
A modern large-scale safety-critical system re-
lies on multiple controllers to control devices
and collaborate with each other to deliver

expected functions. Some of these controllers take
safety responsibilities to ensure safe system
operation in the given environment. For
example, a Communications-based Train
Control (CBTC) system uses hundreds
of computers to automate metro rail
transportation and ensure it is oper-
ating safety. The safety-critical con-
trollers are in two main classes:

• Wayside controllers for control-
ling railway trackside devices, pro-
viding movement authority for a
train and enforcing signaling interlock-
ing functions.

• Onboard controllers for enforcing train move-
ment authority and safe speed limits, as well as
correct train door operations.

If any of these controllers fails on delivering
a safety-critical function, a possible hazard can be
raised, leading to an accident with unacceptable con-
sequences. Thus, these controllers must be designed
not only to have correct reactions to hazardous condi-
tions raised from the operating environment (such as
railway switch failures), but also to be fail-safe in the
operating context against their own internal failures.

Designing and upgrading safety-critical con-
trollers is the unending endeavor of a safety-critical
system supplier because customers require the most
advanced electronics to be up to date on their proj-
ects or the components used in the designs of existing
controllers will approach end of life. A safety-critical
controller must be designed to meet the expected
vitality (i.e., fail-safe) regarding detecting and mitigat-
ing all possible failures in advanced electronics. This
safety objective raises challenges because electron-
ics technology is constantly advancing and the cor-
responding complexity is increasing at a much faster

Applying Safety Concepts
and Principles in Vital Controller Design

by Fenggang Shi
Toronto, Canada

pace than engineers’ knowledge. Traditional safety
engineering approaches are not efficient and effective
to provide guidance in designing a fail-safe control-
ler against controller internal failures at the early

development stage. Popular safety engineering
processes employ a top-down hazard analy-

sis, which takes a significant effort and a
large amount of time from the system-

level hazard analysis down to the low
level of controller internal hardware
failure effects for identifying hazard-
ous failure conditions of a controller.

Traditional Failure Modes and Effects
Analysis (FMEA) is performed after the

fact at the hardware design level. Thus,
safety engineers may not be able to provide

valuable input in time for designers to include
effective failure detection and mitigation mechanisms.
In reality, it is quite frequent to find new hazardous
failures after design or during later system operation,
which raises significant safety concerns leading to ma-
jor design modifications at high costs.

This paper proposes an approach to using a set
of safety concepts as guidance for both safety-critical
controller design and its safety integrity assessment,
based on mitigating the generic hazard that the con-
troller’s internal failures cause unexpected outputs.
The design objective is to use these safety concepts in
the most effective way to achieve the least complex
safety-critical controller that meets the expected high-
est safety integrity level. These safety concepts are cat-
egorized as intrinsic fail-safe, reactive fail-safe and com-
posite fail-safe [Refs. 1 and 2]. We have practiced an
effective combination of these concepts in our CBTC
projects. The composite fail-safe concept in checked
redundancy (a.k.a. check redundancy in some publica-
tions) techniques is used to design the architecture of
a controller and to enforce the workcycle-based lock-
step voting of safety-critical parameters for mitigating
failures in one channel in time. The reactive safety
concept in self testing and closed-loop monitoring
mechanisms are used in each of the checked redun-

 Journal of System Safety, Summer 2020 13

dant channels for revealing dormant failures that may
not show signal-level effects to the checked redun-
dancy voting. Finally, the intrinsic fail-safe concept is
used to design safe interfaces to other controllers and
controlled devices. Based on our experience, a combi-
nation of these safety concepts and their application
principles serves to achieve a high safety integrity level
of a controller through design.

Application of Safety Design Concepts
in Controller Designs
In our experience of designing vital controllers for
new CBTC systems or upgrading existing CBTC
products, traditional safety engineering approaches
are not effective to provide guidance for safety-critical
designs in time, and may result in unmitigated failures
in controllers at the design stage. In our original prac-
tice, designing a safety-critical controller was guided
by a systematic safety engineering program following
a top-down hazard analysis to identify safety require-
ments for the design. The system safety engineering
program enforced preliminary hazard analysis, system
hazard analysis, the subsystem hazard analysis and
the later hardware failure mode analysis to identify
hazardous failures in a controller, after which their
mitigations were specified as the safety requirements
for the controller design. In this traditional approach,
there are two typical problems:

• Hazards and their mitigations identified from
different subsystem analyses, even though they
are based on the same controller design, are nor-
mally quite different in appearance and may not
be consistent and complete for covering all pos-
sible internal random failures of a controller.

• FMEA of component-level failures of a control-
ler may not identify all hazardous failures due to
unmanageable complexity of the modern elec-
tronics of intelligent processors (having numer-
ous failure modes) and incorrect judgment of
some failure effects (based on the single failure
viewpoint).

Therefore, the new approach of using safety con-
cepts as the design guideline is introduced, which has
been practiced in multiple CBTC system projects and
shows more effectiveness than traditional safety engi-
neering approaches [Ref. 3]. The combination of these
safety concepts focuses on generic controller internal

hazards associated with hardware failures — which is
that any hardware failure mode leads to unintended
permissive outputs. This generic view of controller
internal hazardous failures leads us to identify safety
design concepts and their application principles as
sound guidelines for designers and safety engineers to
determine failure detection techniques to be designed
into safety-critical controllers.

The safety concepts used in the CBTC designs
are categorized as intrinsic fail-safe, reactive fail-safe
and composite fail-safe. By applying them in an effec-
tive combination, a controller can be designed with
mechanisms for detecting internal failures in time,
and then enforcing safe states as the corresponding
reactions to them [Ref. 4]. At an abstract level, these
fail-safe concepts are viewed as the design philoso-
phy. Each of them has application principles that are
incorporated into the design of a controller so that, in
the event of a failure, the controller detects the failure
in time and enters (or remains in) a safe state. These
fail-safe concepts are further clarified here:

• Composite fail-safety — With this concept, each
safety-related function is performed by at least
two items. Each of these items shall be indepen-
dent from all others to avoid common-cause fail-
ures. Non-restrictive (or permissive) activities are
allowed to progress only if the necessary number
of items agree. A hazardous fault in one item
shall be detected and negated in sufficient time
to avoid a co-incident fault in a second item.

• Reactive fail-safety — This technique allows a
safety-related function to be performed by a
single item, provided its safe operation is assured
by rapid detection and negation of any hazard-
ous fault (for example, by encoding, by multiple
computation and comparison or by continual
testing). Although only one item performs the
actual safety-related function, the checking/test-
ing/detection function shall be regarded as a sec-
ond item, which shall be independent to avoid
common-cause failures.

• Intrinsic fail-safety — This technique allows a
safety-related function to be performed by a sin-
gle item, provided all the credible failure modes
of the item are non-hazardous. Any failure mode
that is claimed to be non-credible shall be justi-
fied according to the intrinsic physical properties
of used components and the application environ-

14 Journal of System Safety, Summer 2020

ment. Intrinsic fail-safety may also be used for
certain functions within composite and reactive
fail-safe systems — for example, to ensure inde-
pendence between items or to enforce shutdown
if a hazardous fault is detected.

In the current CBTC designs, which have been
implemented in multiple projects, safety-critical con-
trollers using the determined set of safety concepts
have the following four categories from an architec-
tural viewpoint:

• Standalone Main Processor Unit (MPU) in 2oo2
(two out of two) without Periphery Processor
Unit (PPU), as shown in Figure 1

• MPU in 2oo2 with its PPU (Peripheral Processor
Unit, in 2oo2 voting), as shown in Figure 1

• Standalone MPU in 2oo3 (two out of three vot-
ing) without PPU, as shown in Figure 2

• MPU in 2oo3 (two out of three voting) with its
PPU, as shown in Figure 2

C

MPU

B

C
C

C

B A

C

C

PPU

Figure 1 — Controller in 2oo2 Checked Redundancy.

MPU

C

PPU

C C E 1

C C E 2

C C E 3

B

B

B
B

PPE 1

C
PPE 2

C
PPE 3

2o o 3

C

A

B

C

Figure 2 — Controller in 2oo3 Checked Redundancy.

 Journal of System Safety, Summer 2020 15

In each diagram as shown in Figures 1 and 2, the
safety concepts and the techniques for implementing
them are indicated specifically by:

• “A” indicating the intrinsic fail-safe interfaces by
using intrinsic fail-safe components;

• “B” indicating the composite fail-safe by using the
checked redundancy techniques;

• “C” indicating the reactive fail-safe by using self-
checking and self-testing techniques;

• Colored small red or gray rectangles indicating
a part of a vital communication telegram. Any
single computer in checked redundancy shall only
contribute a part of a telegram for sending to
other vital controllers (to prevent a single channel
sending a complete telegram to other controllers
without voting).

Each vital controller has its MPU designed by
following the composite fail-safe concept in either the
2oo2 or the 2oo3 checked redundancy architecture.
Also, a vital subsystem can have one or more PPUs,
and each PPU is incorporated into the checked redun-
dancy channels of MPU. Each checked redundancy
channel of MPU is named as a Computing Element
(CE), each performing the same safety-related func-
tion whereby each computing element must be in
agreement to allow permissive activity to continue.
Each PPU channel is named as a Peripheral Process-
ing Element (PPE), which allows the associated CE to
communicate with various external interfaces.

To ensure correctness in applying these safety
concepts and maximizing the safety integrity of con-
trollers with an effective combination of the concepts
in the identified techniques, the principles, assump-
tions and effectiveness factors of each safety concept
will be discussed in subsequent sections.

Principles of Composite Fail-Safety
in Checked Redundancy
The checked redundancy concept requires the use of
multiple (normally two or three) independent hard-
ware units executing control logic, performing identical
functions, and voting based on 2oo2 or 2oo3 logic to
vote on certain internal safety parameters, inputs and
outputs. Also, voting requires that these independent
computation and control channels must periodically
obtain agreement to assert any permissive output. If
the units do not agree, safety-critical functions and
outputs default to a known safe state.

Checked redundancy is an important tech-
nique to implement the composite fail-safe concept
for detecting failures in complex electronic circuits
and processors to support composite fail-safety. The
premise of the concept is that if the channels in the
checked redundancy configuration are independent,
failures will not occur on more than one channel
before being detected. This relies on the checking
period being short enough to detect a failure, or the
effects of a failure, before it results in an unsafe con-
dition. It is important to notice that checked redun-
dancy cannot detect common mode failures in the
channels. Also, checked redundancy has the potential
risk of latent failures between checking intervals.
Therefore, certain latent detection mechanisms (i.e.,
the reactive safety concept application) in each chan-
nel must be designed in. They are responsible for de-
tecting failures that do not make themselves evident
at the points of comparison.

Critical Assumption
A critical assumption associated with this concept is
independency of the parallel channels implementing
the checked redundancy. This means that the hard-
ware failures in each of the redundant units in the
parallel channels that produce the same erroneous
unsafe effect will not occur simultaneously between
voting time points, that is, within the interval between
correspondence checks.

Specifically, common mode failures in parallel
checked redundant channels are the most significant
factor that may defeat the safety properties assumed by
the composite fail-safe concept. It is useful to note that
using asymmetric channels in which diverse hardware
and software are implemented in different checked
redundant channels may not be the best way to achieve
the desired safety confidence. Such diversity techniques
largely increase the system complexity, which itself
most likely defeats the safety confidence and causes
a project to fail from either financial limitations or
schedule constraints. Therefore, common mode failures
should be prevented in a practical and cost-effective
way through a sound verification process.

Checked Redundancy Design Principles
The composite fail-safe concept may be implemented
in either symmetric channels or asymmetric chan-
nels (such as a computation channel and a monitoring
channel). The following principles are common check-
ing mechanisms:

16 Journal of System Safety, Summer 2020

1. The 2oo2 (2 out of 2) checked redundancy logic
is subject to vitality of the voter/checker. In par-
ticular, the design shall guarantee that:

 • The checking process is, in itself, fail safe;
 • The checking process is sufficiently frequent

that similar or identical errors or failures in
redundant units cannot occur between checks;

 • The checking process is sufficiently sensitive to
detect all significant errors in a single unit;

 • A failure to check as scheduled causes timely
action to occur, which maintains safety;

 • Redundant units are sufficiently independent
that occurrence of hazardous failure with com-
mon modes must be remote during the safety
check interval.

2. The 2oo3 (2 out of 3) checked-redundancy in
terms of majority voting ensures that each of the
three channels (including processors) is isolated
from the others and is independently capable of
either enforcing a safe reaction or being masked
out by other functioning channels. The design
shall guarantee that:

 • The checking process is, in itself, fail safe;
 • A failure in one of the three channels shall

be detected in time, resulting in the 2oo2
checked-redundant logic in the subsequent
operation;

 • The voting mechanism must be monitored and
periodically tested by the processors of the
three channels, and that a failure in the voting
mechanism shall lead the whole controller to
shut down;

 • A common mode failure in more than one
channel must have remote probability between
2oo3 voting checks.

3. Each checked redundancy channel must have a
mechanism to detect its internal integrity failure
by following the principles in the reactive fail-safe
concept.

4. The practical principle for mitigating common
mode failures is:

 • To enhance the techniques and mechanisms
to ensure independency and isolation between
checked redundant channels, so that there are
no physical internal influences between them
from the viewpoint of electrical and electronics
circuits;

 • To enforce an effective development process
for preventing hazardous (systematic) defects
in the hardware and software;

 • To enforce sufficient qualification of the design
and use reliable components against distur-
bance from the operating environment such
as temperature, moisture, and Electromagnetic
Compatibility (EMC)/Electromagnetic Inter-
ference (EMI) effects;

 • To prevent physical external influences from
the interfaces to the checked redundant chan-
nels resulting in a common mode failure.

Checked Redundancy Design Verification
The checked redundancy design must be analyzed to
verify the independency of one channel from the oth-
ers, and tested for the correctness of implementing
the associated principles. The qualification tests must
confirm that environmental conditions have been met
to prevent any environmental common factor from
raising a possible common mode failure in the checked
redundancy channels beyond the tolerable risk level.

The safety verification must justify the residual
risk in the checked redundancy design for satisfy-
ing the quantitative safety target in the context of
the checking/voting mechanisms and the application
environment. The MPU has two or three Comput-
ing Elements (CEs), which are organized in a 2oo2 or
2oo3 configuration, and the checked redundant prin-
ciples are applied by the combination of hardware and
software. If extended I/O capability is needed, one or
more PPUs are added. Each PPU channel PPE-x is only
specifically connected to the corresponding CE-x. The
residual hazard in the checked redundancy (i.e., either
2oo2 or 2oo3) is the condition that two channels en-
counter common mode failures, defeating the voting
(for generating correct voted results) and resulting in
either unexpected permissive outputs or incorrect pa-

Checked redundancy is an important
technique to implement the composite

fail-safe concept for detecting failures in
complex electronic circuits and processors

to support composite fail-safety. The
premise of the concept is that if the

channels in the checked redundancy
configuration are independent, failures will
not occur on more than one channel before

being detected.

“

“

 Journal of System Safety, Summer 2020 17

rameter values for subsequent computations. The residual hazard risk level can be estimated based on the worst
case by using the whole failure rate λ-c-i of any checked redundancy channel (c-i) and the total number of any
possible combinations of two channels that encounter failures during the lockstep voting interval.

λ-c-i = λ-ce-i + λ-ppu1-ppe-i, if only one PPU is used; or

λ-c-i = λ-ce-i + (λ-ppu1-ppe-i + λ-ppu2-ppe-i + …), if more than one PPU is used

Here,
 • λ-c-i is the total failure rate of one complete check redundant channel;
 • λ-ce-i is the whole failure rate of one CE;
 • λ-ppu1-ppe-i is the failure rate of one PPE in PPU1; λ-ppu2-ppe-i is the failure rate of one PPE in

PPU2…

Now, during the lockstep voting interval T, two channels have failures (defeating the voting) with the prob-
ability of (T × λ-c-i) × (T × λ-c-j), I ≠ j.

The residual hazard rate is ((T × λ-c-i) × (T × λ-c-j))/T, in a viewpoint of even distribution.
In checked redundancy architecture, λ-c-i = λ-c-j.

Thus, we can use the following generic formula for the residual hazard risk assessment to demonstrate
whether the controller meets its qualitative Safety Integrity Level (SIL) target:

HR2ooX = CX T × (λ-c-i)2, X = 2 for 2oo2 controller design, X = 3 for 2oo3 controller design.

The risk estimation in the method stated here is specifically about the failure detection vitality through
the checked redundancy lockstep voting. Further, the residual risk level on enforcing safe reactions to the fail-
ures detected through the voting is assessed by taking a count of the number of work cycles required for the
reaction to be in effect. This approach of assessing the controller’s residual risk is credible because it is based on
the worst case that any failure in a checked redundant channel is treated as a hazard contributor. With consid-
eration of certain I/O ports that can be in either high or low state for a long time, which can contribute to dor-
mant failures, the reactive fail-safe concept in the self-checking and self-testing techniques is further designed
in for each channel to test its I/O monitoring circuits. This is discussed in the following section.

Principles of Reactive Fail-Safety in Self-Checking and Self-Testing
The reactive fail-safe concept requires that critical components and failure detection circuits be checked and
tested to reveal possible dormant failures, which the checked redundancy voting may not be able to detect in
time and which could result in a condition of multiple cascade failures. Thus, the self-checking and self-testing
logic and mechanisms are designed into each checked redundancy channel to be performed at controller start-
up, the hardware rest and the online available time. Also, a scheduled self-testing (normally once per day) logic is
designed to fully test I/O channels and power monitoring circuits, as well as watchdog circuits.

Critical Assumption
A critical assumption associated with this concept is independency between the application functions and self-
testing/monitoring functions so that the testing mechanisms will not result in unintended permissive outputs.

Self-Checking and Self-Testing Design Principles
In general, the following principles are proposed for using the diversity and self-testing/monitoring safety concept:

1. The start-up testing in a safety-critical controller must fully test its integrity, including the main computa-
tion unit and the safety-related/critical input and output paths.

2

18 Journal of System Safety, Summer 2020

2. Periodic self-testing mechanisms must be de-
signed in for detecting the controller internal
safety-related/critical I/O paths, as well as all
monitoring circuits

3. Online self-testing CPU and Random Access
Memory (RAM)/ Read Only Memory (ROM)
health status, along with
safety-related/critical I/O
paths must be performed.
The period during which
the self checking is per-
formed must be short
enough that the unsafe ef-
fect of a detected failure can
be mitigated before a com-
bination with other failures
results in losing the capa-
bility to enforce safe state
whenever it should.

4. Online self checking of the
software image and data
integrity must be completed
within the predefined time
window.

5. Closed-loop self checking
must monitor a command
and its check-back must be designed in for de-
tecting failures in any output path in real time.

6. A watchdog as cycle self-checking monitor
feature must be designed in to detect software
execution locks or work-cycle overrun, and to
enforce the safe state due to violating real-time
constraints as determined for the system.

Self-Checking and
Self-Testing Design Verification
The self-checking and self-testing design in the CBTC
vital controllers is analyzed and tested for verification
that it satisfies the associated principles. Each CE in
the MPU and each PPE in the PPU of a safety-critical
controller performs CPU testing and memory checks
as online background tasks. A separate watchdog is
designed for each CPU to monitor software execu-
tion locks and the work-cycle time window. Each
output path for commanding controlled devices has
a check-back as the monitoring feedback to enable
closed-loop supervision to the voter. The scheduled
periodic tests fully test the input and output path, as
well as the monitoring circuits. The software image,
the database and the internal state parameters in each
checked redundant channel are protected by safety
code (i.e., data block with its cyclic redundancy

check code). The online self checking can detect in-
ternal data corruption, which triggers the CE and the
PPE to enforce a safe state.

Because it is possible that an input or output may
rarely change its state between “low” and “high” during
normal operation, the residual risk of each I/O path is

assessed based on the conserva-
tive condition that both an I/O
path — and its testing monitoring
circuits — encounter failures dur-
ing the periodic test interval. If
the total independence between
the command path and the moni-
toring circuits cannot be ensured,
any safety-critical input or output
in logic needs two physical paths
in the concept of dual-cuts or
double-cut circuits.

Principles of
Intrinsic Fail-Safety
The intrinsic fail-safe design
principles are embedded in the
PPU interfaces and the MPU vital
communication interfaces. The
PPU uses vital relays organized in

double-cut design, coupled with a status-back archi-
tecture, and is known to be self-revealing during failure
conditions. Upon a failure in the output path, the MPU
can detect and react by enforcing the output to a safe
state. The vital communications between safety-related
critical controllers through data communication links
or networks require protocols with logical fail-safe
properties of safety code to support the CBTC safety
features. Also, this concept is used for designing con-
troller watch-dog (vital supervision card) circuits for
both MPU and PPU to react to processor halts or dead-
lock conditions.

Critical Assumption
A critical assumption associated with this concept is that
multiple, independent self-revealing component failures
will not occur simultaneously (within the time it takes
for the first failure to occur and safe action to be taken).

Intrinsic Fail-Safety Design Principles
Fail-safe hardware must achieve accurate identifica-
tion and prediction of all failure modes and character-
istics within the application context. The occurrence
of failure modes that could have unsafe consequences
is eliminated, prevented or otherwise accounted for
by design with qualitative safety mitigation in the ap-

The Failure Mode Effects
Analysis (FMEA) and Failure
Mode, Effects and Criticality
Analysis (FMECA) must be

performed on the usage of the
expected fail-safe components

in the application context in
conjunction with an analysis of
the systematic safety designs.
The safety analysis must verify
that components selected for

fail-safe characteristics conform
to those in current, well-known

standards.

“

“

 Journal of System Safety, Summer 2020 19

References

1. CENELEC BS EN 50129. “Railway Applications — Communication, signalling, and processing systems —
Safety Related Electronic Systems for Signalling,” European Committee for Electrotechnical Standardization
(CENELEC), 2018.

2. IEEE Std 1483-2000. “IEEE Standard for Verification of Vital Functions in Processor-Based Systems Used in Rail
Transit Control,” IEEE Standards Association, 2000.

3. Shi, F. “Defining Layered Safety Concepts based on Open System Architectures as Foundation for Multi-Suppli-
ers to Develop Interoperable Safety Critical Systems,” Proceedings of International System Safety Conference, 2014.

4. Shi, F. “Using Layered Safety Objectives and Concepts to Guide Large Scale System Designs for Achieving Built-
in Safety Properties in Hierarchy,” Proceedings of International System Safety Conference, 2015.

plication context. The safety analysis must justify the
intrinsic fail-safety design against the dependent factors
associated with the components used in the design.

Intrinsic Fail-Safety Design Verification
The intrinsic fail-safety concept depends on the intrin-
sic properties of the used components. This means that
intrinsic fail-safety properties are the characteristic of
a component, circuit or device within specifi c applica-
tion context, such that no failure modes could cause
an unsafe condition. The degree of safety achieved is
dependent on:

• The correctness of selected component failure
characteristics

• The comprehensive and accurate identification of
all component failure modes

• The extent to which all combinations of failure
modes can be analyzed

The Failure Mode Effects Analysis (FMEA) and
Failure Mode, Effects and Criticality Analysis (FME-
CA) must be performed on the usage of the expected
fail-safe components in the application context in con-
junction with an analysis of the systematic safety de-
signs. The safety analysis must verify that components
selected for fail-safe characteristics conform to those in
current, well-known standards.

Conclusion
Designing and demonstrating a safety-critical control-
ler that meets expected safety properties has high cost
and schedule risks under a traditional safety engineer-
ing approach to getting consistent and complete safety

design requirements in time, based on top-down haz-
ard analyses. To reduce such risks, using a set of safety
concepts and their application principles as the design
guideline is practical and feasible to let design and
safety engineers focus on mitigating controller internal
failures that result in an unexpected permissive output
as a generic hazard.

This paper discussed this approach and com-
posite fail-safe, reactive fail-safe and intrinsic fail-
safe concepts, as well as their application principles.
Based on our experience with developing controllers
for CBTC systems, an effective combination of these
safety concepts and their principles can lead to defin-
ing safety requirements for achieving the vitality of a
safety-critical controller. The controller design in this
approach is based on lockstep voting in checked re-
dundancy architecture, self-checking and self-testing
in each process channel to detect the first internal
failure and react to it in time, which can prevent con-
troller internal failures from contributing to system
application-level hazards. Further, this approach can
simplify the estimation of the controller residual risk
level, and facilitate assessment of the controller safety
integrity level.

About the Author
Fenggang Shi, Ph.D., is senior expert and chief safety
architect at Thales Canada Transportation Solutions
in Toronto, Canada. He has 25 years of experience
in the fi eld of CBTC system safety engineering. Shi
has been the technical leader and supervisor of safety
teams on more than 40 CBTC systems and products
for future signaling.

Have an Opinion? Share It with Us!
Sound off on issues regarding your profession, industry, standards and

regulations or other system safety topics. Send your 700- to 1,000-word
articles to Chuck Muniak, Technical Editor, at journal@system-safety.org.

20 Journal of System Safety, Summer 2020

