
Lessons Learned in a Complex Software Safety Program
by Nathaniel Ozarin

Hauppauge, New York

Development of a system software safety pro-
gram was required as part of an effort to se-
cure government safety certification of a com-

plex and intrinsically hazardous software-controlled
system under development by several contributing
companies. The author was part of a team of software
safety support engineers reporting to one of the con-
tributing companies. This paper summarizes some of
the highlights of the lessons learned during develop-
ment of this program.

The initial challenge was to develop a practical and
understandable Software System Safety Plan (SSSP)
and the associated supporting documents that, together,
addressed concerns from the program’s governing guid-
ance standards and handbooks, and provided a map to
eventual certification of the subject system. In this de-
velopment, the principal guideline document was MIL-
STD-882E [Ref. 1] and two of its cited software-specific
guidelines: Joint Software Systems Safety Engineering Hand-
book (JSSSEH) [Ref. 2] and Guidance on Software Safety
Design and Assessment of Munitions Related Computing
Systems (AOP-52) [Ref. 3] — a total of 653 pages in all,
and far too much raw material for developers to follow
during design processes. What was needed was a set of
step-by-step procedures tailored to address the specific
project’s safety-significant issues, capturing the guidance
rules for developers and software safety reviewers in their
tasks. Development of such procedures is an ongoing
evolutionary task for several reasons, including:

• No one can think of every safety issue in advance;
• Inevitable disputes arise about the applicability of

many guidance statements;
• Changes to safety assessment details occur as the

design evolves;
• Certification authority expectations are unpredict-

able;
• Customers often take issue with many conclusions

of the safety assessment details.

Developing and applying these procedures and les-
sons learned also applies to the design of many devices in
other fields, such as medical, automotive and household
consumer devices.

The Software System Safety Plan (SSSP)
The basic document for setting up and running a soft-
ware safety program is MIL-STD-882, now in Revision

E. The SSSP is the highest-level plan for developing
software with operational hazards at acceptable levels
of risk. In the subject development, no plan guidance
was provided and the plan was assembled in contractor
format. Along with the usual front matter and intro-
ductory material, the plan included a brief description
of the software to be developed, a high-level schedule
summary, a list of deliverable documents associated
with the safety program and a summary of other tasks
(reviews, assessments, resolution of hazards, etc.) that
were described as team responsibilities. The plan in-
cluded a list of definitions of terms used within, taken
from MIL-STD-882’s list if applicable to the program,
but modified for program requirements. Next, an orga-
nizational chart and descriptions explained the assign-
ment of ongoing project responsibilities based on title
(e.g., the general responsibilities of the program man-
ager, lead safety engineer and quality control engineer),
but this information had little practical value to the de-
velopment team — other than perhaps being useful as
a one-time introduction of what the program expected
you to do — because specific assignments were based
on the master schedule and availability of personnel at
any one time. The SSSP then cited the master schedule,
maintained as a separate project document, followed
by a lengthy section that described the software safety
process as set forth in MIL-STD-882, but with focus on
the primary safety issues of the specific system.

The next SSSP section described hazard analysis
processes to be performed, including many tasks that
were never performed (e.g., reliance on lessons learned,
dissemination of historical lessons learned to various en-
gineering disciplines and possibly others). This section
described processes for functional hazard analysis – prob-
ably the most important part of the safety analysis pro-
cess, followed by descriptions of requirements analysis,
architectural design, detail designs, implementation and
testing. Subsequent sections addressed deliverables, ap-
proach to certification by safety authorities, and testing.

While safety analysis for hardware systems and soft-
ware systems follows the same basic procedures for each
life cycle phase, the biggest difference is probably the
recognition that failure rates cannot be realistically as-
signed to software failures. Whereas some sources suggest
assigning hardware-based failure rates based on human
experience and expectations — e.g., ARP5580 Table 8
[Ref. 4] provides examples of failure likelihood ranging
from “very high” to “remote,” and assigns corresponding

28 Journal of System Safety, Summer 2020

failure rates to these descriptions (MIL-STD-882 Table II
uses “frequent” to “improbable” or “eliminated,” but does
not provide corresponding numerical figures). MIL-STD-
882’s approach is to use a software module’s autonomy
as the basis for predicting risk — software that can fire a
missile without human intervention (“autonomous”) has
the most potential risk, while software that cannot do
anything potentially hazardous on its own (“no safety im-
pact”) has the least risk. MIL-STD-882 provides a table
with five such levels of autonomy.

To avoid confusion, MIL-STD-882 defines three
safety adjectives applied to hardware and software, with
practical meanings used in this paper as follows:

• Safety-critical means associated with hazards that
can cause serious harm to people, things, or the
environment.

• Safety-related means associated with minor hazards
of minimal consequence.

• Safety-significant means either of the two previous
terms.

When developing an SSSP, contractors usually put
together government-required plans in accordance with
Statement of Work (SOW) requirements with one goal
in mind: getting customer acceptance. Yet, a plan’s real
purpose is to guide the development team to achieving
goals in a clear, step-by-step fashion; the plan should be
written for the staff, not the customer. There’s no need
for hype about the contractor’s capabilities and experi-
ence, or about how much they’ve thought about things
such as customer benefits. That information belongs in
the proposal. Rather, the plan should be relatively short,
concise, and clear — and aimed at the engineering staff. A
common exception in high-level plans is providing an up-
front design description summary — principally diagrams
— for the benefit of customer reviewers whose introduc-
tion to the project is the plan itself. Such descriptions
should be at high levels because reviewers will not spend
much time with these to get any deep understanding.

Lessons:
• Keep it simple and minimize the effort.

• Know that plans will change due to both customer
comments and design evolution — don’t try to
make each revision perfect.

• Avoid duplicating what is in other documents; cite
references where it makes sense to do so.

Guidance Documents: Extracting Essentials
Specific safety requirements of the JSSSEH and AOP-
52, the two software guidance documents cited in
MIL-STD-882, apply to all development phases. These
requirements appear in AOP-52 Section 4 (“Generic
Software Safety Design Requirements”) and in JSSSEH
Appendix E (“Generic Software Safety Requirements
And Guidelines”). Requirements in the two documents
are largely identical for practical purposes.

Lesson: We put each AOP-52 requirement and each
JSSSEH requirement side by side on a spreadsheet to
identify differences and to highlight where further discus-
sion was required to determine applicability and the need
for tailoring.

One exception is AOP-52’s section 4.4, which does
not provide requirements; rather, it is a 600-word essay
on how to identify safety-related hazards. The JSSSEH
omits this.

The JSSSEH is newer (August 2010) and longer (334
pages) than the AOP-52 (March 2009, 205 pages). It is
very clear that JSSSEH Appendix E (“Generic Software
Safety Requirements and Guidelines”) heavily borrows
from — and is based on — AOP-52 Section 4 (“Generic
Software Safety Design Requirements”). The JSSSEH
made many modifications to the borrowed statements
to clarify and expand upon them. Many other JSSSEH
statements are identical to AOP-52 statements (aside
from grammatical corrections), except where the JSSSEH
replaced “must” by “shall” and replaced “safety-related” by
“safety-critical.”

Nearly all AOP-52 Section 4 requirements contain-
ing “must” or “shall” are included in JSSSEH Appendix E.
A few “should” statements are not.

Aside from requirement statements, both the
JSSSEH and AOP-52 include some lengthy discussions
and checklist-type review questions to consider (see Table
1). In general, JSSSEH text in these sections is an update
of AOP-52 text.

AOP-52 JSSSEH
4.2.2 Failure in the Computing Environment E.5.5.1 Same title
4.2.3 CPU Selection E.5.2 Same title

4.4 Safety-Related Events and Safety-Related
Functions — —

4.7.2 Computer/Human Interface Issues E.9.1.1 CHI Issues
4.12.1 General Testing Guidelines E.12.1 Same title
4.12.2 Trajectory Testing for Embedded Systems E.13.2 Same title

Table 1 — Section Titles in AOP-52 and JSSSEH.

 Journal of System Safety, Summer 2020 29

Lessons: These sections generally do not contain
“must” or “shall” but it is helpful for Software Develop-
ment Plan (SDP) authors to review the JSSSEH versions
because some of the material might be applicable to the
SDP. Peer review checklist authors should do the same
for development of peer review checklists.

MIL-STD-882, the governing safety document,
refers to the JSSSEH and AOP-52 simply as guidance
sources, so the safety reviewers need to identify and ex-
tract project-specific guidance statements and incorpo-
rate them — tailored as appropriate — in the SDP and
in the safety review checklists. There is a natural conflict
here, however: Reviewers need to understand design ar-
chitecture and details to do the extractions, but the safety
assessments should also be done before the design goes
too far. For practical purposes, we have found that the
architectural design should first be laid out (subject to
evolutionary change, of course), then the guidance state-
ments should be extracted.

Lesson: At the code level, to be thorough, we found
it best to extract all statements. Those that are not appli-
cable should be identified as such in the SDP and in the
review checklists.

Lesson: To provide traceability from project require-
ments back to the generic requirements, and as a means
to review all tailoring changes, list all generic require-
ments in a spreadsheet along with tailored versions for
comparison, and include the rationale for tailoring.

Lesson: Some generic requirements in guidance
documents contain multiple statements, whereas well-
written requirements should be limited to a single
observation for test purposes and for tracking in a re-
quirements database. Example (JSSSEH E.3.12, System
Errors Log): “The software shall make provisions for logging
all system errors. The operator shall have the capability to
review logged system errors. Errors in safety-critical routines
shall be highlighted and shall be brought to the operator’s
attention as soon after occurrence as practical.” We broke
that into three requirements, and added a project-specific
fourth and fifth, putting “shall” in upper case to highlight
that each is a mandatory, testable requirement:

• The software SHALL make provisions for logging
all system errors.

• The operator SHALL have the capability to review
logged system errors.

• Detected errors in routines affecting system safety
SHALL be brought to the operator’s attention as
soon after occurrence as practical.

• Detected errors in routines affecting system safety
SHALL be highlighted in the system error log.

• Detected errors in safety-critical routines SHALL
cause automatic system transition to a safe state as
soon as practical.

The spreadsheet included requirement-specific
comments where additional discussion was necessary to
further tailor requirements — in this case, notably that
“soon as practical” isn’t testable and that corresponding
requirements would need to be modified to specify reac-
tion times for specific kinds of errors.

Identifying Top-Level hazards
Lesson: MIL-STD-882 does not require a list of top-
level hazards, but we found this listing useful. The
idea is to maintain a list of all possible safety hazards
— those caused by failures of hardware or software, or
unexpected human interactions — to assure that (1)
each software hazard in the required functional hazard
analysis (FHA) can be traced up to one or more top-
level hazards, and (2) each top-level hazard potentially
caused by software can be traced down to at least one
underlying software failure in the FHA. Since this was
a software project for the author’s development team,
top-level failures that could not be caused by software
(or human activities monitored by software) were
identified as such, and these were to be addressed inde-
pendently by the hardware development team. To com-
plicate matters, the hardware team included its own
software developers for certain hardware-specific tasks.

Lesson: Identifying and assigning responsibility for
resolution of the one top-level hazard list among multiple
teams requires good coordination among teams.

Identification of top-level hazards is a group effort.
Generic hazards include those potentially causing injury
from mechanical devices or components, electrical shock,
excessive levels of acoustic noise, excessive levels of elec-
tromagnetic radiation, generation of toxic substances,
excessive heat or cold, fire and others. Generic hazards
also include damage to things, including the project’s own
equipment. The team should think carefully about wheth-
er software could cause a generic hazard and, if so, include
the software function in the hazard tracking system.

Many project-specific hazards on the top-level hazard
list might occur while the system does what it’s supposed
to do — but with unexpected or incorrect timing, output
levels, aim, indications, output messages, human interac-
tion, etc. The starting point is to list everything the subject
system is supposed to do (i.e., each system software func-
tion in the Functional Hazard Analysis), then hypothesize
failure modes for each function and identify whether each
failure mode can cause a hazardous condition.

Software Requirements and Safety Issues
This author once believed that software safety issues were
just a subset of software reliability issues — a subset of
failures that just happened to affect safety. This is em-
phatically not the case, principally because software-based
safety hazards can occur while software is doing exactly

30 Journal of System Safety, Summer 2020

what it’s required to do. Obviously, the problem is that
the requirements may not fully address project-specific
safety issues. For example, it may be that software creates
an unexpected operational hazard when system prime
power is lost for a fraction of a second (perhaps a full
restart may not be triggered), software may do the wrong
thing when given a bad input from
failed hardware or (more likely)
when a human operator does a
combination of things during a cer-
tain system state that no one ever
considered. The last example would
be a sneak circuit problem in the
hardware world — a hazard arising
from combinations or sequences of
unexpected (and unanalyzed) in-
puts, given the condition that there
are no failed components. However,
the challenge is not to exhaustively
consider unexpected input combi-
nations or sequences that can cause
hazards in the top hazard list; rath-
er, it is to determine whether each
hazard affected by software in the
top-level hazard list can be caused
by unexpected inputs. A software
module involved in this way should
be subject to one or more func-
tional requirements, added to the
requirements list as necessary, to
prevent unexpected inputs from causing outputs with
potentially hazardous consequences to the extent that can
be implemented feasibly. (AOP-52 section 4.12.10, “Op-
erator Interface Testing,” states “Operator interface testing
must include operator errors during safety-related operations
to verify safe system response to these errors.” That’s okay,
but inadequate, because it requires only that some script-
ed errors be tested.)

There are several sources to consider in the effort to
develop project-specific safety requirements. The design
team should consider lessons learned from previous de-
velopments in their collective experiences, from histories
of related developments, from news reports of tragedies
caused by software failures (and why they failed) and
from one’s imagination. What are the possible ways this
particular system could cause harm, and how could the
system’s software unexpectedly cause harm during devel-
opment, factory tests, installation set-up, proper opera-
tion, improper operation, self-test, upgrade, fault isolation
procedures and normal maintenance? Each possible haz-
ard belongs on the top-level hazard list.

Using Functional Hazard Analysis (FHA)
A Functional Hazard Analysis (FHA) is a failure modes
and effects analysis of software functions capable of

causing hazards [Refs. 5 and 6]. We developed a detailed
FHA on a Microsoft Excel spreadsheet to consider each
safety-significant software functional requirement (many
software functional requirements had no effect on safety
and didn’t belong there), how it could fail, and what to
do about it. The FHA listed each software-critical and

software-related system function
by ID, name, and description, then
possible failure modes (e.g., fails
to _____, runs too soon, too late,
intermittently, etc.), effects at the
next higher level and at the system
level, then values for parameters
in MIL-STD-882 Tables I through
V (Severity, Probability [place-
holding guesses], Risk Assessment,
Software Control Category [de-
gree of autonomy], and Software
Criticality).

Lesson: For each software
function, we supplied only Prob-
ability and Control Category, and
used Excel’s VLOOKUP function
to automatically supply the other
three from tables copied from MIL-
STD-882 to another worksheet in
the same workbook. We also used
Conditional Formatting so that cell
colors in VLOOKUP cells automat-
ically corresponded to cell colors

in the MIL-STD-882 tables. Finally, the FHA included a
Mitigation column to describe how the hazard could be
controlled.

Lesson: It is desirable to limit the quantity of sys-
tem-level effects to a meaningful minimum set (it always
happens that different team members create many un-
necessary entries by describing the same effect in differ-
ent ways, and often declaring different severity values
to the same effect). To limit the number of system-level
effects and multiple severity values, we listed each effect,
arranged in logical groups, on a separate worksheet and
identified each with an ID number and a severity value
(1 through 4 per MIL-STD-882 Table I). We entered
these IDs in the FHA sheet and used VLOOKUP in the
System Effects column and in the Severity column to
copy the corresponding descriptions and severities from
the system effects sheet to the FHA sheet.

Lesson: Many failure modes were mitigated by the
same mitigating features or techniques. To save effort and
provide consistency, we listed each mitigation descrip-
tion on a separate worksheet and identified each with a
mitigation ID number. We entered these IDs in the FHA
sheet (with some failure modes listing multiple mitiga-
tion IDs) then ran a macro that read the IDs and copied

The design team should
consider lessons learned from
previous developments in their

collective experiences, from
histories of related developments,

from news reports of tragedies
caused by software failures

(and why they failed) and from
one’s imagination. What are the

possible ways this particular
system could cause harm, and

how could the system’s software
unexpectedly cause harm

during development, factory
tests, installation set-up, proper
operation, improper operation,

self-test, upgrade, fault isolation
procedures and normal

maintenance?

“

“

 Journal of System Safety, Summer 2020 31

the corresponding mitigation descriptions from the miti-
gation sheet to the FHA sheet.

Lesson: Interpreting the terms “safety-critical” and
“safety-related” can be difficult. The guidance documents
are riddled with these two terms — with both terms
usually appearing together. How to determine whether
a software function is a safety-critical or safety-related
one? And is the distinction useful? MIL-STD-882 de-
fines these terms and uses them to clarify definitions of
software autonomy in Table IV, but makes no statements
as to how safety analyses should treat them differently.
JSSSEH also defines the terms (same as MIL-STD-882),
but it sometimes uses “safety-related” to mean either
term (e.g., section 4.4.3) and it also makes no statements
on how safety analyses should treat them differently.
While a safety-critical function, by definition, can lead
to catastrophic or critical hazards, it’s the distinction
between “Catastrophic” and “Critical” that leads to differ-
ent Level of Rigor (LOR) efforts (MIL-STD-882 Table
V). Similarly, a safety-related function, by definition, can
lead to “Marginal” or “Negligible” hazards, but it’s the
distinction between these two levels that makes a differ-
ence in the safety effort. So, while the design team can
decide whether each software function in the FHA is
either safety-critical or safety-related, what is needed in
the FHA is classification of software function’s severity as
Catastrophic, Critical, Marginal, or Negligible.

The project required delivery of a Software Hazard
Analysis (SHA), a text document to expand on key find-
ings of the FHA and discuss proposed mitigations and
resulting effects at the top level. The SHA included a
description of the system and its operations, a list of its
software components, a table of all software requirements
with corresponding safety significance and corresponding
JSSSEH requirement IDs, a table of all AOP-52 require-
ments with statements of compliance and rationale for
instances of noncompliance, a similar table of JSSSEH re-
quirements, analysis of particular hazards from the FHA
and proposed mitigations, checklists for design reviews
for each phase of development, and a table of functional
requirements and expected methods of verification.

Considering Safety-Significant Effects
of Partitioning and Redundancy
Early high-level designs are typically shown as block
diagrams in which software is divided into modules.
Part of the design process at this stage is identifying the
safety-significant modules so that safety analyses will be
applied only where needed. Safety-Significant Modules
(SSM) must be partitioned from other modules in the
design phase and it must be shown that non-SSM func-
tions cannot affect safety-significant functions in SSM
(the SHA is a good place for capture). The selected
operating system must be designed to work with a par-
titioned system, allocating separate memory spaces for

SSM and non-SSM, and providing means for messaging
between them.

Lesson: Highlight proposed safety features on the
diagram (e.g., health monitoring of critical modules, haz-
ard detection and automatic shutdown capabilities, man-
ual override interfaces). A good approach to be sure (and
able to convince certification authorities) that all safety-
significant software has been identified is to perform a
Functional Hazard Analysis (FHA) — which would prob-
ably be done anyway — to determine each functional fail-
ure that can cause a system-level hazard (each of which
appears in the top-level hazard list), then use Fault Tree
Analysis (FTA) to determine the software parts that could
contribute to each such functional failure.

Selection of an operating system to best support
system safety (e.g., providing memory partitioning if rel-
evant to the design) isn’t trivial and requires research.

Lesson: A paper trail is important for eventual cer-
tification. Make a separate report that describes the pros
and cons of each operating system under consideration,
along with system application history and engineering
experience (if possible) and explain your conclusions.
Provide data sheets as appendices. Also, be sure to attri-
bute manufacturers’ claims to the manufacturers, rather
than as statements of fact. Don’t expect certification
authorities to help you select an operating system, but
expect that they may want to know how you reached
your conclusions.

It’s impractical to provide redundancy in all subsys-
tems and operations, but as a goal sensors that affect soft-
ware safety should be redundant. Dependence on a single
sensor without a readily available override capability can
be catastrophic [Ref. 7].

Understanding MIL-STD-882 Level of Rigor
The idea of Level of Rigor (LOR) is to be sure that parts
of software that underlie safety hazards receive the level
of attention during development that is commensurate
with the hazard’s criticality, where criticality is a combi-
nation of operational autonomy and hazard severity. For
each critical software module (or whatever unit of soft-
ware makes sense; MIL-STD-882 refers to “exact software
contributors to hazards and mishaps”), you determine the
software’s autonomy and the hazard’s severity. Then you
use MIL-STD-882 tables to determine a “software critical-
ity index” (SwCI) value, which in turn defines risk as a fi-
nal hazard rating. This rating ranges from SwCI 1 to SwCI
5 (corresponding to High, Serious, Medium, Low, and
“Not Safety,” respectively). The SwCI value is the basis for
determining LOR. An uncaptioned table following Table
V in MIL-STD-882 states the “minimum” efforts required
for each SwCI; the development team is responsible for
appropriate tailoring. Results may go into the SSSP —
typically most clearly represented as displayed in Table 2.

32 Journal of System Safety, Summer 2020

In this table, the SSSP must define carefully what
“Analysis” and “In-Depth” (versus “Functional”) safety
testing means so developers know exactly what to do.
Details may be provided in the SDP detailed design
checklists for each development phase.

While this schedule of efforts is the MIL-STD-882
minimum, realistically the design process for any kind of
structured development will include reviews (analysis)
for all parts of the system software and all four develop-
ment phases — simply because the non-safety parts of
the software system are also expected to operate reliably.
There’s no substitute for reviews using checklists and
testing using procedures devised by independent test
engineers. One exception is that SwCI 5 software needn’t
be reviewed for safety issue.

Understanding Practical Limitations
to Testing Safety-Significant Requirements
Typically, a good chunk of critical code — 25% is a good
estimate — is devoted to the detection and handling
of unexpected events (not just built-in-test [BIT] code,
but events such as local detection of bad message data,
out-of-range values, timing anomalies, plus error logging,
etc.). Unfortunately, not all of that code can be tested in
feasible ways (e.g., it is usually not feasible to simulate
memory errors to test code that looks for such errors,
or interrupts from external sources that occur in an un-
expected sequence). Where functions are not testable,
analysis must provide a convincing explanation of why
code will perform as expected. This analysis typically
consists of careful code review by independent reviewers
and, where possible, should include a description of unit
testing and results.

JSSSEH 4.4.1.3 lists the types of robustness tests
that should be performed. While not strictly required, all
safety-significant software should indeed be subject to
both analysis and robustness tests to determine software
and system behavior when operating in conditions be-
yond those specified — abnormal inputs, excessive data
traffic, unexpected operator actions, arithmetic excep-
tions and overflow, and timing variations (such as unex-
pected message and interrupt sequences [Ref. 8]). Some

development programs allow time for an operator to try
to break a system rendered harmless for this purpose (if
you can be sure that it is truly harmless) by intentionally
applying unscripted abnormal commands, or just playing
with it. Video recording of operator actions during such
free play may be useful for capturing actions that really
cause a hazardous event.

Setting Up a Hazard Tracking System (HTS)
to Resolve Safety Issues
An HTS is required by MIL-STD-882, and the SSSP
describes the project’s specific HTS details. The customer
initially wanted an HTS using a relational database with
links among hazards, requirements, mitigations, resolu-
tions and changes. However, the HTS was implemented
on a spreadsheet that proved to be perfectly adequate.
The HTS grouped together multiple FHA hazards re-
sulting in the same system-level hazard and listed them
on one row of the spreadsheet. For example, there were
several functional failures in which software failed to
detect specific operational faults and force the system to
a safe state. These functions were therefore listed on the
same row, with a new summary hazard ID and a descrip-
tion of the common system-level hazard. Other head-
ings included identification of the subsystem owning the
failed software, causal factors, effects, a list of top-level
failures that might result, system operating modes during
which the hazard might occur, associated safety require-
ments, MIL-STD-882 table information (see the previous
FHA discussion), and status information (working group
results, resolutions, etc.).

Dealing With Certification Authorities
The author was tasked with the development of a Soft-
ware Safety Certification Plan that “details the Safety
Certification process and requirements to meet Safety
Certification requirements” of several certification au-
thorities. Unfortunately, there were no guidance docu-
ments that outlined the plan contents.

Lesson: Knowing that the well-known software
certification plan called Plan for Software Aspects of Cer-
tification (PSAC), part of DO-178B that is required for

Analysis Testing
SwCI Requirements Architectural

Design
Detailed
Design

Implementation In-Depth Functional

SwCI 1 X X X X X —
SwCI 2 X X X — X —
SwCI 3 X X — — X —
SwCI 4 — — — — — X
SwCI 5 — — — — — —

Table 2 — Safety-Specific Analysis and Test Requirements.

 Journal of System Safety, Summer 2020 33

Federal Aviation Administration (FAA) certification of
airborne software [Ref. 9]), provides clear and thorough
certification guidelines, the author used the PSAC outline
as a starting point, tailoring details as appropriate for the
ground-based subject system software. Certification au-
thorities were generally pleased with the results.

Part of the certification process is presenting materi-
als to certification authorities to show that all safety con-
siderations have been made and that all safety processes
are being followed, with a paper trail to document these
activities. In other words, their job is to assure that you’ve
thoroughly addressed all development requirements for
software safety. Contractors may also ask questions that
further explain what authorities are looking for.

Lesson: While authorities will have a keen interest
in your design, don’t expect them to bless any part of
it, or to advise that one approach is better than another,
because they obviously don’t want to share responsibility
for future problems. As with any review board, different
people have different expectations, so you should plan to
perform additional safety efforts if requested.

Lesson: Presentation materials shouldn’t have a
marketing slant (highlighting company capabilities,
experience and cleverness) and shouldn’t provide more
material than necessary. Too much effort is often spent
on unnecessary background material, overly elaborate
slides and detailed tabular information that is unread-
able as a slide. Authorities may politely ignore all this
material, but its development and the internal review
process with many reviewers can take a lot of expen-
sive time.

Value of Independent Review
For the program described in this paper, the government
apparently required an independent review of the soft-

References
1. MIL-STD-882E. “Department Of Defense Standard Practice, System Safety,” 2012.
2. Joint Software Systems Safety Engineering Handbook (JSSSEH), Naval Ordnance Safety and Security Activity, In-

dian Head, MD, 2010.
3. Guidance on Software Safety Design and Assessment of Munition-Related Computing Systems (AOP-52), North

Atlantic Treaty Organization, 2009.
4. SAE ARP5580. “Recommended Failure Modes and Effects Analysis (FMEA) Practices for Non-Automobile Ap-

plications,” Society of Automotive Engineers, Inc. 2000.
5. Ozarin, N. W. “Failure Modes and Effects Analysis during Design of Computer Software,” Proceedings of the An-

nual Reliability and Maintainability Symposium, 2004.
6. Ozarin, N. W. “Applying Software Failure Modes and Effects Analysis to Interfaces,” Proc. Ann. Reliability & Main-

tainability Symposium, 2009.
7. Travis, Gregory. “How the Boeing 737 Max Disaster Looks to a Software Developer,” IEEE Spectrum, April 18,

2019.
8. Beatty, Sean M. “Improving Software Safety: Finding the Defects that Testing and Inspection Miss,” Proceedings of

the 22nd International System Safety Conference, 2004.
9. DO-178B, “Software Considerations in Airborne Systems and Equipment Certification,” RTCA, 2013.

ware development. The author was one of the reviewers.
Lesson: Independent reviewers with appropriate

backgrounds (in this case, reviewers employed by another
company) can make a significant difference in the soft-
ware safety process, in part because they bring additional
experience and insights from their own software develop-
ment backgrounds. They can also be more objective than
development team members because they can scrutinize
guidance document requirements and check for design
compliance without taking time from the design and
development schedule.

A potential conflict is that reviewers may assert
that it is necessary to review additional design aspects, or
request that the development team perform additional
safety efforts beyond what is planned (or budgeted). The
solution is to follow the SSSP carefully and augment it
with additional tasks if it is required by the governing
documents. Any proposed changes should also be cleared
with certification authorities.

About the Author
Nathaniel Ozarin served as a senior engineering consul-
tant at Omnicon (www.omnicongroup.com), a company
specializing in reliability and safety analysis for the mili-
tary, medical, industrial and transportation industries.
His background includes hardware engineering, software
engineering, systems engineering, programming and reli-
ability engineering. He received a bachelor of science
degree in Electrical Engineering from Lehigh University, a
master’s degree in electrical engineering from Polytechnic
University of New York, and an MBA from Long Island
University. He is a member of the Institute of Electrical
and Electronics Engineers (IEEE) and was named Reli-
ability Engineer of the Year by the IEEE Reliability Soci-
ety in 2009.

34 Journal of System Safety, Summer 2020

