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Identification and Characterization of the Thrombin Binding Sites
on Fibrin*

(Received for publication, April 4, 1996, and in revised form, June 24, 1996)

David A. Meh‡§, Kevin R. Siebenlist‡¶, and Michael W. Mosesson‡

From the ‡University of Wisconsin Medical School, Sinai Samaritan Medical Center and the ¶Department of Basic Health
Sciences, School of Dentistry, Marquette University, Milwaukee, Wisconsin 53233

Thrombin binds to fibrin at two classes of non-sub-
strate sites, one of high affinity and the other of low
affinity. We investigated the location of these thrombin
binding sites by assessing the binding of thrombin to
fibrin lacking or containing g* chains, which are fibrin-
ogen g chain variants that contain a highly anionic car-
boxyl-terminal sequence. We found the high affinity
thrombin binding site to be located exclusively in D
domains on g* chains (Ka, 4.9 3 106 M21; n, 1.05 per g*
chain), whereas the low affinity thrombin binding site
was in the fibrin E domain (Ka, 0.29 3 106 M21; n, 1.69 per
molecule). The amino-terminal b15–42 fibrin sequence is
an important constituent of low affinity binding, since
thrombin binding at this site is greatly diminished in
fibrin molecules lacking this sequence. The tyrosine-
sulfated, thrombin exosite-binding hirudin peptide,
S-Hir53–64 (hirugen), inhibited both low and high affinity
thrombin binding to fibrin (IC50 1.4 and 3.0 mM, respec-
tively). The presence of the high affinity g* chain site on
fibrinogen molecules did not inhibit fibrinogen conver-
sion to fibrin as assessed by thrombin time measure-
ments, and thrombin exosite binding to fibrin at either
site did not inhibit its catalytic activity toward a small
thrombin substrate, S-2238. We infer from these findings
that there are two low affinity non-substrate thrombin
binding sites, one in each half of the dimeric fibrin E
domain, and that they may represent a residual aspect
of thrombin binding and cleavage of its substrate fibrin-
ogen. The high affinity thrombin binding site on g*
chains is a constitutive feature of fibrin as well as
fibrinogen.

Thrombin binds to its substrate fibrinogen in the central
amino-terminal region and cleaves fibrinopeptides A and B
from the Aa and Bb chains, respectively, converting fibrinogen
to fibrin. The thrombin-fibrinogen binding interaction is medi-
ated through an anion-binding fibrinogen recognition exosite in
thrombin (1–3) that is situated in an extended patch of posi-
tively charged residues in the region of the thrombin loop
segment centered around Lys70–Glu80 (4). The exosite also
binds to heparin cofactor II (5), the platelet or endothelial cell
thrombin receptor (6), thrombomodulin (7, 8), GPIba1 (9), as

well as to a strongly anionic sequence in the carboxyl-terminal
region of the leech thrombin inhibitor, hirudin (10–15).
In addition to binding to fibrinogen at its substrate site,

thrombin binds to fibrin at a “non-substrate” site(s) (1, 2, 16–
18). It is commonly believed that non-substrate binding takes
place at the same location as fibrinogen substrate binding,
namely the central E domain. As determined from binding
experiments with 125I-thrombin by Liu et al. (19), two classes of
non-substrate sites exist in fibrin, one of “high” affinity (Ka,
;6 3 105 M21) and the other of “low” affinity (Ka, ;7 3 104

M21). Hogg and Jackson (20) also found two classes of sites in
fibrin with affinity constants of 3.3 3 106 and 3.0 3 104,
respectively. It has been inferred from available information
that all non-substrate thrombin binding, especially that of high
affinity, is in the E domain (2), although to our knowledge this
subject has not been specifically addressed.
Human fibrinogen is chromatographically separable into two

major components (“peak 1” and “peak 2”), which differ with
respect to the structure of their g chains (21). Dimeric peak 1
fibrinogen molecules each contain two gA chains (g1–411V),
whereas peak 2 fibrinogen molecules, which amount to ;15%
of the total fibrinogen population (22), have one gA and one g9
chain (g1–427L) (23, 24). Similar g chain variants have been
identified in rodent (25, 26) and bovine2 fibrinogens and may
exist in other animal species as well (27). In humans, g9 chains
arise through alternative processing of the primary mRNA
transcript (28) and differ structurally in their COOH-terminal
sequences in that gA chain residues 408–411 are replaced in g9
chains by an anionic 20 amino acid sequence (24, 29). In rats
(25, 30) and cows2 gA408–411 is replaced by a shorter but
homologous sequence (Table I). The rat and human g9 chains
are tyrosine-sulfated at g9418 (31, 32) and also at g9422 in
humans.2

gA and g9 chains are functionally equivalent with respect to
factor XIIIa-catalyzed cross-linking (23), but unlike the gA
chain, g9 chains lack the complete platelet binding sequence,
gA400–411, and therefore do not support ADP-induced fibrin-
ogen binding or platelet aggregation (33–35). Our group has
recently presented evidence that plasma factor XIII binds spe-
cifically to g9 chains (36), but little else is known about its
functions. In this report we present compelling evidence that
the anionic carboxyl-terminal g9 chain sequence situated in the
fibrin D domain constitutes the high affinity thrombin binding
site, which is itself separate and distinct from the low affinity
thrombin binding sites that reside in the central E domain.

* This work was supported by a postdoctoral fellowship from the
Wisconsin Affiliate of the American Heart Association and by NHLBI
Grant HL-47000. The costs of publication of this article were defrayed
in part by the payment of page charges. This article must therefore be
hereby marked “advertisement” in accordance with 18 U.S.C. Section
1734 solely to indicate this fact.
§ To whom correspondence should be addressed: Sinai Samaritan

Medical Center, Winter Research Bldg., 836 North Twelfth St., Milwau-
kee, WI 53233. Tel.: 414-219-7744; Fax: 414-219-7477.

1 The abbreviations used are: GPIba, glycoprotein Iba; PPACK, D-
Phe-Pro-Arg chloromethyl ketone; S-2238, H-D-phenylalanyl-L-pipeco-
lyl-L-arginine-p-nitroanilide dihydrochloride; PEG 8000, polyethylene

glycol, average molecular weight 8000; S-Hir53–64, sulfated carboxyl-
terminal residues 53–64 of hirudin; des-Bb-1–42 fibrinogen, fibrinogen
from which the amino-terminal 42 residues of the Bb chain have been
cleaved; b15–42, amino-terminal fibrin b chain sequence.

2 A. Henschen, personal communication.
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MATERIALS AND METHODS

Human fibrinogen fraction I-2 was isolated from normal citrated
plasma by glycine precipitation (37) and separated into peaks 1 and 2
fibrinogen by anion exchange chromatography on DEAE-cellulose (36).
Des-Bb1–42 fibrinogen was produced from peak 1 or peak 2 fibrinogen
by digestion with Crotalus atrox protease III (38). Fibrinogen concen-
trations were determined spectrophotometrically at 280 nm using an
absorbance coefficient of 1.51 ml mg21 cm21 (22). Molecular weights of
340,000 and 325,000 were used for fibrinogen and des Bb1–42 fibrino-
gen, respectively (38, 39).
Fibrin-Sepharose was prepared by coupling CNBr-activated Sepha-

rose with peak 2 fibrinogen and then converting the resin-bound fibrin-
ogen to fibrin in the presence of thrombin (2 units/ml) for 16 h at 4 °C
as described by Heene and Mathias (40). The fibrin-Sepharose was
washed with 1.0 M NaCl, 50 mM HEPES pH 7.4 buffer, followed by 100
mM NaCl, 50 mM HEPES pH 7.4 buffer containing 50 mM CaCl2 and 2
mM phenylmethylsulfonyl fluoride.
Human a-thrombin (specific activity, 3.04 units/mg) was obtained

from Enzyme Research Laboratories, Inc., South Bend, IN. A molecular
weight of 36,500 and an absorbance coefficient of 1.83 ml mg21 cm21

were used for calculating thrombin concentrations (41). PPACK-throm-
bin was prepared by adding a 5-fold molar excess of PPACK (Calbio-
chem) to a-thrombin and after dialysis the mixture was labeled with
125I (42). The labeled protein was separated from free iodine by affinity
chromatography on peak 2 fibrin-Sepharose CL-4B that had been equil-
ibrated with 50 mM HEPES, 100 mM NaCl, pH 7.4, buffer containing
0.01% (w/v) PEG 8000. Elution of thrombin was achieved with HEPES
buffer, pH 7.4, containing either 500 mM NaCl or 40 mM CaCl2.
Factor XIII (1.95 units/mg) was prepared from pooled human plasma

(43) and the activity assayed by the method of Loewy et al. (44). Factor
XIII (500 units/ml) in 100 mM NaCl, 50 mM HEPES, pH 7.4, was
activated to XIIIa in the presence of 500 mM dithiothreitol and 10 mM

CaCl2 by incubation with thrombin (10 units/ml, final) for 30 min at
37 °C (45).
Thrombin-fibrin binding experiments were performed using a mod-

ification of the method reported by Liu et al. (19). Fibrin monomer
solutions were prepared from fibrinogen clotted at 1 mg/ml in 60 mM

NaH2PO4 buffer, pH 6.4, with thrombin (1 unit/ml, final) for 2 h at room
temperature. The clots were synerized and dissolved in 20 mM acetic
acid to .10 mg/ml fibrin and repolymerized in a 10-fold excess of 100
mM NaCl, 50 mM Tris, pH 7.4, buffer containing 40 mM CaCl2 and 2 mM

N-ethylmaleimide. These clots were synerized and dissolved in 20 mM

acetic acid to a 10 mg/ml stock solution. Clots containing 0.5 or 1 nmol
of fibrin were formed by adding a fibrin monomer solution to a 100 mM

NaCl, 50 mM HEPES, 0.01% (w/v) PEG 8000, pH 7.4, buffer containing
varying amounts of 125I-labeled PPACK-thrombin and incubated for 2 h
at room temperature. Clot-bound thrombin was separated from free
thrombin by syneresis of the clot. The final concentration of reactants in
the clotting mixture were fibrin, 2.5 mM, 125I-PPACK-thrombin, 0–37.5
mM, in a final volume of 200 or 400 ml. For clotting mixtures containing
des-Bb1–42 fibrin, which polymerizes slowly and incompletely, full clot
recovery (.95%) was assured by cross-linking the fibrin with factor
XIIIa (25 units/ml) for 2 h at room temperature. After the incubation
period, tubes were centrifuged and thrombin-bound clots separated
from free thrombin by syneresis. The distribution of thrombin bound to
the clot and free in solution was determined by radioactivity counting in
a Packard Multi-prias 4 g counter. The amount of thrombin trapped in
the clot was estimated from the radioactive counts that were retained
in cross-linked clots of peak 1 or des-Bb1–42 peak 1 fibrin in the
presence of 25 mM S-Hir53–64, which had been added to block thrombin
exosite binding to fibrin.
The binding data were graphed as Scatchard plots (46). Data indi-

cating a two-component system were deconvoluted by the method of
Klotz and Hunston (47). It was not technically feasible to reach throm-
bin concentrations which saturated the low affinity site in samples of

peak 2 fibrin that contained high levels of the high affinity component.
In these experiments, the low affinity component was defined by peak
1 (gA,gA) fibrin values and was used for correcting high affinity values
(47). High affinity thrombin binding to des Bb1–42 peak 2 fibrin was
not significantly affected by a low affinity binding component, and these
data were therefore not corrected. The level of thrombin entrapment in
the clots (#4% of total counts) did not significantly effect binding
parameters, and therefore no corrections were applied to the data.
Competitive binding experiments involving thrombin anionic exosite

binding were performed with the sulfated hirudin peptide, S-Hir 53–64,
which was a generous gift from Dr. John Maraganore of Biogen Inc.,
Cambridge, MA. Hirugen at concentrations up to 40 mM was added to
125I-PPACK-thrombin (1 mM) and 0.5 nmol of fibrin at a final volume of
200 ml as described above for thrombin binding measurements. Peptide
concentrations were estimated spectrophotometrically at 215 nm using
an absorbance coefficient of 15.0 ml mg21 cm21 (48).
A Fibrometer Precision Coagulation Timer (BBL Microbiology Sys-

tems) was used to determine the thrombin time for the conversion of
fibrinogen (1 mg/ml final) to fibrin in 50 mM Tris, 100 mM NaCl, pH 7.4
at 37 °C at a thrombin level of 0.6 unit/ml. Hydrolysis of S-2238
(H-D-phenylalanyl-L-pipecolyl-L-arginine-p-nitroanilide dihydrochloride;
Chromogenix, Mölndal, Sweden) by thrombin (3.2 nM) in 0.10 M NaCl,
0.05 M Tris, pH 7.5 buffer, was monitored at 405 nm at room temper-
ature. Samples contained S-2238 (50 mM), with or without peak 1 fibrin
(1 mM), or peak 2 fibrin (1 mM). The hydrolysis rate was estimated from
the increase in absorbance at 405 nm during the first 3 min of the
reaction.

RESULTS

Thrombin Binding to Fibrin—In our studies of thrombin
binding to fibrin we found it useful as a general condition to
covalently cross-link the fibrin polymer in the presence of fac-
tor XIIIa during the binding experiment in order to assure
complete fibrin recovery (.95%). This procedure was particu-
larly useful for recovering des Bb1–42 fibrin clots, which polym-
erize slowly and incompletely in the absence of cross-linking
(49). There were no significant differences in thrombin binding
behavior to cross-linked and non-cross-linked fibrin (Fig. 1),
confirming the findings of Liu et al. (50). Thrombin entrapment
in the clot, as assessed in the presence of 25 mM S-Hir53–64, was
#4% of the total counts and did not significantly change any of
the calculated binding parameters.
Low and High Affinity Binding Sites—Our previous study

with des-Bb1–42 fibrin had indicated that the b15–42 se-
quence was a component of the non-substrate thrombin binding
site in the fibrin E domain (49). To extend those observations
we carried out a systematic study of non-substrate thrombin
binding to several fibrin preparations that differed with respect
to their g chain composition, their Bb1–42 content, or both.
Fraction I-2 fibrin, which has ;15% g9-containing molecules
(22), was studied first (Fig. 2). As assessed from the Scatchard
plot, our results correspond to those reported by Liu et al. (19),
who studied a similar fibrinogen subfraction. The data indicate
two classes of binding sites, one of high affinity (Ka, 5.5 3 106

M21) and the other of low affinity (Ka, 0.453 106 M21) (Table II).
Studies of thrombin binding to peak 1 fibrin, which contains

only gA chains, indicated a single class of binding site with a Ka

of 0.21 3 106 M21, corresponding to the low affinity site in
fraction I-2 fibrin, and having a binding stoichiometry of 1.80
per molecule of fibrin (Fig. 2). Parallel analysis of thrombin

TABLE I
Carboxyl-terminal sequences of g chains and hirudin

Homologous positions are outlined.

Chain (position) Amino acid sequence

Human gA (408–411) A G D V
Human g9 (408–427) V R P E H P A E T E Y E S L Y P E D D L
Rat g9 (408–419) V S V E H E V D V E Y P
Bovine g9 (408–419) V R V E H H V E I E Y D
Hirudin (53–65) N G D F E E I P E E Y L Q

Thrombin Binding Sites on Fibrin23122

D [I] D[I] 



binding to peak 2 fibrin demonstrated that high affinity bind-
ing dominated the Scatchard plot and that there were 0.83 high
affinity sites per fibrin molecule (Fig. 3), a stoichiometry that

corresponds well to the g9 chain content in peak 2 fibrinogen
preparations (48% g9, 52% gA) (51). Low affinity binding in
peak 2 fibrin was too low for accurate quantitation, but was in
the same range as was found for peak 1 or fraction I-2 fibrin.
There was a marked reduction of low affinity binding to

des-Bb1–42 peak 2 fibrin (Fig. 4), and therefore no corrections
to the high affinity values were applied for the presence of a low
affinity component. In the case of des-Bb1–42 peak 1 fibrin,
which lacks a high affinity binding site, reduced levels of low
affinity thrombin binding were found (Fig. 4) and exceeded the
amount that could be attributed to entrapment alone. The
estimated Ka (0.11 3 106 M21) was 38% of that found for peak
1 or fraction I-2 fibrin, but the stoichiometry was the same
(i.e. 1.66 sites per molecule).
Thrombin Exosite-binding Peptide—To provide additional

evidence that the g9 sequence contains the high affinity site for
thrombin exosite binding, we evaluated thrombin binding in
the presence of S-Hir53–64, a well characterized thrombin ex-
osite binding peptide, to des-Bb1–42 peak 2 (high affinity) or
peak 1 (low affinity) fibrin. S-Hir53–64 was an effective compet-
itive inhibitor of thrombin binding to fibrin with an IC50 of 3.0
mM for high affinity thrombin binding and 1.4 mM for low affin-
ity binding (Fig. 5), thus indicating that both classes of sites
bind thrombin through its exosite.
Fibrinogen to Fibrin Conversion and S-2238 Hydrolysis—

The mean thrombin times for peak 1 and peak 2 fibrinogens
were 20.5 6 0.5 and 20.4 6 0.5 s (n 5 5), respectively, indicat-
ing that the presence of the g9 sequence had no measurable
effect on thrombin substrate cleavage of fibrinogen. Hydrolysis
of S-2238 was not inhibited by the presence of peak 1 fibrin or
peak 2 fibrin in the hydrolysis mixture (Table III).

DISCUSSION

These present experiments show that there is a unique high
affinity non-substrate binding site for thrombin in the carbox-
yl-terminal region of the g9 chain and a low affinity class of
binding site in the amino-terminal region of fibrin, the latter
contained in part within the Bb1–42 sequence. In studies of
fraction I-2 fibrinogen, which contains approximately 8% g9
chains, we detected the same two classes of binding sites that
were identified by Liu et al. (19). The binding affinities we
determined were about 10-fold higher for high affinity binding
and 4-fold higher for low affinity binding (Table II). In peak 1
fibrin (gA,gA) only the low affinity binding component was
observed, whereas with peak 2 fibrin (g9,gA), there was in-
creased high affinity thrombin binding corresponding to the
increased content of g9 chains. Overall, high affinity binding
stoichiometry corresponds well to the content of g9 chains, with
one thrombin per g9 chain.
Although the existence and structure of the g9 chain has been

known for many years (21, 23, 51), its role as the high affinity
non-substrate thrombin binding site in fibrin has been over-

FIG. 1. 125I-PPACK-thrombin binding to factor XIIIa-cross-
linked (l; O) and non-cross-linked (E; – – – –) peak 1 or peak 2
fibrin. The curves represent the mean values of three to six separate
experiments for each condition. The regression coefficients for the
curves ranged from 0.91–0.98.

FIG. 2. Scatchard analysis of the binding of 125I-PPACK-throm-
bin to fraction. I-2 fibrin (l) peak 1 fibrin (E). The dashed line
represents the slope of the high affinity binding component in fraction
I-2 fibrin. The broken line represents the slope of the low affinity
component in peak 1 fibrin.

TABLE II

Fibrin fraction n
High affinity sitea

n
Low affinity siteb

Ka 3 1026 6 S.D. No. sites/mol 6 S.D. Ka 3 1026 6 S.D. No. sites/mol 6 S.D.

M
21

M
21

Fraction I-2 4 5.5 6 1.3 0.22 6 0.02 4 0.45 6 0.06 1.60 6 0.20
Peak 1 8 0 0 8 0.21 6 0.05 1.80 6 0.23
Peak 2 6 5.6 6 0.8 0.83 6 0.12 3 Indeterminate Indeterminate

Des-Bb1–42,
Peak 1

4 0 0 4 0.11 6 0.03 1.66 6 0.34

Des-Bb1–42,
Peak 2

6 4.2 6 0.8 0.78 6 0.11 6 Indeterminate Indeterminate

a The mean Ka for the high affinity site based on all determinations (n 5 16) is 4.9 6 1.2 3 106 M21, with 1.05 6 0.27 thrombin binding sites per
g9 chain.

b The mean Ka for the low affinity site based on all determinations (n 5 12) is 0.29 6 0.14 3 106 M21, with 1.69 6 0.25 thrombin binding sites
per fibrin molecule.
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looked for several reasons. First, it has been generally assumed
that the entire thrombin binding site in fibrin was a residual of
the substrate recognition site in fibrinogen. Thus, knowledge
that there were two classes of binding sites in fibrin, coupled
with the observation that high affinity thrombin binding was
only a minor component of the total binding reaction in fraction
I-2 fibrin (19, 20), evidently did not raise suspicion of another
possible thrombin-binding location. Second, most investiga-
tions on this subject have involved only central E domain
structures (17, 18, 52, 53) or in addition, plasmic D fragments
(17, 18) from which the g9 sequence had most likely been
cleaved (54) or which had a low content of g9-containing mole-
cules to begin with (i.e. fraction I-2) (19, 55). Studies of throm-
bin binding to immobilized fibrin (1, 16, 56) or to a modified
fibrin clot (des-Bb1–42 fibrin) (49) could not have distin-
guished the specific location of any binding site.
We would therefore revise the current belief that all non-

substrate thrombin binding takes place in the fibrin E domain,
to stipulate that only low affinity thrombin binding takes place
in this region. We would concur, however, with the notion that
thrombin binding in the E domain is likely to represent a
residual aspect of the site that participated in fibrinogen sub-
strate recognition. Scatchard analyses indicated a stoichiome-
try of 1.69 thrombin molecules per fibrin molecule, suggesting

that there are two low affinity sites in each dimeric fibrin
molecule, corresponding to a fibrinogen substrate recognition
site for each pair of fibrinopeptides (FPA, FPB). Whether rec-
ognition site binding is the same for FPA and FPB cleavage has
yet to be determined.
Unlike the high affinity binding site in the g9 chain, forma-

tion of the low affinity site in the E domain is not restricted to
a single peptide sequence. Consistent with a previous report
(49), our current data suggest that the b15–42 sequence con-
tributes significantly to non-substrate binding and that ;60%
of low affinity binding is lost by removal of this sequence. Other
evidence suggests that the fibrin Aa27–50 sequence contrib-
utes as well to low affinity thrombin binding (18, 53). The g
chains in the E domain have also been proposed as contributors
to the thrombin binding site (17, 18), but the evidence for this
is not well substantiated.
Fibrinogens New York I (des-Bb9–72) and Naples I (Bb A68

T) are dysfibrinogenemias, which have been characterized as
having impaired thrombin binding (57, 58), presumably related
to a defective amino-terminal substrate or non-substrate bind-
ing site. A recent study of recombinant gA-type Bb A68 T
fibrinogen has reaffirmed the importance of Bb68 alanine in
thrombin-mediated cleavage of Naples I fibrinogen (59). In the
case of New York I, which is heterozygotic, thrombin binding to
fibrin was 50% of normal, but there was no evidence to suggest
a high affinity thrombin binding component (57). Similarly,
thrombin binding to homozygous Naples I fibrin was reported
to be absent (58), and thus there was also no collateral evidence
for high affinity thrombin binding to the presumably normal
Naples I g9 chain. However, in another report on this same
family, thrombin binding to fibrin from a homozygous proband
was reduced to only one-third of normal (60). The available
data derived from studies on Naples I fibrin do not permit an
unambiguous distinction to be made as to the presence or
absence of a high affinity binding component, although we
would have expected only low affinity binding to have been
affected.
Direct measurements of thrombin binding to substrate fi-

brinogen molecules have not been reported, owing to the fact
that thrombin binding to its substrate is accompanied by con-

FIG. 3. Scatchard analysis of the binding of 125I-PPACK-throm-
bin to peak 2 fibrin. The dashed line represents the slope of the high
affinity component in peak 2 fibrin. The low affinity component, deter-
mined from the low affinity binding component of peak 1 fibrin, is
represented by the broken line.

FIG. 4. Scatchard analysis of the binding of 125I-PPACK-throm-
bin to des-Bb1–42 peak 2 fibrin (l) or des-Bb1–42 peak 1 fibrin
(E). The solid line represents the high affinity component. The low
affinity component is represented by the broken line.

FIG. 5. S-Hir53–64 (hirugen) inhibition of 125I-PPACK-thrombin
binding to des-Bb1–42 peak 2 fibrin (l) or peak 1 fibrin (E). The
calculated IC50 for each curve is indicated.

TABLE III
Thrombin Hydrolysis of S-2238

Substrate n Initial rate,
DA405 nm/min

S-2238 alone 8 0.12 6 0.01
S-2238 1 peak 1 fibrin 8 0.13 6 0.02
S-2238 1 peak 2 fibrin 9 0.11 6 0.01
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comitant conversion of fibrinogen to fibrin. Instead, estimation
of substrate binding affinities have been made from kinetic
experiments involving peptide A release from fibrinogen pep-
tides or fibrinogen itself. The Km estimated from such studies is
6–11 mM (61–64), and the Kd derived from similar kinetic
studies was 1.3–2.6 mM (65, 66). Our results suggest that the
high affinity non-substrate site has a significantly higher af-
finity for thrombin exosite binding (Kd, 0.26 mM) than that
estimated from the Km or the Kd derived for the substrate site
(61–66). Nevertheless, the g9 site itself in fibrinogen is not an
effective competitor for thrombin binding and cleavage at the
fibrinogen substrate site, as assessed by our thrombin time
measurements in this study and in another (22). It therefore
seems likely that the substrate binding site itself will prove to
have a higher binding affinity for thrombin than has been
estimated previously from Km measurements, by analogy with
hirudin, which has a higher binding affinity for thrombin as a
bivalent molecule than does its COOH-terminal exosite binding
sequence alone.
The physiological role that the g9 sequence plays in modu-

lating thrombin function still remains to be determined. It is
very likely that the measurable thrombin clotting activity
found in fibrin and fibrin degradation products (67–70) is at-
tributable to non-substrate binding at the g9 site, or the low
affinity site, or at both sites. In light of our present findings, it
will be important to study the relationship between thrombin
binding to g9-containing fibrin and thrombin activation of co-
agulation factors such as factors V, VIII, or XIII or cellular
receptors such as those on platelets and endothelial cells.
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