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Abstract 
Due to increased government regulations on environment, health, and safety, the cost of on-
site bridge painting has quadrupled over the past several years. The construction industry faces 
a great challenge in how to control the increased costs of bridge painting and meet the 
regulations at the same time. A possible solution to address this challenge is to develop a 
robotic bridge painting system. The development of the robotic system can be justified by the 
potential improvements in safety and productivity. This paper presents the development and 
testing of an Intelligent Painting Process Planner. The Planner, built based on bridge feature 
scheme, is the key component for the robotic bridge painting system that integrates the 
painting process planning, robot path planning, cost optimization, and quality control functions. 

https://doi.org/10.1061/(ASCE)0733-9364(2007)133:4(335)
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During the development process, lab experiments were conducted to determine the values of 
painting process planning parameters and coating thickness distribution functions. Field tests 
demonstrated that the prototype robotic bridge painting system achieved the specified 
painting quality using the parameter values provided by the Planner. Areas that need to be 
improved in the future were also identified. 

Introduction 
There are two reasons for using paint. The first, and oldest reason, is to beautify and enhance 
the appearance of an object. The second reason is to protect an object from its environment or 
wear inflicted through use. Using the current technologies, a typical on-site bridge painting 
operation involves sandblasting the bridge surface to remove old paint (most of the time lead 
based) and rust, and then painting it to protect the surface from the environment. Painting an 
on-site bridge is not only labor intensive, but also dangerous. When a contractor accepts the 
job he/she must establish educational and medical programs to prepare workers for the job. All 
workers must attend a safety workshop where they learn about the hazards of lead-based 
paint, clean up techniques, and other procedures to ensure they adhere to all Occupational 
Safety and Health Administration (OSHA) regulations. Workers are also subject to medical 
examinations before, during, and after the project. Doctors test them for chemicals in their 
blood and to ensure they breathe well enough to use the breathing equipment. In addition to 
educational and medical programs, the contractor must encapsulate the area to be painted. 
The reason for this is to keep lead-based paint fragments and dust from entering the 
environment. The encapsulation structure, usually consisting of a steel framework covering 
with panels made of aluminum or fiberglass, must meet OSHA’s standards. The standards 
require a ventilation system to move and clean the air within the work area. Other stipulations 
require the contractor to provide a decontamination area, so workers can shower and put on 
clean clothes before leaving the project work area. Over the past several years, the cost of on-
site bridge painting has quadrupled due to increasing environmental and health regulations 
(ODOT 2004). The current situation calls for innovative research that addresses the need for 
new technologies in the area of on-site bridge painting that will ease costs and meet 
government regulations at the same time. 

Applications of Robotic Painting Systems 
Automated and robotic systems for construction applications have advanced dramatically over 
the past few years (Navon and Shpatnitsky 2005; Cho et al. 2004; Kim et al. 2003; Akinci et al. 
2002). These systems were developed to reduce labor requirements and costs, increase 
productivity, and improve quality and safety. In the specific area of robotic surface painting, 
research has being carried out by several universities and industries throughout the world. 
Surface painting is one of the construction operations that is very suitable for robotics because 
it is labor intensive, consists of simple and repetitive motions (Skibniewski and Hendrickson 
1988). Kumagai Gumi, Ltd. (Tokyo, Japan) has developed the “FR-1” surface-finishing robot for 



walls (Tokioka et al. 1989). Researchers at the University of Texas at Austin have successfully 
developed a prototype automated machine system to blast and paint large diameter steel 
storage tanks common in the petrochemical industry (Warne 1994). The prototype design, the 
Automated Surface Finishing System, was completed in 1990. 

The researchers at the North Carolina State University developed a robotic bridge paint 
removal system (Moon and Bernold 1995). The purpose of the system is to provide a safe 
working environment during a bridge paint removal operation. The first prototype was 
successfully demonstrated in August 1994. Based on this success, Bai and Bernold studied the 
process planning parameters that control the robotic bridge painting quality (Bai and Bernold 
2001). Process planning is the fundamental step needed to sequence a task and to describe 
how a particular task will be accomplished (Chang et al. 1991). For robotic bridge painting 
operations, process planning is the function that establishes what parameters are needed to 
paint a piece of steel bridge surface and to achieve the specified quality. 

Problem Statement and Research Objectives 
Due to increased on-site bridge painting cost and government regulations, the construction 
industry faces a great challenge in how to control the increase of the bridge painting cost and 
meet government regulations at the same time. A possible solution to address this challenge is 
to develop a robotic bridge painting system that can perform the painting operations in place of 
human beings. To make robotic bridge painting a reality, there is a need to develop a planning 
and control model to manage the bridge painting process so that the required painting quality 
can be achieved. The objectives of this research were to develop and test an Intelligent Painting 
Process Planner (IP3), which is the key element in the planning and control model for the on-
site robotic bridge painting. The IP3, built based on bridge feature scheme, integrates the 
painting process planning, robot path planning, cost optimization, and quality control functions. 
It is configured in two major components, which are (1) the process planning generator; and (2) 
the parameter editor. A total of eight process planning parameters are provided by the 
generator, which can be modified by the parameter editor if necessary. These are: (1) the air 
pressure; (2) the fluid pressure; (3) the spray gun pitch angle; (4) the spray gun roll angle; (5) 
the distance between spray gun and bridge surface; (6) the spray gun moving speed; (7) the 
number of spray runs; and (8) the reposition distance between two adjacent spray runs. 
Parameters 1–6 are used to set up the spray gun, and 7 and 8 are used for robot path planning. 

Values for some parameters (e.g., air and fluid pressures) were determined through lab 
experiments based on the criterion of achieving the required quality. Other parameters (e.g., 
distance and speed) were determined based on achieving both the quality and the minimum 
total direct cost for bridge painting. The requirements for bridge painting quality include two 
elements: (l) the coating thickness; and (2) the coating appearance. Paint on steel bridge is 
applied in a series of coats ranging from 1 to 6mils6mils [one mil is equal 
to 0.025mm0.025mm(0.001in.)(0.001in.)]. Each project specifies its own level of quality, which 



is the minimum thickness that must be satisfied. An appearance check is a necessary step in 
ensuring that the surface will not corrode more rapidly than expected. Common appearance 
failures include: (1) edge fail-ure; (2) dry spray; (3) holidays/pinholes; and (4) runs/sags (Pinney 
1985). Besides the lab experiments, field tests were conducted to validate the developed IP3. 

Topics closely related to the development of the IP3 are presented in the rest of the paper. 
These include (1) bridge features; (2) planning and control model; (3) lab experiments; 
(4) IP3 development; (5) field experiments; and (6) contributions, conclusions, and 
recommendations. 

Bridge Features 
The concept of “feature” is used in many fields. However, a unified definition of feature does 
not exist (Fu et al. 1993). There are form features (also called shape features or geometric 
features), design features, and manufacturing features. In other words, the definition of a 
feature is application dependent. In this research, features are defined as meaningful 
representations of geometry that can be used to construct the spray painting process. Thus, 
painting operations on a bridge can be broken down into painting on each bridge feature. Each 
feature corresponds to a set of process planning parameters that are needed for setting up the 
spray gun. These parameters are: (1) the air pressure; (2) the fluid pressure; (3) the spray gun 
pitch angle; (4) the spray gun roll angle; (5) the distance between spray gun and bridge surface; 
and (6) the spray gun moving speed. 

To create a “catalog” of features for the steel bridge, bridge design drawings provided by the 
North Carolina Department of Transportation (NCDOT) were studied. The highway steel bridge 
structure was organized into four basic components: (1) beam (or girder); (2) bracing; (3) 
bearing; and (4) connections. In cooperation with the engineers at NCDOT Bridge Maintenance 
Department, basic features for each of the four components were developed. An example of 
features for a C-channel beam is shown in Fig. 1. 

An object can be identified easily using human eye. Based on this fact, a vision system was 
developed for the operator to detect bridge features. The vision system includes: (1) a color 
video camera; (2) Image-Pro Plus software (IP Plus); and (3) vision software that allows the 
video camera to be directly integrated with a personal computer and IP Plus. The camera was 
mounted on the end of the manipulator that allows the operator to view the bridge structures 
under the deck. In addition to displaying the image, the vision system can be used to calculate 
the dimensions of the areas that need to be painted. 

Planning and Control Model for Robotic Bridge Painting 
After the bridge features were defined, the next task was to develop a planning and control 
model for robotic bridge painting, shown in Fig. 2. At the beginning of the model, an operator 
identifies the bridge feature(s) using the vision system. Given the feature(s) and along with the 
specified quality, on-site physical constraints, painting area dimensions, and thickness 



distribution functions, the IP3 will generate a set of painting process planning parameters for 
setting up the spray gun and planning the robot path. Then, the operator will perform a trial 
spray painting and monitor the process using the vision system in real time. If there is no quality 
problem, the painting operation will continue. Otherwise, modification is needed. The operator 
provides the information about the problem to the IP3. The IP3 addresses the problems and a 
new set of parameters will be given to the operator. Then, the operator resets the robotic 
system and starts painting again. This process will continue until the painting is satisfactory. 
Sometimes it is impossible to set up the robotic painting system right the first time, so 
modifications are necessary. 

The key component in the planning and control model is the IP3. To develop the IP3, the 
following questions arose: (1) what are parameter values to achieve the required quality for 
different bridge features; and (2) what are the coating thickness distribution functions for 
different spray operations. Laboratory experiments were conducted to answer these questions. 

Laboratory Experiments 
Factorial experiments were conducted to investigate the values of the process planning 
parameters for the bridge features and the thickness distribution functions. A factorial 
experiment is one in which responses are observed for every combination of factor levels 
(Freund and Wilson 1993). In this research the initial responses were the coating thickness and 
appearance. During the experiments, the analysis on the appearance was dropped because the 
coating appearance was acceptable for all the experiments. The factors were air pressure; fluid 
pressure; pitch angle; roll angle; distance; and moving speed. The various settings of these 
factors in the experiments are called levels. The experimental apparatus included: (1) a Graco 
AA3000 automatic air-assisted airless spray gun; (2) a Graco pump; (3) a stepper motor; (4) a 
Centroid motion controller; and (5) a personal computer. Fig. 3 shows the layout of the 
experiment facilities. 

In the laboratory experiments, steel strips were used as substitutes for the bridge features. The 
data collection procedure, which was kept the same during the entire experiment process, and 
experiment results on the web-surface features (including inside-web-surface and outside-web-
surface features) were published (Bai and Bernold 2001). This paper presents the experiment’s 
results on the inside-beveled-bottom-corner (IBBC) feature that have not been previously 
published. 

Experiment Setting on the IBBC Feature 
The IBBC feature is formed by two flat surfaces with a 90° angle. Fig. 4 presents the experiment 
setting for the IBBC feature. The spray gun roll angle was set at zero degrees during the entire 
experiment. Initially, the spray pitch angle was set at 45° for the development of the thickness 
regression model for the IBBC feature. Later, it was changed to 30° and then 15° to examine 
how the thickness distribution functions changed accordingly. The air and fluid pressures were 



set at 137.8 and 3,445kPa (20 and 500psi), respectively. The air and the fluid pressures are 
selected based on the coating thickness specified in the project specification. Most of the 
bridge painting projects require 1.5mils coating thickness for each layer. Results of the initial 
laboratory experiments indicated that the air and the fluid pressures needed to be set at 137.8 
and 3,445kPa (20 and 500psi), respectively, for 1.5mils thickness (Bai and Bernold 2001). The 
speed had two factor levels that were 25.4 and 35.6cm ∕ s (10 and 14in.∕ s). There were three 
factor levels, 20.3, 25.4, and 30.5cm30.5cm (8, 10, and 12in..), for the distance. 

Data Analyses 
A total of six experiments were conducted in the lab to develop the thickness regression model 
for the IBBC feature. Twelve thickness measurement points were taken for each experiment. 
SAS Software was used to analyze the thickness measurement data. Results of the data 
analyses indicated that the thickness regression model for the IBBC feature was 

𝑌𝑌𝑡𝑡 = 3.23 − 0.075𝑋𝑋1 − 0.075𝑋𝑋2 

(1) 

where 𝑌𝑌1 =coating thickness; 𝑋𝑋1=speed; and 𝑋𝑋2=distance between the spray gun and the corner 
of IBBC feature (point 0,0 in Fig. 4). The multiple coefficient of determination (𝑅𝑅2) was 0.98 for 
the model. Depending on the presence of obstacles around the bridge structure, the spray gun 
may be set up at 20.3cm (8in.) from the structure with the speed at 35.6cm ∕ s (14in.∕
s);  25.4cm (10in. ) with the speed at 30.5cm ∕ s (12in.∕ s); or 30.5cm (12in. ) with the speed 
at 25.4cm ∕ s (10in.∕ s) to achieve the thickness of 1.5mils with 95% level of confidence. These 
results were calculated based on the Eq. (1), using the unit of inch. 

Using the nonlinear regression procedure in SAS software package, it was determined through 
trial and error that the thickness measurement data for these experiment settings fit the 
exponential density function, which was 

𝑌𝑌 = 𝐶𝐶𝑒𝑒(−𝜃𝜃𝜃𝜃)  

(2) 

where 𝑋𝑋=distance coordinate on Section A or B of the steel strip (𝑋𝑋 = 0 at the corner of the 
feature); 𝑌𝑌=thickness corresponding to each 𝑋𝑋; and both 𝐶𝐶 and 𝜃𝜃=parameters of the 
exponential density function. Table 1 shows the values of the exponential density function 
parameters for the different spray gun settings. A total of three experiments were conducted in 
the lab to develop the exponential density function for each spray gun setting. Twelve thickness 
measurement points were taken for each experiment. For the 45° pitch-angle setting the 
thickness distribution functions on Sections A and B (shown in Fig. 4) were the same because A 
and B were symmetrical. When the value of the pitch angle was changed, the thickness 
distribution functions on Sections A and B were no longer the same. For Section A the thickness 
increased near the corner area and dropped quicker along the distance when the pitch angle 



got smaller. The thickness decreased for Section B when the angle got smaller. Based on the 
experiment results, the spray gun pitch angle at 45° was the best setting because it produced 
the widest effective width on both Sections A and B: an effective width is a section of the 
overall spray painting width on which no single thickness measurement is less than the 
specified thickness. Whenever possible, the pitch angle should be set at 45° for painting the 
IBBC feature. 



Table 1. Values of the Parameters for Exponential Density Functions 
  Spray gun angle 

(degrees) 
           

  15    30    45    
  Section A  Section 

B 
 Section 

A 
 Section 

B 
 Section 

A 
 Section 

B 
 

Distance 
(cm) 

Speed 
(cm/s) 

θ C θ C θ C θ C θ C θ C 

20.3 35.6 0.34 2.37 - - 0.42 2.37 - - 0.24 1.92 0.24 1.92 
25.4 30.5 0.26 2.40 - - 0.36 2.46 0.12 1.51 0.22 1.79 0.22 1.79 
30.5 25.4 0.28 2.89 0.22 1.61 0.24 2.72 0.20 2.04 0.14 2.18 0.14 2.18 

Note:—=data was not recorded because the coating on the surface was not thick enough. 

 



Laboratory experiments demonstrated that multiple linear regression models could be 
established between the coating thickness and the process planning parameters for different 
bridge features. The thickness distribution functions for the IBBC feature were exponential 
density functions for both flat surfaces that form the feature. For the web-surface feature, 
based on the previous experiments the thickness distribution function was a logistic density 
function if the spray gun was set perpendicular to the bridge surface, and a gamma function if 
the gun was set at other angles (Bai and Bernold 2001). The knowledge gained from the 
experiments was used to develop the IP3. 

IP3 Development 
Fig. 5 shows the overall structure of the IP3, which has two major components: (1) the process 
planning generator and (2) the parameter editor. Before running the process planning 
generator, a user needs to have the following information (input): (1) required coating 
thickness from the project specification; (2) bridge feature(s); (3) dimensions of the painting 
area; (4) spray gun constraint; and (5) distance constraint. Spray gun and distance constraints 
represent the presence of obstacles in the project site that prevent the operator from setting 
the spray gun at certain angle and/or distance. The vision system can be used to detect the 
bridge feature(s) and dimensions as described previously. Because the painting operation 
generally follows the paint removal operation and both operations use the same robot with 
different end effectors, the spray gun angle constraint and the distance constraint are known 
through the painting removal operation (Moon and Bernold 1995). 

After running the process planning generator, eight painting process planning parameters 
(output) are generated for the operator to set up the spray gun and conduct the robot path 
planning. They are (1) air pressure; (2) fluid pressure; (3) spray gun pitch angle; (4) spray gun 
roll angle; (5) distance between spray gun and bridge surface; (6) spray gun moving speed; (7) 
number of spray runs; and (8) reposition distance between two adjacent spray runs. Then a trial 
spray painting is performed and monitored using the vision system in real time. If there is no 
problem in coating quality, the spray painting on bridge surface will continue. Otherwise, 
modifications of the parameters are needed. In the IP3 environment the operator provides the 
information about problems to the parameter editor, and a new set of process planning 
parameters is generated. The operator resets the spray painting system and starts painting 
again. This process will continue until satisfactory on quality is achieved. The creation of the 
parameter editor is the subject for future research. This paper presents the development of the 
process planning generator. 

Fig. 6 shows the structure of the process planning generator that provides eight process 
planning parameters. Selections of parameter values are based on two criteria: (1) satisfying 
the required quality; and (2) minimizing the total direct cost of the spray painting operation. 
The following sections describe how each parameter is chosen. 



Selecting the Air and the Fluid Pressures 
The air and the fluid pressures are selected based on the coating thickness specified in the 
project specification. Most of the bridge painting projects require 1.5mils coating thickness for 
each layer. Results of the lab experiments indicated that the air and the fluid pressures needed 
to be set at 137.8 and 3,445kPa (20 and 500psi), respectively, for 1.5mils thickness (Bai and 
Bernold 2001). 

The relationship between the paint thickness and the spray pressures can be represented using 
an IF-THEN-ELSE conditional statement of AutoLISP language. The statement is explained as the 
following: “IF the condition is true, execute the THEN (first) expression; IF it is not true, execute 
the ELSE (second) expression.” A multiple IF routine called “COND Structure” is also available in 
AutoLISP that can be used to handle any number of test conditions. 

Selecting the Spray Gun Pitch and Roll Angles 
The spray gun pitch angle is the angle between the central axis of the spray gun and the bridge 
surface to be painted. If the painting area is a plane surface, the gun needs to be set up 
perpendicular to the surface, which means the pitch angle is 90° (Bai and Bernold 2001). If the 
area includes a right angle such as the IBBC feature, the pitch angle should be set at 45° if there 
is no physical constraint, which was described in the section entitled “Data Analyses.” 

The spray gun roll angle is the angle formed between the orifice of the gun and the vertical axis 
(𝑌𝑌-axis). Most of the time the roll angle is set at 0°. It is possible that the spray painting width 
may be larger than the feature dimension. Where painting such a feature, the overspray paint 
will reach adjacent object(s) or the environment. An effective method for addressing this 
problem is to reduce the spray width by rotating the spray gun orifice (changing the roll angle). 
The required value of the roll angle is determined based on the dimension of the feature and 
the spray width under a specific setting. Currently, the IP3 only assigns 0° to the roll angle; and 
further research is needed so the roll angle can be set up at different degrees. 

Selecting Distance, Speed, Number of Runs, and Reposition Distance 
Values of the distance, the speed, the number of runs, and the gun reposition distance between 
two spray runs are selected based on the criteria that the specified painting quality and the 
minimum total direct cost of the spray painting operation will be achieved. The total direct cost 
is defined as the materials cost plus the operation cost that is written as follows: 

𝑇𝑇𝐶𝐶 = 𝑀𝑀𝐶𝐶 + 𝑂𝑂𝐶𝐶  

(3) 

where 𝑇𝑇𝐶𝐶=total direct cost ($); 𝑀𝑀𝐶𝐶=material cost ($); and 𝑂𝑂𝐶𝐶=operation cost ($). The material 
cost is determined based on the flow rate of the spray gun, the material (paint) unit cost, and 
time the gun is in operation. It can be described as follows: 

𝑀𝑀𝐶𝐶 = 𝐹𝐹𝑅𝑅𝑀𝑀UC𝑆𝑆𝑇𝑇 



(4) 

where 𝐹𝐹𝑅𝑅=flowrate of the spray gun (L/s); 𝑀𝑀UC=material unit cost ($/L); and 𝑆𝑆𝑇𝑇=spray time (s). 
The flowrate is a function of the spray gun tip size and the fluid pressure, and is available from 
the spray gun manufacturer. Because the material unit price is usually known in the market, the 
only unknown variable in Eq. (4) is the spray time. 

The operation costs include the equipment costs and labor costs, and can be defined as 

𝑂𝑂𝐶𝐶 = (𝐸𝐸UC + 𝐿𝐿UC)𝑂𝑂𝑇𝑇 

(5) 

where 𝐸𝐸UC=equipment unit cost ($/s); 𝐿𝐿UC=labor unit cost ($/s); and 𝑂𝑂𝑇𝑇=operation time (s). The 
equipment unit cost and the labor unit cost can be determined using current market rates or 
historical data, so the only unknown variable in Eq. (5) is the operation time. 

Fig. 7 shows a spray gun moving path for a hypothetical painting operation with two spray runs 
and one reposition. To prevent appearance defects such as coating runs, the moving path must 
include acceleration and deceleration distances. Both distances are assumed to be equal to the 
spray gun moving speed [𝑆𝑆𝑃𝑃 (cm/s)] times one second. The terms used to describe the different 
segments of the moving path are defined as follows: 

• Spray gun travel distance (𝑇𝑇𝐷𝐷) (cm): from Points 1 to 8; 
• Spray run (𝑆𝑆𝑅𝑅) (cm): from Points 1 to 4, and from Points 5 to 8; 
• Spray painting distance (𝑃𝑃𝐷𝐷) (cm): from Points 2 to 3, and from Points 6 to 7; 
• Acceleration distance (𝐴𝐴𝐷𝐷) (cm): from Points 1 to 2, and from Points 5 to 6; 
• Deceleration distance (𝐷𝐷𝐷𝐷) (cm): from Points 3 to 4, and from Points 7 to 8; and 
• Reposition distance (𝑅𝑅𝐷𝐷) (cm): from Points 4 to 5. 

 

If the spray gun moving speed and the dimensions of the area [length (cm) and width (cm)] are 
known, spray time [𝑆𝑆𝑇𝑇 (s)] can be determined using the spray painting distance (𝑃𝑃𝐷𝐷) divided by 
the speed. Operation time [𝑂𝑂𝑇𝑇 s] can be calculated using the spray gun travel 
distance (𝑇𝑇𝐷𝐷) divided by the speed. Thus, the relationship between spray time and operation 
time can be represented in the following equation: 

𝑆𝑆𝑇𝑇 = 𝑂𝑂𝑇𝑇 − 2𝑁𝑁𝑅𝑅 − (𝑁𝑁𝑅𝑅 − 1)𝑅𝑅𝐷𝐷 ∕ 𝑆𝑆𝑃𝑃 

(6) 

where 𝑁𝑁𝑅𝑅=number of spray runs. The assumptions for this equation are: (1) it takes one second 
for the spray gun to travel the acceleration distance (from Points 1 to 2 or from Points 5 to 6) or 
the deceleration distance (from Points 3 to 4 or from Points 7 to 8) and (2) the spray gun 
moving speed during painting (from Points 2 to 3 and from Points 6 to 7) and the reposition 
distance (𝑅𝑅𝐷𝐷) for the entire operation will remain constant. Substituting Eq. (4) for the material 



cost, Eq. (5) for the operation cost, and Eq. (6) for spray time, the total cost [Eq. (3)] can be 
written as follows: 

𝑇𝑇𝐶𝐶 = (𝐿𝐿UC + 𝐸𝐸UC + 𝐹𝐹𝑅𝑅𝑀𝑀UC)𝑂𝑂𝑇𝑇 − 2𝐹𝐹𝑅𝑅𝑀𝑀UC𝑁𝑁𝑅𝑅 − 𝐹𝐹𝑅𝑅𝑀𝑀UC(𝑁𝑁𝑅𝑅 − 1)𝑅𝑅𝐷𝐷 ∕ 𝑆𝑆𝑃𝑃  

(7) 

The labor unit cost (𝐿𝐿UC), the equipment unit cost (𝐸𝐸UC), the material unit cost (𝑀𝑀UC), and the 
flow rate (𝐹𝐹𝑅𝑅) are usually known or can be estimated using historical data. Values of the 
operation time (𝑂𝑂𝑇𝑇), the number of runs (𝑁𝑁𝑅𝑅), and the reposition distance (𝑅𝑅𝐷𝐷) relate to the 
required coating thickness, the dimensions of the painting area, and the thickness distribution 
functions that were investigated previously [e.g., Eq. (2)]. 

Knowing the thickness distribution functions and total direct cost formula [Eq. (7)], the 
minimization by enumeration method is used to determine the distance, the speed, the 
number of runs, and the reposition distance that will achieve the required quality and the 
minimum total direct cost for a spray painting operation. The algorithm for implementing this 
method is described as follows. 

• Step 1: Determine whether there is an obstacle to prevent the operator positioning 
the spray gun. 

• Step 2: Set up the spray gun at distance 20.3, 25.4, or 30.5cm (18, 10, or 12in., 
respectively) if there is no impediment. If there is an obstacle, the gun has to be set 
up at distance to avoid the obstacle. The method to handle this situation is the topic 
for future research. 

• Step 3: Select all possible speeds for each possible distance. For example, at a 
distance of 30.5cm (12in. ), the speed could be 25.4, 30.5 or 35.6cm (10, 12, 
or 14in., respectively) per second. 

• Step 4: Determine the thickness distribution function for each combination of spray 
settings. 

• Step 5: Calculate the number of runs based on the specified thickness (from project 
specifications), the dimensions of the area to be painted, and the thickness 
distribution function for each combination. With the required thickness plus the 
thickness distribution function, it is possible to calculate the required overlap 
dimensions between two spray runs in order to achieve the required thickness. The 
number of runs to cover the entire painting area can be determined using the 
thickness distribution function, the overlap dimensions between two spray runs, and 
the dimensions of the painting area. 

• Step 6: Calculate the reposition distance based on the thickness distribution function 
and the number of runs for each combination with the condition that the overlap 
between the two spray runs must be greater or equal to the specified thickness. 

• Step 7: Calculate the operation time based on the spray run (𝑆𝑆𝑅𝑅), the number of 
runs, the reposition distance, and the speed for each combination. 



• Step 8: Calculate the total direct cost [using Eq. (7)] for each combination and select 
the distance, the speed, the number of runs, and the reposition distance that result 
the lowest total direct cost. 

 

Using this algorithm, the bridge painting operation may achieve not only the minimum total 
direct cost but also the required quality. 

Field Experiments 
The developed IP3 was tested at the equipment depot at the NCDOT. The purpose of the field 
tests was to validate whether the painting quality could be achieved using the values of 
parameters provided by the IP3. A prototype robotic bridge painting system was built with 
major test apparatus including (1) a modified Peeper crane truck with three crane boom 
sections; (2) a robotic arm; (3) a spray gun; (4) a spray pump; (5) an air compressor; (6) a vision 
system; (7) robotic system control hardware and software; and (8) a personal computer with 
the IP3 program. Fig. 8 shows a view of the testing site, and Fig. 9 presents the robotic arm with 
the spray gun. 

The crane boom is made up of three sections of which the third section was retrofitted. An 
actuated platform with a linear sliding table was built for positioning the robotic arm. The 
platform was attached to the end of the third section of crane boom. The sliding table provided 
independent linear movement for the robot arm. The developed vision system and ultrasonic 
sensors were mounted on the platform to measure the dimensions of a painting area and the 
distance between the spray gun and the steel surface. The sensory data were also used for 
accurate deployment of the robotic painting system under the bridge deck. 

Conditions of field tests were set up as follows: (1) required paint thickness was 1.5mils; (2) 
bridge feature was outside-web-surface (OWS); (3) painting area dimensions (length × width) 
were 61.0cm by 38.1cm (24in. by 15in.); and (4) there were no physical obstacles. After 
running the IP3 program, the following values were assigned to the eight process planning 
parameters including: (1) 138kPa (20psi) to the air pressure; (2) 3,445kPa (500psi) to the 
fluid pressure; (3) 90° to the spray gun pitch angle; (4) 0° to the spray gun roll angle; 
(5) 30.5cm (12in. ) to the distance; (6) 30.5cm ∕ s (12in.∕ s) to the speed; (7) 2 to the number 
of runs; and (8) 22.9cm (9in. ) to the spray gun reposition distance between the two spray 
runs. 

Two tests were conducted on the OWS feature in the field due to limited resources. A total of 
21 thickness measurement points were taken from each field experiment. The data collection 
procedure in the field was the same as the one in the lab. Results of the tests demonstrated 
that both the coating thickness and appearance satisfied the quality requirements within the 
specified bridge painting area. Also, comparisons were made between the thickness 
measurement data and the predicted data from the developed thickness distribution function. 
The maximum difference between the measurement value and predicted value was =



0.2mils (measurement value - predicted value == 0.2mils). For some measurement points, the 
values were smaller than the predicted values. However, the percentage of difference was not 
greater than 20%, which is the limit set by the Steel Structures Painting Manual (SSPC 1994). 

Contributions, Conclusions, and Recommendations 
Due to increasing government regulations on environment, health, and safety, the construction 
industry faces a great challenge in how to control the increase of the on-site bridge painting 
costs and also meet the regulations. A possible solution to address this challenge is to develop a 
robotic bridge painting system that can perform the painting operations in place of human 
beings. Because of the complexity of the construction environment, only a few robotic systems 
have been developed and used in construction operations. The research effort presented in this 
paper made a significant contribution to the advancement of robotic applications in the 
construction industry by developing the IP3, a key component in the planning and control 
model that manages on-site bridge painting operations. It also contributed to the practice of 
computer-integrated construction, specifically as it is extended to support robotic bridge 
painting operations. 

A unique bridge feature scheme has been developed to represent components of a steel 
bridge. Thus, painting operations on a bridge can be broken down by each bridge feature. The 
feature scheme lays the foundation for automating the bridge painting process. 

Factorial experiments were performed in the laboratory to determine the thickness regression 
model and the coating thickness distribution functions. The knowledge gained from the 
experiments became the foundation for building the IP3. The IP3, built based on a bridge feature 
scheme, integrates the painting process planning, robot path planning, cost optimization, and 
quality control functions. It can provide values for eight process planning parameters for setting 
up the spray gun and conducting the robot path planning. Field tests had been conducted to 
validate the performance of a prototype robotic bridge painting system equipped with the IP3. 
The outcome of the field experiments demonstrated that the coating thickness and appearance 
satisfied the quality requirements using the parameter values provided by the IP3. As a result, 
the robotic bridge painting becomes reality. 

This research can be extended in several ways. First, additional field experiments should be 
conducted on other bridge features such as the IBBC feature to examine the accuracy of the IP3. 
Second, there is a need to further develop the parameter editor component so that the IP3 will 
be able to perform the necessary modifications on the process planning parameters. 
Modifications are necessary because sometimes it is impossible to set up the robotic bridge 
painting system right the first time. Third, the current IP3 can only assign 0° to the spray gun roll 
angle. Further research is needed so that the roll angle can be set at different degrees to 
prevent overspray. This option is important because the overspray paint is dangerous to the 
environment. Fourth, the robotic system should be able to handle physical obstacles. For 
instance, if there is an obstacle in front of the robotic system, the spray gun needs to be set at a 



different pitch angle and distance that may be beyond the capability of current IP3. To address 
this problem, bridge structures need to be studied in detail and more lab experiments are 
required so that the knowledge base within the IP3 can be expanded. Finally, further research is 
needed to build the robotic painting system on a larger and more powerful crane truck. The 
truck can hold a larger sliding table so that robot arm can move a longer distance to cover large 
painting areas. 

Notation 
The following symbols are used in this paper: 

𝐴𝐴𝐷𝐷 = acceleration distance; 
𝐶𝐶 = parameter of exponential density function; 
𝐷𝐷𝐷𝐷 = deceleration distance; 
𝐸𝐸UC = equipment unit cost; 
𝐹𝐹𝑅𝑅 = flow rate of the spray gun; 
𝐿𝐿UC = labor unit cost; 
𝑀𝑀𝐶𝐶  = material cost; 
𝑀𝑀UC = material unit cost; 
𝑁𝑁𝑅𝑅  = number of spray runs; 
𝑂𝑂𝐶𝐶  = operation cost; 
𝑂𝑂𝑇𝑇 = operation time; 
𝑃𝑃𝐷𝐷 = spray painting distance; 
𝑅𝑅𝐷𝐷 = reposition distance; 
𝑆𝑆𝑃𝑃 = spray gun moving speed; 
𝑆𝑆𝑅𝑅 = spray run; 
𝑆𝑆𝑇𝑇 = spray time; 
𝑇𝑇𝐶𝐶  = total direct cost; 
𝑇𝑇𝐷𝐷 = spray gun travel distance; 
𝑋𝑋 = distance coordinate; 
𝑋𝑋1 = spray gun moving speed; 
𝑋𝑋2 = distance between the spray gun and the corner of the IBBC feature; 
𝑌𝑌 = the thickness corresponding to each XX; 
𝑌𝑌𝑡𝑡 = coating thickness; and 
𝜃𝜃 = parameter of exponential density function. 
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