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2 Abstract 

Metamaterial has been applied as a new type of radar absorbing material. 

In the face of more and more complex material structures, optimization 

algorithm has become a mainstream direction of structure design. However, 

the electromagnetic simulation often needs a lot of time, in order to improve 

efficiency, it is necessary to reduce the number of simulations as much as 

possible. This paper combined surrogate model and Genetic Algorithm to 

propose a topology-based optimization method for metamaterial, then 

designed a broadband absorbing structure. This optimization method uses a 

less complex surrogate model instead of the electromagnetic model, which 

can greatly reduce the time of optimization, to design the metamaterial 

structure that meets the requirements of wave absorbing performance. 

Compared with the previous literature, this method has some advantages. At 

the same time, this topology design method can also be applied to other 

optimization designs. 

Keywords—Topological Structure, Genetic Algorithm, Surrogate Model, 

Kriging Interpolation 
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3 Introduction 
3.1  Research Background 

With the continuous development of marine precision guidance 

technology and detection radar, the anti-radar detection materials have also 

achieved unprecedented development. Vigorously develop stealth 

technology is very important for improving the battlefield survival and 

penetration capabilities of weapons and equipment. In reducing target radar 

echoes with certain radar characteristics, shape design and the use of 

absorbing materials are the most common ways. The radar stealth based on 

shape design (abbreviated as shape stealth) is direct and effective means to 

achieve target stealth. Its principle is to use system engineering theory to 

optimize the shape and structure of stealth targets, so that the reflected radar 

wave energy of the target deviates from the radar emission direction, 

thereby effectively reducing the average Radar Cross Section (RCS) [1] of 

the target.  

However, the shape stealth has obvious limitations. First, the excessive 

requirements on the shape may affect the hydrodynamic performance of the 

equipment and reduce the containment space; Second, the target is at a 

certain angle. Therefore, the decrease of the RCS in this domain will 

inevitably increase the RCS in some other corner domains. With the 

development of intensively distant radio communication and 

over-the-horizon radar systems in the range of high frequencies (HF) [2],[3], 

it is impossible to reduce the target RCS at the same time in the full 

three-dimensional range. Therefore, if we want to fundamentally be 
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endowed the target with excellent stealth performance, it must rely on 

materials intrinsic stealth function, that is, the development of radar 

absorbing materials. 

Metamaterial has been applied as a new type of absorbing material. But 

at present, the most common metamaterial designs are based on the 

resonance mechanism, and their performance is mainly determined by the 

structure type, parameters, and the properties of the component material. 

Due to the structure type diversity and the sensitivity, it is not enough for 

the design to simply rely on physical models and human experience. 

Therefore, using a mature optimization algorithm has become an important 

way for metamaterial design. 

The essence of metamaterials absorbing electromagnetic waves is to form 

electromagnetic resonance through structural design, so that the electric and 

magnetic fields are significantly enhanced, so that the incident 

electromagnetic waves are consumed by the electrical and magnetic losses 

of the material. To obtain broadband absorbing performance, it is necessary 

to ensure that the corresponding frequency band on the other hand, from the 

perspective of "circuit", the resistive metamaterial resonant unit introduces 

reactance based on equivalent resistance The electromagnetic response is 

opposite to that of the traditional ground matrix, so as to obtain a broadband 

impedance matching and achieve a strong wave absorption performance. 

[4],[5] 
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Fig. 1. Metamaterials and equivalent circuit models 

The equivalent circuit of the resistive metamaterial with loss 

characteristics is shown in Figure 1, which is divided into two types: 

capacitive and inductive. To produce strong resonance, it is composed of 

structural unit, matrix and reflective layer, and the dielectric matrix can be 

equivalent to a segment Transmission line. 

3.2  Relative Work 

As a novel optimization design method, topology optimization [4],[5] 

overcomes the shortcomings that mentioned above. In [6], the author 

proposes an optimization-design method for the Frequency Selective 

Surface (FSS) based on the Genetic Algorithm (GA) incorporated with a 

geometry-refinement technique. In [7], it proposed a hybrid algorithm called 

HIGAPSO, which combine PSO and GA algorithms to improve the 

convergence speed and the optimum search ability. In [8], the author 

developed the topology optimization method based on GA, which further 
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improve the convergence speed. The current research on this field is 

generally based on improve GA algorithm. However, simply using GA will 

generate a huge number of electromagnetic simulations and consume a lot 

of time. 

This paper combined GA with the surrogate model to design an efficient 

and fast optimization method based on the topology optimization design 

[9],[10]. In order to verify the effectiveness of this algorithm, this method is 

used to optimize the structure of a metamaterial absorber based on 

topological structure. Compared this result with the result by GA. The 

results show that the use of the surrogate model/GA can ensure the quality 

of the solution while reducing the optimization process. It significantly 

reduces the time required for optimization by reducing the number of 

electromagnetic simulations. Furthermore, this optimization design method 

is transferable and can be applied to other structures and models. 
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4 Basic Theory 
4.1  Genetic Algorithms 

Genetic Algorithm originated from the computer simulation research of 

biological systems [11-13]. It draws on Darwin's theory of evolution and 

Mendel's theory of genetics. It is not limited by function derivation and 

continuity for complex problems, but directly. It is a probabilistic global 

search algorithm that can automatically guide the optimization of the search 

space, adjust the search direction, and seek the optimal solution efficiently 

and in parallel by operating on the structural object. 

The genetic algorithm generally consists of the following parts [14-16]: 

(1) Encoding and decoding 

(2) The fitness function is used to describe the degree of adaptation of the 

individual to the environment. The selection of this function has a decisive 

influence on the probability of the individual in the current group to inherit 

his own genes to the next generation. Generally, the larger the value of the 

individual fitness function is, the better the individual performance, the 

greater the possibility of inheritance to the next generation. 

(3) Genetic operators include crossover, mutation and replication. The 

replication operator is the process of generating a new population based on 

the pros and cons of individuals. Individuals with high fitness are more 

likely to produce one or more offspring in the next generation. 
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(4) The control parameters of the algorithm include the population size M, 

the mating rate 𝑃𝑐 and the mutation rate 𝑃𝑚. 

 

Fig. 2. Genetic algorithm feature selection flowchart 
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The basic steps of using genetic algorithm to solve engineering 

optimization design problems are as follows [17-19]: 

(1) Coding Determine the optimization parameters, and then code them 

according to the selected code system. Each code represents a chromosome 

individual and represents a solution to the optimization problem. When 

coding, a reasonable code length should be set according to the solution 

accuracy of the problem. 

(2) Initialization Generate a set of initial populations. The number of its 

individuals is called the size of the initial population; the individuals of the 

initial population should be randomly generated to ensure the fairness of its 

diversity and competition. 

(3) Estimation of fitness According to the optimization problem, 

determine the objective function and fitness function, calculate the objective 

function value of everyone in the population and its corresponding fitness 

function value, and provide the basis for the evolutionary selection of the 

population. The choice of fitness function is very important. 

(4) Selection According to the fitness function value of each chromosome 

in the population, select the individuals of the population with a certain 

algorithm (such as the roulette algorithm), and add the operation result to 

the next generation population. Selection is a random process. Individuals 

with poor genes (that is, low fitness function) will not necessarily be 

eliminated, but they have a high probability of being eliminated. Individuals 
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with good genes (high fitness function) may be repeatedly selected. This 

achieves the survival of the fittest. 

(5) Crossover Select two individuals at random and let them exchange 

some genes randomly according to a certain probability to form two new 

individuals. 

(6) Variation Randomly select an individual from the population and 

mutate a certain bit of its chromosome according to a certain probability. 

The selection and crossover operators provide the genetic algorithm with 

the search ability, and the mutation operator provides the necessary 

disturbance for the algorithm to avoid the occurrence of local extremum 

problems, so that the algorithm optimization is global. 

(7) End If the genetic algebra (number of iterations) reaches the preset 

value or the operation ends when it converges to the preset condition, 

otherwise return to step (3). 

4.2  High Frequency Structure Simulator 
 

HFSS (High Frequency Structure Simulator) is a three-dimensional 

electromagnetic simulation software launched by Ansoft Company. It has 

been acquired by ANSYS Company. It is the world's first commercialized 

three-dimensional structure electromagnetic field simulation software. After 

more than 20 years of development, HFSS With its high simulation speed 

and unmatched simulation accuracy, it has become an industry-recognized 

electronic design industry standard for 3D electromagnetic field design and 
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analysis. HFSS provides a simple and intuitive user design interface, an 

accurate and adaptive field solver, a powerful post-processor with 

unprecedented electrical performance analysis capabilities and can calculate 

the S-parameters and full-wave electromagnetic fields of three-dimensional 

passive structures of any shape. Using HFSS, it is possible to calculate: (1) 

basic electromagnetic field numerical solution and boundary problem, near 

and far field radiation problems; (2) port characteristic impedance and 

transfer constant; (3) S-parameters and normalized S-parameters of 

corresponding port impedances; (4) The eigenmode or resonance solution of 

the structure. Moreover, Ansoft High Frequency Solution, composed of 

Ansoft HFSS and Ansoft Designer, is currently the only high frequency 

design solution based on physical prototypes, providing fast and accurate 

design methods from system to circuit to component level, covering All 

aspects of high frequency design. 

The application direction of HFSS 

(1) RF and microwave device design 

Compared with digital circuit designers, microwave designers have long 

recognized that high-frequency design requires special measures and tools 

to correctly identify and handle electromagnetic effects, which is why HFSS 

has become the authoritative standard for microwave/RF device design. 

(2) Antenna unit, antenna array and feed design 
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HFSS software has a powerful antenna design function, it can calculate 

various antenna parameters, such as gain, directivity, far-field pattern and 

3dB bandwidth, and can plot polarization characteristics, including 

spherical field component, circular polarization field component, Ludwig 

No. 3. Define field components and axial ratios, etc. 

(3) High frequency IC design 

Accurate extraction of parameters for the analysis of interconnected 

structure characteristics is required, and HFSS is the only software that can 

implement this function conveniently and efficiently. 

(4) Design of electric vacuum device 

In the design of electric vacuum devices such as traveling wave tubes, 

klystrons, and gyrotrons, the HFSS eigenmode solver combines periodic 

boundary conditions to obtain the normalized phase velocity-frequency 

relationship accurately for the dispersion characteristics of the device, and 

the electromagnetic field distribution in the structure provides a powerful 

design tool for the design of such devices. 

4.3  Introduction of MATLAB and M function files 
 

MATLAB is the abbreviation of Matrix Laboratory, which means Matrix 

Laboratory. It is a high-tech computing environment released by 

MathWorks Corporation of the United States, mainly facing scientific 

computing, visualization, and interactive programming. It integrates many 

powerful functions such as numerical analysis, matrix calculation, scientific 
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data visualization, and modeling and simulation of nonlinear dynamic 

systems in an easy-to-use window environment for scientific research, 

engineering design, and many sciences that must perform effective 

numerical calculation. Domain provides a comprehensive solution and is 

largely free from the editing mode of traditional non-interactive 

programming languages (such as C, Fortran), representing today's advanced 

level of international scientific computing software. 

To meet the user's development needs, in addition to the prefabricated 

functions and toolboxes, MATLAB software also supports users to write 

their own function format files, that is, M function files. In the M function 

file, users can program themselves to achieve variable definition, main 

program construction, calling sub-functions, and cyclic interrupt operations 

in general programming languages. Compared with some other commonly 

used programming languages, M function files written in MATLAB have 

the following characteristics: 

(1) M function files all start with the function declaration guided by 

"function", and at the same time give the variable name that the function 

connects with the outside world. 

(2) Whenever a sub-function needs to be called during the running of the 

program, the system will open an independent workspace for the function, 

which is called the function workspace, and the residual variables in it will 

be cleared in time when the function call ends. 
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(3) The function workspace will be generated quickly with the call of the 

M file, and the function has a high ability to recognize the format of the 

variable, which is necessary for various software interfaces. At the same 

time, this also lays the foundation for using MATLAB to control the 

operation of HFSS in the following text. 

4.4  Kriging interpolation 

Kriging interpolation method [20], also known as spatial autocovariance 

optimal interpolation method, is an optimal interpolation method named 

after D.G. Krige, a South African mining engineer. Kriging interpolation is 

widely used in groundwater simulation, soil mapping and other fields, and is 

a very useful geostatistical gridding method. It first considers the variation 

distribution of the function value in the spatial position and determines the 

range that affects the value of a point to be interpolated, and then uses the 

sampling points within this range to estimate the value of the point to be 

interpolated. This method can mathematically provide an optimal linear 

unbiased estimate of the object under study. It considers the geometric 

characteristics such as the shape, size, and the spatial position of the 

information sample and the spatial position between the blocks to be 

estimated, as well as the spatial structure of the grade, in order to achieve 

linear, unbiased and minimum estimation variance estimation, and assign 

each sample to each sample. With a certain coefficient, the weighted 

average is finally performed to estimate the block grade. When there are 

many data points, the reliability of the interpolation results is higher. 

Nowadays, kriging interpolation as a surrogate model has been widely used 
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in many aspects, such as optimization, design space search, information 

visualization, prototyping, and sensitivity analysis. Below, we will briefly 

introduce the principle of kriging interpolation. 

In short, the kriging interpolation model consists of two parts, first, a 

regression function based on sample point data, plus an error vector based 

on a Gaussian random process. A kriging interpolation model for an 

unknown point can be expressed as: 

𝑌(𝑥) = 𝑓(𝑥) + 𝑍(𝑥) (8) 

where 𝑓(𝑥) represents the regression function, and 𝑍(𝑥)  represents a 

Gaussian random process with a mean value of 0 and a variance of 𝜎2. 

In an optimization problem, the value of an unknown point can be 

expressed by Kriging as: 

𝑓𝑝(𝑥) = 𝜇 + 𝜀(𝑥) (9) 

where 𝜇  represents the mean value of the response function at the 

surrounding base points, 𝜀(𝑥) represents the error value when take 0 as the 

expected value. Here the error value is given in the form of a correlation 

function, which is determined by the distance between the desired point and 

the surrounding base point. Here is a Gaussian correlation function of the 

form: 

𝑅(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 [∑ 𝜃𝑘|𝑥𝑘
𝑖 − 𝑥𝑘

𝑗
|

2𝑁

𝑘=1
] 
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Among them, 𝜃𝑘 is the correlation coefficient used to adjust the model, 

and 𝑥𝑘
𝑖  and 𝑥𝑘

𝑗
 are the kth elements of the vectors 𝑥𝑖  and 𝑥𝑗 , 

respectively. The surrogate model 𝑅𝑠  based on kriging interpolation is 

defined as: 

𝑅𝑠(𝑥) = [𝑅𝑠,1(𝑥), 𝑅𝑠,2(𝑥), … , 𝑅𝑠,𝑚(𝑥)]
𝑇
 

Here, 

𝑅𝑠,𝑗(𝑥) = 𝜇̅𝑗 + 𝑟𝑇(𝑥)𝑅−1(𝑓𝑗 − 𝐼𝜇𝑗
̅̅ ̅̅ ) 

Here 𝐼 is an 𝑁 × 1 unit vector, 

𝑓𝑗 = [𝑅𝑐𝑑,𝑗(𝑥2), 𝑅𝑐𝑑,𝑗(𝑥2), … , 𝑅𝑐𝑑,𝑗(𝑥𝑁)]
𝑇
 

𝑟 is the correlation vector of point 𝑥 and other base points, 

𝑟𝑇(𝑥) = [𝑅(𝑥, 𝑥1), 𝑅(𝑥, 𝑥2), … , 𝑅(𝑥, 𝑥𝑁)]𝑇 

where 𝑅 is the correlation matrix between base points: 

𝑅 = [

𝑅(𝑥1, 𝑥1)   𝑅(𝑥1, 𝑥2)   …    𝑅(𝑥1, 𝑥𝑁)

𝑅(𝑥2, 𝑥1)   𝑅(𝑥2, 𝑥2)   …    𝑅(𝑥2, 𝑥𝑁)
…               …               …              …

𝑅(𝑥𝑁 , 𝑥1)   𝑅(𝑥𝑁 , 𝑥2)   …    𝑅(𝑥𝑁 , 𝑥𝑁)

] 

The mean 𝜇̅ is given by: 

𝜇̅ = (𝐼𝑇𝑅−1𝐼)−1𝐼𝑇𝑅−1𝑓𝑗 

The correlation coefficient 𝜃𝑘  can be obtained by maximizing the 

following formula 
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− [𝑁 ln(𝜎̅2) + ln|𝑅|] 2⁄  

where the variables 𝜎2 and |𝑅| are both functions of 𝜃𝑘 

𝜎̅2 = (𝑓𝑗 − 𝐼𝜇𝑗
̅̅ ̅̅ )

𝑇
𝑅−1(𝑓𝑗 − 𝐼𝜇𝑗

̅̅ ̅̅ )/𝑁 

If the algorithm uses this model to completely judge the quality of new 

solution, it needs a lot of sampling points to get an extremely high accuracy, 

which will undoubtedly take more time. To solve this problem, this paper 

will screen the newly generated solutions in each generation, select the 

individuals with the best performance among them, and then use accurate 

electromagnetic simulation to calculate. 
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5 Surrogate Model/GA algorithm 
5.1 Principle of Surrogate Model/GA algorithm 

The core of the surrogate model method is not simply to use the surrogate 

model to replace the electromagnetic simulation for fitness calculation. In 

order to use the surrogate model to completely judge the quality of a new 

individual for electromagnetic simulation, the surrogate model needs to 

have extremely high accuracy in the entire design space, and the higher the 

accuracy of the surrogate model, the more sampling data is required. Many 

more electromagnetic simulations are required when building the model. 

This undoubtedly consumes more time, and the advantages of the surrogate 

model are not obvious. However, if the initial sampling points are too few 

or the location is not ideal, some characteristics of the real problem may not 

be reflected in the model. 

In order to solve this problem, we do not simply use the surrogate model 

to replace the electromagnetic simulation but use the surrogate model to 

screen the newly generated offspring individuals, select the individuals with 

smaller fitness, and then use the accurate electromagnetic simulation for the 

individual. authenticating. That is, use the surrogate model as a screening 

tool to select the "most promising" individuals and then validate them. 

For new individuals of each generation, first use the surrogate model to 

calculate their fitness values and sort all new individuals from small to large. 

Next, select the first individual after sorting, and judge whether the 

individual is already included in the database (if it is, select the second 
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individual, if the second individual is still included in the database, select 

the third individual, and so on), if the individual is not included in the 

database, the parameters of the individual are simulated using HFSS and the 

results are added to the database.  

There are two advantages to this: (1) new simulation data is constantly 

added to the existing database, and the surrogate model is built using the 

database, so the surrogate model will become more and more accurate; (2) 

each generation only A detailed simulation of an individual takes less time. 

5.2 Process of Surrogate Model/GA algorithm 

The steps of surrogate model/GA in this article are as follows: 

Step 1. Set the basic parameters: including the binary variables to be 

optimized and some parameters of GA. 

Step 2. Initialize the database: extract sampling points and use 

electromagnetic simulation to calculate.  

Step 3. Compare with termination condition: if the termination 

condition is met, then output the best result in the database; if it is not 

met, continue to Step 4. 

Step 4. Form the population: sort all the solutions in the database, 

then take 𝑁𝑝 best solutions to form a population. 

Step 5. Generate the offspring: do the cross-mutation operation of 

GA on the previous generated population. 
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Step 6. Establish surrogate model: use the sampling solutions in the 

current database to build a surrogate model. 

Step 7. Update database: record the best individual selected by 

surrogate model, calculate its fitness value using electromagnetic 

simulation. Add the solution to the database and then return to Step3. 

 

Fig. 3. The combined simulation system flow chart of MATLAB and 

HFSS 

In the process of implementing the surrogate model/DE algorithm, 

some control parameters need to be set in advance. The main parameters 

involved include the following categories: 
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(1) GA control parameters: including scale factor 𝐹 , crossover 

probability 𝐶𝑅  and population size 𝑁𝑃 . According to the 

recommendation of the literature, the scale factor should be selected in 

𝐹 ∈ [0.4,1], and the crossover probability is more effective in the interval 

𝐶𝑅 ∈ [0.5,0.95]. The population size 𝑁𝑃 depends on the number of 

parameters to be optimized. Assuming that the number of parameters to 

be optimized is 𝑛, it is more appropriate to select 𝑁𝑃 in the range of 

[4𝑛, 10𝑛]. 

(2) Surrogate model related parameters: The database must be updated 

in the optimization process of each generation, so a new surrogate model 

must be established before the screening process. When the algorithm is 

just started, the number of sampling points in the database is only the 

number of sampling points 𝛼  at the time of initialization, and 𝛼 

sampling points are used when building the surrogate model. As the 

algorithm progresses, new electromagnetic simulation results are added 

to the database as sampling points. When the current algebra is not too 

large, there are not many sampling points in the database. At this time, 

we can use all the sampling points in the database to build the surrogate 

model; when the algebra increases to a very large number, the speed of 

using all the sampling points to build the surrogate model It may be very 

slow, so we set a parameter 𝜏 here, which represents the maximum 

number of sampling points used when building the surrogate model. 
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(4) The number of sampling points when initializing the database 𝛼, 

according to the complexity of the optimization problem, 𝛼 ∈ [3𝑛, 5𝑛] 

is more appropriate. 
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6 Optimization Design of Wave Absorbing 

Materials Based on Topology Structure 
6.1 HFSS Macro Command Introduction 

Although the GA differential evolution algorithm provides us with a 

powerful global search engine, there are still many problems to be solved in 

how to apply the GA algorithm to the actual antenna optimization. Among 

them, the most critical problem is how to solve the fitness function. In the 

literature [6], MATLAB is used for modelling, and the method of moments 

is used to solve the model by programming. However, it is obviously very 

inconvenient to model in MATLAB, and only simple models can be built 

using MATLAB, but it is powerless for electromagnetic structures with 

complex structures and materials. However, if MATLAB is used for genetic 

operations and HFSS is used to achieve model establishment and simulation, 

it means that every time a new generation of design parameters is generated, 

it is necessary to continuously return to the HFSS drawing interface to 

modify the model and obtain a new fitness function., and then input it into 

MATLAB. In the face of thousands of fitness calculations in the general 

genetic algorithm, this complicated operation is undoubtedly unimaginable. 

The HFSS macro command provides an effective solution. 

HFSS macros are a fast, efficient way to repeat the same job. It uses 

VBScript language to record macro commands. VBScript is the 

abbreviation of Microsoft Visual Basic Script Edition. It is designed based 

on the Visual Basic scripting language and is the scripting language of 

Microsoft Visual Basic. In other words, it is a set of visual programming 
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tools based on the Basic pattern launched by Microsoft. In this environment, 

the scripting language is not compiled into binary files, but the source code 

is directly translated and executed by the host. The program written under 

this condition is not directly compiled into an executable file in *.exe format, 

but directly converts the information After sending the source program 

corresponding to the script program, the user can directly execute the script 

without knowing many complicated links. That is, it can automate a wide 

variety of tasks. By using macros, we can quickly complete repetitive tasks, 

such as creating and solving problems with variable parameters. Therefore, 

once the simulation model is determined, the establishment of the model in 

the optimization process only needs to call the vbs script file. For the same 

model, through repeated execution, the designer can modify it only by 

changing some variables in the script file. The script function that comes 

with HFSS allows users to record every step of the operation from model 

building to simulation solution in a vbs script file. After all the operations 

are completed, when the user needs to build the same model next time, just 

use With the Run Script function in HFSS, the script file can automatically 

complete a series of operations for modelling and solving. However, in the 

process of using the genetic algorithm to optimize the design of absorbing 

materials, we need to export the solution results to MATLAB to calculate 

the fitness value, and then write the design parameters of the offspring 

population into the vbs script program. To meet this requirement, the 

HFSS-MATLAB-Api toolbox is used here. 
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6.2 Introduction to HFSS MATLAB Api Toolbox 

Through the HFSS-MATLAB-Api toolbox, we can link HFSS and 

MATLAB to realize the combination of electromagnetic simulation and 

optimization algorithm. Below, we jointly use MATLAB and HFSS, and 

use the differential evolution algorithm to carry out the steps of antenna 

optimization design. 

The HFSS-MATLAB-Api toolbox is a MATLAB library toolbox. It 

consists of a series of M function files. Using these functions, we can easily 

complete the following tasks in the MATLAB environment: (1) Create a 

HFSS vbs script file, which includes model establishment, parameter 

settings, simulation settings, etc.; (2) run the script file (automatically start 

HFSS software for simulation calculation); (3) export the calculated data to 

MATLAB for post-processing. The initial version of the 

HFSS-MATLAB-Api toolbox was released by Vijay Ramasami in May 

2003 [22], and after that, James Mc Donald et al. improved some of its 

functions and further improved the function of the toolbox. The toolbox 

now covers many commonly used functions, roughly including the 

following four modules: 3D modelling, solution settings, boundary 

(excitation port) settings and general functions. Each function module is 

composed of many M functions, and each M function has a specific 

function. The two more important functions are introduced below: 

(1) hfssExportNetworkData 
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Generate the corresponding vbs script command to export the network 

parameters obtained by the HFSS simulation to the specified data file. 

(2) hfssExecuteScript 

Execute the generated vbs script file, that is, run HFSS for simulation. 

At the same time, you can also set whether to automatically close HFSS 

after the operation is completed. Using these two functions, we can easily 

use MATLAB to control the operation of HFSS and the export of 

parameters. For parametric modelling of the antenna, we can use the 3D 

modelling functions in the HFSS-MATLAB-Api toolbox. For example, the 

function hfssBox.m is used to build a cube or cuboid. In addition, this 

function also allows holes to be included in the cuboid, and the coordinates, 

radius and axis of the holes can be set. This setup is very convenient when a 

coaxial feed is required. 

6.3 Model Structure 
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Fig. 4. Absorber Structure 

In this paper, according to the design method of resistive frequency 

selection surface, a lightweight, broadband sandwich structure is designed. 

The structure is shown in Figure 4. The topological structure is designed by 

binary coding on the dielectric substrate (epoxy-based glass fiber, 

hereinafter referred to as FR4) loaded with the metal backplane. 

The key to metamaterial topology optimization design is encoding. The 

longer the encoding, the less conducive to the convergence of the 

optimization algorithm, that is, the less likely it is to find the optimal 

solution within a limited range. Metamaterial discretization encoding 

includes two parts: topology encoding and parameter encoding. The 

topology encoding adopts the method shown in Figure 5. Due to the 

polarization-independent characteristics of the material, the binary encoding 

of the axisymmetric structure is used to divide the surface of the 

metamaterial unit into 𝑀 × 𝑀 Grid   and the code length is 𝑀 × 𝑀, each 
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small square is filled with 0 or 1, where 0 represents no surface structure, 

and 1 represents this square structure filled with corresponding materials. 

Due to the axisymmetric binary code, the code length can be shortened as 

(𝑀 × 𝑀) 4⁄  [23].  

 

Fig. 5. Schematic of the coding method of topological optimization design 

Parameter encoding is to encode the size of the periodic unit structure, 

the thickness of the substrate, the square resistance of the resistor, and other 

parameters in accordance with the rules of binary encoding, and the 

encoding length is N. 

 

Fig. 6. The Structure of the binary code 
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The total length of the encoding is (𝑀 × 𝑀) 4⁄ + 𝑁. The topology code 

used in this paper is 16 bits, the parameter code is 14 bits, and a total of 30 

bits are coded. The decoding process of parameter encoding is： 

𝑆𝑢𝑏𝐻 = 𝑆𝑢𝑏𝐻𝑚𝑖𝑛
+ 

0.2 ∗ (8 ∗ 𝑃1 + 4 ∗ 𝑃2 + 2 ∗ 𝑃3 + 𝑃4)          (1) 

𝑅 = 𝑅𝑚𝑖𝑛 + 16 ∗ 𝑃5 + 8 ∗ 𝑃6 + 4 ∗ 𝑃7 + 2 ∗ 𝑃8 + 𝑃9 (2) 

𝑝 = 𝑝𝑚𝑖𝑛 + 16 ∗ 𝑃10 + 8 ∗ 𝑃11 + 4 ∗ 𝑃12 + 2 ∗ 𝑃13 + 𝑃14 (3) 

𝑡𝑝𝑏𝑖𝑡𝑠 = 𝑇(1: 16) (4) 

where 𝑆𝑢𝑏𝐻 , 𝑅 , 𝑝  represent the binary code of the periodic unit 

structure, the thickness of the substrate and the square resistance of the 

resistor value respectively; 𝑆𝑢𝑏𝐻𝑚𝑖𝑛
, 𝑅𝑚𝑖𝑛, 𝑝𝑚𝑖𝑛, are the minimum value 

of the unit structure parameter, here I set 𝑆𝑢𝑏𝐻𝑚𝑖𝑛
= 3, 𝑅𝑚𝑖𝑛 = 35 and 

𝑝𝑚𝑖𝑛 = 6.  

Set the reflectance of the absorbing composite material to 𝑅(𝑤) , 

transmittance 𝑇(𝑤), and absorbance 𝐴(𝑤), according to the equivalent 

circuit theory: 

𝑅(𝑤) = |𝑆11|2, 𝑇(𝑤) = |𝑆21|2 (5) 

𝐴(𝑤) = 1 − 𝑅(𝑤) − 𝑇(𝑤) = 1 − |𝑆11|2 − |𝑆21|2 (6) 
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where𝑆11  represents the reflection coefficient and 𝑆21  represents the 

transmission coefficient. In this paper, because the reflective back plate is 

loaded at the bottom of the material, the transmittance 𝑇(𝑤) = 0 . 

Therefore, the absorption rate can be expressed as: 

𝐴(𝑤) = 1 − 𝑅(𝑤) = 1 − |𝑆11|2 (7) 

To improve the absorbing performance of the absorbing composite 

material, the reflection coefficient 𝑆11 of the material must be sufficiently 

small. Therefore, the problem of solving the material absorption rate is 

transformed into the problem of solving the reflection coefficient 𝑆11. 
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7 Simulation 
7.1 Simulation Design 

To verify the effectiveness of the algorithm, the surrogate model/GA is 

used in this section to optimize the topological absorbing material 

introduced above.  

To confirm the effect of the initial database size on the simulation, I ran 

simulations with different initial database sizes and settled on the capacity 

of 30. The simulation results are as follows 

 

Fig. 7. Optimized S11 curve(capcity25) 

Within capcity of 25： 

Time consuming: 01:00:15 

Fitness value: 0.6398 

Working frequency: 9GHz-15GHz 
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Fig. 8. Optimized S11 curve(capcity30) 

Within capcity of 25： 

Time consuming: 01:46:30 

Fitness value: 0.515528 

Working frequency: 8.6GHz-16.4GHz 

 

 

Fig. 9. Optimized S11 curve(capcity35) 

Within capcity of 35： 

Time consuming: 01:23:52 

Fitness value: 0.615 

Working frequency: 9GHz-15.2GHz 
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The relevant parameters are set as follows: 

TABLE I.  PARAMETER SETTINGS (SURROGATE MODEL/GA) 

Initial sampling point 30 

Maximum sampling point of 

surrogate model 
75 

Population size 20 

Differential caling factor 0.8 

Crossover probability 0.8 

The maximum number of 

evaluations 
100 

This part is aimed to compare with the non-surrogate model, so here also 

uses original evolutionary algorithms to optimize the same structure. The 

fitness function adopts the same setting as the upper and lower limits of the 

parameters to be optimized.  

TABLE II.  PARAMETER SETTINGS (GA) 

Evolutionary algorithm used GA 

Population size 20 

Differential scaling factor 0.8 
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Crossover probability 0.8 

The maximum number of 

evaluations 
100 

The goal of verification is which can get better results after passing same 

time. The average time of an electromagnetic simulation is about 50-70s, so 

the same time passed here is converted to the same number of simulations, 

which is set 100 times. 

 

Fig. 10. The optimized binary code by GA(left); The optimized 

binary code by surrogate model/GA(right) 

Both simulations are executed on the same computer, which average time 

of an electromagnetic simulation is about 50-70s. The specific performance 

parameters of this computer are as follows: 

 CPU model: Intel(R) Core (TM) i7-10875H CPU @2.30GHz, 

 RAM: 32GHz, 
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 Graphics cards: NVIDIA GeForce RTX 2600. 

I will briefly introduce the establishment of the model and the setting of 

the port with a few pictures. The setting of the ports is shown in the 

following figures: 

 

 

 

Fig. 11. Boundaries Settings 



40 

 

 

 

 

Fig. 12. Excitations Settings 
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7.2 Simulation Results 

 

Fig. 13. The corresponding S11 curve of the optimized absorbing 

material by GA (blue) and surrogate model/GA (red) 
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(a) 
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(b) 

 

Fig. 14. (a) The optimized structure by GA; (b) The optimized 

structure by surrogate model/GA  
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The optimized structures are shown in the Figure. 14. In Figure. 13, the 

blue line shows that the S11 values of the structure optimized by GA are 

less than -10dB in 7.6 ~ 12.5GHz. The red line shows that the S11 values of 

the structure optimized by surrogate model/GA are less than -10dB in 8.6 ~ 

16.4GHz. 

TABLE III.  COMPARISON OF TWO METHODS 

 
Time 

Consuming 
Absorbing Frequency Band 

GA 63 min 7.6~12.5GHz(4.9GHz) 

Surrogate 

model/GA 
59 min 8.6~16.4GHz(7.8GHz) 

When using GA, the simulation must be done in each evaluation, which 

means electromagnetic simulation is used 20 times in each generation. 

Therefore, 100 times simulation means the optimization has only been 

carried out for 5 generations. While in surrogate model/GA electromagnetic 

simulation is used only during model establishment and verification of each 

generation. The optimization can carry out for 100 generations. It shown in 

Figure. 15 this method has found the best design parameters in the 76th 

generation. 
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Fig. 15. The evolution curve of surrogate model/GA  
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8 Conclusion 
This paper proposed an efficient topology-based optimization method for 

broadband absorbing material called surrogate model/GA. This method 

combined GA and surrogate model. Using surrogate model to evaluate the 

performance of different structures can avoid excessive electromagnetic 

simulations. In section IV, use this method to optimize a topology-based 

metamaterial structure and designed an absorbing material that could work 

between 8.6 ~ 16.4GHz. Compared with only use GA with the same 

optimization time, the use of the surrogate model/GA has a certain 

improvement in the quality, the range of absorbing wave band has been 

expanded by 1.6 times larger. It could be clearly seen that the use of this 

method greatly improves the optimization efficiency of topology-based 

absorbing material. 

The model in the article is just an example, this method can be applied to 

more complex topology-based structures. It is also practical in the design of 

other metamaterials such as Frequency Selective Surfaces (FSS) and 

electromagnetic band gap structures. The future work will include applying 

this method in other models and choosing different surrogate models for 

different problems. 

In future research, there are still many issues that could be further 

explored. For example, the surrogate model used in this article is the 

Kriging interpolation. In fact, there are many other excellent surrogate 

models to choose, such as Artificial Neural Networks (ANN), Support 

Vector Machines (SVM), Radial Basis Functions (RBF), and so on. For 
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different problems, choosing different surrogate models may further 

improve optimization efficiency and accuracy. 
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