
A modern large-scale safety-critical system re-
lies on multiple controllers to control devices 
and collaborate with each other to deliver 

expected functions. Some of these controllers take 
safety responsibilities to ensure safe system 
operation in the given environment. For 
example, a Communications-based Train 
Control (CBTC) system uses hundreds 
of computers to automate metro rail 
transportation and ensure it is oper-
ating safety. The safety-critical con-
trollers are in two main classes: 

• Wayside controllers for control-
ling railway trackside devices, pro-
viding movement authority for a 
train and enforcing signaling interlock-
ing functions. 

• Onboard controllers for enforcing train move-
ment authority and safe speed limits, as well as 
correct train door operations. 

If any of these controllers fails on delivering 
a safety-critical function, a possible hazard can be 
raised, leading to an accident with unacceptable con-
sequences. Thus, these controllers must be designed 
not only to have correct reactions to hazardous condi-
tions raised from the operating environment (such as 
railway switch failures), but also to be fail-safe in the 
operating context against their own internal failures. 

Designing and upgrading safety-critical con-
trollers is the unending endeavor of a safety-critical 
system supplier because customers require the most 
advanced electronics to be up to date on their proj-
ects or the components used in the designs of existing 
controllers will approach end of life. A safety-critical 
controller must be designed to meet the expected 
vitality (i.e., fail-safe) regarding detecting and mitigat-
ing all possible failures in advanced electronics. This 
safety objective raises challenges because electron-
ics technology is constantly advancing and the cor-
responding complexity is increasing at a much faster 
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pace than engineers’ knowledge. Traditional safety 
engineering approaches are not efficient and effective 
to provide guidance in designing a fail-safe control-
ler against controller internal failures at the early 

development stage. Popular safety engineering 
processes employ a top-down hazard analy-

sis, which takes a significant effort and a 
large amount of time from the system-

level hazard analysis down to the low 
level of controller internal hardware 
failure effects for identifying hazard-
ous failure conditions of a controller. 

Traditional Failure Modes and Effects 
Analysis (FMEA) is performed after the 

fact at the hardware design level. Thus, 
safety engineers may not be able to provide 

valuable input in time for designers to include 
effective failure detection and mitigation mechanisms. 
In reality, it is quite frequent to find new hazardous 
failures after design or during later system operation, 
which raises significant safety concerns leading to ma-
jor design modifications at high costs. 

This paper proposes an approach to using a set 
of safety concepts as guidance for both safety-critical 
controller design and its safety integrity assessment, 
based on mitigating the generic hazard that the con-
troller’s internal failures cause unexpected outputs. 
The design objective is to use these safety concepts in 
the most effective way to achieve the least complex 
safety-critical controller that meets the expected high-
est safety integrity level. These safety concepts are cat-
egorized as intrinsic fail-safe, reactive fail-safe and com-
posite fail-safe [Refs. 1 and 2]. We have practiced an 
effective combination of these concepts in our CBTC 
projects. The composite fail-safe concept in checked 
redundancy (a.k.a. check redundancy in some publica-
tions) techniques is used to design the architecture of 
a controller and to enforce the workcycle-based lock-
step voting of safety-critical parameters for mitigating 
failures in one channel in time. The reactive safety 
concept in self testing and closed-loop monitoring 
mechanisms are used in each of the checked redun-
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dant channels for revealing dormant failures that may 
not show signal-level effects to the checked redun-
dancy voting. Finally, the intrinsic fail-safe concept is 
used to design safe interfaces to other controllers and 
controlled devices. Based on our experience, a combi-
nation of these safety concepts and their application 
principles serves to achieve a high safety integrity level 
of a controller through design.

Application of Safety Design Concepts 
in Controller Designs
In our experience of designing vital controllers for 
new CBTC systems or upgrading existing CBTC 
products, traditional safety engineering approaches 
are not effective to provide guidance for safety-critical 
designs in time, and may result in unmitigated failures 
in controllers at the design stage. In our original prac-
tice, designing a safety-critical controller was guided 
by a systematic safety engineering program following 
a top-down hazard analysis to identify safety require-
ments for the design. The system safety engineering 
program enforced preliminary hazard analysis, system 
hazard analysis, the subsystem hazard analysis and 
the later hardware failure mode analysis to identify 
hazardous failures in a controller, after which their 
mitigations were specified as the safety requirements 
for the controller design. In this traditional approach, 
there are two typical problems:

• Hazards and their mitigations identified from 
different subsystem analyses, even though they 
are based on the same controller design, are nor-
mally quite different in appearance and may not 
be consistent and complete for covering all pos-
sible internal random failures of a controller. 

• FMEA of component-level failures of a control-
ler may not identify all hazardous failures due to 
unmanageable complexity of the modern elec-
tronics of intelligent processors (having numer-
ous failure modes) and incorrect judgment of 
some failure effects (based on the single failure 
viewpoint). 

Therefore, the new approach of using safety con-
cepts as the design guideline is introduced, which has 
been practiced in multiple CBTC system projects and 
shows more effectiveness than traditional safety engi-
neering approaches [Ref. 3]. The combination of these 
safety concepts focuses on generic controller internal 

hazards associated with hardware failures — which is 
that any hardware failure mode leads to unintended 
permissive outputs. This generic view of controller 
internal hazardous failures leads us to identify safety 
design concepts and their application principles as 
sound guidelines for designers and safety engineers to 
determine failure detection techniques to be designed 
into safety-critical controllers. 

The safety concepts used in the CBTC designs 
are categorized as intrinsic fail-safe, reactive fail-safe 
and composite fail-safe. By applying them in an effec-
tive combination, a controller can be designed with 
mechanisms for detecting internal failures in time, 
and then enforcing safe states as the corresponding 
reactions to them [Ref. 4]. At an abstract level, these 
fail-safe concepts are viewed as the design philoso-
phy. Each of them has application principles that are 
incorporated into the design of a controller so that, in 
the event of a failure, the controller detects the failure 
in time and enters (or remains in) a safe state. These 
fail-safe concepts are further clarified here: 

• Composite fail-safety — With this concept, each 
safety-related function is performed by at least 
two items. Each of these items shall be indepen-
dent from all others to avoid common-cause fail-
ures. Non-restrictive (or permissive) activities are 
allowed to progress only if the necessary number 
of items agree. A hazardous fault in one item 
shall be detected and negated in sufficient time 
to avoid a co-incident fault in a second item. 

• Reactive fail-safety — This technique allows a 
safety-related function to be performed by a 
single item, provided its safe operation is assured 
by rapid detection and negation of any hazard-
ous fault (for example, by encoding, by multiple 
computation and comparison or by continual 
testing). Although only one item performs the 
actual safety-related function, the checking/test-
ing/detection function shall be regarded as a sec-
ond item, which shall be independent to avoid 
common-cause failures. 

• Intrinsic fail-safety — This technique allows a 
safety-related function to be performed by a sin-
gle item, provided all the credible failure modes 
of the item are non-hazardous. Any failure mode 
that is claimed to be non-credible shall be justi-
fied according to the intrinsic physical properties 
of used components and the application environ-
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ment. Intrinsic fail-safety may also be used for 
certain functions within composite and reactive 
fail-safe systems — for example, to ensure inde-
pendence between items or to enforce shutdown 
if a hazardous fault is detected.

In the current CBTC designs, which have been 
implemented in multiple projects, safety-critical con-
trollers using the determined set of safety concepts 
have the following four categories from an architec-
tural viewpoint:

• Standalone Main Processor Unit (MPU) in 2oo2 
(two out of two) without Periphery Processor 
Unit (PPU), as shown in Figure 1

• MPU in 2oo2 with its PPU (Peripheral Processor 
Unit, in 2oo2 voting), as shown in Figure 1

• Standalone MPU in 2oo3 (two out of three vot-
ing) without PPU, as shown in Figure 2 

• MPU in 2oo3 (two out of three voting) with its 
PPU, as shown in Figure 2 
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In each diagram as shown in Figures 1 and 2, the 
safety concepts and the techniques for implementing 
them are indicated specifically by: 

• “A” indicating the intrinsic fail-safe interfaces by 
using intrinsic fail-safe components;

• “B” indicating the composite fail-safe by using the 
checked redundancy techniques;

• “C” indicating the reactive fail-safe by using self-
checking and self-testing techniques; 

• Colored small red or gray rectangles indicating 
a part of a vital communication telegram. Any 
single computer in checked redundancy shall only 
contribute a part of a telegram for sending to 
other vital controllers (to prevent a single channel 
sending a complete telegram to other controllers 
without voting). 

Each vital controller has its MPU designed by 
following the composite fail-safe concept in either the 
2oo2 or the 2oo3 checked redundancy architecture. 
Also, a vital subsystem can have one or more PPUs, 
and each PPU is incorporated into the checked redun-
dancy channels of MPU. Each checked redundancy 
channel of MPU is named as a Computing Element 
(CE), each performing the same safety-related func-
tion whereby each computing element must be in 
agreement to allow permissive activity to continue. 
Each PPU channel is named as a Peripheral Process-
ing Element (PPE), which allows the associated CE to 
communicate with various external interfaces. 

To ensure correctness in applying these safety 
concepts and maximizing the safety integrity of con-
trollers with an effective combination of the concepts 
in the identified techniques, the principles, assump-
tions and effectiveness factors of each safety concept 
will be discussed in subsequent sections. 

 
Principles of Composite Fail-Safety  
in Checked Redundancy
The checked redundancy concept requires the use of 
multiple (normally two or three) independent hard-
ware units executing control logic, performing identical 
functions, and voting based on 2oo2 or 2oo3 logic to 
vote on certain internal safety parameters, inputs and 
outputs. Also, voting requires that these independent 
computation and control channels must periodically 
obtain agreement to assert any permissive output. If 
the units do not agree, safety-critical functions and 
outputs default to a known safe state.

Checked redundancy is an important tech-
nique to implement the composite fail-safe concept 
for detecting failures in complex electronic circuits 
and processors to support composite fail-safety. The 
premise of the concept is that if the channels in the 
checked redundancy configuration are independent, 
failures will not occur on more than one channel 
before being detected. This relies on the checking 
period being short enough to detect a failure, or the 
effects of a failure, before it results in an unsafe con-
dition. It is important to notice that checked redun-
dancy cannot detect common mode failures in the 
channels. Also, checked redundancy has the potential 
risk of latent failures between checking intervals. 
Therefore, certain latent detection mechanisms (i.e., 
the reactive safety concept application) in each chan-
nel must be designed in. They are responsible for de-
tecting failures that do not make themselves evident 
at the points of comparison.

Critical Assumption
A critical assumption associated with this concept is 
independency of the parallel channels implementing 
the checked redundancy. This means that the hard-
ware failures in each of the redundant units in the 
parallel channels that produce the same erroneous 
unsafe effect will not occur simultaneously between 
voting time points, that is, within the interval between 
correspondence checks.

Specifically, common mode failures in parallel 
checked redundant channels are the most significant 
factor that may defeat the safety properties assumed by 
the composite fail-safe concept. It is useful to note that 
using asymmetric channels in which diverse hardware 
and software are implemented in different checked 
redundant channels may not be the best way to achieve 
the desired safety confidence. Such diversity techniques 
largely increase the system complexity, which itself 
most likely defeats the safety confidence and causes 
a project to fail from either financial limitations or 
schedule constraints. Therefore, common mode failures 
should be prevented in a practical and cost-effective 
way through a sound verification process. 

Checked Redundancy Design Principles
The composite fail-safe concept may be implemented 
in either symmetric channels or asymmetric chan-
nels (such as a computation channel and a monitoring 
channel). The following principles are common check-
ing mechanisms:
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1. The 2oo2 (2 out of 2) checked redundancy logic 
is subject to vitality of the voter/checker. In par-
ticular, the design shall guarantee that:

 • The checking process is, in itself, fail safe;
 • The checking process is sufficiently frequent 

that similar or identical errors or failures in 
redundant units cannot occur between checks;

 • The checking process is sufficiently sensitive to 
detect all significant errors in a single unit;

 • A failure to check as scheduled causes timely 
action to occur, which maintains safety; 

 • Redundant units are sufficiently independent 
that occurrence of hazardous failure with com-
mon modes must be remote during the safety 
check interval.

2. The 2oo3 (2 out of 3) checked-redundancy in 
terms of majority voting ensures that each of the 
three channels (including processors) is isolated 
from the others and is independently capable of 
either enforcing a safe reaction or being masked 
out by other functioning channels. The design 
shall guarantee that:

 • The checking process is, in itself, fail safe;
 • A failure in one of the three channels shall 

be detected in time, resulting in the 2oo2 
checked-redundant logic in the subsequent 
operation;

 • The voting mechanism must be monitored and 
periodically tested by the processors of the 
three channels, and that a failure in the voting 
mechanism shall lead the whole controller to 
shut down;

 • A common mode failure in more than one 
channel must have remote probability between 
2oo3 voting checks. 

3. Each checked redundancy channel must have a 
mechanism to detect its internal integrity failure 
by following the principles in the reactive fail-safe 
concept. 

4. The practical principle for mitigating common 
mode failures is:

 • To enhance the techniques and mechanisms 
to ensure independency and isolation between 
checked redundant channels, so that there are 
no physical internal influences between them 
from the viewpoint of electrical and electronics 
circuits;

 • To enforce an effective development process 
for preventing hazardous (systematic) defects 
in the hardware and software;

 • To enforce sufficient qualification of the design 
and use reliable components against distur-
bance from the operating environment such 
as temperature, moisture, and Electromagnetic 
Compatibility (EMC)/Electromagnetic Inter-
ference (EMI) effects;

 • To prevent physical external influences from 
the interfaces to the checked redundant chan-
nels resulting in a common mode failure.

Checked Redundancy Design Verification
The checked redundancy design must be analyzed to 
verify the independency of one channel from the oth-
ers, and tested for the correctness of implementing 
the associated principles. The qualification tests must 
confirm that environmental conditions have been met 
to prevent any environmental common factor from 
raising a possible common mode failure in the checked 
redundancy channels beyond the tolerable risk level. 

The safety verification must justify the residual 
risk in the checked redundancy design for satisfy-
ing the quantitative safety target in the context of 
the checking/voting mechanisms and the application 
environment. The MPU has two or three Comput-
ing Elements (CEs), which are organized in a 2oo2 or 
2oo3 configuration, and the checked redundant prin-
ciples are applied by the combination of hardware and 
software. If extended I/O capability is needed, one or 
more PPUs are added. Each PPU channel PPE-x is only 
specifically connected to the corresponding CE-x. The 
residual hazard in the checked redundancy (i.e., either 
2oo2 or 2oo3) is the condition that two channels en-
counter common mode failures, defeating the voting 
(for generating correct voted results) and resulting in 
either unexpected permissive outputs or incorrect pa-

Checked redundancy is an important 
technique to implement the composite 

fail-safe concept for detecting failures in 
complex electronic circuits and processors 

to support composite fail-safety. The 
premise of the concept is that if the 

channels in the checked redundancy 
configuration are independent, failures will 
not occur on more than one channel before 

being detected.

“

“
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rameter values for subsequent computations. The residual hazard risk level can be estimated based on the worst 
case by using the whole failure rate λ-c-i of any checked redundancy channel (c-i) and the total number of any 
possible combinations of two channels that encounter failures during the lockstep voting interval. 

λ-c-i = λ-ce-i + λ-ppu1-ppe-i, if only one PPU is used; or

λ-c-i = λ-ce-i + (λ-ppu1-ppe-i + λ-ppu2-ppe-i + …), if more than one PPU is used 

Here, 
 • λ-c-i is the total failure rate of one complete check redundant channel;
 • λ-ce-i is the whole failure rate of one CE;
 • λ-ppu1-ppe-i is the failure rate of one PPE in PPU1; λ-ppu2-ppe-i is the failure rate of one PPE in 

PPU2…

Now, during the lockstep voting interval T, two channels have failures (defeating the voting) with the prob-
ability of (T × λ-c-i) × (T × λ-c-j), I ≠ j. 

The residual hazard rate is ((T × λ-c-i) × (T × λ-c-j))/T, in a viewpoint of even distribution.
In checked redundancy architecture, λ-c-i = λ-c-j.

Thus, we can use the following generic formula for the residual hazard risk assessment to demonstrate 
whether the controller meets its qualitative Safety Integrity Level (SIL) target:

 
HR2ooX = CX T × (λ-c-i)2, X = 2 for 2oo2 controller design, X = 3 for 2oo3 controller design.

The risk estimation in the method stated here is specifically about the failure detection vitality through 
the checked redundancy lockstep voting. Further, the residual risk level on enforcing safe reactions to the fail-
ures detected through the voting is assessed by taking a count of the number of work cycles required for the 
reaction to be in effect. This approach of assessing the controller’s residual risk is credible because it is based on 
the worst case that any failure in a checked redundant channel is treated as a hazard contributor. With consid-
eration of certain I/O ports that can be in either high or low state for a long time, which can contribute to dor-
mant failures, the reactive fail-safe concept in the self-checking and self-testing techniques is further designed 
in for each channel to test its I/O monitoring circuits. This is discussed in the following section. 

Principles of Reactive Fail-Safety in Self-Checking and Self-Testing
The reactive fail-safe concept requires that critical components and failure detection circuits be checked and 
tested to reveal possible dormant failures, which the checked redundancy voting may not be able to detect in 
time and which could result in a condition of multiple cascade failures. Thus, the self-checking and self-testing 
logic and mechanisms are designed into each checked redundancy channel to be performed at controller start-
up, the hardware rest and the online available time. Also, a scheduled self-testing (normally once per day) logic is 
designed to fully test I/O channels and power monitoring circuits, as well as watchdog circuits.

 
Critical Assumption 
A critical assumption associated with this concept is independency between the application functions and self-
testing/monitoring functions so that the testing mechanisms will not result in unintended permissive outputs.

Self-Checking and Self-Testing Design Principles
In general, the following principles are proposed for using the diversity and self-testing/monitoring safety concept:

1. The start-up testing in a safety-critical controller must fully test its integrity, including the main computa-
tion unit and the safety-related/critical input and output paths. 

2
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2. Periodic self-testing mechanisms must be de-
signed in for detecting the controller internal 
safety-related/critical I/O paths, as well as all 
monitoring circuits 

3. Online self-testing CPU and Random Access 
Memory (RAM)/ Read Only Memory (ROM) 
health status, along with 
safety-related/critical I/O 
paths must be performed. 
The period during which 
the self checking is per-
formed must be short 
enough that the unsafe ef-
fect of a detected failure can 
be mitigated before a com-
bination with other failures 
results in losing the capa-
bility to enforce safe state 
whenever it should.

4. Online self checking of the 
software image and data 
integrity must be completed 
within the predefined time 
window. 

5. Closed-loop self checking 
must monitor a command 
and its check-back must be designed in for de-
tecting failures in any output path in real time.

6. A watchdog as cycle self-checking monitor 
feature must be designed in to detect software 
execution locks or work-cycle overrun, and to 
enforce the safe state due to violating real-time 
constraints as determined for the system.

Self-Checking and 
Self-Testing Design Verification
The self-checking and self-testing design in the CBTC 
vital controllers is analyzed and tested for verification 
that it satisfies the associated principles. Each CE in 
the MPU and each PPE in the PPU of a safety-critical 
controller performs CPU testing and memory checks 
as online background tasks. A separate watchdog is 
designed for each CPU to monitor software execu-
tion locks and the work-cycle time window. Each 
output path for commanding controlled devices has 
a check-back as the monitoring feedback to enable 
closed-loop supervision to the voter. The scheduled 
periodic tests fully test the input and output path, as 
well as the monitoring circuits. The software image, 
the database and the internal state parameters in each 
checked redundant channel are protected by safety 
code (i.e., data block with its cyclic redundancy 

check code). The online self checking can detect in-
ternal data corruption, which triggers the CE and the 
PPE to enforce a safe state. 

Because it is possible that an input or output may 
rarely change its state between “low” and “high” during 
normal operation, the residual risk of each I/O path is 

assessed based on the conserva-
tive condition that both an I/O 
path — and its testing monitoring 
circuits — encounter failures dur-
ing the periodic test interval. If 
the total independence between 
the command path and the moni-
toring circuits cannot be ensured, 
any safety-critical input or output 
in logic needs two physical paths 
in the concept of dual-cuts or 
double-cut circuits. 

Principles of 
Intrinsic Fail-Safety
The intrinsic fail-safe design 
principles are embedded in the 
PPU interfaces and the MPU vital 
communication interfaces. The 
PPU uses vital relays organized in 

double-cut design, coupled with a status-back archi-
tecture, and is known to be self-revealing during failure 
conditions. Upon a failure in the output path, the MPU 
can detect and react by enforcing the output to a safe 
state. The vital communications between safety-related 
critical controllers through data communication links 
or networks require protocols with logical fail-safe 
properties of safety code to support the CBTC safety 
features. Also, this concept is used for designing con-
troller watch-dog (vital supervision card) circuits for 
both MPU and PPU to react to processor halts or dead-
lock conditions. 

Critical Assumption
A critical assumption associated with this concept is that 
multiple, independent self-revealing component failures 
will not occur simultaneously (within the time it takes 
for the first failure to occur and safe action to be taken).

Intrinsic Fail-Safety Design Principles
Fail-safe hardware must achieve accurate identifica-
tion and prediction of all failure modes and character-
istics within the application context. The occurrence 
of failure modes that could have unsafe consequences 
is eliminated, prevented or otherwise accounted for 
by design with qualitative safety mitigation in the ap-

The Failure Mode Effects 
Analysis (FMEA) and Failure 
Mode, Effects and Criticality 
Analysis (FMECA) must be 

performed on the usage of the 
expected fail-safe components 

in the application context in 
conjunction with an analysis of 
the systematic safety designs. 
The safety analysis must verify 
that components selected for 

fail-safe characteristics conform 
to those in current, well-known 

standards. 

“
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plication context. The safety analysis must justify the 
intrinsic fail-safety design against the dependent factors 
associated with the components used in the design.

Intrinsic Fail-Safety Design Verification
The intrinsic fail-safety concept depends on the intrin-
sic properties of the used components. This means that 
intrinsic fail-safety properties are the characteristic of 
a component, circuit or device within specifi c applica-
tion context, such that no failure modes could cause 
an unsafe condition. The degree of safety achieved is 
dependent on:

• The correctness of selected component failure 
characteristics

• The comprehensive and accurate identification of 
all component failure modes

• The extent to which all combinations of failure 
modes can be analyzed

The Failure Mode Effects Analysis (FMEA) and 
Failure Mode, Effects and Criticality Analysis (FME-
CA) must be performed on the usage of the expected 
fail-safe components in the application context in con-
junction with an analysis of the systematic safety de-
signs. The safety analysis must verify that components 
selected for fail-safe characteristics conform to those in 
current, well-known standards. 

Conclusion
Designing and demonstrating a safety-critical control-
ler that meets expected safety properties has high cost 
and schedule risks under a traditional safety engineer-
ing approach to getting consistent and complete safety 

design requirements in time, based on top-down haz-
ard analyses. To reduce such risks, using a set of safety 
concepts and their application principles as the design 
guideline is practical and feasible to let design and 
safety engineers focus on mitigating controller internal 
failures that result in an unexpected permissive output 
as a generic hazard. 

This paper discussed this approach and com-
posite fail-safe, reactive fail-safe and intrinsic fail-
safe concepts, as well as their application principles. 
Based on our experience with developing controllers 
for CBTC systems, an effective combination of these 
safety concepts and their principles can lead to defin-
ing safety requirements for achieving the vitality of a 
safety-critical controller. The controller design in this 
approach is based on lockstep voting in checked re-
dundancy architecture, self-checking and self-testing 
in each process channel to detect the first internal 
failure and react to it in time, which can prevent con-
troller internal failures from contributing to system 
application-level hazards. Further, this approach can 
simplify the estimation of the controller residual risk 
level, and facilitate assessment of the controller safety 
integrity level. 
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