
ments based on “particles” with binary spin states. In 
fact, switching elements are now reaching the stage 
where quantum effects such as tunneling are begin-

ning to show their influence and potentially limit fur-
ther enhancement of capability. 

We are now approaching the stage where quantum 
computers offer a completely new computing regime and 
where early and somewhat limited devices based on these 
concepts have been successfully demonstrated. The usual 
classical computer deterministic binary element of either 
“0” or “1” is replaced by the probabilistic quantum bit or 
qubit which can simultaneously have values of both “0” 
and “1” through the quantum principle of superposition. 
These qubits can, in turn, be processed through processes 
of entanglement, analogous to the mathematical opera-
tions in classical computers, to produce targeted results. 
The errors are bounded by the ability to maintain coher-
ence during the overall process. Such quantum comput-

ers will have the ability to tackle 
problems that are impossible with 
classical computers where the 
exponential demand on their ca-
pability arises as complexity of the 
task increases. The superposition 
nature of the qubit in the quantum 
computer is the key to dealing 
with this complexity, together with 
the entanglement processes which 
effectively enable many operations 
to be undertaken simultaneously as 
opposed to the linear approach in 
classical computers.

To paraphrase Richard Feyn-
man, “If you want to solve a prob-
lem of quantum level of complexity 
you need a quantum computer.” In 
fact, there is already evidence that 
researchers are using quantum 
computers in machine-learning 
mode in an endeavor to solve 

quantum problems that have not been successfully 
solved by other means.

The bottom line is that these physical enhance-
ments may well show more rapid development than 
the further physical evolution of the human brain itself. 
In turn, the associated learning processes will influence 
how these machines further develop themselves in the 
hardware context — that is, the machine will take over 
the responsibility for better and more efficient machine 
design and its implementation. Are there fundamental 
limits for these processes?

AI and the Role of Specialists
Of course, the old adage of “garbage in/garbage out” 
still very much applies to AI. The role of the specialist 
remains crucial in ensuring the correct neural network 
structure and that the appropriate quantity, fidelity and 
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balanced set of training and test data are used together 
with independent review of transparency of the process 
that leads to the machine’s results. In addition, success 
will also be based on the pro-
bity of the associated algorithms. 
There are many examples where 
follow-up human-based forensic 
assessment has shown flaws in all 
of these aspects. When the ma-
chine conclusion defies common 
sense, such errors flag an obvious 
need for re-assessment, but more 
subtle errors can still lead to mis-
leading results.

As complexity increases, 
so will the difficulties with re-
gard to executing this human 
intervention. The output from 
AI execution will not explicitly 
identify the physical basis on 
how the machine’s conclusion 
was based. It will be bound up 
in complex statistical analyses 
with associated “confidence lev-
els.” It is also currently unclear 
whether there will be tractable 
processes by which the analysis 
can be viewed in the “reverse 
direction” to pinpoint the core 
aspects supporting any (wrong) 
conclusion. Highly skilled hu-
mans will still be necessary to 
seek answers to these problems

The experienced human 
specialist will always be important as an adjunct to the 
machine (or the machine as an adjunct to the human) as a 
player in the overall information monitoring, interpretation 
and decision loop.

A Vision of the Future — 
Impact on Humanity’s Interests
One may visualize a time when humans no longer have 
the level of intellect to provide the learning process for 
machines to further enhance AI. In addition, the time 
may come when humans will no longer be capable of 
fully understanding how these machines operate and 
the processes by which they make decisions. Is this 
the “sea change” when machines become independent 
and self-sufficient, taking the role of self-learning, self-
testing and self-designing, for the purpose of continued 
intelligence enhancement — and self-interest?

• “What we really need to do is to make sure that life 
continues into the future …. It’s best to try to prevent a 
negative circumstance from occurring than wait for it to 

occur and then to be reactive.” 
Elon Musk 1.

Many noted thinkers, includ-
ing Stephen Hawking, Elon Musk, 
Bill Gates and Eliezer Yudkowsky 
amongst others, have raised con-
cerns about super intelligence — 
particularly that machines might 
reach the stage of looking after 
their own interests and destiny, 
rather than those of society and 
the humans they are “designed to 
serve.” These interests may well be 

in conflict with each other and 
this could have a detrimental 
impact on society.

There is no consensus on 
how artificial intelligence will 
progress with time, when it will 
reach the level of human intel-
ligence and when it will reach the 
stage of solving some of the funda-
mental problems that are current-
ly beyond human capability. Some 
perceive there is no fundamental 
limit to AI’s capabilites and, in 
turn, this enhanced intelligence 
may uncover as yet undiscovered 
major problems that themselves 
will need urgent solution. As not-

ed previously, this potential for enhanced human benefit 
comes with a fresh set of associated concerns — particu-
larly if machine independence turns into machine self-
interest that conflicts with what is best for society.

•  “If a machine can think, it might think more intel-
ligently than we do … This new danger … is certainly 
something which can give us anxiety.” Alan Turing 2.

Turing suggests “turning off the power at strategic 
moments” as a possible solution to discovering that a 
machine is misaligned with true human objectives. How-
ever, a super-intelligent machine acting in its own self-
interest is likely to have taken steps to prevent this!

• “If you’re not concerned about AI safety, you should be. 
Vastly more risk than North Korea.” Elon Musk 3.

Many noted thinkers, including 
Stephen Hawking, Elon Musk, 

Bill Gates and Eliezer Yudkowsky 
amongst others, have raised 

concerns about super intelligence 
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1 Said in 2015 after donating $10 million to the Future of Life Institute (FLI) for research into keeping AI safe.
2 Said during a 1951 lecture on BBC Radio 3
3 August 11, 2017. 8:29 p.m. Tweet.
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The Impact on Safety Standards 
and Assessment Methodologies 
Currently, there are two distinctive approaches to 
software-related safety:

Decision Making that is Essentially Human Con-
trolled — By and large, this regime is based on deter-
ministic sequential cause and effect-based hardwired/
software-based processes, with Monte Carlo-type 
analyses often implemented when there are uncertain-
ties (for example, in weather prediction). The internal 
process will take the form of instructions that are as 
complete as possible, identifying what should happen 
and what should not happen, given any external input 
to the system. 

The overall process is based on a “requirements 
specification” that attempts to cater to all envisaged 
possibilities. Final evaluation for completeness in 
relation to the specification — and its faithful repre-
sentation in the hardwired or coded implementation 
— takes the form of extensive “cold” exercising of the 
system for certification before application to the in-
tended purpose. This, in principle, gives a “practical” 
assurance measure of the accuracy and completeness 
of the conversion of the specification into machine 
language (limited, of course, by the completeness and 
accuracy of the specification itself). The required level 
of confidence will be bound up with the level of conse-
quence of getting it wrong. 

This overall balanced approach generally follows 
the Safety Integrity Levels (SIL) process, which sets 
down a rigorous, evidence-based, structured and trans-
parent confidence/risk approach with a detailed audit 
trail (see IEC 62061, for example). A SIL associated 
with a consequence/frequency matrix is generally de-
scribed by a discrete level for specifying appropriate in-
tegrity requirements for safety functions to be allocated 
to safety-related systems. SILs are typically assigned 
to four levels, where Level 4 is the most stringent and 
Level 1 the lowest.

Decision Making that is Machine Controlled — 
With the increasing advent of large data bundles and the 
added sophistication of computing machines and related 
software there is an increasing trend towards decision 
making based on machine intelligence. This will give rise 
to a need for revised safety standards, certification, regu-
lation and associated assessment methodologies. Many 
recent AI advancements have taken place in the context 
of artificial neural networks, which somewhat mimic the 
human brain in a parallel processing sense, but to a much 
lower level of overall capability in the general sense. This 
trend has been enhanced by developments in parallel 
computing and aided by advanced graphic processing 
chips (GPU), where the latter packs thousands of rela-
tively simple processing cores (the effective neurons) on 

a single chip. The neural net will consist of an input set of 
neurons, an output set and intervening hidden layers. For 
optimum precision and efficiency, the network structure 
and its interconnections are chosen to best match the 
specific case under consideration — as are the algorithms 
that control the search for the optimum weight condi-
tions that produce the best matches of its outputs to 
expected outputs during the machine’s training phase.

Machine learning and related decision making are 
almost exclusively bound up with probability functions 
and associated confidence levels as opposed to determin-
istic processes. These statistical assessments are generated 
following the teaching and testing phases. The machine 
is judged to be trained and tested when it consistently 
provides the correct outputs for a wide range of input 
data containing examples of such outputs. The network 
accomplishes this essentially during the training phase 
where its internal weights are continually adjusted until 
there is minimal error between machine assessment and 
expected outputs. The network is trained in this manner 
to identify all expected input conditions. 

Of course, the overall process is far more sophis-
ticated than what appears to be a “trial and error” ap-
proach. The optimizing process takes place through a 
complicated stepped process for minimizing the error. 
This is typically undertaken by a reverse error propaga-
tion process called “stochastic gradient descent,” where 
the gradient of the path leading to the expected result is 
evaluated for each weighting factor. This leads to a global 
error minimum. An activation parameter is chosen to 
provide continuous functions and continuity in the gra-
dient evaluation approach. A simple case is represented 
by a machine whose job is simply to identify a specific 
pattern that should then trigger a response action, which 
could be a safety-critical action. For example, in a flight 
control application, the machine may detect what it rec-
ognizes as the impending unsafe failure of a flight-related 
component and identify the need to take a safety mitigat-
ing action. On the other hand, there is the opposite con-
cern of a false positive causing a mitigating action which 
might in itself lead to danger. Generally, machines may 
be required to identify several separate patterns with a 
specific control response allocated for each. In this case, 
statistical confidence in discriminating between these 
patterns should not be unduly impaired (decision error) 
by the overlap of the statistical probability tails.

Should AI be Used? Risks and Benefits
The decision of whether to apply AI will depend on 
many factors that weigh potential benefits against risks. 
In fact, the best strategy often takes the form of using 
the best attributes of both machine and human input 
in an optimized approach. In addition, more than one 
independent approach to AI application can be ap-
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plied for redundancy purposes. Decisions will be partly 
governed by the level of consequence arising from er-
rors, as well as the uncertainty as to why errors have 
occurred and how they may be rectified. After all, AI 
is a statistical approximate rather than a deterministic 
approach. This does impact heavily on any risk/benefit 
decision about application for high-consequence indus-
tries. Nevertheless, such applications are already taking 
place in a number of high-risk industries. For example, 
aviation flight control (not without recent concerns), 
chemical engineering, power plants, automotive con-
trol and medicine among others — all where humans 
still have a prominent role in the decision process. 
However, there are other examples such as the design, 
manufacture and ownership of nuclear weapons where 
there will always be a strong resistance to the transfer 
of human control to machines either for automation or 
AI purposes.

Items which Influence the Machine Decision-
Making Approach 
Influences in the machine decision-making approach 
can be broken down into several areas. These include:

Validation — Here, validation is used in the sense 
of making the benefit/detriment analysis (including the 
detriment of not applying AI) together with selecting 
the best option that includes the “As Low As Reasonably 
Practical” (ALARP) process for safety. Validation includes 
the best application of combined machine and human 
contributions in the overall strategy, or even includes the 
application of more than one independent AI approach. 
Benefit comes in many forms: greater efficiency, greater 
accuracy in performance, quicker response, less cost, cop-
ing with complexity, mass production, etc. On the other 

hand, this may be offset by the level of consequence of 
a machine getting it wrong, or the cost of the machine 
overhead given its limited level of application. The ap-
proach will be very much dictated by the application. For 
example, the nature of the risk/benefit balance will be 
different when producing chocolate bars than it is when 
producing nuclear warheads.

The following ideas should be kept in mind when 
considering this approach: 

1. Neural networks are universal approximators, and 
they work best if the system application has a high 
tolerance to error.

2. All AI-based application and decision making in 
isolation should be used with great caution where 
failure can lead to catastrophic consequences.

3. There should be a compelling evidence-based as-
sessment of the benefit advantage over associated 
detriments before relying too heavily on AI-based 
decision making.

4. There should be a well-established research and de-
velopment base to support any decision that relies 
heavily on AI-based decision making.

5. Decisions to apply AI should not be overly driven 
by the needs of the competitive marketplace.

Validation and Verification — In this case, valida-
tion means an assessment of whether the overall ap-
proach is best matched to purpose (“Doing the right 
job!”). Verification means that the approach is supported 
by the appropriate level of evidence that quality stan-
dards have been met (“Doing the job right!”). The dis-
crimination capability and efficiency of a network will be 
associated with its structure; that is, its number of neu-

The decision of whether to apply AI 
will depend on many factors that weigh 

potential benefits against risks. In fact, the 
best strategy often takes the form of using 

the best attributes of both machine and 
human input in an optimized approach. 
In addition, more than one independent 

approach to AI application can be applied 
for redundancy purposes. Decisions will be 
partly governed by the level of consequence 

arising from errors, as well as the 
uncertainty as to why errors have occurred 
and how they may be rectified. After all, AI 
is a statistical approximate rather than a 

deterministic approach.
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rons, layers and interconnections and the associated train-
ing algorithms. All will have an impact on the “residual 
discrepancy value” (accuracy) during the training process 
and the confidence in the output judgement. 

As we enhance such structures in what is termed 
“deep learning,” we inevitably encounter more complex-
ity. This, in turn, can give rise to further loss of transpar-
ency in how the neural network actually does its work in 
a cause-and-effect sense.

Key ideas for V&V include: 

1. The neural network configuration should be opti-
mized (and not over-built) to match the applica-
tion. This aids in the efficiency and the statistical 
accuracy arising from the training and testing proce-
dure.

2. Software algorithms associated with the training 
programs should go through an appropriate V&V 
process for correctness in application, and should 
be vetted to eliminate unintended biases. There are 
now open-source algorithms of this nature available.

3. The statistical-based software involved in assessing 
confidence levels should also go through a V&V 
process.

4. The training program includes training the machine 
to correctly recognize patterns. By illustration, vari-
ous versions of dogs are presented as input and the 
machine is trained to recognize these as dogs. The 
training sets and program should be comprehen-
sive, complete and error free, as well as sufficient to 
uniquely identify and cover the expected outputs 
with sufficient confidence. The size of the structure 
will depend on the number of expected outputs, 
the level of discrimination and the required statisti-
cal confidence levels. Of course, these can include 
those outputs that are sentenced as fault or failure 
conditions with required mitigation actions.

 The requirements and residual questions may in-
clude:

 a. Training data should be compatible (easily tran-
scribed) with the machine input interface.

 b. What are the standards for completeness, suf-
ficiency and accuracy, balance and lack of inad-
vertent bias necessary in the training data and 
program? This is an area which can be prone to 
subjectivity and inadvertent bias. Can generic 
standards be developed, or will they always be 
strongly driven by specific application?

 c. Should cover all envisaged input conditions ex-
pected in the final applications.

 d. Should avoid potential inadvertent (or subjective) 
bias

  i. Subject to independent scrutiny

  ii. Bias and error can arise via the choice of train-
ing sets and by erroneously labelling a result as 
correct, e.g., telling the machine that an input ex-
ample represents a dog when, in fact, it doesn’t.

 e. Have all possible expected outputs been cata-
logued, and do they form part of the training pro-
gram?

 f. How should the statistical confidence level be set 
for expected output detection and discrimination 
between expected outputs influenced by “failure 
consequence”?

5. The testing program, on the other hand, subjects 
the machine to a separate set of data (usually a sub-
set of the training data that is not used in the train-
ing process). The machine is now blind-tested on its 
ability to discriminate correctly between patterns. If 
the result proves to be unsatisfactory, the machine 
should be subject to further evaluation, training and 
testing.

 Again, the requirements and residual questions 
would appear to be:

 a. That the form of the test data should be compat-
ible (easily transcribed) with the machine input 
interface.

 b. What are the standards for completeness, suf-
ficiency, accuracy balance and lack of inadvertent 
bias necessary in the testing data and program. 
Can generic standards be developed, or will they 
be strongly driven by specific application?

 c. Should cover all envisaged input conditions ex-
pected in the final applications.

 d. The test data should lie within the envelope of 
the training data; otherwise it may make errone-
ous decisions

 e. What should be the resultant level of identifica-
tion confidence — weighted by the level of error 
consequence?

6. The final stage will require a monitoring activity 
for AI performance when applied to the targeted 
process to gain further assurance or identification of 
unexpected events and rectify them in a continuous 
process of Review Learn and Improve (RLI).

 a. The application should lie within the envelope of 
the training and test data

 b. Continued monitoring, recording and sentencing 
of output anomalies should include

  i. Level of monitoring
  ii. Level of anomaly discrimination
  iii. Causes of anomalies
  iv. Rectification
  v. Identification of weakness in the structures, 

training, test data and algorithms
  vi. Upgrade of the structure, test and training 

cycle
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7. Are machines misled by false association? Do the 
internal processes in the machine themselves pro-
duce false biases? For example, the machine may 
associate a correct result with a pattern that often 
appears when correct outputs are given during the 
training process. However, the appearance of this 
pattern does not necessarily imply that the correct 
criteria have been satisfied and the machine can 
hence be misled. For example, a dog might be often 
associated with a specific background pattern. The 
appearance of such a pattern 
should not imply a dog.

8. There may be subsequent 
changes in the system of 
which the AI forms part or 
even modifications of pur-
pose. This may necessitate 
further elements of training, 
testing and neural network 
(including algorithm) re-
construction and even re-
assessment of the best strat-
egy for machine and human 
contributions in the overall 
decision-making process.

9. As noted previously, confi-
dence can be augmented by 
redundancy, using indepen-
dent (in technology, training 
and testing) AI machines for 
the purpose of averaging, 
range of disagreement, or 
voting strategies and mini-
mizing inadvertent false bias.

Integrity — The well-established SIL process, which 
sets down a rigorous, evidence-based, structured and 
transparent confidence/risk approach with a detailed au-
dit trail, appears to provide a suitable framework for the 
AI approach. This would be undertaken in association 
with a complementary ALARP case to show that the 
best approach had been undertaken and that any further 
effort to reduce risk further would be disproportionate 
to the reduction. The only difference lies in the specific 
contributing elements that are uniquely associated with 
the AI approach and listed above. This is where most of 
the hard work, assessments and judgments need to be car-
ried out in order to provide the evidential basis in respect 
for the required SIL level. The level of risk will be set by 
the details of the application, and the integrity level re-
quirement will be based on a customized risk/SIL matrix 
structure.

The Black Box — Unlike the more traditional se-
quential, deterministic software application, where the 

human is effectively in control via specification through 
to software implementation, there is a less direct hands-
on human control with machine learning — particularly 
for the case of neural networks. The neural nets under-
take their internal processes “without” external transpar-
ency and “appear” to come up with the required results 
with accepted levels of being “error free.” There is often 
no longer a clear indication of a relationship between 
cause and effect. Does the apparent picture of “it is work-
ing well” give a guarantee that it is free from unexpected 

errors? There is a nagging concern 
about products and processes 
where such errors can lead to 
catastrophic results (the potential 
for a “Black Swan”). Therefore, 
AI application to critical parts of 
nuclear warhead design and man-
ufacturing without human ele-
ments of control must be viewed 
with extreme caution. An under-
standing of how the AI process 
leads to “success” is currently one 
of the main and most important 
avenues of AI research in neural 
networks. This understanding 
aids in enhancing confidence 
and points to those areas where 
uncertainty remains and where 
further work is necessary. 

Approaches to error mini-
mization are being made through 
detailed internal tracking of what 
is happening in the neural net as 
it progresses through the steps to 
error minimization. The process 

does appear to home in on those elements of the input 
pattern that it regards as core to the recognition process 
and, in turn, gradually discards those which it deems as 
extraneous as it runs through its training process. For 
example, pictures of different dogs in different settings 
appear to be quite different. However, the process seems 
to home in on those elements which it regards as key for 
recognition of “dog,” rather than those associated with 
the general setting — despite that, there may be some 
relationship between a setting and a dog being present. 
This would become an unacceptable bias if used in the 
network approach (machine misled by false association). 
However, for some applications associations of this na-
ture may be seen as an aid to classification.

1. Any machine certification program would need at 
least some supporting qualitative evidence of under-
standing of the “machine’s logic” to counter any con-
cerns raised by the Black Box nature of the process.

The neural nets undertake 
their internal processes ‘without’ 

external transparency and 
‘appear’ to come up with the 

required results with accepted 
levels of being ‘error free.’ 

There is often no longer a clear 
indication of a relationship 
between cause and effect. 

Does the apparent picture of ‘it 
is working well’ give a guarantee 

that it is free from unexpected 
errors? There is a nagging 

concern about products and 
processes where such errors can 
lead to catastrophic results (the 

potential for a ‘Black Swan’). 
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2. Success in this avenue of research would obviously 
be key to the application of AI to high-consequence 
industries.

Safety and Security
Just as AI can lead to enhanced safety if properly 
implemented, it can also lead to enhanced security. For 
example, AI can be trained to identify patterns that in-
dicate potentially unsafe conditions and then take miti-
gating actions; it can also be trained to detect patterns 
that indicate potential security anomalies and act upon 
them. Safety concerns arise from natural or inadvertent 
causes and security anomalies arise from both mali-
cious and accidental actions. In each case, the potential 
output, if not detected and mitigated, produces a detri-
ment. However, in both cases the process will be simi-
lar in terms of training and testing the AI to detect pat-
terns that identify unsafe or unsecure conditions with 
the need to develop mitigating procedures. Just as in 
the safety case, the level of success will be based on the 
quality of meeting the requirements identified above, 
but where the training and testing and monitoring will 
be based on a set of envisaged security anomalies.

Conclusions
We are now very much entering a new regime with AI, 
where there is a gradual trend of handing over decision 
making from humans to machines, and where the ap-
plication of neural networks plays a greater and greater 
role. Although this enables one to provide products and 
services that offer significant advantages, these develop-
ments also carry with them new safety concerns. The 
danger is that implementation may be excessively driv-
en by the needs of the competitive marketplace and 
that parallel research into establishing safety standards, 
regulation and methodologies may not keep pace with 
the rate of application. 

The purpose of this paper has not been to define 
new standards, but to point out in a general manner 
where such standards need to be established and applied. 
It is generally agreed that neural networks are universal 
approximators, and they work best if the system applica-
tion has a high tolerance for error. The overall criterion 
should be: do the advantages of such application out-
weigh the detriments and, in particular, the level of risk 
incurred? This is by no means a trivial assessment for an 
organization which deals with high-consequence product 
design and processes. Although no organization can stand 
still in the presence of such developments, acceptance of 
AI’s application must be based on a solid foundation of 
safety-based research, standards, certification, regulation 
and understanding. 

AI represents a paradigm shift in capability and 
in ways of working for organizations. In turn, this also 
presents a paradigm shift for those organizations that 
have an independent responsibility for setting stan-
dards and executing regulation. Concern still resides in 
the sense that it may not be possible for some time to 
fully understand how neural networks actually reach 
their decisions and whether this precludes unfortunate 
surprises. This represents a major concern for organi-
zations where such errors in their product design and 
processes can lead to catastrophic results and as such 
there will be no rush to exclude humans from the deci-
sion loop.

Appendix 1: The ASILOMAR Principles
The following 23 principles, set under three broad 
headings, were advocated following the Beneficial AI 
2017 Conference and have been generally accepted 
by a large number of people who work with or have 
an opinion on Artificial Intelligence. They are mainly 
directed towards protecting against the potential nega-
tive concerns that may arise as AI continues to advance. 
They are far reaching both in terms of scope of cover-
age and look far into the future. Those that directly 
relate to safety are in bold text.

Research Issues
1. Research Goal: The goal of AI research should be 

to create not undirected intelligence but beneficial 
intelligence.

2. Research Funding: Investment in AI should be ac-
companied by funding for research on ensuring its 
beneficial use, including thorny questions in com-
puter science, economics, law, ethics and social stud-
ies such as:

 a. How can we make future AI systems highly ro-
bust so that they do what we want without mal-
functioning or getting hacked?

 b. How can we grow our prosperity through auto-
mation while maintaining people’s resources and 
purpose?

 c. How can we update our legal systems to be more 
fair and efficient, to keep pace with AI and to 
manage the risks associated with AI?

 d. What set of values should AI be aligned with, and 
what legal and ethical status should it have?

3. Science-Policy Link: There should be a constructive 
and healthy exchange between AI researchers and 
policy-makers.

4. Research Culture: A culture of cooperation, trust 
and transparency should be fostered among re-
searchers and developers of AI.
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5. Race Avoidance: Teams developing AI systems 
should actively cooperate to avoid corner-cutting 
on safety standards.

Ethics and Values
6. Safety: AI systems should be safe and secure 

throughout their operational lifetime, and verifiably 
so where applicable and feasible.

7. Failure Transparency: If an AI system causes harm, 
it should be possible to ascertain why.

8. Judicial Transparency: Any involvement by an au-
tonomous system in judicial decision-making should 
provide a satisfactory explanation auditable by com-
petent human authority.

9. Responsibility: Designers and builders of advanced 
AI systems are stakeholders in the moral implica-
tions of their use, misuse and actions with a respon-
sibility and opportunity to shape those implications.

10. Value Alignment: Highly autonomous AI systems 
should be designed so that their goals and behaviors 
can be assured to align with human values through-
out their operation.

11. Human Values: AI systems should be designed and 
operated so as to be compatible with ideals of hu-
man dignity, rights, freedoms and cultural diversity.

12. Personal Privacy: People should have the right to 
access, manage and control the data they gener-
ate, given AI systems’ power to analyze and utilize 
that data.

13. Liberty and Privacy: The application of AI to per-
sonal data must not unreasonably curtail people’s 
real or perceived liberty.

14. Share and Benefit: AI technologies should benefit 
and empower as many people as possible.

15. Shared Prosperity: The economic prosperity cre-
ated by AI should be shared broadly, to benefit all of 
humanity

16. Human Control: Humans should choose how and 
whether to delegate decisions to AI systems, to ac-
complish human-chosen objectives.

17. Non-Subversion: The power conferred by control 
of highly advanced AI systems should respect and 
improve, rather than subvert the social and civic 
processes on which the health of society depends.

18. AI Arms Race: An arms race in lethal autonomous 
weapons should be avoided. 

Longer Term
19. Capability Caution: There being no consensus, we 

should avoid strong assumptions regarding upper 
limits on future AI capability.

20. Importance: Advanced AI could represent a pro-
found change in the history of life on earth and 
should be planned for and managed with commen-
surate care and resources.

21. Risks: Risks posed by AI systems, especially cata-
strophic or existential risks [cause human extinc-
tion or permanently and drastically curtail human-
ity’s potential], must be subject to planning and 
mitigation effects commensurate with their expect-
ed impact.

22. Recursive Self-Improvement: AI systems designed 
to recursively self-improve or self-replicate in a 
manner that could lead to rapidly increasing qual-
ity or quantity must be subject to strict safety and 
control measures.

23. Common Good: Superintelligence should only be 
developed in the service of widely shared ethical 
ideals and for the benefit of all humanity rather 
than any state or organization.
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