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We construct a holographic model describing the gluon sector of Yang-Mills theories at finite
temperature in the non-perturbative regime. The equation of state as a function of temperature is
in good accordance with the lattice quantum chromodynamics (QCD) data. Moreover, the Polyakov
loop and the gluon condensation, which are proper order parameters to capture the deconfinement
phase transition, also agree quantitatively well with the lattice QCD data. We obtain a strong first-
order confinement/deconfinement phase transition at Tc = 276.5 MeV that is consistent with the
lattice QCD prediction. The resulting stochastic gravitational-wave backgrounds from this confine-
ment/deconfinement phase transition are obtained with potential detectability in the International
Pulsar Timing Array and Square Kilometre Array in the near future when the associated productions
of primordial black holes (PBHs) saturate the current observational bounds on the PBH abundances
from the LIGO-Virgo-Collaboration O3 data.

Introduction— The early Universe before the big
bang nucleosynthesis is opaque to electromagnetic waves.
Thanks to the recent gravitational-wave (GW) detec-
tions, future observations of stochastic GW backgrounds
(SGWBs) would reveal the new physics [1–4] from the
early Universe, including various first-order phase transi-
tions (FOPTs) beyond the standard model (SM) of par-
ticle physics (see [5] and references therein for a model
summary). It was recently found that the FOPT not only
associates with SGWBs, but also produces primordial
black holes (PBHs) in general [6, 7] (see also [8] for an ex-
plicit example from the electroweak PT), regardless of the
specific particle physics model for realizing the FOPTs
(see also [9–13] for other specific mechanisms of PBH
productions during some particular kinds of FOPTs). In
particular, for the FOPT around the quantum chromo-
dynamics (QCD) scale, the associated SGWBs can be
probed by the Pulsar Timing Array (PTA) and Square
Kilometre Array (SKA) observations, and the associ-
ated PBH abundance could be constrained by the LIGO-
Virgo-Collaboration (LVC) network. Since the QCD PT
in SM is cross-over, we study pure gluons in this Letter
for a realization of the FOPT around the QCD scale with
associated productions of SGWBs and PBHs.

On the other hand, investigating the pure gluon system
is important to understand the nature of hot and dense
QCD matter formed in the early universe and the lab-
oratory. In particular, the gluon dynamics is dominant
during 10−5 seconds into the expansion of the early Uni-
verse [14–17] and an extremely rapid thermalization [18–
20] in nucleus-nucleus collisions. On theoretical side, the
thermodynamics of the pure-gauge sector can be relevant
to capture the essential qualitative features of the decon-
finement, which is characterized by center symmetry and

shows all the infrared difficulties of QCD. Due to the fa-
mous asymptotic freedom, non-perturbative approaches
are necessary for quantitative studies of its dynamics. In
addition to the lattice QCD that relies on massive com-
puting power, an alternative non-perturbative approach
is to employ the gauge/gravity correspondence [21–23]
that provides a powerful way to study strongly coupled
non-Abelian gauge theories (earlier studies on the pure
gluon system from holography can be found, for example,
in Refs. [24–27]).

In this Letter, we provide a bottom-up holographic
QCD model for the pure gluon QCD system in Einstein-
Dilaton theory. The equation of state (EoS) quantita-
tively match the pure gluon system in lattice QCD [28,
29]. The confinement PT in gauge theory is characterized
by the Polyakov loop operator 〈P〉 which is finite in the
deconfined phase and becomes vanishing in the confined
phase for pure gluon [30, 31]. The temperature depen-
dence of 〈P〉 from our model matches the lattice simula-
tion [32] perfectly, and the predicted critical temperature
Tc = 276.5 MeV agrees with the expectation in the lit-
erature [28, 33]. Moreover, another important quantity
characterizing the deconfinement PT in pure gluon sys-
tem is the gluon condensation, which can be computed to
be quantitatively consistent with the trace anomaly [28].
The strong FOPT in the early universe is also a poten-
tially important source for the productions of SGWBs
and PBHs. Our present model provides a scenario for
generating GWs from a FOPT within the SM of particle
physics. We find that the resulting GW signals could be
detected in the upcoming International PTA (IPTA) and
SKA observations for the associated PBH abundance sat-
urating the current observational bounds from the LVC
constraints.
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FIG. 1. The comparison between the lattice data (with error bar) of the pure gluon thermodynamics and our holographic
calculations (solid curves) on various thermodynamic quantities. Left panel: The temperature dependence of the energy
density ε, the entropy density s, the pressure P , and the trace anomaly I = (ε − 3P ) [29]. Right panel: The squared speed
of sound c2s ≡ dP/dε [28] and the Polyakov loop 〈P〉 [32] in function of temperature. Insert: The free energy density F with
respect to the temperature from our model. There is a first-order confinement/deconfinement PT at Tc = 276.5 MeV.

Model— We now build up a holographic model for
the pure gluon system with the action of the following
form.

S =
1

2κ2
N

∫
d5x
√
−g
[
R− 1

2
∇µφ∇µφ− V (φ)

]
(1)

with the minimal cost of degrees of freedom to capture
the essential dynamics. The gravitational theory includes
only two fields: the spacetime metric gµν , and a real
scalar φ with its profile breaking conformal invariance
that can be understood roughly as the running coupling
of QCD. In addition to κ2

N that is the effective Newton
constant, the potential V (φ) will be fixed by matching to
the lattice QCD data.

The black hole with non-trivial scalar hair reads

ds2 = −f(r)e−η(r)dt2 +
dr2

f(r)
+ r2dx2

3, φ = φ(r) , (2)

with dx2
3 = dx2 + dy2 + dz2 and r the holographic radial

coordinate. The next goal is to find a potential V that
can reproduce the EoS of Nc = 3 pure gluon QCD. Ther-
modynamic quantities can be obtained straightforwardly
using the standard holographic dictionary, see appendix
for more details. It comes as a nice surprise that the
simple potential

V (φ) =

(
6γ2 − 3

2

)
φ2 − 12 cosh(γφ) (3)

with γ = 0.735 can reproduce the thermodynamics of
lattice data for the pure gluon QCD [28, 29, 32] as shown
in Fig. 1 [34]. Remarkably, although the error bars of the

up-to-date lattice simulation [29] are tiny, our theoretical
results for EoS in the left panel are almost within these
error bars. It is obvious from the free energy density
F that a strong FOPT takes place at the temperature
Tc = 276.5 MeV. We also compare the speed of sound
cs in the right panel of Fig. 1. Since cs is not provided
in [29], we use the early data from lattice QCD [28] and
find good agreement.

To understand the nature of the FOPT, we compute
the expectation value of the Polyakov loop operator 〈P〉,
which is a good order parameter to the de-confinement
PT for pure gluon system [35]. Surprisingly, 〈P〉 by our
holographic model quantitatively agrees with the lattice
data [32] above Tc and it quickly drops to zero below Tc,
see the right panel of Fig. 1. It suggests that the FOPT
from our model is a confinement/deconfinement PT. Re-
markably, the temperature dependence of the gluon con-

densation δ
〈
β(g)
2g G

2
〉
T

capturing the deconfinement PT

is computed in our holographic model and is found to
be coincides with the trace anomaly ε−3p from EoS, see
Fig. 2. Therefore, at Tc, we can then read off some essen-
tial quantities that are important to compute the SGWB
and PBH productions associated with our FOPT.

Independent of details of any specific particle physics
model, the PBH production is a universal consequence
of the FOPT [6]. Due to the stochastic nature of bub-
ble nucleations during FOPTs, the progress of populating
true-vacuum bubbles in the false-vacuum background is a
asynochronized process. There is always a non-vanishing
probability to find some Hubble-sized regions to stay in
the false vacuum for slightly longer period of time than
average. Since the radiation energy density should be



3

δ 〈
β (g)

2 g
G2〉T / T4

I / T4 lattice data [26]

I / T4 lattice data [27]

1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T / Tc

FIG. 2. The temperature dependence of the gluon condensa-

tion δ
〈
β(g)
2g
G2

〉
T

of our pure gluon model, where β(g) is the

β-function with β the QCD gauge coupling. The data with
error bar denotes the trace anomaly I = (ε−3P ) from lattice
QCD [28, 29].

rapidly diluted relative to the vacuum energy density in
an expanding Universe, these Hubble-size regions would
eventually accumulate enough overdensities in total en-
ergy density to finally reach the threshold of PBH pro-
ductions. What is remarkably for this general mechanism
of PBH productions during FOPTs is that the proba-
bility to find such Hubble-sized regions with postponed
vacuum-decay progress can be made of particular ob-
servational interest for both detections from GWs and
PBHs, which will be briefly described shortly below and
detailed in the supplemental appendix.

GW productions— From the behavior of the free
energy density in the insert of the right panel of Fig. 1, it
clearly indicates the occurrence of a first-order confine-
ment/deconfinement PT around the critical temperature
Tc = 276.5 MeV, which could be a potentially important
source for GWs in the early universe. The cosmological
FOPT proceeds with stochastic nucleations of true vac-
uum bubbles in the false vacuum environment followed
by the rapid expansion until percolations via bubble col-
lisions. The bubble wall collision and plasma fluid mo-
tion including sound waves and magnetohydrodynamic
(MHD) turbulences would generate the corresponding
SGWBs with broken power-law shapes in their energy
density spectra.

Given the expansion history a(t) and vacuum decay
rate of form Γ(t) ≡ A(t)e−B(t) per unit time and unit vol-
ume, the fraction of spatial regions that are still staying
at the false vacuum at time t can be estimated by [40, 41]

F (t; ti) = exp

[
−4π

3

∫ t

ti

dt′ Γ(t′)a(t′)3r(t, t′)3

]
, (4)

where ti is the earliest possible time for the nucleation

of the first bubble ever, and r(t, t′) =
∫ t
t′

dt̃/a(t̃) is the
comoving radius of a bubble at time t nucleated from
an earlier time t′. It is obvious that all regions are in
the false vacuum before time ti, namely F (t < ti; ti) =
1. With the help of F (t; ti), the percolation time t∗ for
the GW spectra from the FOPT is then conventionally
defined by F (t∗; ti) = 0.7 [42], around which the decay
rate can be expanded linearly in time for its exponent as
Γ(t) = A(t∗)e

−B(t∗)+β(t−t∗) ≡ Γ0e
βt.

If most of bubbles collide with each other while bub-
ble wall is still rapidly accelerating [43], then the GW
spectrum is dominated by bubble wall collisions [44–48],

h2Ωenv = 1.67×10−5

(
100

gdof

) 1
3
(
H∗
β

)2(
κφα

1 + α

)2

× 0.11v3
w

0.42 + v2
w

3.8(f/fenv)2.8

1 + 2.8(f/fenv)3.8
, (5)

with the peak frequency

fenv

Hz
= 1.65× 10−5

(gdof

100

) 1
6 T∗

100 GeV

0.62(β/H∗)

1.8− 0.1vw + v2
w

.

(6)

If most of bubbles collide with each other at a constant
terminal velocity, then the GW spectrum is dominated
by sound waves [49–51] (the sub-dominated contribution
from MHD turbulences is neglected),

h2Ωsw = 2.65×10−6

(
100

gdof

) 1
3 H∗
β

(
κvα

1 + α

)2

× 77/2vw(f/fsw)3

(4 + 3(f/fsw)2)7/2
, (7)

with the peak frequency

fsw

Hz
= 1.9× 10−5

(gdof

100

) 1
6 T∗

100 GeV

1

vw

β

H∗
. (8)

For our holographic approach, β/H∗ is a free param-
eter, but all other parameters like T∗ = 276.5 MeV,

α ≡ ∆V/ρr = 0.939, gdof ≡ ρr/
π2

30T
4
∗ = 3.64 are

fixed by the holographic thermodynamics. The bub-
ble wall velocity at collisions vw = 0.9 and efficency
factors κφ = 1 (see [43] for an exact evaluation) and
κv = α/(0.73 + 0.083

√
α+ α) [52] are set for illustration

since their precise values would not significantly change
our conclusions [53]. While we are not able to compute
β/H∗ from first principle, it can be constrained by the
PBH abundance associated with the FOPT. The SGWB
spectra from our holographic model are shown in the left
panel of Fig. 3, where the expected sensitivity curves of
future GW observatories are included. One can find that
the SGWBs are within the reach of IPTA and SKA when
the associated PBH abundance saturates the current ob-
servational bound from LVC constraints.
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FIG. 3. The predictions for SGWB (left) and PBH (right) productions from our holographic pure gluon model. In the left
panel, the GW contributions from sound waves (red curve) and wall collisions (blue curve) are obtained for the associated
largest PBH abundance allowed by the current observational constraints shown in the right panel. In the right panel, the
current PBH constraints [36] are updated by including the constraints from LVC O3a data [37] and O3b data [38, 39], and the
insert zooms in the predicted PBH abundance regions.

PBH productions— We then turn to the PBH pro-
ductions. To evaluate the probability for the post-
poned vacuum decay, note that the differential proba-
bility for a Hubble-sized region VH(t) = 4

3πH(t)−3 not
to decay at time t reads dP (t) = 1 − Γ(t)VH(t)dt ≈
exp [−Γ(t)VH(t)dt], then the probability for this Hubble
volume not to decay until time tn is obtained as

P (tn) =

tn∏
t=ti

dP (t) = exp

[
−
∫ tn

ti

dt VH(t)Γ(t)

]
. (9)

P (tn) is nothing but the PBH abundance ΩPBH at PBH
formations if the overdensity in these Hubble volumes
with postponed decay reach the PBH formation thresh-
old δc,

δ(tPBH) =
ρr(tPBH; tn) + ρv(tPBH; tn)

ρr(tPBH; ti) + ρv(tPBH; ti)
− 1 = δc . (10)

Here the vacuum energy densities inside and outside
these Hubble volumes are estimated by ρv(t; tn) =
F (t; tn)∆V and ρv(t; ti) = F (t; ti)∆V , respectively, and
the radiation energy densities inside and outside these
Hubble volumes are solved from

d

dt
ρr(t; tn) + 4H(t; tn)ρr(t; tn) = − d

dt
ρv(t; tn) , (11)

d

dt
ρr(t; ti) + 4H(t; ti)ρr(t; ti) = − d

dt
ρv(t; ti) , (12)

respectively, where the Hubble parameters inside
and outside these Hubble volumes are defined by
3M2

PlH(t; tn)2 = ρr(t; tn)+ρv(t; tn) and 3M2
PlH(t; ti)

2 =
ρr(t; ti)+ρv(t; ti), respectively. We adopt the analytic es-
timation [54] on the PBH threshold δc = sin2[π

√
w/(1 +

3w)] = 0.1786 with the EoS w = 0.0219 evaluated from
the dominant component at PBH formation. Finally,

the PBH abundance at matter-radiation equality is es-
timated by fPBH ≡ (aeq/aPBH)ΩPBH/ΩDM(aeq) and the
PBH mass is estimated as MPBH = 4πγPBHM

2
Pl/HPBH

with usual PBH formation efficiency factor γPBH =
0.2 [55]. The PBH mass function fPBH(MPBH) is shown
in the right panel of Fig. 3 with respect to current PBH
constraints. It is worth noting that for PBH formations,
β is the only free parameter from our holographic ap-
proach, which could be constrained as β/H∗ > 8.59 from
the current GWTC-3 data by fPBH < 0.00045 in the
mass range [1M�, 3M�] [39]. Higher values for β/H∗
are certainly allowable like those in Ref. [56] but with
much more negligible PBH abundances and higher peak
frequency and lower peak amplitude in the SGWBs that
would be of less interest from both PBH and SGWB ob-
servations.

Conclusion and discussion— We have built up a
holographic model for a pure gluon system to quantita-
tively confront the lattice data of SU(3) thermodynamics.
It provides an effective model to capture the main fea-
ture of QCD matter, for which non-perturbative effects
could be effectively adopted into the model parameters
by matching with up-to-date lattice QCD. The resulting
Polyakov loop operator and gluon condensation quan-
titatively match the lattice simulation, suggesting that
there is a first-order confinement/deconfinement PT. The
transition temperature is Tc = 276.5MeV as expected
in lattice QCD literature. We have shown the GW en-
ergy spectrum and PBHs productions associated with
the FOPT. With the most optimistic case constrained
by the current PBH abundance, the energy spectrum of
SGWBs could be potentially detectable within the sensi-
tivity ranges of IPTA and SKA in the near future.

Since our holographic model can quantitatively cap-
ture the characteristic properties of the strong first-order
confinement/deconfinement PT in a pure gluon system,
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one can study the transport properties in pure gluon and
glueball gas to confirm the transition from a hydrody-
namical point of view. It is worth considering real-time
dynamics far from equilibrium, which is beyond the scope
of lattice QCD. Moreover, it is an interesting direction
to set up a holographic glueball action to compare the
resulting glueball spectra with more experimental and
lattice data. Furthermore, the present results, particu-
larly those regarding the confinement/deconfinement PT,
should be embedded into the framework of a general and
hybrid QCD phase diagram, including, for example, an
external magnetic field and a rotation.

Note added—While this work was being completed,
the work [56] appeared in arXiv discussing the GWs from
the confinement transition of a pure gluon sector. They
consider a more complicated holographic setup that can
fit the lattice data qualitatively and leave the phase tran-
sition temperature as a free parameter.
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Appendix A Thermodynamics and model
parameters fixing

Substituting the ansatz (2), we obtain the following
independent equations of motion (EoM).

φ′′ +

(
f ′

f
− η′

2
+

3

r

)
φ′ − 1

f
∂φV = 0,

η′

r
+

1

3
φ′2 = 0,

2

r

f ′

f
− η′

r
+

2

3f
V +

4

r2
= 0,

(13)

where the prime denotes the derivative with respect to r.
In what follows we will specify V (φ) as

V (φ) =

(
6γ2 − 3

2

)
φ2 − 12 cosh(γφ), (14)

where γ is the only free parameter. Note, however, that
to fit the EoS for (2+1)-flavor QCD at zero baryon den-
sity, one has to introduce two free parameters [57] and
three free parameters [58] in V (φ).

Near the AdS boundary r →∞ where φ→ 0, one has

V (φ) = −12− 3

2
φ2 +O(φ4) . (15)

Therefore, the cosmological constant is given by Λ = −6
(the AdS radius L = 1) and the scaling dimension of
the dual scalar operator is ∆ = 3. We then obtain the
following asymptotic expansion:

φ(r) =
φs
r

+

(
γ4 − 1/6

)
φ3
s ln r + φv

r2
+ ... ,

η(r) =
φ2
s

6r2
+

(1− 6γ4)(1− 12 ln r)φ4
s + 72φsφv

144r4
+ ...,

f(r) = r2 +
φ2
s

6
+

2fv − φ4
s(1− 6γ4) ln r

12r2
+ ... ,

(16)

where we have taken the normalization such that η(r →
∞) = 0. φs is the source of the scalar operator of the
boundary theory, which essentially breaks the conformal
symmetry and plays the role of the energy scale.

To read off the physical observables, we incorporate
the holographic renormalization by adding the boundary
terms that are given as [59]

S∂ =
1

2κ2
N

∫
dx4

[
2K − 6− φ2

2
−
(
b+

6γ4 − 1

12
ln r

)
φ4

]
(17)

at the AdS boundary r → ∞. Here hµν is the induced
metric and Kµν is the extrinsic curvature defined by the
outward pointing normal vector to the boundary.

The energy-momentum tensor of the dual boundary
theory reads

Tµν = lim
r→∞

2 r2

√
−h

δ(S + S∂)on−shell
δhµν

=
1

2κ2
N

lim
r→∞

r2 [2(Khµν −Kµν − 3hµν)

−
(

1

2
φ2 +

6c41 − 1

12
φ4 ln r + b φ4

)
hµν

]
.

(18)
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Inserting the UV expansion (16), we obtain

ε ≡ Ttt =
1

2κ2
N

(
−3fv + φsφv +

1 + 48b

48
φ4
s

)
,

P ≡ Txx =
1

2κ2
N

(
−fv + φsφv +

3− 48b− 8γ4

48
φ4
s

)
,

I ≡ ε− 3P =
1

2κ2
N

(
−2φsφv −

1− 24b− 3γ4

6
φ4
s

)
.

(19)

The temperature and entropy density are given by

T =
1

4π
f ′(rh)e−η(rh)/2, s =

2π

κ2
N

r3
h , (20)

where rh is the location of the event horizon.

The free energy density F is identified as the temper-
ature T times the renormalized action in the Euclidean
signature.

F =
T

V
(S + S∂)Euclidean

on−shell ,

=
1

2κ2
N

(
fv − φsφv −

3− 48b− 8γ4

48
φ4
s

)
.

(21)

with V =
∫

dxdydz. Taking advantage of radially con-
served quantity

Q =
1

2κ2
N

r5eη/2
(
f

r2
e−η
)′
, (22)

and then evaluating at both horizon r = rh and UV
boundary r → ∞, we obtain the expected thermody-
namic relation

F = ε− T s = −P . (23)

After obtaining the thermodynamic quantities, one can
also compute some important transport coefficients, such
as the speed of sound cs =

√
dP/dε. These quantities are

compared to the lattice results for pure gluon [28, 29, 32].
Then all free parameters of our holographic model can be
fixed to be

γ = 0.735, κ2
N = 9.76π, φs = 1.523GeV, b = 0.06777 .

The last parameter b that appears in the boundary
term (17) corresponds to P (T = 0) = 0. The fitting
results are presented in Fig. 1 in the main text, from
which there is a first-order phase transition (FOPT) at
Tc = 276.5 MeV.

To understand the nature of this FOPT, we compute
the expectation value of Polyakov loop operator 〈P〉,
which is a good order parameter to the deconfinement PT
for pure gluon system [35]. The computation of Polyakov
loops in holography was given in [60]. Note that here
we adopt the effective string tension αp = 17.5 and the

renormalization constant Cp = 0.11 [61]. Surprisingly,
as shown in Fig. 1, 〈P〉 from our model quantitatively
agrees with the lattice data [32] above Tc and drops to
zero below Tc, suggesting that the FOPT from our model
is a confinement/deconfinement PT.

Appendix B Computations of gluon condensation

To study the gluon condensation in our pure gluon
model, we adopt a probe scalar field χ(r) on the back-
ground (2). The action reads

S =
1

2κ2
N

∫
d5x
√
−gse−

√
3
8φ

[
−1

2
∇µχ∇µχ−

1

2
m2
χχ

2

]
.

(24)
Here gs is the determinant of the metric in the string
frame with

gsµν = e
√

2
3φgµν , (25)

where gµν is the metric in the Einstein frame used in the
previous section.

Then, the EoM of χ(r) is given by

χ′′ +
1

4

(
12

r
+

4f ′

f
− 2η′ +

√
6φ′
)
χ′ − e

√
2
3φ

f
m2
χχ = 0 .

(26)
One considers the regular boundary condition on the IR:

χ(r) = c0 + c1(r − rh) + c2(r − rh)2 + . . . , (27)

The UV expansion shows

χ(r) = χ0r
∆−4 + · · ·+ χ4r

−∆ + . . . . (28)

The source χ0 will be fixed to be a constant and then the
holographic renormalized gluon condensation

χ4 =
〈
G2
〉
. (29)

On the other hand, the subtracted gluon condensation

δ
〈
β(g)
2g G

2
〉
T

is related to the trace anomaly [62, 63]

δ

〈
β(g)

2g
G2

〉
T

≡
〈
β(g)

2g
G2

〉
T

−
〈
β(g)

2g
G2

〉
0

= ε− 3P ,

(30)
where the coefficient β(g) is the β-function of QCD and〈
β(g)
2g G

2
〉

0
is determined by the exploration value of〈

β(g)
2g G

2
〉
T

from finite temperature. For simplicity, we

directly call δ
〈
β(g)
2g G

2
〉
T

as physical gluon condensa-

tion in the main context. Following [24], we choose the
renormalized dimension of the gluon operator ∆ = 3.93,
which in turn determines the mass of bulk scalar via
m2
χ = ∆(∆− 4).
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The β-function to 3-loop is given by [64]

β(g) = −β0g
3 − β1g

5 − β2g
7 +O(g9) . (31)

Therefore, the coefficient in (30) reads

β(g)

2g
= −

(
2πβ0αs + 8π2β1α

2
s + 32π3α3

s

)
, (32)

with [65]

αs(T ) =
1

4πβ0Q

[
1− β1

β2
0

lnQ

Q
+

β2
1

β4
0Q

2

(
(lnQ)

2

−lnQ− 1 +
β0β2

β2
1

)]
, (33)

where Q = ln(T 2/Λ2
QCD) and

β0 =
1

(4π)2

(
11− 2

3
Nf

)
, β1 =

1

(4π)4

(
102− 38

3
Nf

)
,

β2 =
1

(4π)
6

(
2857

2
− 5033

18
Nf +

325

54
N2
f

)
. (34)

The cutoff ΛQCD gives the effective range of energy scale
for αs(T ) which means αs(T ) only works for T > ΛQCD.
The temperature dependent gluon condensation is shown
in Fig. 2 with ΛQCD = 0.14GeV and χ0 = −2.97 ×
10−10GeV4−∆. The data for the trace anomaly from
lattice QCD [28, 29] is included. It is clearly that our
results match the lattice data pretty well.

Appendix C Computations of GWs and PBHs

We fill in some details for the PBH and SGWB pro-
ductions associated with a FOPT and in particular for
our holographic gluon model. The process of bubble nu-
cleations and collisions mixed with PBH productions is
highly inhomogeneous, therefore, a rigorous treatment
would require for numerical simulations. A convenient
approximation to the background evolution is close to the
radiation-dominated era with a(t) ∝ t1/2, which will be
checked and confirmed later as a good approximation for
the parameter space we consider. We also normalize all

dimensional quantities with the dimensional input Γ
1/4
0 ,

such as t̄ ≡ Γ
1/4
0 t, β̄ ≡ β/Γ1/4

0 , and ᾱ ≡ ∆V/(3M2
PlΓ

1/2
0 ).

During the asynochronized progress of PT, the fraction
of spatial regions that are still staying at the false vacuum
at time t is now computed as

F (t̄; t̄i, β̄) = exp

[
−4

3
π

∫ t̄

t̄i

dt̄′8eβ̄t̄
′
(√

t̄t̄′ − t̄′
)3
]
. (35)

Without loss of generality, we can choose the true vac-
uum as the zero point of the potential energy so that the
vacuum energy in the normal decay regions and delayed
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FIG. 4. The time evolution for the spatial fraction of false
vacuum regions (top), the radiation and vacuum energy den-
sity fractions (medium) and the radiation and vacuum energy
densities normalized by the total energy density at some time
t̄0 = 1/2 (bottom). In all panels, t̄i = 0.2 and t̄n = 0.6 de-
note the normal decay channel and delayed decay channel,
respectively.

decayed regions are estimated by ρv(t̄; t̄i) = F (t̄; t̄i)∆V
and ρv(t̄; t̄n) = F (t̄; t̄n)∆V , respectively. The time evo-
lution for the spatial fraction of false vacuum regions in
the normal (solid curves) and delayed (dotted curves) de-
cay channels is shown in the top panel of Fig. 4. For a
larger value of β̄, the PT proceeds more abruptly. For a
smaller value of β̄, the PT proceeds more slowly.
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FIG. 5. The results for the parameters in producing the SGWB and PBHs. Upper left : The delayed decay time tn (green), the
percolation time t∗ (blue), and the PBH formation time tPBH (red) after normalized to the normal decay time ti with respect
to the parameter regime of β/H∗ of interest. Upper right : The time evolution of overdensity with respect to the parameter
regime of β/H∗ of interest. Lower left : The parameter space for ᾱ and β/H∗ with respect to the input parameter β̄. Lower
right : The parameter space for fPBH and MPBH with respect to the parameter regime of β/H∗ of interest.

However, the rest of energy density does not evolve
exactly as radiations due to the interrupt of the PT pro-
cess and associated PBH productions. Nevertheless, the
radiation evolution could be effectively solved from

dρ̄r
dt̄

+ 4ρ̄r
√
ρ̄r + ρ̄v = −ᾱdF

dt̄
, (36)

with abbreviations ρ̄r ≡ ρr/(3M
2
PlΓ

1/2
0 ) and ρ̄v ≡

ρv/(3M
2
PlΓ

1/2
0 ) = Fᾱ. Note that Γ0 naturally defines a

time t0 in such a way that H(t0) = Γ
1/4
0 . Our assumption

for radiation dominance requires t̄0 = H(t0)t0 = 1/2.
Then the initial condition is chose as ρ̄r(t̄0) = 1− ρ̄v(t̄0).
For given ᾱ and β̄, Eq. 36 can be solved for the normal
and delayed decay channels respectively with t̄n > t̄i. It
can be checked numerically that, as long as ᾱ < 0.5, our
assumption for the radiation dominance is valid through-
out the whole process of PT as shown in the medium and
bottom panels of Fig. 4 for the radiation/vacuum en-
ergy density fractions and radiation/vacuum energy den-
sities normalized by the total energy density at the time
t̄0 = 1/2, respectively. The normal decay time t̄i = 0.2
and delayed decay time t̄n = 0.6 as well as ᾱ = 0.3 and
β̄ = 7 are chose for illustration.

With the full solutions for the radiation and vacuum

energy densities in the normal and delayed decay regions,
the overdensity of total energy density in the delayed
decay regions can be directly evaluated by

δ(t̄) =
ρ̄r(t̄; t̄n) + F̄ (t̄; t̄n)ᾱ

ρ̄r(t̄; t̄i) + F̄ (t̄; t̄i)ᾱ
− 1 . (37)

The time evolution of δ(t̄; t̄i, t̄n, ᾱ, β̄) is first increasing
due to the gradual accumulation of energy density in false
vacuum and then decreasing due to the rapid declination
of volume fraction in false vacuum. For given t̄i, ᾱ and β̄,
when the maximal overdensity exactly saturates a given
PBH threshold δc, we can solve for the required delayed
decay time t̄n, from which the PBH formation time is
then solved from δ(t̄PBH; t̄i, t̄n, ᾱ, β̄) = δc. Although suf-
fered from large uncertainties of numerical simulations,
we can adopt the analytic estimation [54] on the PBH
threshold via δc = sin2[π

√
w/(1 + 3w)] with the EoS w

evaluated from the dominant component at PBH forma-
tion.

The PBH mass produced from our postponed decay
mechanism is almost monochromatic since the numerical
simulations for the gravitational collapse of over-dense
regions with sub-horizon size are still missing. We there-
fore only focus on the PBH mass collapsed from the over-
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dense Hubble volumes with postponed decay,

MPBH

M�
= 4πγPBH

(
MPl

M�

)(
MPl/Γ

1/4
0

HPBH/Γ
1/4
0

)
, (38)

where γPBH = 0.2 [55], MPl/M� = 2.182 × 10−39, and

H̄PBH ≡ HPBH/Γ
1/4
0 =

√
ρ̄tot(t̄PBH; t̄n). The other fac-

tor MPl/Γ
1/4
0 can be roughly estimated as

Γ
1/4
0

MPl
=

(
π2

90
gdof

)1/2(
T∗
MPl

)2

e−
β

8H∗ (39)

by noting that the percolation time defined by F (t∗; ti) =
0.7 is usually close to the time when the bubble nucle-
ation rate balances the Hubble expansion rate Γ(t∗) ≈
H(t∗)

4, thus, Γ0 ≈ H4
∗e
−βt∗ followed by the replacements

of 3M2
PlH

2
∗ = (π2/30)gdofT

4
∗ and H∗t∗ = 1/2 due to the

radiation dominance.
The PBH abundance fPBH = (aeq/aPBH)ΩPBH/Ω

eq
DM

normalized to the dark matter fraction Ωeq
DM = 0.42 at

the matter-radiation equality is then estimated by

ΩPBH = exp

−4

3
π

∫ t̄n

t̄i

dt̄ eβ̄t̄

(√
t̄/t̄PBH

H̄PBH

)3
 , (40)

where the redshift factor aeq/aPBH = TPBH/Teq

with Teq ≈ 0.75 eV can be estimated by inserting
3M2

PlH
2
PBH = (π2/30)gdofT

4
PBH after replacing HPBH =

H̄PBHΓ
1/4
0 with previously computed H̄PBH and Γ

1/4
0 ,

namely,

TPBH = T∗
√
H̄PBHe

− β
16H∗ . (41)

Note that the gdof -dependence in TPBH and Γ0 cancels
out, leaving no dependence on gdof for the PBH abun-
dance. Finally, in computing both PBH mass and abun-
dance, the inverse duration is determined by β/H∗ =
β̄/
√
ρ̄tot(t̄∗; t̄i).

For our holographic model of gluondynamics, β is the
only free parameter since one can further fix ᾱ from
matching the strength factor α = ᾱ/ρ̄r(t̄∗; t̄i) to the value
0.939 obtained from holographic calculations. The other
inputs from holographic calculations include the PT tem-
perature T∗ = 276.5 MeV, the effective degrees of free-
dom gdof = 3.64 and the PBH threshold δc = 0.1786
from the EoS w = 0.0219 of the dominant component
in the unbroken phase[54]. The final results are summa-
rized in Fig. 5. In the first panel, all the characteristic
time scales, such as the delayed decay time tn, the per-
colation time t∗, and the PBH formation time tPBH, are
shown with respect to β/H∗ after normalized to the nor-
mal decay time ti. In the second panel, the time evolution
of the overdensity within the delayed decay regions are
shown to exactly saturate the PBH formation threshold.
In the third and last panels, the parameter space for ᾱ,

β/H∗, fPBH, and MPBH are shown with respect to the
input free parameter β̄. It is worth noting that the cur-
rent constraint from the current GWTC-3 data [39] on
the PBH abundance fPBH < 0.00045 in the mass range
[1M�, 3M�] would constrain β/H∗ > 8.59.
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