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Background

White matter fiber tracts connecting neurons of different regions
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Background

Major fiber tracts connecting cerebral cortex, subcortical regions and cerebellum

Wikipedia
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Background

White matter connectivity changes during neurodevelopment and aging

Dynamic changes of white matter connectome across lifespan 

Zhao et al., 2015 HBM
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Background

De Lange et al., 2019, NHB
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Disrupted white matter connectivity across neuropsychiatric disorders

Hub region



Background

Mori et al., 1999, Ann Neurol
Mori et al., 2006, Neuron
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Tractography technology tracks the white matter tracts in the human brain
DTI is sensitive to water molecule diffusion which is 
constrained to be especially parallel to nerve fibers 

Fiber tractography is to reconstruct fiber tracts (i.e. white matter connectivity) by linking the voxels that 
have the same orientation, while counting the streamlines between the start point and end point.
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UK Biobank (UKB) provides a great opportunity with large sample size to explore genetics of brain structure.

For the genetic information, UKB has collected about 500,000 subjects (ages 40-80 years), including genotypes, 
exome sequences and whole genome sequences.

For the imaging study, UKB aims to conduct detailed MRI imaging scans of over 100,000 participants in 
Stockport, Newcastle, Bistol and Reading centers.

Now, they have scanned about 48,000 subjects with brain imaging and genetic information.

Background



Aims of the present study
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Here we carried out a brain-wide tractography on 30,810 participants from UK Biobank. 

➢ Estimate heritability and perform multivariate GWAS analysis of the tract measures

➢ Functional annotation of genetic variants that associate with structural connectome

➢ Assess the association of regional connectivity with other clinical traits, including psychiatric disorders 
(schizophrenia, bipolar disorder, autism, attention-deficit hyperactivity disorder), neurological disorders 
(Alzheimer’s disease, amyotrophic lateral sclerosis, and epilepsy) and handedness.

➢ Genetic influences on fiber tracts linking core language regions.

Background



Methods
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Node and edge-level measures per individual
Methods

Two types of measurement per individual:

➢ Edge-level 
Count the number of streamlines linking each  
pair of regions, while adjusting for the brain size 
by dividing by the average volume of both regions.

➢ Node-level 
Degree centrality of each region: Sum the
connectivity linking to a given region
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Genetics of structural connectome of the human brain

Male Female

Participants 14,636 16,174

Age 64.56 ± 7.59 63.20 ± 7.34

We finally included 30,810 participants

Methods

1. Sample quality control

• Exclude outliers based on 

heterozygosity (PC corrected 

heterozygosity>0.19) and 

genotype missingness (missing 

rate>0.05).

• Exclude subjects with a 

mismatch of their self-reported 

and genetically inferred sex.

• Exclude the subjects without 

“white British ancestry”.

• Exclude the subjects with 

relatedness of kinship 

coefficient>0.0442.

2. Genetic quality control

• Exclude variants with 

minor allele 

frequencies<1%.

• Exclude variants with 

INFO<0.7. 

• Exclude variants with 

Hardy-Weinberg 

equilibrium p<1x10-7.

3. Brain measures

Automated Anatomic 

Labeling atlas

• Node level (degree)

• Edge level (connectivity)



SNP heritability and multivariate GWAS analysis

1.    SNP heritability: Estimate the proportion of variance in a phenotype explained by all SNPs using GCTA.
(1) Remove cryptic relatedness (cutoff: 0.025).
(2) Construct genetic relationship matrix.
(3) Calculate genome-based restricted maximum likelihood (GREML).

2. Multivariate GWAS (separately for node- and edge-level metrics): 
(1) For each significantly heritable trait, test univariate association with additive genetic model for each SNP.
(2) Separately for each SNP, test its univariate association with each brain measure, convert the P values to z 
scores, then use Mahalanobis distance to compute a single multivariate association X2 (null distribution 
obtained through permutation; MOSTest software).
(3) Identify brain traits that make the greatest contributions to overall multivariate association by calculating 
the mean of unsigned z-scores across lead SNPs. 

3.    Covariates used in the GWAS analysis: age, nonlinear age, 10 genetic principle components, assessment 
center, genotype measurement batch and sex.
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Methods
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Methods
Associations of regional connectivity with different polygenic scores
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Polygenic score Regional connectivity

…

Canonical correlation model
GWAS summary statistics

1) Region with high loadings (|r|>0.2)2) Co-activation map3) Cognitive annotations



Results
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SNP heritability analysis

851 edge-level measures showed significantly heritable after Bonferroni correction 

Heritability of node-level measures Heritability of edge-level measures
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Results Multivariate GWAS analysis

154 lead SNPs in 
128 genomic loci

231 lead SNPs in 
181 genomic loci

Multivariate GWAS of node-level measures

Multivariate GWAS of edge-level measures
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Brain regions contributing to the multivariate associationsResults

No. Region1 Region2 Mean |z-score|
1 R_Precuneus L_Precuneus 1.59

2 R_Calcarine L_Calcarine 1.52
3 R_Temporal_Mid R_Precentral 1.52
4 R_Putamen R_Postcentral 1.52
5 L_Thalamus L_Calcarine 1.49

6 L_Temporal_Sup L_Insula 1.48

7 L_Angular L_Precentral 1.47
8 L_Temporal_Mid L_Precentral 1.47

9 R_Lingual L_Calcarine 1.47
10 L_Frontal_Mid L_Frontal_Sup 1.47
11 L_Temporal_Mid L_Temporal_Sup 1.45

12 R_Frontal_Mid R_Frontal_Sup 1.44

13 R_Putamen R_Frontal_Sup 1.44

14 R_Thalamus R_Calcarine 1.43

15 R_Frontal_Sup_Medial L_Frontal_Sup_Medial 1.42
16 R_Lingual R_Cuneus 1.42
17 L_Frontal_Inf_Tri L_Frontal_Sup 1.41
18 R_Supp_Motor_Area L_Supp_Motor_Area 1.41

19 L_Frontal_Inf_Tri L_Frontal_Mid 1.41

20 R_Occipital_Sup L_Occipital_Sup 1.41

Regions driving significant associations Connectivity driving significant associations
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Results Functional annotations of structural connectome-related genes

61 significant gene-sets associated with 
node-level measures

72 significant gene-sets associated 
with edge-level measures
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Results Neurodevelopment annotations of structural connectome-related genes

Node-level 
connectivity

Edge-level 
connectivity
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Results Cell-type annotations of structural connectome-related genes

Node-level 
connectivity

Edge-level 
connectivity



Results Correlations between different polygenic scores

➢ Sixteen correlations were positive, 
with the highest between polygenic 
scores for schizophrenia and bipolar 
disorder, and between attention 
deficit/hyperactivity disorder and 
autism.

➢ Two correlations were negative, 
between polygenic scores for 
amyotrophic lateral sclerosis and 
bipolar disorder, and between 
amyotrophic lateral sclerosis and 
autism.



Multivariate association of regional connectivity with polygenic scores
Results

Increased polygenic risk for schizophrenia, bipolar disorder, autism associated with 
generally reduced connectivity of cortical regions, increased subcortical connectivity 21
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Multivariate association of regional connectivity with polygenic scores

Results

• Increased polygenic risk for Alzheimer's disease, 
amyotrophic lateral sclerosis associated with 
generally increased connectivity of cortical regions
• Plasticity > compensatory changes?
• Individuals expressing their polygenic risk 

might participate less?
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Multivariate association of regional connectivity with handedness polygenic score
Results

• Polygenic influence on handedness associated with connectivity of language-related regions
• Consistent with findings based on anatomical asymmetry of the cerebral cortex (Sha et al. PNAS 2021)
• Developmental and evolutionary links between left-hemispheric specializations for handedness and 

language
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Results White matter connectivity linking left-hemispheric language regions

Friederici et al., 2015, Handbook of clinical neurology
Yagmulu et al. 2016, J Neurosurgery

Histological image

Regions of our interest
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Results Language-related tracts and closest genes to lead SNPs

Connectivity between the pars opercularis and pars triangularis cortex

Connectivity between the middle temporal and superior temporal cortex

Connectivity between the pars opercularis and middle temporal cortex

Connectivity between the pars opercularis and superior temporal cortex

Connectivity between the pars triangularis and middle temporal cortex

Connectivity between the pars triangularis and superior temporal cortex
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Results Language-related tracts and closest genes to lead SNPs

rs12636275 is an intron of EPHA3, 
regulating axon projection maps 
and language-related connectivity

rs7580864 is an intron of PLCL1, 
associated with autism and 

GABA signaling pathway

Ortalli et al., 2012; Mekki et al., 2022; Zhang et al., 2021

Connectivity between 

language-related regions
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Discussion
Neural differentiation is important for the white matter network formation.

Axon pruning might shape the precise white matter connectivity.

Tang et al., 2018, Neural Regeneration Research

SEMA3A is the top gene in the 
gene-based association analysis



Ma & Gibson (in Rubenstein & Rakic 2013)

Conclusions I

• Inter-individual variation in adult white matter connectivity is especially 
influenced by genes that are:
• active in the prenatal developing brain
• upregulated in stem cells, astrocytes, microglia, neurons of prenatal brain
• involved in neurodevelopmental processes including neural migration, neural 

projection guidance and axon development

• Roles of glial cells in neurodevelopment are not well understood
• Astrocytes can express positional guidance cues, e.g. SEMA3A, required for 

neuronal circuit formation (mediating attraction or repulsion of the growth 
cone at the axonal tip)

• Embryonic microglia associate with developing axons and can affect nerve 
bundle formation



Conclusions II

• Polygenic scores for various psychiatric and neurological disorders showed significant associations with 
white matter connectivity
• Each implicating distinct sets of brain regions with trait-relevant functional profiles

• Polygenic risk for disorders likely to manifest:
• partly through affecting the development of large-scale structural brain networks
• particularly during prenatal brain development.
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