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Abstract 

In this paper, we consider the estimation of stress-strength reliability 𝑅 = 𝑃(𝑋 < 𝑌) under the type-II right 

censored data when the distributions of both the stress and the strength are Weibull. First, we discuss the 

estimation of 𝑅 based on simple random sampling (SRS). Then, we use the effective and the efficient 

alternative of SRS which is known to be the ranked set sampling (RSS) to estimate 𝑅. In the estimation 

procedure of 𝑅, we use two different approaches they are i) maximum likelihood (ML) which requires an 

iterative method and ii) modified maximum likelihood (MML) which has an explicit form. Monte-Carlo 

simulation study is performed to identify the efficient sampling method (i.e., SRS or RSS) and the efficient 

estimation method (i.e., ML or MML). Finally, strength and wind speed data sets are analyzed to illustrate 

the proposed methods in practice. 

Keywords: Stress-strength model; Ranked set sampling; Type-II right censoring; 

Modified maximum likelihood; Weibull distribution, Monte-Carlo simulation. 

1. Introduction  

In the literature, considerable attention has been raised to estimate the stress-strength 

reliability 𝑅 = 𝑃(𝑋 < 𝑌). Here, 𝑋 and 𝑌 represent the stress and the strength of the system, 

respectively. The reliability of the system is defined as the probability of 𝑋 non-exceeding 

𝑌. Since, if 𝑋 > 𝑌, the system fails, otherwise it continues to work. Therefore, 𝑅 is also 

called as system reliability. There is a vast literature on estimation of 𝑅, see for example 

Downtown (1973), Tong (1977), Kundu and Gupta (2006), Rezaei et al. (2010) and Rao et 

al. (2016). For more detailed information, one may refer to Kotz et al. (2003). Structures 

and deterioration of rocket motors fatigue failure of aircraft structures and aging concrete 

pressure vessels are the some practical examples of 𝑅, see Dey et al. (2015). 

 

Traditionally, 𝑅 is estimated by using the complete simple random sampling (SRS) data. 

However, in many life-testing and reliability studies, complete information may not always 

be obtained on failure times of experimental units. This type of data is called as censored 

data. In recent years, most of the works concerning with the estimation of 𝑅 have been 

done under the assumption of censored SRS data. In this context, Krishnanmoorthy and 

Lin (2010) considered the interval estimation of the stress-strength reliability involving 

two independent Weibull distribution under complete and censored data. Saraçoğlu et al. 

(2012) considered the estimation of 𝑅 based on progressively type-II censored data. They 

assume that both the stress and the strength have exponential distribution. In some other 



Fatma Gül Akgül, Birdal Şenoğlu 

Pak.j.stat.oper.res.  Vol.XIV  No.4 2018  pp781-806 782 

studies, the maximum likelihood (ML) estimator of 𝑅 is obtained under progressively first 

failure censoring when the distributions of both 𝑋 and 𝑌 are Burr XII, see Lio and Tsai 

(2012). Asgharzadeh et al. (2011) and Valiollahi et al. (2013) derive the estimators of 𝑅 

under the progressively type-II censored data when both 𝑋 and 𝑌 are Weibull.  

 

It should also be noted that the usage of the ranked set sampling (RSS) method, originated 

by McIntyre (1952), is brought a new insight for the estimation of the system reliability 𝑅. 

In some experimental situations, sample sizes may be large therefore, the cost of the 

measurements for these sampling units may be expensive. In this case, RSS provides an 

opportunity to determine the sampling units in a cost effective and inexpensive way. See 

Patil et al. (1994), Kaur et al. (1995) and Chen et al. (2004) for complete review of the 

applications and the theoretical studies about RSS. RSS is very feasible to different areas 

such as for environmental studies, see Yu and Lam (1997), Barnett (1999) and Bocci et al. 

(2010). There are lots of studies in literature for estimating the system reliability 𝑅 based 

on RSS data, see Sengupta and Mukhuti (2008a, 2008b), Muttlak et al. (2010), Dong et al. 

(2013), Mahdizadeh and Zamanzade (2016, 2017, 2018a, 2018b) and Akgül and Şenoğlu 

(2017, 2018). 

 

In contrast to SRS, there has been few studies concerning with the censored RSS data in 

the literature, for example, Yu and Tam (2002) considered the estimation of the population 

mean and standard deviation based on left censored RSS data with fixed censoring times 

in the context of ML and Kaplan-Meier (KM) methodologies. He and Naharaja (2012) 

developed the Fisher information matrix in censored samples from Downton’s bivariate 

exponential distribution based on RSS. Strzalkowska-Kominiak and Mahdizadeh (2014) 

derived the KM estimator based on the right censored RSS data with random censoring 

times. Mahdizadeh and Strzalkowska-Kominiak (2017) dealt with constructing the 

confidence intervals for a distribution function based on censored ranked set sampling data. 

 

In this study, we obtain the estimators of 𝑅 based on SRS and RSS sampling methods under 

the assumption of Type-II right censoring. If the observation’s lifetime is greater than the 

lifetime of the predetermined largest observation, it will be censored. This type of 

censoring is called as Type-II right censoring. It is assumed that the stress 

𝑋~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑝, 𝜎1) and the strength 𝑌~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑝, 𝜎2) are both independent. The main 

reason for using the Weibull distribution is its flexibility for modeling the asymmetric data 

and its extensive usage in engineering, life testing and reliability studies, see Lawless 

(1982) and Murthy et al. (2004).    

 

The cumulative density function (cdf) and the probability density function (pdf) for the 

two-parameter Weibull distribution are given by 

𝐹𝑋(𝑥; 𝑝, 𝜎) = 1 − 𝑒−
𝑥𝑝

𝜎   , 𝑥 > 0, 𝑝 > 0, 𝜎 > 0                                                    (1) 

and 

𝑓𝑋(𝑥; 𝑝, 𝜎) =
𝑝

𝜎
𝑥𝑝−1𝑒−

𝑥𝑝

𝜎   , 𝑥 > 0, 𝑝 > 0, 𝜎 > 0                                                 (2) 

respectively. Here, 𝑝 is the shape parameter and 𝜎 is the scale parameter. Then, we obtain 

the system reliability 𝑅 as 
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𝑅 = ∫ (1 − 𝑒
−

𝑡𝑝

𝜎1)
𝑝

𝜎2
𝑡𝑝−1𝑒

−
𝑡𝑝

𝜎2

∞

0

𝑑𝑡 =
𝜎2

𝜎1 + 𝜎2
.                                                     (3) 

To derive the estimators of 𝑅, we use two different approaches. In the first approach, we 

use ML method and in the second approach non-iterative modified maximum likelihood 

(MML) method originated by Tiku (1967, 1968) is used. To the best of our knowledge, 

this is the first study applying MML methodology for estimating the system reliability 𝑅 

based on type-II right censored RSS data. 

 

This paper is organized as follows. In Section 2, under the assumption of type-II right 

censored SRS data, we derive the ML estimator of 𝑅 by using iterative methods. Then we 

propose to use the MML methodology for obtaining the estimator of 𝑅 which has an 

explicit form. In Section 3, the ML and the MML estimators of 𝑅 are obtained based on 

type-II right censored RSS data. In the following section, performances of the proposed 

estimators are compared via Monte-Carlo simulation study. Real data applications are 

given in Section 5. Finally, conclusions are presented in Section 6. 

2.  Estimators of 𝑹 based on Type-II Right Censored SRS Data 

In this section, the ML and the MML estimators of 𝑅 based on type-II right censored SRS 

data are derived.  

2.1 ML estimator of 𝑹 

Let 𝑋1, 𝑋2, … , 𝑋𝑛~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑝, 𝜎1) and 𝑌1, 𝑌2, … , 𝑌𝑚~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑝, 𝜎2) be two independent 

samples for the stress and the strength, respectively. Also, let 𝑟 and 𝑟 ′ be the number of 

censored observation(s) in the samples corresponding to 𝑋𝑖’s and 𝑌𝑗’s, respectively. In the 

censoring procedure, if the observations 𝑥𝑖 ≤ 𝑥(𝑛−𝑟) (𝑖 = 1, … , 𝑛) and 𝑦𝑗 ≤ 𝑦(𝑚−𝑟′) 

(𝑗 = 1, … , 𝑚), then we take them into the sample without changing their values, otherwise 

we reproduce them with the 𝑥(𝑛−𝑟)th and 𝑦(𝑚−𝑟′)th ordered observations, respectively.  

 

Then the likelihood function is then given by 

𝐿 = ∏ 𝑓(𝑥𝑖)
𝛿𝑖[1 − 𝐹(𝑥𝑖)]1−𝛿𝑖

𝑛

𝑖=1

∏ 𝑓(𝑦𝑗)
𝛿𝑗

[1 − 𝐹(𝑦𝑗)]
1−𝛿𝑗

𝑚

𝑗=1

 

=
𝑝∑ 𝛿𝑖

𝑛
𝑖=1 +∑ 𝛿𝑗

𝑚
𝑗=1

𝜎1

∑ 𝛿𝑖
𝑛
𝑖=1 𝜎2

∑ 𝛿𝑗
𝑚
𝑗=1

∏(𝑥𝑖
𝑝−1)

𝛿𝑖
𝑒−𝑥𝑖

𝑝
/𝜎1

𝑛

𝑖=1

∏(𝑦𝑗
𝑝−1)

𝛿𝑗
𝑒

−𝑦𝑗
𝑝

𝜎2⁄

𝑚

𝑗=1

.                           (4) 

 

Here, 𝛿𝑖 (𝑖 = 1, … , 𝑛) and 𝛿𝑗 (𝑗 = 1, … , 𝑚) are the indicator functions defined by 

𝛿𝑖 = {
1, 𝑥𝑖 ≤ 𝑥(𝑛−𝑟)  

0, 𝑥𝑖 > 𝑥(𝑛−𝑟) 
   and   𝛿𝑗 = {

1, 𝑦𝑗 ≤ 𝑦(𝑚−𝑟′)

0, 𝑦𝑗 > 𝑦(𝑚−𝑟′)
.                                             (5) 

respectively. We obtain the likelihood equations by taking the derivatives of the log-

likelihood function with respect to the unknown parameters 𝜎1, 𝜎2 and 𝑝. They are given 

as shown below: 
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𝜕 ln 𝐿

𝜕𝜎1
= −

∑ 𝛿𝑖
𝑛
𝑖=1

𝜎1
+

1

𝜎1
2 ∑ 𝑥𝑖

𝑝

𝑛

𝑖=1

= 0,
𝜕 ln 𝐿

𝜕𝜎2
= −

∑ 𝛿𝑗
𝑚
𝑗=1

𝜎2
+

1

𝜎2
2 ∑ 𝑦𝑗

𝑝

𝑚

𝑗=1

= 0,     (6) 

𝜕 ln 𝐿

𝜕𝑝
=

∑ 𝛿𝑖
𝑛
𝑖=1 + ∑ 𝛿𝑗

𝑚
𝑗=1

𝑝
+ ∑ 𝛿𝑖 ln 𝑥𝑖

𝑛

𝑖=1

−
1

𝜎1
∑ 𝑥𝑖

𝑝 ln 𝑥𝑖

𝑛

𝑖=1

 

+ ∑ 𝛿𝑗 ln 𝑦𝑗

𝑚

𝑗=1

−
1

𝜎2
∑ 𝑦𝑗

𝑝 ln 𝑦𝑗

𝑚

𝑗=1

= 0.                                                                     (7) 

Because of the non-linear functions ℎ1(𝑥) = 𝑥𝑝, ℎ2(𝑥) = ln 𝑥, ℎ1(𝑦) = 𝑦𝑝 and ℎ2(𝑦) =
ln 𝑦, we cannot obtain the explicit solutions of the equations (6)-(7). Therefore, we resort 

to iterative methods.  

 

It is clear from the equations (6) that ML estimators of 𝜎1 and 𝜎2 are the functions of the 

shape parameters 𝑝. They are given below  

�̂�1 =
∑ 𝑥𝑖

�̂�𝑛
𝑖=1

∑ 𝛿𝑖
𝑛
𝑖=1

   and   �̂�2 =
∑ 𝑦(𝑗)

�̂�𝑚
𝑗=1

∑ 𝛿𝑗
𝑚
𝑗=1

,                                                                                    (8) 

respectively. If we incorporate these estimators into (7) and solve it with respect to 𝑝 by 

using the iterative methods, the ML estimate of 𝑝 is obtained. Then, we insert this estimate 

value of 𝑝 in to the equation (8) and obtain the ML estimates of 𝜎1 and 𝜎2. The iterative 

process, such as Newton-Raphson method, should converge quickly to its maximum in this 

case, if the initial guess is reasonably close to the actual solution, see Kundu and Gupta 

(2006).  

 

After obtaining the ML estimators of 𝑝, 𝜎1 and 𝜎2 represented by �̂�𝑀𝐿,𝑆𝑅𝑆, �̂�1𝑀𝐿,𝑆𝑅𝑆
 and 

�̂�2𝑀𝐿,𝑆𝑅𝑆
, respectively, the ML estimator of 𝑅 is obtained using the invariance property of 

the ML estimators. It is shown below 

�̂�𝑀𝐿,𝑆𝑅𝑆 =
�̂�2𝑀𝐿,𝑆𝑅𝑆

�̂�1𝑀𝐿,𝑆𝑅𝑆+�̂�2𝑀𝐿,𝑆𝑅𝑆

.                                                                                          (9) 

2.2 MML estimator of 𝑹 

In previous section, we observed that the likelihood equations have no explicit solutions 

and therefore we solved them by using numerical methods. However, solving them by 

iteration is indeed problematic for reasons of (i) multiple roots, (ii) non-convergence of 

iterations, or (iii) convergence to wrong values; see Barnett (1966), Vaughan (2002) and 

Tiku and Şenoğlu (2009). To overcome these difficulties, we use the MML methodology 

introduced by Tiku (1967,1968).  

 

The MML methodology can be used for any location-scale distribution of the type 

(1/𝜎)𝑓((𝑥 − 𝜇)/𝜎). It is known that if the random variable 𝑋 has two parameter Weibull 

distribution with the shape parameter 𝑝 and the scale parameter 𝜎, then the natural 

logarithm of 𝑋, i.e., 𝑈 = ln 𝑋 has an Extreme Value (EV) distribution with the location 

parameter 𝜇 and the scale parameter 𝜂. The EV distribution has the following pdf and cdf 

𝑓𝑈(𝑢; 𝜇, 𝜂) =
1

𝜂
𝑒

(
𝑢−𝜇

𝜂
−𝑒

𝑢−𝜇
𝜂 )

, −∞ < 𝑢 < ∞                                                        (10) 

where, 𝜇 ∈ 𝑅 and 𝜂 ∈ 𝑅+. 
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The MML estimators of the shape and the scale parameters of the Weibull distribution are 

obtained by using the following relationship between the parameters of the EV distribution 

and the parameters of Weibull distribution, i.e., 𝜇 = 1 𝑝⁄ ln 𝜎 and 𝜂 = 1 𝑝⁄ . 

 

After deriving the estimators of the parameters of EV distribution, the scale and the shape 

parameters of the Weibull distribution are obtained by using the following inverse 

transformations 

𝜎 = 𝑒𝜇𝑝 and 𝑝 =
1

𝜂
,   (11) 

respectively. 

 

Let 𝑋1, … , 𝑋𝑛~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑝, 𝜎1) and 𝑌1, … , 𝑌𝑚~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑝, 𝜎2) be the SRS data for the 

stress and the strength, respectively. As mentioned above 𝑈 = ln 𝑋 and 𝑉 = ln 𝑌 have the 

𝐸𝑉(𝜇1, 𝜂) and 𝐸𝑉(𝜇2, 𝜂) distributions, respectively. Then the likelihood function for the 

type-II right censored data can be written as follows  

𝐿 ∝
1

𝜂
∑ 𝛿𝑖

𝑛
𝑖=1 +∑ 𝛿𝑗

𝑚
𝑗=1

∏ 𝑓(𝑧(𝑖))
𝛿𝑖

[1 − 𝐹(𝑧(𝑖))]
1−𝛿𝑖

𝑛

𝑖=1

∏ 𝑓(𝑤(𝑗))
𝛿𝑗

[1 − 𝐹(𝑤(𝑗))]
1−𝛿𝑗

𝑚

𝑗=1

   (12) 

since the complete sums are invariant to ordering, i.e., ∑ 𝑓(𝑧𝑖)
𝑛
𝑖=1 = ∑ 𝑓(𝑧(𝑖))𝑛

𝑖=1 . Here, 

𝑧(𝑖) = (𝑢(𝑖) − 𝜇1) 𝜂⁄ , 𝑖 = 1, … , 𝑛  and  𝑤(𝑗) = (𝑣(𝑗) − 𝜇2) 𝜂⁄ , 𝑗 = 1, … , 𝑚 are the 

standardized order statistics. Also, 𝛿𝑖 and 𝛿𝑗 are censoring indicators as defined earlier. 

 

Derivatives of the log-likelihood function with respect to the unknown parameters 𝜇1, 𝜇2 

and 𝜂 i.e., 
𝜕 ln 𝐿

𝜕𝜇1
= 0, 

𝜕 ln 𝐿

𝜕𝜇2
= 0 and 

𝜕 ln 𝐿

𝜕𝜂
= 0, are the likelihood equations. However, these 

equations do not have explicit solutions, because of the following nonlinear functions of 

the parameters 

𝑔1(𝑧(𝑖)) =
𝑓′(𝑧(𝑖))

𝑓(𝑧(𝑖))
, 𝑔2(𝑧(𝑖)) =

𝑓(𝑧(𝑖))

1−𝐹(𝑧(𝑖))
; 𝑔1(𝑤(𝑗)) =

𝑓′(𝑤(𝑗))

𝑓(𝑤(𝑗))
, 𝑔2(𝑤(𝑗)) =

𝑓(𝑤(𝑗))

1−𝐹(𝑤(𝑗))
.    (13) 

Therefore, we linearize them around the expected values of the standardized ordered 

statistics 𝑡(𝑖)
𝑢 = 𝐸(𝑧(𝑖)) and 𝑡(𝑗)

𝑣 = 𝐸(𝑤(𝑗)) using the first two terms of Taylor series 

expansion. Then, we get  

𝑔1(𝑧(𝑖)) = 𝛼1𝑖
𝑢 − 𝛽1𝑖

𝑢 𝑧(𝑖),   𝑔2(𝑧(𝑖)) = 𝛼2𝑖
𝑢 + 𝛽2𝑖

𝑢 𝑧(𝑖),   𝑖 = 1, … 𝑛, 

𝑔1(𝑤(𝑗)) = 𝛼1𝑗
𝑣 − 𝛽1𝑗

𝑣 𝑤(𝑗),   𝑔2(𝑤(𝑗)) = 𝛼2𝑗
𝑣 + 𝛽2𝑗

𝑣 𝑤(𝑗),   𝑗 = 1, … , 𝑚, 

where 

𝛼1𝑖
𝑢 = 1 − 𝑒𝑡(𝑖)

𝑢

+ 𝑡(𝑖)
𝑢 𝑒𝑡(𝑖)

𝑢

, 𝛽1𝑖
𝑢 = 𝑒𝑡(𝑖)

𝑢

  and  𝛼2𝑖
𝑢 = 𝑒𝑡(𝑖)

𝑢

− 𝑡(𝑖)
𝑢 𝑒𝑡(𝑖)

𝑢

, 𝛽2𝑖
𝑢 = 𝑒𝑡(𝑖)

𝑢

,  

𝑡(𝑖)
𝑢 = {

ln (− ln (1 −
𝑖

𝑛+1
)) ,  𝑖𝑓 𝑧(𝑖) ≤ 𝑧(𝑛−𝑟)

ln (− ln (1 −
𝑛−𝑟

𝑛+1
)) , 𝑖𝑓 𝑧(𝑖) > 𝑧(𝑛−𝑟)

.                                                  (14) 

(𝛼1𝑗
𝑣 , 𝛽1𝑗

𝑣 ) and (𝛼2𝑗
𝑣 , 𝛽2𝑗

𝑣 ) coefficients and 𝑡(𝑗)
𝑣  are obtained similarly as in (14). Therefore 

we do not reproduce it for the sake of brevity.  

 

Modified likelihood equations are obtained by incorporating equations (14) in the 

likelihood equations. Solving these equations yield the following MML estimators of 𝜇1, 

𝜇2 and 𝜂, 
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�̂�1𝑀𝑀𝐿,𝑆𝑅𝑆
= 𝐾1 −

Δ1

𝑚1
�̂�𝑀𝑀𝐿,𝑆𝑅𝑆,   �̂�2𝑀𝑀𝐿,𝑆𝑅𝑆

= 𝐾2 −
Δ2

𝑚2
�̂�𝑀𝑀𝐿,𝑆𝑅𝑆 and 

 �̂�𝑀𝑀𝐿,𝑆𝑅𝑆 =
−𝐵+√𝐵2+4𝐴𝐶

2𝐴
,            (15) 

where 

𝛾1𝑖
𝑢 = 𝛿𝑖𝛽1𝑖

𝑢 ,  𝛾2𝑖
𝑢 = (1 − 𝛿𝑖)𝛽2𝑖

𝑢 ,  𝛾𝑖
𝑢 = 𝛾1𝑖

𝑢 + 𝛾2𝑖
𝑢 ,  𝑚1 = ∑ 𝛾𝑖

𝑢𝑛
𝑖=1 ,  𝐾1 =

∑ 𝛾𝑖
𝑢𝑢(𝑖)

𝑛
𝑖=1

𝑚1
,  

 Δ1𝑖
𝑢 = 𝛿𝑖𝛼1𝑖

𝑢 ,   Δ2𝑖
𝑢 = (1 − 𝛿𝑖)𝛼2𝑖

𝑢 ,   Δ𝑖
𝑢 = Δ1𝑖

𝑢 − Δ2𝑖
𝑢

,   Δ1 = ∑ Δ𝑖
𝑢𝑛

𝑖=1 , 

𝛾1𝑗
𝑣 = 𝛿𝑗𝛽1𝑗

𝑣 ,  𝛾2𝑗
𝑣 = (1 − 𝛿𝑗)𝛽2𝑗

𝑣 ,  𝛾𝑗
𝑣 = 𝛾1𝑗

𝑣 + 𝛾2𝑗
𝑣 ,  𝑚2 = ∑ 𝛾𝑗

𝑣𝑚
𝑗=1 ,  𝐾2 =

∑ 𝛾𝑗
𝑣𝑣(𝑗)

𝑚
𝑗=1

𝑚2
,  

 Δ1𝑗
𝑣 = 𝛿𝑗𝛼1𝑗

𝑣 ,   Δ2𝑗
𝑣 = (1 − 𝛿𝑗)𝛼2𝑗

𝑣 ,   Δ𝑗
𝑣 = Δ1𝑗

𝑣 − Δ2𝑗
𝑣

,   Δ2 = ∑ Δ𝑗
𝑣𝑚

𝑗=1 , 

𝐴 = ∑ 𝛿𝑖
𝑛
𝑖=1 + ∑ 𝛿𝑗

𝑚
𝑗=1 = 𝑛 + 𝑚 − (𝑟 + 𝑟 ′), 

𝐵 = ∑ Δ𝑖
𝑢(𝑢(𝑖) − 𝐾1)𝑛

𝑖=1 + ∑ Δ𝑗
𝑣(𝑣(𝑗) − 𝐾2)𝑚

𝑗=1 ,  

𝐶 = ∑ 𝛾𝑖
𝑢𝑛

𝑖=1 (𝑢(𝑖) − 𝐾1)
2

+ ∑ 𝛾𝑗
𝑣𝑚

𝑗=1 (𝑣(𝑗) − 𝐾2)
2
.                                              (16) 

 

By the inverse transformations defined in (11), we obtain the MML estimators of the 

Weibull parameters 𝜎1, 𝜎2 and 𝑝 as 

�̂�1𝑀𝑀𝐿,𝑆𝑅𝑆
= 𝑒

𝑝𝑀𝑀𝐿,𝑆𝑅𝑆�̂�1𝑀𝑀𝐿,𝑆𝑅𝑆 ,   �̂�2𝑀𝑀𝐿,𝑆𝑅𝑆
= 𝑒

𝑝𝑀𝑀𝐿,𝑆𝑅𝑆�̂�2𝑀𝑀𝐿,𝑆𝑅𝑆   and 

�̂�𝑀𝑀𝐿,𝑆𝑅𝑆 =
1

�̂�𝑀𝑀𝐿,𝑆𝑅𝑆
.                                                                                              (17) 

 

These estimators have closed form expressions. They are the functions of the sample 

observations and are easy to compute. Asymptotically, they are fully efficient under some 

mild regularity conditions. It should be noted that the fully efficient estimators are unbiased 

and their variances are equal to the Rao-Cramer lower bound. They are asymptotically 

equivalent to ML estimators, see Vaughan and Tiku (2000). 

 

It should be noted that since the MML estimators can provide the explicit form of the 

parameter estimators, they are used as initial value for the iterative methods for the ML 

estimators of the unknown parameters. 

 

By incorporating MML estimators of the scale parameters into the equation (3), the MML 

estimator of 𝑅 is obtained as follows 

�̂�𝑀𝑀𝐿,𝑆𝑅𝑆 =
�̂�2𝑀𝑀𝐿,𝑆𝑅𝑆

�̂�1𝑀𝑀𝐿,𝑆𝑅𝑆
+�̂�2𝑀𝑀𝐿,𝑆𝑅𝑆

.                                                                            (18) 

3. Estimators of 𝑹 based on Type-II Right Censored RSS Data 

In this section, we derive the ML and the MML estimators of 𝑅 based on type-II right 

censored RSS data. 

 

Let’s first describe how to obtain the right censored RSS data. Traditionally, in complete 

RSS, 𝑚𝑥-dimensional 𝑚𝑥 sets are selected via SRS. Without doing certain measurements, 

the sampling units are ranked with respect to virtual comparisons, expert opinion or 

auxiliary variables. Then, in the first set the smallest ranked unit, in the next set the second 

smallest ranked unit and finally in the last set the largest ranked unit are selected for actual 

measurements. In this way, we obtain 𝑚𝑥-measured units. This complete procedure is 
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called a cycle and repeated 𝑟𝑥 times until the sample size 𝑛 = 𝑚𝑥𝑟𝑥 is obtained. See the 

following table to better understanding the RSS procedure: 
Cycle 1 X(1)1 X(2)1 … X(mx)1

Cycle 2 X(1)2 X(2)2 … X(mx)2

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

Cycle rx X(1)rx
X(2)rx

… X(mx)rx
.

 

Here, 𝑋(𝑖)𝑐, (𝑖 = 1, … , 𝑚𝑥;  𝑐 = 1, … , 𝑟𝑥) is the 𝑖th smallest observation in the 𝑖th set and 

the 𝑐th cycle. In censoring procedure, similar to SRS, the largest 𝑟 observations in each 

cycle are censored. In other words, if the observation 𝑥(𝑖)𝑐 ≤ 𝑥(𝑚𝑥−𝑟)𝑐, then we take it as 

it is, otherwise we replace it with the value of (𝑚𝑥 − 𝑟)th observation in each cycle. 

3.1 ML Estimator of 𝑹 

At the beginning of this subsection, we will give some abbreviations for better 

understanding the rest of the paper. They are given as follows; 

 𝑚𝑥 and 𝑚𝑦: the set sizes for 𝑋 and 𝑌, respectively, 

 𝑟𝑥 and 𝑟𝑦: the number of cycles for 𝑋 and 𝑌, respectively, 

 𝑟 and 𝑟′: the number of censored observation(s) in each cycle for 𝑋 and 𝑌, 

respectively. 

 

Here, 𝑋(𝑖)𝑐 (𝑖 = 1, … , 𝑚𝑥;  𝑐 = 1, … , 𝑟𝑥) and 𝑌(𝑗)𝑙 (𝑗 = 1, … , 𝑚𝑦;  𝑙 = 1, … , 𝑟𝑦) are the RSS 

data for the random variables 𝑋~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑝, 𝜎1) and 𝑌~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑝, 𝜎2), respectively. We 

use the following representations for obtaining the type-II right censored data in the context 

of RSS 

𝑥(𝑖)𝑐 = {
𝑥(𝑖)𝑐,         𝑖𝑓 𝑥(𝑖)𝑐 ≤ 𝑥(𝑚𝑥−𝑟)𝑐 

𝑥(𝑚𝑥−𝑟)𝑐, 𝑖𝑓 𝑥(𝑖)𝑐 > 𝑥(𝑚𝑥−𝑟)𝑐
 and  𝑦(𝑗)𝑙 = {

𝑦(𝑗)𝑙 ,           𝑖𝑓 𝑦(𝑗)𝑙 ≤ 𝑦(𝑚𝑦−𝑟′)𝑙

𝑦(𝑚𝑦−𝑟′)𝑙, 𝑖𝑓 𝑦(𝑗)𝑙 > 𝑦(𝑚𝑦−𝑟′)𝑙
. 

Let 𝛿(𝑖)𝑐 and 𝛿(𝑗)𝑙 be the censoring indicator and taking the values of 1 or 0. They return 

the value 0 when the censoring occurs, otherwise they return 1. 

 

Then the likelihood function is given by  

L = ∏ ∏[fi(x(i)c)]
δ(i)c

mx

i=1

[1 − Fi(x(i)c)]
1−δ(i)c

rx

c=1

 

        ∏ ∏[fj(y(j)l)]
δ(j)l

my

j=1

ry

l=1

[1 − Fj(y(j)l)]
1−δ(j)l                                                           (19) 

where fi(x) and Fi(x) are the pdf and the cdf of the ith order statistic, respectively. They 

are given below 

fi(x) =
mx!

(i − 1)! (mx − i)!
[F(x)]i−1[1 − F(x)]mx−if(x),                                       (20) 

Fi(x) =
mx!

(i − 1)! (mx − i)!
∫ ui−1(1 − u)mx−idu.

F(x)

0

                                               (21) 
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It is clear from the equation (21) that Fi(x) is incomplete Beta function. It can be shown as 

below  

Fi(x) =
mx!

(i − 1)! (mx − i)!
∫ ui−1(1 − u)mx−idu

1−e−xp σ1⁄

0

 

=
1

𝐵(𝑖, 𝑚𝑥 − 𝑖 + 1)
∫ 𝑢𝑖−1(1 − 𝑢)𝑚𝑥−𝑖𝑑𝑢

1−𝑒−𝑥𝑝 𝜎1⁄

0

= 𝐼
1−𝑒−𝑥𝑝 𝜎1⁄ (𝑖, 𝑚𝑥 − 𝑖 + 1). 

 

fj(y) and Fj(y) in (19) are defined similar to fi(x) and Fi(x), respectively. Therefore, we 

do not reproduce them for brevity. 

 

The ML estimators of the unknown parameters 𝑝, 𝜎1 and 𝜎2 are the solutions of the 

likelihood equations given in below 

𝜕 ln 𝐿

𝜕𝑝
=

∑ ∑ 𝛿(𝑖)𝑐
𝑚𝑥
𝑖=1

𝑟𝑥
𝑐=1 + ∑ ∑ 𝛿(𝑗)𝑙

𝑚𝑦

𝑗=1

𝑟𝑦

𝑙=1

𝑝
+ ∑ ∑ 𝛿(𝑖)𝑐 ln 𝑥(𝑖)𝑐

𝑚𝑥

𝑖=1

𝑟𝑥

𝑐=1

 

+
1

𝜎1
∑ ∑ 𝛿(𝑖)𝑐(𝑖 − 1)

𝑥(𝑖)𝑐
𝑝 ln 𝑥(𝑖)𝑐

𝑒
𝑥(𝑖)𝑐

𝑝
𝜎1⁄

− 1

𝑚𝑥

𝑖=1

𝑟𝑥

𝑐=1

−
1

𝜎1
∑ ∑ 𝛿(𝑖)𝑐(𝑚𝑥 − 𝑖 + 1)𝑥(𝑖)𝑐

𝑝 ln 𝑥(𝑖)𝑐

𝑚𝑥

𝑖=1

𝑟𝑥

𝑐=1

 

−
1

𝑝
∑ ∑(1 − 𝛿(𝑖)𝑐)

ln 𝑥(𝑖)𝑐 𝑓𝑖(𝑥(𝑖)𝑐)

1 − 𝐼
1−𝑒

−𝑥(𝑖)𝑐
𝑝/𝜎1

(𝑖, 𝑚𝑥 − 𝑖 + 1)

𝑚𝑥

𝑖=1

𝑟𝑥

𝑐=1

+ ∑ ∑ 𝛿(𝑗)𝑙 ln 𝑦(𝑗)𝑙

𝑚𝑦

𝑗=1

𝑟𝑦

𝑙=1

 

+
1

𝜎2
∑ ∑ 𝛿(𝑗)𝑙(𝑗 − 1)

𝑦(𝑗)𝑙
𝑝 ln 𝑦(𝑗)𝑙

𝑒
𝑦(𝑗)𝑙

𝑝
𝜎2⁄

− 1

𝑚𝑦

𝑗=1

𝑟𝑦

𝑙=1

−
1

𝜎2
∑ ∑ 𝛿(𝑗)𝑙(𝑚𝑦 − 𝑗 + 1)𝑦(𝑗)𝑙

𝑝 ln 𝑦(𝑗)𝑙

𝑚𝑦

𝑗=1

𝑟𝑦

𝑙=1

 

−
1

𝑝
∑ ∑(1 − 𝛿(𝑗)𝑙)

ln 𝑦(𝑗)𝑙 𝑓𝑗(𝑦(𝑗)𝑙)

1 − 𝐼
1−𝑒

−
𝑦(𝑗)𝑙

𝑝

𝜎2

(𝑗, 𝑚𝑦 − 𝑗 + 1)

𝑚𝑦

𝑗=1

𝑟𝑦

𝑙=1

= 0,                                     (22) 

𝜕 ln 𝐿

𝜕𝜎1
= −

∑ ∑ 𝛿(𝑖)𝑐
𝑚𝑥
𝑖=1

𝑟𝑥
𝑐=1

𝜎1
−

1

𝜎1
2 ∑ ∑ 𝛿(𝑖)𝑐

𝑚𝑥

𝑖=1

𝑟𝑥

𝑐=1

[(𝑖 − 1)
𝑥(𝑖)𝑐

𝑝

𝑒
𝑥(𝑖)𝑐

𝑝
𝜎1⁄

− 1
+ (𝑚𝑥 − 𝑖 + 1)𝑥(𝑖)𝑐

𝑝 ] 

          −
1

𝑝𝜎1
∑ ∑(1 − 𝛿(𝑖)𝑐)

𝑓𝑖(𝑥(𝑖)𝑐)

1 − 𝐼
1−𝑒

−𝑥(𝑖)𝑐
𝑝 𝜎1⁄ (𝑖, 𝑚𝑥 − 𝑖 + 1)

𝑚𝑥

𝑖=1

𝑟𝑥

𝑐=1

= 0,                  (23)  

𝜕 ln 𝐿

𝜕𝜎2
= −

∑ ∑ 𝛿(𝑗)𝑙
𝑚𝑦

𝑗=1

𝑟𝑦

𝑙=1

𝜎2
−

1

𝜎2
2 ∑ ∑ 𝛿(𝑗)𝑙

𝑚𝑦

𝑗=1

𝑟𝑦

𝑙=1

[(𝑗 − 1)
𝑦(𝑗)𝑙

𝑝

𝑒
𝑦(𝑗)𝑙

𝑝
𝜎2⁄

− 1
+ (𝑚𝑦 − 𝑗 + 1)𝑦(𝑗)𝑙

𝑝 ] 

−
1

𝑝𝜎2
∑ ∑(1 − 𝛿(𝑗)𝑙)

𝑓𝑗(𝑦(𝑗)𝑙)

1 − 𝐼
1−𝑒

−𝑦(𝑗)𝑙
𝑝 𝜎2⁄ (𝑗, 𝑚𝑦 − 𝑗 + 1)

𝑚𝑦

𝑗=1

𝑟𝑦

𝑙=1

= 0.                            (24) 

Because of the similar reasons mentioned in subsection 2.1, the ML estimators of the 

parameters cannot be obtained explicitly.  For this reason, we resort to iterative methods 

for solving the likelihood equations. Solutions of these equations are the ML estimators of 

the parameters 𝑝, 𝜎1 and 𝜎2. They are represented by �̂�𝑀𝐿,𝑅𝑆𝑆, �̂�1𝑀𝐿,𝑅𝑆𝑆
 and �̂�2𝑀𝐿,𝑅𝑆𝑆

, 
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respectively. The ML estimator of 𝑅 is obtained by replacing the parameters 𝜎1 and 𝜎2 with 

the corresponding ML estimators of them in equation (3), similar as in equation (9). 

3.2 MML Estimator of 𝑹 

The MML estimators of the parameters of the Weibull distribution are derived by using the 

relationship between the Weibull and EV distribution as shown in subsection 2.2. 

 

Let U(i)c (i = 1, … , mx;  c = 1, … , rx) and V(j)l (j = 1, … , my;  l = 1, … , ry) denote the ith 

and the jth order statistics in the cth and lth cycles, respectively. Here, the distribution of 

the random variables U and V are EV with parameters (μ1, η) and (μ2, η), respectively, as 

mentioned earlier.   

 

To obtain the MML estimators of μ1, μ2 and η based on type-II right censored RSS data, 

the likelihood function can be written as follows 

L = C ∏ ∏ [
1

η
f(z(i)c)F(z(i)c)

i−1
(1 − F(z(i)c))

mx−i

]
δ(i)c

[1 − Fi(z(i)c)]
1−δ(i)c

mx

i=1

rx

c=1

 

           ∏ ∏ [
1

η
f(w(j)l)F(w(j)l)

j−1
(1 − F(w(j)l))

my−j

]
δ(j)l

[1 − Fj(w(j)l)]
1−δ(j)l

my

j=1

ry

l=1

   (25) 

where, z(i)c = (u(i)c − μ1) η⁄ , i = 1, … , mx, c = 1, … , rx and w(j)l = (v(j)l − μ2) η⁄ , j =

1, … , my, l = 1, … , ry are the standardized ordered statistics. Then, the likelihood equations 

are obtained by taking derivation of log-likelihood function with respect to unknown 

parameters. Likelihood equations have no explicit solutions because of the following 

awkward functions 

g1(z) =
f′(z)

f(z)
,   g2(z) =

f(z)

F(z)
,   g3(z) =

f(z)

1−F(z)
,   g4(z) =

fi(z)

1−Fi(z)
.                           (26) 

 

Also, g1(w), g2(w), g3(w) and g4(w) are defined similarly as in (26). To apply the MML 

estimation procedure, we first linearize the functions in (26) by using the first two terms of 

Taylor series expansion around t(i)c
u = E(z(i)c) and t(j)l

v = E(w(j)l). The linearized 

functions are given below 

g1(z(i)c) ≅ α1ic
u − β1ic

u z(i)c,  g2(z(i)c) ≅ α2ic
u − β2ic

u z(i)c, 

g3(z(i)c) ≅ α3ic
u + β3ic

u z(i)c, g4(z(i)c) ≅ α4ic
u + β4ic

u z(i)c, i = 1, … , mx, c = 1, … , rx, 

where 

α1ic
u = 1 − et(i)c

u

+ t(i)c
u et(i)c

u

,   β1ic
u = et(i)c

u

, 

α2ic
u =

f(t(i)c
u )

F(t(i)c
u )

+ t(i)c
u β2ic

u ,   β2ic
u =

(e
t(i)c
u

−1)f(t(i)c
u )F(t(i)c

u )+f2(t(i)c
u )

F2(t(i)c
u )

, 

α3ic
u = et(i)c

u

− t(i)c
u et(i)c

u

,   β3ic
u = et(i)c

u

, 

α4ic
u =

fi(t(i)c
u )

1−Fi(t(i)c
u )

− t(i)c
u β4ic

u ,   β4ic
u =

fi
2(t(i)c

u )+fi
′(t(i)c

u )(1−Fi(t(i)c
u ))

(1−Fi(t(i)c
u ))

2 , 
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t(i)
u = {

ln (− ln (1 −
i

mx+1
)) ,  if x(i)c ≤ x(mx−r)c

ln (− ln (1 −
mx−r

mx+1
)) , if x(i)c > x(mx−r)c

.                                             (27) 

g1(w(j)l), g2(w(j)l), g3(w(j)l) and g4(w(j)l) linearized functions, the coefficients α and β, 

i.e., (α1jl
v , β1jl

v ), (α2jl
v , β2jl

v ), (α3jl
v , β3jl

v ) and (α4jl
v , β4jl

v ) for the sample V are exactly the same 

as in  (27), except that t(i)c
u  is replaced by t(j)l

v . 

 

By incorporating linearized functions into likelihood equations, we obtain the modified 

likelihood equations ∂ ln L∗ ∂μ1⁄ = 0, ∂ ln L∗ ∂μ2⁄ = 0 and ∂ ln L∗ ∂η⁄ = 0. See Appendix 

for the details of the modified likelihood equations. Algebraic solutions of these equations 

are the following closed form estimators called as MML 

μ̂1MML,RSS
= K1 −

Δ1

m1
η̂MML,RSS,   μ̂2 = K2 −

Δ2

m2
η̂MML,RSS and 

η̂MML,RSS =
−B+√B2+4AC

2A
,                                                                                        (28) 

where 

γ1ic
u = δ(i)c(β1ic

u + (i − 1)β2ic
u + (mx − i)β3ic

u ),   γ2ic
u = (1 − δ(i)c)β4ic

u , 

γic
u = γ1ic

u + γ2ic
u ,   m1 = ∑ ∑ γic

umx
i=1

rx
c=1 ,   K1 =

∑ ∑ γic
u u(i)c

mx
i=1

rx
c=1

m1
 

Δ1ic
u = δ(i)c(α1ic

u + (i − 1)α2ic
u − (mx − i)α3ic

u ),   Δ2ic
u = (1 − δ(i)c)α4ic

u ,  

Δic
u =  Δ1ic

u − Δ2ic
u

,   Δ1 = ∑ ∑ Δic
umx

i=1
rx
c=1 , 

γ1jl
v = δ(j)l(β1jl

v + (j − 1)β2jl
v + (my − j)β3jl),   γ2jl

v = (1 − δ(j)l)β4jl
v , 

γjl
v = γ1jl

v + γ2jl
v ,   m2 = ∑ ∑ γjl

vmy

j=1

ry

l=1
,   K2 =

∑ ∑ γjl
v v(j)l

my
j=1

ry
l=1

m2
 

Δ1jl
v = δ(j)l(α1jl

v + (j − 1)α2jl
v − (my − j)α3jl

v ),   Δ2jl
v = (1 − δ(j)l)α4jl

v , 

Δjl
v = Δ1jl

v − Δ2jl
v

,   Δ2 = ∑ ∑ Δjl
vmy

j=1

ry

l=1
,   

A = ∑ ∑ δ(i)c
mx
i=1

rx
c=1 + ∑ ∑ δ(j)l

my

j=1

ry

l=1
, 

B = ∑ ∑ Δic
u (u(i)c − K1)

mx
i=1

rx
c=1 + ∑ ∑ Δjl

v(v(j)l − K2)
my

j=1

ry

l=1
,  

C = ∑ ∑ γic
u (u(i)c − K1)

2mx
i=1

rx
c=1 + ∑ ∑ γjl

v(v(j)l − K2)
2my

j=1

ry

l=1
.                               (29) 

 

Similar to subsection 2.2, we use the inverse transformations defined in equation (11) to 

obtain the MML estimators of the Weibull parameters σ1, σ2 and p denoted by σ̂1MML,RSS
, 

σ̂2MML,RSS
 and p̂MML,RSS, respectively. They are given below 

σ̂1MML,RSS
= ep̂MML,RSSμ̂1MML,RSS ,   σ̂2MML,RSS

= ep̂MML,RSSμ̂2MML,RSS    and 

p̂MML,RSS =
1

η̂MML,RSS
.                                                                                              (30) 

 

Then, the MML estimators of R based on type-II right censored RSS data is obtained as in 

equation (18). 
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4. Simulation Study 

In this section, we perform Monte-Carlo simulation study to compare the performances of 

the proposed estimators of the system reliability 𝑅 based on SRS and RSS data. In the 

comparisons, we use the bias and the mean square error (MSE) criteria defined below 

 Bias(R̂) = E(R̂ − R)   and   MSE(R̂) = E(R̂ − R)
2
                                          (31) 

respectively.  

 

We just reproduce the bias and the relative efficiency (𝑅𝐸) values of the estimators for the 

sake of brevity, see Table 1. 𝑅𝐸 of the estimator �̂� with respect to the estimator �̂�∗ is 

defined as shown below 

RE =
MSE(R̂∗)

MSE(R̂)
.                                                                                                        (32) 

 

It is known that �̂� is more efficient than �̂�∗ if 𝑅𝐸 > 1 and vice versa. In this study, we 

calculate the values of the following 𝑅𝐸s  

RE1 =
MSE(R̂ML,SRS)

MSE(R̂ML,RSS)
,   RE2 =

MSE(R̂MML,SRS)

MSE(R̂MML,RSS)
,   RE3 =

MSE(R̂ML,SRS)

MSE(R̂MML,SRS)
, 

RE4 =
MSE(R̂ML,RSS)

MSE(R̂MML,RSS)
   and   RE5 =

MSE(R̂ML,SRS)

MSE(R̂MML,RSS)
.                                                (33) 

 

All the simulations are performed in Matlab R2013a. In simulation setup, the set sizes and 

the number of cycles are taken to be as 𝑚𝑥 = 𝑚𝑦 = 𝑚 =6, 8, 10 and 𝑟𝑥 = 𝑟𝑦 = 𝑟 =1, 5, 

respectively. It is obvious that the sample sizes for the stress 𝑋 and the strength 𝑌 become 

𝑛 = 𝑚𝑥𝑟𝑥 and 𝑚 = 𝑚𝑦𝑟𝑦 in the context of RSS. It should also be realized that the sample 

sizes are taken to be 𝑛 and 𝑚 in SRS throughout the simulation study. We use different 

values of the shape parameter p such as 0.5, 1.5 and 2.5. We also use the following 

parameter settings for the scale parameters σ1 and σ2; (σ1, σ2) =(1,1), (1,2), (1,3). 

Therefore, the true values of R equal to 0.5, 0.67 and 0.75, respectively. 

 

Under the assumption of type-II right censored SRS data, the largest ⟦qn + 0.5⟧ and 
⟦qm + 0.5⟧ observations are censored for both the samples corresponding to the stress and 

the strength (i.e., X and Y), respectively. Similarly, in the presence of type-II right censored 

RSS data, the largest observations ⟦qmx + 0.5⟧ and ⟦qmy + 0.5⟧ are censored in each of 

the cycles corresponding to the samples X and Y, respectively. Here, q is the proportion of 

censoring and it is taken as 10%, 20% and 30%. Also, ⟦. ⟧ represents the greatest integer 

value. Simulations are done based on ⟦100,000/ min(n, m)⟧ Monte-Carlo runs. Type-II 

right censored samples are generated from Weibull(p, σ1) and Weibull(p, σ2) for the 

stress X and the strength Y, respectively. Simulation results are reported in Tables 1-3. 

 

Comparisons with respect to the bias: It is observed from Tables 1-3 that all the estimators 

have negligible biases regardless of the values of the shape parameter p. However, the 

amount of the bias increases when the scale parameters σ1 and σ2 are not equal. 

 

 

  



Fatma Gül Akgül, Birdal Şenoğlu 

Pak.j.stat.oper.res.  Vol.XIV  No.4 2018  pp781-806 792 

Table 1. Biases of the ML and the MML estimators of 𝑹 based on SRS and RSS and 

the 𝑹𝑬 values when 𝒑 =0.5. 

   Bias Relative Efficiency  

𝑟 𝑚 𝑞 �̂�𝑀𝐿.𝑆𝑅𝑆 �̂�𝑀𝑀𝐿.𝑆𝑅𝑆 �̂�𝑀𝐿.𝑅𝑆𝑆 �̂�𝑀𝑀𝐿.𝑅𝑆𝑆 RE1 RE2 RE3 RE4 RE5 

    𝜎1 = 1, 𝜎2 = 1;  𝑅 = 0.5     

  10 0.0001 0.0012 -0.0006 -0.0003 3.49 3.40 1.06 1.03 3.63 

 6 20 -0.0025 -0.0031 -0.0012 -0.0024 3.18 3.16 1.06 1.05 3.36 

  30 -0.0029 -0.0010 0.0013 0.0031 2.89 2.85 1.07 1.06 3.07 

  10 -0.0004 -0.0003 0.0012 0.0012 4.18 3.92 1.05 0.98 4.14 

1 8 20 -0.0036 -0.0029 0.0008 0.0012 4.07 3.81 1.06 0.99 4.06 

  30 -0.0085 -0.0078 -0.0016 -0.0012 3.91 3.60 1.06 0.97 3.82 

  10 -0.0022 -0.0021 0.0004 0.0003 5.27 4.89 1.04 0.97 5.11 

 10 20 -0.0007 -0.0008 0.0003 0.0003 5.06 4.72 1.05 0.98 4.97 

  30 -0.0006 -0.0007 0.0005 0.0004 4.89 4.38 1.05 0.94 4.63 

  10 0.0018 0.0018 0.0002 0.0003 2.88 2.86 1.01 1.01 2.91 

 6 20 0.0012 0.0011 0.0005 0.0007 3.23 3.17 1.01 0.99 3.22 

  30 -0.0001 -0.0001 0.0012 0.0008 2.87 2.92 1.01 1.03 2.97 

  10 0.0021 0.0021 -0.0002 -0.0003 3.85 3.78 1.01 0.99 3.83 

5 8 20 0.0017 0.0017 -0.0010 -0.0009 3.67 3.60 1.01 0.99 3.65 

  30 0.0012 0.0011 0.0003 0.0002 4.13 4.03 1.01 0.99 4.09 

  10 -0.0005 -0.0005 -0.0006 -0.0006 4.86 4.65 1.00 0.96 4.68 

 10 20 0.0001 0.0001 0.0000 -0.0001 5.29 5.16 1.00 0.98 5.21 

  30 -0.0004 -0.0003 -0.0003 -0.0003 4.99 4.68 1.01 0.94 4.73 

    𝜎1 = 1, 𝜎2 = 2;   𝑅 = 0.67     

  10 0.0116 0.0045 0.0141 0.0082 2.83 2.70 1.05 1.00 2.83 

 6 20 0.0206 0.0137 0.0178 0.0142 2.51 2.34 1.06 0.98 2.48 

  30 0.0227 0.0157 0.0049 -0.0010 2.48 2.55 1.06 1.10 2.73 

  10 0.0105 0.0058 0.0086 0.0065 3.80 3.54 1.04 0.97 3.69 

1 8 20 0.0176 0.012 0.0132 0.0096 3.74 3.47 1.05 0.98 3.67 

  30 0.0163 0.0115 0.0163 0.0129 3.60 3.33 1.05 0.97 3.50 

  10 0.0067 0.0032 0.0059 0.0054 4.74 4.33 1.03 0.94 4.47 

 10 20 0.0102 0.0060 0.0094 0.0085 4.59 4.15 1.04 0.94 4.33 

  30 0.0115 0.0068 0.0098 0.0099 4.49 3.95 1.05 0.92 4.16 

  10 0.0024 0.0012 0.0024 -0.0041 2.78 2.62 1.01 0.95 2.64 

 6 20 0.0057 0.0042 0.0030 -0.0034 3.14 2.88 1.01 0.93 2.92 

  30 0.0045 0.0029 0.0042 -0.0061 2.64 2.48 1.01 0.95 2.52 

  10 0.0030 0.0020 0.0026 -0.0007 3.77 3.47 1.00 0.92 3.50 

5 8 20 0.0025 0.0014 0.0026 -0.0021 3.49 3.09 1.01 0.89 3.13 

  30 0.0035 0.0023 0.0020 -0.0026 3.88 3.62 1.01 0.94 3.66 

  10 0.0011 0.0003 0.0019 0.0007 4.49 4.17 1.00 0.93 4.20 

 10 20 0.0045 0.0037 0.0013 -0.0003 4.44 4.00 1.01 0.91 4.05 

  30 0.0039 0.0030 0.0025 0.0010 4.10 3.66 1.01 0.90 3.70 
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Table 1. (continued).   
   Bias Relative Efficiency  

𝑟 𝑚 𝑞 �̂�𝑀𝐿.𝑆𝑅𝑆 �̂�𝑀𝑀𝐿.𝑆𝑅𝑆 �̂�𝑀𝐿.𝑅𝑆𝑆 �̂�𝑀𝑀𝐿.𝑅𝑆𝑆 RE1 RE2 RE3 RE4 RE5 

    𝜎1 = 1, 𝜎2 = 3;   𝑅 = 0.75     

  10 0.0242 0.0170 0.0145 0.0077 2.86 2.57 1.03 0.93 2.67 

 6 20 0.0182 0.0112 0.0214 0.0140 2.73 2.66 1.04 1.01 2.77 

  30 0.0210 0.0121 0.0154 0.0089 2.34 2.21 1.05 0.99 2.32 

  10 0.0122 0.0063 0.0101 0.0069 3.78 3.36 1.02 0.91 3.46 

1 8 20 0.0194 0.0119 0.0186 0.0142 3.37 3.01 1.04 0.93 3.15 

  30 0.0216 0.0141 0.0177 0.0139 3.09 2.84 1.04 0.95 2.96 

  10 0.0096 0.0047 0.0070 0.0062 4.54 4.06 1.02 0.91 4.14 

 10 20 0.0127 0.0071 0.0101 0.0088 4.00 3.61 1.02 0.92 3.70 

  30 0.0172 0.0110 0.0135 0.0132 3.85 3.37 1.03 0.90 3.48 

  10 0.0027 0.0011 0.0039 -0.0057 2.61 2.22 1.00 0.85 2.24 

 6 20 0.0070 0.0051 0.0044 -0.0054 2.85 2.48 1.00 0.87 2.50 

  30 0.0076 0.0054 0.0057 -0.008 2.60 2.29 1.01 0.89 2.32 

  10 0.0031 0.0019 0.0031 -0.0019 3.16 2.72 1.00 0.86 2.73 

5 8 20 0.0021 0.0007 0.0038 -0.0024 3.22 2.78 1.00 0.86 2.80 

  30 0.0041 0.0025 0.0030 -0.0037 3.64 3.17 1.01 0.87 3.20 

  10 0.0024 0.0014 0.0006 -0.0007 4.07 3.55 1.00 0.87 3.57 

 10 20 0.0012 0.0001 0.0009 -0.0018 3.89 3.40 1.00 0.87 3.41 

  30 0.0016 0.0004 0.0035 0.0016 3.87 3.29 1.00 0.85 3.31 

 

 

Comparisons with respect to the sampling methods: In columns corresponding to RE1 and 

RE2, we compare the performances of the ML and the MML estimators of R based on SRS 

to the corresponding estimators of R based on RSS. It is clear from the values of RE1 and 

RE2 that estimators based on RSS are much more efficient than the estimators based on 

SRS.  In other words, RE1 and RE2 values are much greater than 1 in all cases. It can also 

be seen that the efficiencies of the ML and the MML estimators of R based on RSS increase 

as the set sizes mx and my increase. However, the efficiencies of the corresponding 

estimators of R are more or the less the same for different values of the cycles (rx, ry) and 

the shape parameter p.   

 

Comparisons with respect to the estimation methods: Columns corresponding to RE3 and 

RE4 are used to compare the efficiencies of the ML and the MML estimators under SRS 

and RSS, respectively. In case of SRS, it is clear from the column corresponding to RE3 

that the efficiencies of the ML and the MML estimators of R are almost equal for all values 

of the sample sizes (n, m) and the shape parameter p. In case of RSS, when the number of 

cycles are equal to 1, i.e. rx = ry = 1, and the scale parameters are equal each other, i.e. 

𝜎1 = 𝜎2 = 1, the MSEs of the ML and the MML estimators of 𝑅 are very close to each 

other. However, when the number of cycles increase, i.e. 𝑟𝑥 = 𝑟𝑦 = 5, and the scale 

parameters are differ each other, i.e. 𝜎1 = 1, 𝜎2 = 2 and 𝜎1 = 1, 𝜎2 = 3, the ML estimator 

of 𝑅 is more efficient than the corresponding MML estimator, see the column 

corresponding to 𝑅𝐸4. These situations do not show difference with respect to the values 

of the different shape parameters. 
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Table 2. Biases of the ML and the MML estimators of 𝑹 based on SRS and RSS and 

the 𝑹𝑬 values when 𝒑 =1.5. 

   Bias Relative Efficiency  

𝑟 𝑚 𝑞 �̂�𝑀𝐿.𝑆𝑅𝑆 �̂�𝑀𝑀𝐿.𝑆𝑅𝑆 �̂�𝑀𝐿.𝑅𝑆𝑆 �̂�𝑀𝑀𝐿.𝑅𝑆𝑆 RE1 RE2 RE3 RE4 RE5 

    𝜎1 = 1, 𝜎2 = 1;   𝑅 = 0.5     

  10 0.0003 0.0010 -0.0017 -0.0013 3.47 3.34 1.06 1.02 3.55 

 6 20 0.0037 0.0028 -0.0000 0.0002 3.10 2.98 1.07 1.03 3.20 

  30 -0.0018 -0.0008 0.0006 -0.0032 2.87 2.74 1.08 1.04 2.99 

  10 0.0012 0.0013 -0.0001 0.0001 4.30 4.03 1.05 0.98 4.24 

1 8 20 0.0015 0.0014 -0.0004 -0.0005 4.10 3.82 1.06 0.99 4.06 

  30 -0.0014 -0.0013 0.0004 0.0006 4.07 3.84 1.06 1.00 4.09 

  10 0.0003 0.0004 0.0002 0.0003 5.30 4.95 1.04 0.97 5.16 

 10 20 -0.0006 -0.0004 0.0005 0.0005 5.20 4.82 1.05 0.97 5.08 

  30 -0.0007 -0.0008 -0.0011 -0.0010 4.82 4.36 1.05 0.95 4.61 

  10 0.0001 0.0001 -0.0003 -0.0001 2.88 2.84 1.01 1.00 2.88 

 6 20 0.0014 0.0014 -0.0004 -0.0007 3.18 3.14 1.01 1.00 3.19 

  30 0.0006 0.0007 0.0003 0.0001 2.80 2.88 1.01 1.05 2.94 

  10 0.0009 0.0009 0.0000 0.0000 4.30 4.16 1.01 0.97 4.21 

5 8 20 0.0017 0.0016 -0.0003 -0.0003 3.62 3.51 1.01 0.98 3.55 

  30 0.0010 0.0010 0.0001 0.0002 4.29 4.22 1.01 0.99 4.27 

  10 0.0004 0.0004 0.0001 0.0002 5.07 4.89 1.00 0.97 4.93 

 10 20 0.0038 0.0038 0.0016 0.0014 4.61 4.35 1.01 0.95 4.40 

  30 0.0016 0.0016 -0.0001 0.0001 4.83 4.52 1.01 0.94 4.57 

    𝜎1 = 1, 𝜎2 = 2;   𝑅 = 0.67     

  10 -0.0022 -0.0081 0.0143 0.0079 3.30 3.11 1.04 0.99 3.27 

 6 20 0.0210 0.0158 0.0151 0.0051 3.27 3.16 1.07 1.03 3.39 

  30 0.0160 0.0094 0.0304 0.0227 2.65 2.50 1.06 1.00 2.66 

  10 0.0109 0.0062 0.0095 0.0076 3.92 3.57 1.04 0.95 3.73 

1 8 20 0.0128 0.0075 0.0119 0.0087 3.74 3.46 1.05 0.97 3.64 

  30 0.0109 0.0059 0.0152 0.0128 3.74 3.38 1.05 0.95 3.56 

  10 0.0081 0.0048 0.0060 0.0057 4.80 4.36 1.03 0.94 4.52 

 10 20 0.0110 0.0069 0.0081 0.0072 4.51 4.08 1.04 0.94 4.25 

  30 0.0131 0.0086 0.0123 0.0124 4.40 3.90 1.04 0.92 4.08 

  10 0.0031 0.0020 0.0025 -0.0044 2.89 2.69 1.00 0.94 2.71 

 6 20 0.0031 0.0017 0.0022 -0.0046 3.05 2.80 1.01 0.93 2.84 

  30 0.0052 0.0037 0.0042 -0.0066 2.60 2.44 1.01 0.95 2.48 

  10 0.0019 0.0011 0.0012 -0.0024 3.56 3.29 1.00 0.93 3.32 

5 8 20 0.0020 0.0010 0.0011 -0.0035 3.52 3.20 1.00 0.91 3.23 

  30 0.0036 0.0023 0.0021 -0.0026 3.97 3.77 1.01 0.95 3.82 

  10 0.0014 0.0007 0.0007 -0.0005 4.79 4.48 1.00 0.93 4.51 

 10 20 0.0040 0.0031 0.0012 -0.0007 4.31 3.96 1.00 0.92 3.98 

  30 0.0034 0.0024 0.0026 0.0013 4.10 3.64 1.01 0.89 3.68 
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Table 2. (continued).   

   Bias Relative Efficiency  

𝑟 𝑚 𝑞 �̂�𝑀𝐿.𝑆𝑅𝑆 �̂�𝑀𝑀𝐿.𝑆𝑅𝑆 �̂�𝑀𝐿.𝑅𝑆𝑆 �̂�𝑀𝑀𝐿.𝑅𝑆𝑆 RE1 RE2 RE3 RE4 RE5 

    𝜎1 = 1, 𝜎2 = 3;   𝑅 = 0.75     

  10 0.0013 -0.0055 0.0270 0.0198 3.40 3.19 1.02 0.96 3.28 

 6 20 0.0196 0.0109 0.0213 0.0156 3.09 2.95 1.03 0.99 3.07 

  30 0.0326 0.0234 0.0271 0.0152 2.84 2.46 1.05 0.90 2.59 

  10 0.0159 0.0099 0.0128 0.0098 3.45 3.07 1.02 0.91 3.16 

1 8 20 0.0154 0.0084 0.0124 0.0084 3.42 3.10 1.04 0.94 3.23 

  30 0.0188 0.0120 0.0161 0.0129 3.22 2.94 1.04 0.95 3.07 

  10 0.0115 0.0067 0.0075 0.0067 4.32 3.81 1.02 0.90 3.90 

 10 20 0.0129 0.0073 0.0099 0.0085 4.01 3.55 1.03 0.91 3.66 

  30 0.0156 0.0095 0.0136 0.0133 3.85 3.38 1.03 0.90 3.50 

  10 0.0046 0.0030 0.0037 -0.0058 2.58 2.17 1.00 0.84 2.19 

 6 20 0.0037 0.0018 0.0036 -0.0060 3.01 2.53 1.00 0.84 2.55 

  30 0.0055 0.0034 0.0063 -0.0084 2.44 2.09 1.01 0.86 2.11 

  10 0.0029 0.0017 0.0023 -0.0020 3.20 2.73 1.00 0.86 2.75 

5 8 20 0.0030 0.0016 0.0036 -0.0032 3.16 2.76 1.00 0.88 2.78 

  30 0.0056 0.0040 0.0039 -0.0026 3.66 3.18 1.00 0.87 3.21 

  10 0.0035 0.0025 0.0014 -0.0007 4.12 3.59 1.00 0.87 3.61 

 10 20 0.0031 0.0020 0.0016 -0.0014 4.10 3.49 1.00 0.85 3.51 

  30 0.0033 0.0021 0.0029 0.0005 3.95 3.22 1.00 0.82 3.25 

 

 

In column corresponding to RE5, the performances of the MML estimator of R based RSS, 

i.e. R̂MML,RSS, and the ML estimator of R based on SRS, i.e. R̂ML,SRS, are compared. The 

reason of why we make this comparison is that to determine the more efficient estimator. 

It is clear that R̂MML,RSS provides explicit solution for the system reliability R. However, 

R̂ML,SRS is obtained iteratively. It can be seen that R̂MML,RSS is significantly more efficient 

than the R̂ML,SRS in all cases. 

 

Comparisons with respect to proportion of censoring: From the simulation study, we show 

that when the proportion of censoring q increases the estimators of R lose their efficiencies 

for rx = ry = 1 and in all set sizes as expected. Also, it should be noted that the MSEs of 

the estimators increase as the proportion of censoring q increases when the number of 

cycles change but the set sizes stay the same. However, we don’t reproduce the values of 

MSEs in Tables 1-3 for the sake of brevity.    
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Table 3. Table 2. Biases of the ML and the MML estimators of 𝑹 based on SRS and 

RSS and the 𝑹𝑬 values when 𝒑 =2.5.  

   Bias Relative Efficiency  

𝑟 𝑚 𝑞 �̂�𝑀𝐿.𝑆𝑅𝑆 �̂�𝑀𝑀𝐿.𝑆𝑅𝑆 �̂�𝑀𝐿.𝑅𝑆𝑆 �̂�𝑀𝑀𝐿.𝑅𝑆𝑆 RE1 RE2 RE3 RE4 RE5 

    𝜎1 = 1, 𝜎2 = 1;   𝑅 = 0.5     

  10 -0.0084 -0.0085 -0.0002 -0.0004 3.32 3.18 1.07 1.03 3.44 

 6 20 -0.0255 -0.0235 -0.0046 -0.0031 3.23 3.13 1.08 1.05 3.40 

  30 0.0060 0.0056 0.0026 0.0020 3.08 2.96 1.08 1.04 3.21 

  10 -0.0007 -0.0010 -0.0001 -0.0001 4.24 3.99 1.05 0.99 4.21 

1 8 20 -0.0003 -0.0001 0.0009 0.0011 4.15 3.94 1.06 1.00 4.18 

  30 0.0026 0.0023 0.0006 0.0007 3.95 3.71 1.06 1.00 3.96 

  10 0.0019 0.0020 -0.0003 -0.0005 5.22 4.91 1.04 0.98 5.12 

 10 20 0.0003 0.0002 0.0000 -0.0001 5.11 4.74 1.05 0.97 4.98 

  30 -0.0017 -0.0016 0.0005 0.0005 4.79 4.31 1.05 0.95 4.57 

  10 0.0017 0.0017 0.0006 0.0007 2.91 2.85 1.01 0.99 2.89 

 6 20 -0.0007 -0.0007 -0.0015 -0.0012 3.46 3.42 1.01 1.00 3.48 

  30 -0.0013 -0.0013 -0.0003 -0.0001 2.79 2.85 1.02 1.04 2.90 

  10 -0.0017 -0.0018 -0.0002 -0.0003 4.08 3.96 1.01 0.97 4.00 

5 8 20 0.0018 0.0018 -0.0011 -0.0010 3.53 3.46 1.01 0.99 3.51 

  30 0.0001 0.0002 -0.0002 0.0001 4.41 4.36 1.01 1.00 4.43 

  10 -0.0013 -0.0014 -0.0004 -0.0003 4.87 4.69 1.01 0.97 4.75 

 10 20 -0.0013 -0.0013 -0.0000 0.0000 4.98 4.83 1.01 0.97 4.88 

  30 -0.0020 -0.0020 0.0001 -0.0001 4.40 4.05 1.01 0.93 4.10 

    𝜎1 = 1, 𝜎2 = 2;   𝑅 = 0.67     

  10 0.0077 0.0021 0.0172 0.0131 3.09 2.89 1.05 0.98 3.05 

 6 20 0.0113 0.0055 0.0154 0.0105 3.02 2.80 1.06 0.98 2.98 

  30 0.0091 0.0026 0.0334 0.0244 2.91 2.85 1.07 1.05 3.06 

  10 0.0103 0.0058 0.0096 0.0073 3.96 3.67 1.04 0.96 3.83 

1 8 20 0.0115 0.0064 0.0125 0.0096 3.88 3.55 1.05 0.96 3.75 

  30 0.0165 0.0111 0.0145 0.0110 3.77 3.40 1.05 0.95 3.58 

  10 0.0096 0.0061 0.0063 0.0056 4.69 4.27 1.03 0.94 4.42 

 10 20 0.0129 0.0085 0.0076 0.0067 4.61 4.16 1.04 0.94 4.34 

  30 0.0119 0.0072 0.0114 0.0117 4.48 3.95 1.04 0.92 4.14 

  10 0.0021 0.0010 0.0034 -0.0037 2.68 2.52 1.01 0.95 2.55 

 6 20 0.0039 0.0024 0.0026 -0.0042 3.08 2.82 1.01 0.92 2.86 

  30 0.0040 0.0024 0.0054 -0.0051 2.80 2.68 1.01 0.97 2.72 

  10 0.0037 0.0028 0.0024 -0.0009 4.01 3.67 1.01 0.92 3.71 

5 8 20 0.0024 0.0014 0.0027 -0.0017 3.75 3.50 1.00 0.94 3.54 

  30 0.0050 0.0039 0.0023 -0.0025 4.18 3.82 1.01 0.92 3.87 

  10 0.0043 0.0035 0.0012 0.0002 4.14 3.85 1.00 0.93 3.88 

 10 20 0.0007 -0.0000 0.0026 0.0005 4.82 4.41 1.00 0.92 4.44 

  30 0.0022 0.0012 0.0023 0.0006 4.45 3.89 1.00 0.88 3.93 
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Table 3. (continued).   

   Bias Relative Efficiency 

𝑟 𝑚 𝑞 �̂�𝑀𝐿.𝑆𝑅𝑆 �̂�𝑀𝑀𝐿.𝑆𝑅𝑆 �̂�𝑀𝐿.𝑅𝑆𝑆 �̂�𝑀𝑀𝐿.𝑅𝑆𝑆 RE1 RE2 RE3 RE4 RE5 

    𝜎1 = 1, 𝜎2 = 3;   𝑅 = 0.75     

  10 0.0133 0.0069 0.0213 0.0139 2.90 2.72 1.05 0.98 2.87 

 6 20 0.0168 0.0097 0.0160 0.0075 2.85 2.73 1.02 0.98 2.80 

  30 0.0043 -0.0037 0.0397 0.0248 2.54 2.53 1.04 1.04 2.65 

  10 0.0125 0.0066 0.0112 0.0078 3.60 3.26 1.02 0.93 3.35 

1 8 20 0.0134 0.0067 0.0161 0.0110 3.54 3.22 1.03 0.93 3.33 

  30 0.0106 0.0038 0.0149 0.0100 3.29 3.07 1.04 0.97 3.20 

  10 0.0099 0.0053 0.0078 0.0071 4.43 3.93 1.02 0.90 4.01 

 10 20 0.0118 0.0063 0.0106 0.0093 4.06 3.65 1.02 0.92 3.74 

  30 0.0153 0.0092 0.0136 0.0134 3.93 3.41 1.03 0.89 3.51 

  10 0.0025 0.0010 0.0030 -0.0062 2.66 2.26 1.00 0.85 2.27 

 6 20 0.0053 0.0035 0.0035 -0.0063 2.84 2.45 1.01 0.87 2.48 

  30 0.0064 0.0044 0.0053 -0.0093 2.39 2.00 1.01 0.84 2.03 

  10 0.0023 0.0012 0.0020 -0.0028 3.39 2.91 1.00 0.86 2.92 

5 8 20 0.0032 0.0018 0.0046 -0.0022 3.03 2.60 1.00 0.86 2.62 

  30 0.0045 0.0030 0.0031 -0.0035 3.60 3.12 1.01 0.87 3.15 

  10 0.0012 0.0003 0.0014 -0.0006 4.42 3.77 1.00 0.85 3.79 

 10 20 0.0022 0.0011 0.0025 -0.0004 3.81 3.39 1.00 0.89 3.41 

  30 0.0059 0.0047 0.0033 0.0013 3.88 3.22 1.00 0.83 3.25 

5. Real Data Applications 

In this section, we analyze two different data sets. First one is the strength data taken from 

the literature and the other one is the wind speed data obtained from the Turkish State 

Meteorological Service. The first data set is widely used in the engineering literature in the 

context of reliability studies and the second data set is very popular among the people 

working in the area of renewable energy. 

5.1 Strength data 

Here, we reanalyze the widely used strength data taken from the literature (Badar and 

Priest, 1982 and Ghitany et al., 2015) by using the methodologies presented in this study. 

Strength data is about the strength measured in GPA for single carbon fibers, and 

impregnated 1000 carbon fiber tows.  

 

Single fibers were tested under tension at gauge lengths of 20 mm (Data Set 1) and 50 mm 

(Data Set 2) for the sample sizes 69 and 65, respectively.  

 

To identify the distribution of the strength data, we use the Q-Q plot technique. Q-Q plots 

indicate that the Weibull distribution beautifully models the both data sets, see Figure 1. 

 

We first consider the strength data (for both 20 mm and 50 mm) mentioned above as 

populations of interest. Then, we randomly draw samples from these populations via the 

SRS and the RSS techniques.  
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SRS Technique: We randomly select 21 observations from each of the data sets 

corresponding to the gauge lengths of 20 mm (𝑋) and 50 mm (𝑌).  

 

RSS Technique: To estimate the system reliability R, we select RSS sample with the set 

sizes 𝑚𝑥 = 𝑚𝑦 =3 and the number of cycles 𝑟𝑥 = 𝑟𝑦 =7. In this technique, we need 

𝑚𝑥
2𝑟𝑥 = 𝑚𝑦

2𝑟𝑦 =63 observations to obtain samples. However, we only use 𝑚𝑥𝑟𝑥 =

myry =21 of them for both the data sets corresponding to the gauge lengths of 20 mm (X) 

and 50 mm (Y).  

 
Figure 1. Weibull Q-Q plots of gauge lengths of 20 mm (a) and 50 mm (b) data 

 

Therefore, the sample sizes for the SRS and the RSS techniques become 21 for each of the 

data sets, i.e. 𝑛 = 𝑚 =21. They are given in Table 4 and 5, respectively. 

Table 4. Gauge lengths of 20 mm and 50 mm based on SRS, 𝒏 = 𝒎 =21 

Data set 1 

(Gauge lengths of 20 mm) 

Data set 2 

(Gauge lengths of 50 mm) 

1.479 1.552 1.803 1.339 1.549 1.589 

1.966 1.997 2.006 1.613 1.746 1.807 

2.098 2.24 2.27 1.852 2.019 2.055 

2.272 2.426 2.566 2.058 2.162 2.171 

2.642 2.773 2.818 2.335 2.386 2.471 

2.821 2.88 2.954* 2.558 2.633* 2.67* 

3.012* 3.067* 3.233* 2.699* 2.785* 3.116* 

 *: Censored observations 

 

In the context of censoring, we assume that the sampling units which are greater than 2.90 

and 2.61 are censored for  𝑋 and 𝑌 samples, respectively. It is clear from Table 4 and 5 that 

censored observations are equal to 19% of the samples represented by 𝑋 and 𝑌 for both the 

SRS and the RSS samples.  
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Table 5. Gauge lengths of 20 mm and 50 mm based on RSS, 𝒎𝒙 = 𝒎𝒚 =3 and 𝒓𝒙 =

𝒓𝒚 =7 

 Data set 1 

(Gauge lengths of 20 mm) 

 Data set 2 

(Gauge lengths of 50 mm) 

  Set    Set  

Cycle 1 2 3 Cycle 1 2 3 

1 1.865 2.642 3.433* 1 1.807 2.051 2.299 

2 1.7 2.848 2.301 2 1.549 1.852 2.62* 

3 2.098 2.478 3.128* 3 2.055 2.431 3.174* 

4 2.27 2.684 3.233* 4 1.974 3.02* 2.67* 

5 1.479 2.809 2.554 5 2.171 2.601 2.514 

6 1.314 2.24 3.585* 6 2.577 2.272 2.125 

7 2.027 2.773 2.586 7 1.812 1.764 2.604 

           *: Censored observations 

 

We then compute the ML and the MML estimates of the system reliability R based on SRS 

and RSS techniques. By using bootstrap method, we compare the efficiencies of ML and 

MML estimators of 𝑅 based on SRS and RSS. In view of SRS, we use the methodology 

proposed by Efron (1982). Moreover, in the context of RSS, we use the  bootstrap RSS by 

rows method originated by Modarres et al. (2006) for the bootstrap standard error (BSE) 

and bootstrap confidence interval (BCI) of R. Here, let B be the number of bootstrap 

replications, R∗ be the bootstrap estimates of R and R̅∗ = (1 B⁄ ) ∑ R∗B
i=1 , then the BSE is 

calculated as shown below 

BSE = {
1

B − 1
∑(R̂∗ − R̅∗)

2
B

i=1

}

1 2⁄

.                                                                               (34) 

 

After ranking R̂1
∗ , … , R̂B

∗  from the smallest to the largest, i.e., (R̂(1)
∗ , … , R̂(B)

∗ ), we construct 

approximate 100(1 − α)% BCI of R as given  

(R̂((α 2⁄ )B)
∗ , R̂((1−α 2⁄ )B)

∗ ).                                                                             (35) 

 

The ML and the MML estimates of 𝑅 with the BSEs and the corresponding 95% BCIs of 

𝑅 based on SRS and RSS are given in Table 6. 

Table 6. The ML and the MML estimates of 𝑹 for right censored strength data 

�̂�𝑀𝐿,𝑆𝑅𝑆 �̂�𝑀𝑀𝐿,𝑆𝑅𝑆 �̂�𝑀𝐿,𝑅𝑆𝑆 �̂�𝑀𝑀𝐿,𝑅𝑆𝑆 

0.3738 0.3739 0.3849 0.3839 

(0.0872)* (0.0747)* (0.0532)* (0.0587)* 

(0.2322,0.5659)** (0.2457,0.5377)** (0.2873,0.4966)** (0.2795,0.5092)** 

       *: BSE 

     **: BCI 

 

It is clear that the BSE values based on RSS are smaller than the BSE values based on SRS. 

Also, the length of the BCIs based on RSS are shorter than the corresponding BCIs based 
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on SRS. Therefore, the estimates based on RSS are more reliable than the estimates based 

on SRS as expected from the simulation results given earlier. The estimate of 𝑃(𝑋 < 𝑌), 

based on right censored data, is approximately .38, i.e., 𝑃(𝑋 > 𝑌) is .62. It indicates that 

the single carbon fibres with length 20 mm are stronger than the single carbon fibres with 

length 50 mm. 

5.2 Wind speed data 

In this real life application, we use hourly wind speed data (m/s) obtained from Bursa and 

Eskisehir, Turkey during the spring of 2009 to make an implementation of proposed 

methods. To do this, 1933 observations were taken for each of the wind speed data (i.e., 

Bursa and Eskisehir) at the heights of 10m. These data sets were obtained from the Turkish 

State Meteorological Service, see also Arslan et al. (2017). 

 

Basically, the stress-strength model bases on the idea of the probability of 𝑋 less than 𝑌. 

Here, our aim is to estimate the probability of the wind speed of Bursa (𝑋) is less than the 

wind speed of Eskisehir (𝑌), in other words, 𝑃(𝑋 < 𝑌). Before starting to analyze the data 

set, we first ensure that Weibull distribution provides good fit for the wind speed data 

obtained from Bursa and Eskisehir (i.e., 𝑋 and 𝑌). Under the assumption of equal shape 

parameter,  𝑝 is estimated to be 1.6771. Based on this value of 𝑝, the scale parameters 

corresponding to the data sets 𝑋 and 𝑌 are obtained to be 𝜎1 = 4.3463 and 𝜎2 = 7.3858, 

respectively.  

 

Similar to first application, we treat the wind speed data of Bursa and Eskisehir as the 

populations of interests. Then, we select SRS and RSS samples from these data sets. In the 

context of RSS, we select samples with the set sizes 𝑚𝑥 = 𝑚𝑦 =8 and the number of cycles 

𝑟𝑥 = 𝑟𝑦 =5 then we obtain the sample sizes as 𝑛 = 𝑚 =40. Sample sizes of SRS samples 

are also 𝑛 = 𝑚 =40. Then, we draw the Q-Q plots of the wind speed data for both Bursa 

(𝑋) and Eskisehir (𝑌) and also we draw the plot of the empirical cdf against the fitted cdf, 

see Figure 2 and 3.  
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Figure 2a. Diagnostic plots for the wind speed data obtained from Bursa based on SRS 

Figure 2b. Diagnostic plots for the wind speed data obtained from Eskisehir based on SRS 

 
Figure 3a. Diagnostic plots for the wind speed data obtained from Bursa based on RSS 

Figure 3b. Diagnostic plots for the wind speed data obtained from Eskisehir based on RSS 
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Under the assumption of right censoring, we suppose that the observations which are 

greater than 4 and 5 are censored for the samples 𝑋 and 𝑌, respectively. Censored 

observations are almost 12.5% of the complete samples. Similar to subsection 5.1, the 

resulting ML and MML estimates of 𝑅 based on SRS and RSS are given in Table 7. 

Table 7. The ML and the MML estimates of 𝑹 for right censored wind speed data 

�̂�𝑀𝐿,𝑆𝑅𝑆 �̂�𝑀𝑀𝐿,𝑆𝑅𝑆 �̂�𝑀𝐿,𝑅𝑆𝑆 �̂�𝑀𝑀𝐿,𝑅𝑆𝑆 

0.6068 0.6052 0.6460 0.6453 

(0.0569)* (0.0526)* (0.0210)* (0.0204)* 

(0.4878,0.7133)** (0.4965,0.7044)** (0.6056,0.6877)** (0.6068,0.6855)** 

       *: BSE 

     **: BCI 

 

It is clear form Table 7, BSEs of the ML and the MML estimators of 𝑅 based on RSS is 

less than the corresponding estimators of R based on SRS. The length of BCIs based on 

RSS are much more smaller than the length of BCIs based on SRS. These results are in 

agreement with the results of first application. The estimate of 𝑃(𝑋 < 𝑌), based on right 

censored data, is greater than .60. It implies that the wind speed for Bursa is less than the 

wind speed for Eskisehir during the spring of 2009. 

6. Conclusions  

Based on type-II right censored SRS and RSS data, we derive the estimators of 𝑅 =
𝑃(𝑋 < 𝑌) when the distributions of both the stress and the strength are Weibull with the 

different scale and the same shape parameters. In the estimation procedure, we use the ML 

and the MML methodologies. An extensive Monte-Carlo simulation study and empirical 

studies using two real data sets have been done to compare the efficiencies of the estimators 

of system reliability 𝑅. Simulation results show that the most efficient estimator of R is the 

ML estimator based on RSS as expected. It is followed by the MML estimator based on 

RSS. We see that the estimators based on SRS are the least efficient among the all 

estimators. Therefore, the ML estimator of 𝑅 based on RSS can be used when our interest 

is efficiency especially when the scale parameters are not equal, i.e., 𝜎1 ≠ 𝜎2. On the other 

hand, if our focus is to obtain the explicit and the efficient estimator of 𝑅, we suggest to 

use the MML estimator based on RSS when the scale parameters 𝜎1 = 𝜎2 = 1 and the set 

sizes 𝑚𝑥 and 𝑚𝑦 are small or moderate (i.e., 6 or 8). 

 

Appendix: Modified likelihood equations based on RSS 

 

𝜕 ln 𝐿∗

𝜕𝜇1
= −

1

𝜂
∑ ∑ 𝛿(𝑖)𝑐[(𝛼1𝑖𝑐

𝑢 − 𝛽1𝑖𝑐
𝑢 𝑧(𝑖)𝑐) + (𝑖 − 1)(𝛼2𝑖𝑐

𝑢 − 𝛽2𝑖𝑐
𝑢 𝑧(𝑖)𝑐)

𝑚𝑥

𝑖=1

𝑟𝑥

𝑐=1

− (𝑚𝑥 − 𝑖)(𝛼3𝑖𝑐
𝑢 + 𝛽3𝑖𝑐

𝑢 𝑧(𝑖)𝑐)] 

+
1

𝜂
∑ ∑(1 − 𝛿(𝑖)𝑐)

𝑚𝑥

𝑖=1

(𝛼4𝑖𝑐
𝑢 + 𝛽4𝑖𝑐

𝑢 𝑧(𝑖)𝑐)

𝑟𝑥

𝑐=1

= 0, 
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𝜕 ln 𝐿∗

𝜕𝜇2
= −

1

𝜂
∑ ∑ 𝛿(𝑗)𝑙[(𝛼1𝑗𝑙

𝑣 − 𝛽1𝑗𝑙
𝑣 𝑤(𝑗)𝑙) + (𝑗 − 1)(𝛼2𝑗𝑙

𝑣 − 𝛽2𝑗𝑙
𝑣 𝑤(𝑗)𝑙)

𝑚𝑦

𝑗=1

𝑟𝑦

𝑙=1

− (𝑚𝑦 − 𝑗)(𝛼3𝑗𝑙
𝑣 + 𝛽3𝑗𝑙

𝑣 𝑤(𝑗)𝑙)] 

+
1

𝜂
∑ ∑(1 − 𝛿(𝑗)𝑙)(𝛼4𝑗𝑙

𝑣 + 𝛽4𝑗𝑙
𝑣 𝑤(𝑗)𝑙)

𝑚𝑦

𝑗=1

𝑟𝑦

𝑙=1

= 0, 

𝜕 ln 𝐿∗

𝜕𝜂
= −

∑ ∑ 𝛿(𝑖)𝑐
𝑚𝑥
𝑖=1

𝑟𝑥
𝑐=1 + ∑ ∑ 𝛿(𝑗)𝑙

𝑚𝑦

𝑗=1

𝑟𝑦

𝑙=1

𝜂
 

−
1

𝜂
∑ ∑ 𝛿(𝑖)𝑐[(𝛼1𝑖𝑐

𝑢 − 𝛽1𝑖𝑐
𝑢 𝑧(𝑖)𝑐) + (𝑖 − 1)(𝛼2𝑖𝑐

𝑢 − 𝛽2𝑖𝑐
𝑢 𝑧(𝑖)𝑐)

𝑚𝑥

𝑖=1

𝑟𝑥

𝑐=1

− (𝑚𝑥 − 𝑖)(𝛼3𝑖𝑐
𝑢 + 𝛽3𝑖𝑐

𝑢 𝑧(𝑖)𝑐)] 𝑧(𝑖)𝑐 

+
1

𝜂
∑ ∑(1 − 𝛿(𝑖)𝑐)(𝛼4𝑖𝑐

𝑢 + 𝛽4𝑖𝑐
𝑢 𝑧(𝑖)𝑐)𝑧(𝑖)𝑐

𝑚𝑥

𝑖=1

𝑟𝑥

𝑐=1

 

−
1

𝜂
∑ ∑ 𝛿(𝑗)𝑙[(𝛼1𝑗𝑙

𝑣 − 𝛽1𝑗𝑙
𝑣 𝑤(𝑗)𝑙) + (𝑗 − 1)(𝛼2𝑗𝑙

𝑣 − 𝛽2𝑗𝑙
𝑣 𝑤(𝑗)𝑙)

𝑚𝑦

𝑗=1

𝑟𝑦

𝑙=1

− (𝑚𝑦 − 𝑗)(𝛼3𝑗𝑙
𝑣 + 𝛽3𝑗𝑙

𝑣 𝑤(𝑗)𝑙)] 𝑤(𝑗)𝑙 

+
1

𝜂
∑ ∑(1 − 𝛿(𝑗)𝑙)(𝛼4𝑗𝑙

𝑣 + 𝛽4𝑗𝑙
𝑣 𝑤(𝑗)𝑙)𝑤(𝑗)𝑙 = 0

𝑚𝑦

𝑗=1

𝑟𝑦

𝑙=1

.            
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