@AGUPUBLICATIONS

Journal of Advances in Modeling Earth Systems

Supporting Information for

Deep Learning provides substantial improvements to county-level fire weather forecasting over the western United States

Rackhun Son¹, Po-Lun Ma², Hailong Wang², Philp J. Rasch^{2,3}, Shih-Yu (Simon) Wang⁴, Hyungjun Kim^{5,9,10}, Jee-Hoon Jeong⁶, Kyo-Sun Sunny Lim⁷, Jin-Ho Yoon^{8,*}

¹Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.

²Pacific Northwest National Laboratory, Richland, WA, USA.

³Department of Atmospheric Science, University of Washington, Seattle, WA, USA.

⁴Department of Plants, Soils, and Climate, Utah State University Logan, U.S.A.

⁵Moon Soul Graduate School of Future Strategy, Korea Advanced Institute of Science and Technology, Daejeon, Korea.

⁶Faculty of Earth and Environmental Sciences, Chonnam National University, Gwangju, Korea.

⁷School of Earth System Sciences, Kyungpook National University, Daegu, Korea.

⁸School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea.

⁹Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.

¹⁰Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

*Correspondence to: Jin-Ho Yoon (yjinho@gist.ac.kr)

Contents of this file

Figures S1 to S8 Tables S1 and S2

Figure S1. Comparison of the time-series of forecasted FWI in Mendocino county. Time-series of FWI averaged over Mendocino county for PRISM (black), CFS-SR (blue), interpolated FWI from CFSv2 (magenta) and persistence forecast (green) and. **a-h.** The lead time 1 to 21 days are individually compared for the outbreak of Mendocino Complex Fire (16/08/2018~, light red shade).

Figure S3. Comparison of the time-series of forecasted FWI in Butte county. Timeseries of FWI averaged over Mendocino county for PRISM (black), CFS-SR (blue), persistence forecast (red) and interpolated FWI from CFSv2 (green). **a-h.** The lead time 1 to 21 days are individually compared for the outbreak of Camp Fire (08/11/2018~, light red shade).

Figure S4. Forecasting skill comparison in Butte county. Heidke Skill Score (HSS) is compared for the dichotomous forecasting performance in **a.** the moderate danger state (FWI >11.2) and **b.** the extreme danger state (FWI>50.0). **c.** Talyor diagram compares the three different forecast for Butte county, which are CFS-SR (blue), the interpolated FWI from CFSv2 (magenta) and Persistence forecast (green) for leading time 1-21days (annotated with numbers). Prism (target) is marked by orange point.

Figure S5. FWI map before the Camp Fire occurrence. a. PRISM, **b-j.** CFS-SR forecasting results leading time from 1 to 21 days. The mapping domain is set (122.3-120.9W, 39.1-40.3N) to include fire damage area: Butte county.

Figure. S7. The spatial comparison of occlusion sensitivity test for extreme wildfire risk days. The rate of changes in forecasting errors are spatially compared by occluding each input variable for days where FWI recorded higher than 50 test period in the test period (01/06/2018-30/11/2019). Each column is sorted from 1 to 7 day of leading time and the rows are arranged by each variable.

Figure S8. FWI forecasting map for the August complex Fire (16-19/08/2020). CFS-SR forecasting results leading time from 1 to 21 days. The mapping domain is set (124-121.2W, 38.8-41.3N) to include fire damage area: Glenn, Lake, Mendocino, Tehama, Trinity and Shasta county.

Fire danger classes	FWI ranges
Very low	< 5.2
Low	5.2 ~ 11.2
Moderate	11.2 ~ 21.3
High	21.3 ~ 38.0
Very high	$38.0\sim50.0$
Extreme	> 50.0

 Table S1. Fire danger classes with FWI ranges. (https://effis.jrc.ec.europa.eu/about-effis/technical-background/fire-danger-forecast/)

Table S2. Contingency table.

	Observation		
		Yes	No
Forecast	Yes	hits (A)	false alarms (B)
	No	misses (C)	correct rejection (D)