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20 Abstract

21 Surface PM2.5 concentration is routinely observed at limited number of surface 

22 monitoring stations. To overcome its limited spatial coverage, space-borne 

23 monitoring system has been established. However, it also faces various challenges 

24 such as cloud contamination and limited vertical resolution. In this study, we propose 

25 a deep learning-based surface PM2.5 estimation method using the attentive 

26 interpretable tabular learning neural network (TabNet) with atmospheric gas species 

27 retrieved from the tropospheric monitoring instrument (TROPOMI). Unlike previous 

28 applications that primarily used decision tree-based algorithms, TabNet provides 

29 interpretable decision-making steps to identify dominant factors. By incorporating 

30 five TROPOMI products (i.e., NO2, SO2, O3, CO, HCHO), we have tested the 

31 system’s capability to produce surface PM2.5 concentration without aerosol optical 

32 property, which was used more traditionally. The proposed model successfully 

33 captures spatiotemporal variations and its performance surpasses those of other 

34 leading machine learning models over Thailand in the period of 2018-2020. The 

35 interpretable decision-making steps highlight that carbon monoxide is the most 

36 influential chemical component, which relates to the seasonal burning in southeast 

37 Asia. It is found that air quality impacts from fire are stronger in the northern part of 

38 Thailand and fires in neighboring countries should not be neglected. The proposed 

39 method successfully estimates surface PM2.5 concentration without aerosol optical 

40 property, implying its potential to advance monitoring air quality over remote 

41 regions.

42 Keywords: PM2.5; TROPOMI; deep learning; TabNet 

43

44
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3

45 Key Points 

46 1. TabNet successfully estimates surface PM2.5 with atmospheric gas compositions 

47 2. CO is highlighted as a key factor in estimating spatiotemporal pattern of PM2.5 

48 3. The origin of CO is likely from seasonal fire in Thailand and its bordering countries

49
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50 1. Introduction

51 Ambient air pollution is a critical threat to public health, causing more than three 

52 million premature fatalities worldwide in 2012 (Organization, 2016) as well as various 

53 environmental issues (Gurjar et al., 2010). Among air pollutants, fine particulate matter 

54 (PM2.5), namely, ambient airborne particulates sized under 2.5 microns, is well known to 

55 damage human health seriously. Due to its microscopic size, PM2.5 can affect the 

56 respiratory and cardiovascular systems, causing or worsening major illnesses such as 

57 asthma, lung cancer and heart disease (Weichenthal et al., 2013). Rising public concern 

58 about air quality urges not only reductions in air pollutants, but also improvements to air 

59 quality monitoring at the ground level to assess the health and socioeconomic impacts.

60 Annual mean PM2.5 concentrations in Thailand reached 21.4 µg/m3 in 2020, making 

61 it the 34th most polluted country in the world (“World Air Quality Report 2020,” n.d.). An 

62 estimated 40,000 deaths annually in Thailand are attributable to ambient air pollution 

63 (Pinichka et al., 2017), resulting in 0.74 to 1.33 million USD worth of economic costs 

64 (Vassanadumrongdee and Matsuoka, 2005). Although air pollution exposure in Thailand 

65 temporarily improved during the recent COVID-19 pandemic (Rodríguez-Urrego and 

66 Rodríguez-Urrego, 2020; Stratoulias and Nuthammachot, 2020), it remains high due to 

67 widespread smoke emissions from agricultural burnings and forest fires (Punsompong et 

68 al., 2021). PM2.5 emissions from burning crop residue and forest fires are estimated to be 

69 141,000 and 5,000 tons per year, respectively, mostly concentrated in the central and 

70 northern regions of Thailand (Junpen et al., 2013; Kanabkaew and Kim Oanh, 2011). 

71 However, the insufficient number of in-situ PM2.5 measurements, especially for the 

72 provinces in the north and northeast of the country (Figure 1a), limits monitoring air quality 
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73 and establishing a national plan for its management. Given that considerable financial and 

74 time resources are required to increase the number of air quality monitoring stations, 

75 satellite remote sensing-based PM2.5 estimation is an alternative way to increase the limited 

76 spatial coverage. 

77 Two different methods have been developed and widely used to estimate surface 

78 PM2.5 concentration: Chemical Transport Models (CTMs) and statistical regression models. 

79 Based on physicochemical processes and atmospheric conditions, chemical transport 

80 models can approximate the quantity of air pollutants with continuous spatiotemporal 

81 coverage (Liu et al., 2004; Van Donkelaar et al., 2010). However, uncertainties in emission 

82 inventories and limited representation of chemical reactions in the ambient atmosphere 

83 remain major concerns (Shin et al., 2020). Among statistical approaches, multiple linear 

84 regression has been the most commonly applied in the early stages (Chu et al., 2016). Also, 

85 geographically weighted regression, an extension of multiple linear regression, has been 

86 proposed to assign distance-based weights to reflect spatial variability and local effects to 

87 provide regional estimations (Brunsdon et al., 1998; Jiang et al., 2017; You et al., 2016). 

88 Mixed-effect models adopt fixed and random effect terms to separate statistical relationship 

89 and variability by time and region (Kloog et al., 2012; Xie et al., 2015). In addition, the 

90 generalized additive model has been proposed to consider the nonlinear characteristics 

91 between input and target variables (Sorek-Hamer et al., 2013; Zou et al., 2017). 

92 Machine learning (ML) algorithms have recently introduced as innovative 

93 developments in the bottom-up approaches to upscale data-driven in-situ models to 

94 spatially explicit gridded estimates. Random forest (RF), one of the most frequently applied 

95 algorithms, has further improved estimation accuracy and has higher interpretability at both 

96 national and regional scales (Chen et al., 2018; Hu et al., 2017; Wei et al., 2019). Elastic-
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6

97 net application has successfully expanded the spatiotemporal dimension with a large 

98 number of predictors (Xue et al., 2019). Support vector machine (SVM) can enhance spatial 

99 resolution at a 100 m scale by being merged into multiple modeling stages (de Hoogh et al., 

100 2018). Other ML models such as Bayesian maximum entropy (Jiang and Christakos, 2018), 

101 gradient boosting machine models (Chen et al., 2019; Wang et al., 2021) and RF combined 

102 with ordinary kriging (Han et al., 2022) have also been employed to incorporate satellite-

103 derived products into ground-level observations.

104 As computing technology and resources have advanced, neural network-based 

105 approach has introduced deeper and wider layers, defined as deep learning (DL), and has 

106 begun to outperform classical ML models based on decision tree algorithms in various 

107 regression tasks (Devlin et al., 2018; He et al., 2016). DL based methods have also recently 

108 been attempted in remote sensing due to their high accuracy using large amounts of data 

109 (Ghahremanloo et al., 2021; Zhang et al., 2020; Zhu et al., 2020). However, compared with 

110 decision trees, the usability of this cutting-edge approach is yet to be explored in-depth for 

111 PM2.5 satellite-based estimation.

112 Thus, this study aimed to develop a DL-based model to estimate daily ground-level 

113 PM2.5 concentrations based in-situ observations in Thailand and satellite-derived 

114 atmospheric gas products. Regarding the DL network architecture, we implemented the 

115 Attentive Interpretable Tabular Learning neural network (TabNet) (Arık and Pfister, 2021), 

116 which is tailored for use with tabular datasets. We evaluated the model’s performance 

117 through five different regions in Thailand and compared it with other popular machine 

118 learning algorithms such as SVM, RF, XGBoost (Chen and Guestrin, 2016), LightGBM 

119 (Ke et al., 2017) and CatBoost (Prokhorenkova et al., 2018). Furthermore, to shed light on 
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120 the critical characteristics of PM2.5 concentration in Thailand, we analyzed the global/local 

121 feature selection and reasoning processes as well as fire impacts on PM2.5 concentration.

122

123 2. Study area and Data 

124 2.1. Study area 

125 Thailand is located at the center of the Indochinese peninsula, has the 10th largest 

126 economy in Asia and hosts a population of almost 70 million people (“World Economic 

127 Outlook (October 2021),” n.d.). The country is divided into 76 administrative provinces as 

128 primary local government units and the capital Bangkok. In this study, Thailand is divided 

129 into five regions to analyze the country’s regional characteristics: north, northeast, central, 

130 east and south (Figure 1a). Despite the low air quality in Thailand, ground monitoring 

131 stations are sparse and mostly concentrated in the central region, which contains 29 of the 

132 67 stations used in this study (green points in Figure 1a). For the remaining regions, 15, 5, 

133 11 and 7 stations are distributed in the north (blue), northeast (red), east (yellow) and south 

134 (magenta), respectively.

135 2.2. Ground-level PM2.5 observation

136 The Pollution Control Department in the Air Quality and Noise Management 

137 Bureau provides national air quality monitoring records for approximately 84 stations (as of 

138 2021). Considering the consistency of the data availability during the experimental period 

139 from January 2018 to June 2021, we selected the daily measurements of PM2.5 

140 concentration from 67 stations (Figure 1a) as the target dataset for the model training. The 

141 observed PM2.5 concentration pattern has an exponential quantile-quantile distribution 
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142 (Figure 2a). This asymmetry can hamper model training by blurring the variance in the 

143 pollution levels over different input conditions. To transform the data to be closely fitted by 

144 a normal distribution, we thus took logs of the PM2.5 values after adding one (Figure 2b) 

145 and the results showed significantly higher R-squared coefficients (R2) from 0.744 to 0.996.

146 2.3. TROPOMI 

147 The Sentinel-5P mission is a precursor satellite measuring atmospheric chemical 

148 concentrations at high spatial and radiometric resolutions. The TROPOspheric Monitoring 

149 Instrument (TROPOMI) onboard Sentinel-5P is designed to record the reflectance of 

150 wavelengths using multispectral sensors. We utilized five TROPOMI products (Borsdorff 

151 et al., 2018; De Smedt et al., 2018; Garane et al., 2019; Theys et al., 2017; Van Geffen et 

152 al., 2019): the tropospheric NO2 column (NO2), SO2 vertical column density at the ground 

153 level (SO2), total atmospheric column of O3 (O3), vertically integrated column of CO (CO) 

154 and tropospheric formaldehyde column (HCHO); this was based on 354 of the 388 

155 wavelength pairs. TROPOMI Level 2 products are accessible from the Copernicus Open 

156 Access Hub website (https://s5phub.copernicus.eu), and we retrieved a daily Level 3 pre-

157 processed dataset from the Google Earth Engine using the quality assurance values of 0.75 

158 for NO2 and 0.5 for the other components except for O3 and SO2. The Sentinel-5P images 

159 were co-located with the ground station data and the values of the pixel encompassing the 

160 point location of the ground station were extracted to train the model. When the spatial 

161 mapping of PM2.5 was inferred, the datasets were resampled to a 10 km grid to incorporate 

162 other auxiliary datasets. Subsequently, the variables, except for O3, were transformed into a 

163 logarithmic scale similar to PM2.5. Considering that the ranges of each variable varied, 

164 specified constants were multiplied and added before the log transform (Figures S1a–d).
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165 2.4. Meteorological dataset

166 ERA5-Land (Muñoz Sabater, 2019) provides a dataset for land components from 

167 ERA5, the fifth-generation climate reanalysis dataset provided by the Copernicus Climate 

168 Change Service at the European Centre for Medium-Range Weather Forecasts. Following 

169 previous studies (Chen et al., 2018; Wei et al., 2019), we adopted seven meteorological 

170 components from the reanalysis dataset: temperature and dew-point temperature at a 2 m 

171 height, total evaporation, surface pressure, precipitation and wind components at a 10 m 

172 height. We also approximated relative humidity and wind speed using Eqs. (1) and (2):

173 (1)𝑟𝑒𝑙ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 100 ×
𝑒

17.625 × 𝑇𝑑
243.04 + 𝑇𝑑

𝑒
17.625 × 𝑇
243.04 + 𝑇

174 (2)𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑 = 𝑈2 + 𝑉2

175 where T is temperature, Td is dew-point temperature, U is the horizontal wind component 

176 (U-wind) and V is the meridional wind component (V-wind). For precipitation and wind 

177 speed, the scaled log transform was applied as mentioned above (Figures S1e, and f). 

178 Furthermore, we considered geographical factors such as elevation from ETOPO1 (Amante 

179 and Eakins, 2009) with a 1 arc-minute resolution to integrate the land topography and 

180 bathymetry and land cover classifications from GlobCover (Arino, 2010). These were 

181 categorized into 22 types based on observations from the ENVISAT satellite mission for 

182 2009 with a spatial resolution of approximately 300 m.
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183

184 3. Methodology

185 3.1. TabNet

186 TabNet is a novel neural network architecture designed to provide an adequate 

187 tabular dataset (Arık and Pfister, 2021). Based on an encoder/decoder structure, high-

188 dimensional features can be transformed into a meaningful representation through trainable 

189 embedding layers without any pre-processing steps. For instance, the layers can map 

190 categorical features into a numerical format as well as handle raw numerical features 

191 without normalizing global features. One salient strategy of the TabNet is to employ the 

192 sequential attentive transformer architecture to select the importance features in decision 

193 steps. In each step, learnable masks search for a subset of the relevant features by 

194 quantifying the contribution of the decision.

195 3.2. Interpretability

196 The feature attribution mask M ℝB×D provides instance-wise interpretable ∈

197 insights for reasoning; B is the batch size and D is the dimension of the feature. At the ith 

198 decision step, the processed features from the preceding step a[i-1] are given to a trainable 

199 nonlinear processing hi, composed of a fully connected layer, batch normalization and 

200 gated linear unit (Dauphin et al., 2017). The mask is obtained through a sparse regulation 

201 function, which we set using entmax (Peters et al., 2019), as summarized in Eq. (3):

202 (3)𝑀[𝑖] = 𝑒𝑛𝑡𝑚𝑎𝑥(𝑃[𝑖 ‒ 1] ∗ ℎ𝑖(𝑎[𝑖 ‒ 1]))

203 P[i] is the prior scale term to regulate the flexibility of feature selection in the multiple 

204 steps, as defined in Eq. (4):
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205 (4)𝑃[𝑖] = ∏𝑖
𝑗 = 1(𝛾 ‒ 𝑀[𝑗])

206 where γ is the coefficient for the feature reselection in the mask. P[0] is initialized as all 

207 ones, 1B×D, indicating that none of the features are used at the beginning. As a feature is 

208 considered thoroughly, its scale term is reduced to focus on the other features in the next 

209 steps. The weights of the trained mask represent the relative importance of each step in all 

210 instances. For example, if Mb,j[i]=0, then the jth feature should have no decision 

211 contribution in the ith step for the bth sample. Finally, the aggregated weights from the 

212 masks allow us to understand the importance of each feature in terms of its global behavior.

213 3.3. Training details

214 The weather in Thailand has distinct seasonality; the rainy season, which usually 

215 lasts from June to October, can significantly affect the PM2.5 concentration in the 

216 atmosphere (Figure S2). Moreover, the mapping of averaged PM2.5 displays a higher 

217 concentration in the northern area, above 40, than elsewhere (Figure 1b). Considering these 

218 spatiotemporal characteristics, we added the observed month and geographical coordinates 

219 (longitude and latitude) of the station as input features. In total, 19 input variables were 

220 used in this study: NO2, SO2, O3, CO, HCHO, temperature, dew-point temperature, relative 

221 humidity, U-wind, V-wind, wind speed, precipitation, pressure, evaporation, elevation, land 

222 cover type, month, longitude and latitude. For the categorical variables, namely, month and 

223 land cover type, we set the embedding dimensions to 6 and 17, respectively.

224 Following convention, we randomly split the data from 2018 to 2020 into training 

225 and testing datasets using an 80:20 ratio; the number of samples were 14,069 and 3518, 

226 respectively. We also evaluated the functionality of upscaled mapping using a 10 km 
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227 resolution grid format of the input dataset for 2021. To ensure robust training, a 5-fold 

228 cross-validation was set, and the final PM2.5 estimation was calculated by averaging the 

229 results from the five trained models. The model was implemented using the pytorch_tabnet 

230 package (https://github.com/dreamquark-ai/tabnet) and trained with the Adam algorithm 

231 with weight decay using a 0.01 learning rate and a batch size of 64. Following the 

232 guidelines for hyperparameters (Arık and Pfister, 2021), we set the depth and width of 

233 TabNet as follows: Nd=Na=24, Nsteps=4, γ=1.3 and λsparse=0.001.

234

235 4. Results

236 4.1. Evaluation of general model performance

237 Figure 3 presents the accuracy validation results of the estimated PM2.5 

238 concentration for Thailand and the five divided regions. For the entire study domain (Figure 

239 3a), three evaluation metrics show 0.873 of R2, 9.22 of root mean square error (RMSE) and 

240 20.62 of the mean absolute percentage error (MAPE). When these results are compared 

241 with other state-of-the-art ML algorithms, R2 and RMSE of the proposed method show the 

242 best scores (Table 1). In terms of the linear relationship between the observations and 

243 estimated PM2.5 concentrations, all the models show slope coefficient values under 1. These 

244 results imply that the ML models tend to underestimate the PM2.5 concentration, as is 

245 consistently reported in previous studies (Ma et al., 2016; Wei et al., 2019). TabNet can 

246 compensate for this bias, as it has the highest value of the slope coefficient (0.84). This 

247 improvement is especially noticeable in the extremely high concentration cases of more 

248 than 300 µg/m3 (Figure S3).
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249 When the scores of evaluation metrics are compared by region, the highest value of 

250 R2 (0.884) is observed in the north (Figure 3b). These results are consistent with the 

251 mapping of R2 for each station showing higher than 0.8 of R2 in all the stations in the north, 

252 including the Chiang Mai and Lampang provinces (Figure S4a). On the other hand, the 

253 scale of biases is larger than other regions with 13.44 of RMSE, due to its wider range of 

254 the PM2.5 concentration exceeding 300 µg/m3 as a maximum (Figures 3b and S4b). Given 

255 that the PM2.5 concentrations in the north are generally higher (Figure 1b) and extreme 

256 cases are more frequent due to agricultural burnings and forest fires (Punsompong et al., 

257 2021), the large errors are typically caused by the underestimation mentioned previously, 

258 particularly for high concentration cases. When the regional differences in scale are 

259 diminished by considering the ration of the scale between the errors and actual values, 

260 some stations in Bangkok and neighbor cities show higher scores of MAPE (Figure S4c). 

261 But the south region shows the lowest accuracy with 21.51 of MAPE and 0.507 of R2 

262 (Figure 3f). The distinctively low slope coefficient in the south represents that its poor 

263 performance is mainly caused by underestimation (Figure S4d). Considering that the air 

264 quality of southern Thailand is influenced by pollutants from peatland fires in Indonesia 

265 during the southwest monsoon (Mahasakpan et al., 2023), our model seems to have limits 

266 to estimate air mass transportation from out of the study domain. 

267 4.2. Application on high-coverage mapping

268 One of the main purposes of employing remote sensing data is to enlarge the spatial 

269 coverage of PM2.5 monitoring. Figure 4 illustrates the monthly averaged results of the PM2.5 

270 estimation for 2021. The mapping results (Figures 4a–f) generally agree with the 

271 observations (Figures 4g–l) with respect to seasonal variation by region. In January, the 
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272 central region of Thailand shows high levels of PM2.5 concentrations. In the north, the 

273 concentrations significantly increase from January and peak at over 60 µg/m3 in March. 

274 The regional time difference in the peak of air pollutants can be explained by the fact that 

275 harvesting and residue burning are carried out in a different season in each region 

276 (Kanabkaew and Kim Oanh, 2011). Thereafter, the concentrations decrease in all the 

277 regions as the rainy season approaches.

278 To evaluate the temporal variation of the PM2.5, we compare the daily variations in 

279 the observed and estimated PM2.5 over the five regions of Thailand (Figure 5). The northern 

280 area shows the highest performance scores (0.83, 12.58 and 19.81 for R2, RMSE and 

281 MAPE, respectively). The value of slope coefficient is almost 1 representing a significant 

282 improvement in the underestimation for extreme levels of PM2.5, with high accuracy for 

283 peak days during March and April. The other regions, except for the south, also show good 

284 performances according to the evaluation metrics. Although the south region has smaller 

285 scale of error (4.69 of RMSE), the underestimation on high concentration days, particularly 

286 on those days with values above 60 µg/m3, has scope for further exploration and 

287 improvement for long-range transport effects across neighboring countries.

288

289 5. Discussion

290 5.1. Model interpretation

291 Interpretability makes it possible for us to understand model’s behavior at each 

292 learning steps and to point out important processes, which can be translated into more 

293 practical way. However, there isn’t a perfect method to interpret ML and DL approaches, 

294 which is well recognized as a potential limitation. A major advantage of the TabNet is its 
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295 attentive transformer structure, which provides post-hoc explanations by assessing the 

296 contribution of each feature from both global and local perspectives. First, the global 

297 importance of each feature is illustrated in Figure 6. The observed month displays the 

298 highest ratio of contribution with approximately 40% of importance, which is expected 

299 according to the seasonality of PM2.5 in Thailand (see Figure S2). Geographical features 

300 such as land cover type, coordination and elevation follow next, demonstrating their 

301 importance. In terms of chemical components, NO2 and SO2, which are commonly known 

302 as precursors in the secondary formation of PM2.5 (Baker and Scheff, 2007; Tucker, 2000), 

303 rank relatively low among all the features; SO2 shows almost zero contribution to the 

304 estimation. Instead, CO accounts for about 20% of the contribution. Considering that CO is 

305 a by-product of carbon-containing fuel combustion, these results agree with the scenario 

306 that vehicular emissions and fires have a greater impact on the variation in air quality in 

307 Thailand than industrial emissions (ChooChuay et al., 2020).

308 Figure S5 illustrates the top five important features on each decision step as the 

309 aspect of local feature importance. Consistent with the global perspective, the observed 

310 month, CO and land cover type are ranked as the most determining factors in all the steps, 

311 regardless of season. Interestingly, the second step displays different composition of 

312 importance, especially for meteorological features, by season. The importance of wind 

313 speed and relative humidity are relatively lower for dry season ranking fourth and fifth 

314 (Figure S5f), while they are selected as the second and third most important features in wet 

315 season (Figure S5j). Some other meteorological factors, such as pressure, evaporation and 

316 dew-point temperature, are also displayed in other steps, in spite of their low contribution 

317 (less than 5%). Considering that windy and humid weather can reduce pollution levels, the 
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318 trained model locally employs weather information to identify the ideal conditions for 

319 lower PM2.5 concentrations.

320 5.2. Impacts of fire on PM2.5 concentration in Thailand

321 To investigate the impact of fire on the air quality in Thailand, we analyze spatial 

322 distribution of fire radiative power (FRP) from the Global Fire Assimilation System 

323 (GFAS) in the Copernicus Atmosphere Monitoring Service (CAMS) and chemical 

324 components (Figure 7) for a period when all the sub-regions show the rise of PM2.5 

325 concentration (from February 25th to March 2nd 2021, red columns in Figure 5). During this 

326 period, high levels of FRP were mainly observed in the central region and the border areas 

327 in the north and east adjacent to neighboring countries, such as Myanmar, Laos and 

328 Cambodia. The concentrations of PM2.5 and major chemical components also increased 

329 nearby fire hotspots, especially when the highest FRP was observed in the central west of 

330 Thailand on March 1st. This causal relationship between FRP and the concentrations can be 

331 seen in all the regions during the dry season for the year 2021. FRP shows statistically 

332 significant correlations with PM2.5 in the north, northeast and east regions as well as with 

333 other chemical components in the north (Figures S6-10). Considering that those regions 

334 generally have higher concentrations of PM2.5, the results demonstrate that the frequency 

335 and duration of fire can significantly influence on the level of air quality in Thailand. 

336 Besides, fires in the neighbor countries can also be another factor to cause considerable 

337 increase of PM2.5 concentration. For instance, when many hotspots were detected in the 

338 territory of Myanmar and Laos on February 26th and Marth 1st, the chemical and PM2.5 

339 concentrations distinctly increased in the north and northeast parts of Thailand the next day.
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340 5.3. Potential further improvements

341 Traditionally, aerosol optical depth (AOD) has been played as an essential factor to 

342 estimate the surface level of PM2.5 concentrations. However, the presence of cloud and 

343 snow along with the limited vertical resolution causes unfeasibility for archive reliable 

344 AOD limiting its spatial coverage (Hsu et al., 2013; Levy et al., 2007). Our approach based 

345 on atmospheric gas composition offers a viable alternative to address the spatial limits. We 

346 also tested the skill of estimation including aerosol index and its results do not show any 

347 clear difference in the metric scores (Figure S11), proving that PM2.5 concentration can be 

348 accurately estimated only with atmospheric trace gases. Although the spatial constraints 

349 still remain in this study due to excluding data below the quality threshold, future work will 

350 focus on the development of a model to handle the low-quality data aiming to achieve 

351 reliable full coverage for PM2.5 estimation.

352 While there have been prior attempts to apply DL-based modeling to estimate 

353 PM2.5, its performance is lower than that of other algorithms (Chen et al., 2022; Pu and 

354 Yoo, 2021; Wong et al., 2021). Importantly, these results could be linked to their simple 

355 model structures, which mostly consist of a series of fully connected hidden layers with 

356 nonlinear activation functions. In the current study, we showcase how by fusing TROPOMI 

357 data with other geospatial sources and incorporating an advanced DL algorithm to provide 

358 an accurate representation of PM2.5 concentration; consequently, an air pollution indicator 

359 can be developed. Previous studies have reported the potential of DL algorithms such as 

360 CNN and LSTM to improve estimation performance (Chen et al., 2021; Lu et al., 2021), 

361 and our results also support this by adopting a state-of-the-art DL algorithm. Numerous 

362 advanced DL methods have recently been developed and have achieved remarkable 

363 progress in several fields (Devlin et al., 2018; He et al., 2016); however, applying DL to 
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364 estimate PM2.5 concentration has not yet been widely explored. Thus, monitoring air quality 

365 by implementing DL approaches has considerable room for improvement.

366

367 6. Conclusion

368 To estimate ground-level PM2.5 concentration across Thailand, we develop a novel 

369 method based on DL algorithm, namely TabNet, with atmospheric gas from the TROPOMI 

370 on the Sentinel-5P. Our model shows more robust performance than other state-of-the-art 

371 ML algorithms, with an R2 and RMSE (MAPE and slope coefficient) of 0.873 and 9.22 

372 (20.62 and 0.84), respectively. The interpretable decision processes in TabNet indicate that 

373 monthly variation is the most significant feature in PM2.5 estimation. Geospatial 

374 characteristics such as land cover type and latitude also provide a notable contribution from 

375 a global perspective. Among the chemical components from the TROPOMI, CO shows 

376 higher ratio of importance than the others. These results suggest that emissions from 

377 biomass burning influence air quality in Thailand considerably. In the low-level PM2.5 

378 concentration scenarios, humid and windy weather conditions are also highlighted in the 

379 local decision processes. Based on its robust performance, the model is applied to generate 

380 grid format mapping of PM2.5 concentrations. We find that it can capture the temporal 

381 variation in and uneven spatial distribution of PM2.5 concentrations using a 10 km grid. The 

382 enhanced estimation ability and its application are expected to not only boost other air 

383 quality studies, but also contribute to air quality management by providing advanced 

384 monitoring and evaluation techniques.
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