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a b s t r a c t

According to a classic result in evolutionary biodemography, selection on age-specific survival invari-
ably declines with reproductive age. The result assumes proportional changes in survival and a constant
environment. Here, we look at selection on age-specific survival when changes are still proportional
but the environment fluctuates. We find that selection may or may not decline with reproductive age
depending on how exactly survival is proportionally altered by mutations. However, interpreted in
neutral terms, the mathematics behind the classic result capture a general property that the genetics
of populations with age structure possess both in a constant and in a fluctuating environment.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Populations often face changing environmental conditions. As
daptation to one condition may be suboptimal for a different
ne, variability in the environment can profoundly impact the
cology and evolution of populations (Morris and Doak, 2002;
ande et al., 2003). From a theoretical perspective, inclusion of
luctuating environments in one’s model often is neither trivial
or inconsequential. Steiner (2020) has recently recalled two
ain examples where the work of Tuljapurkar on environmental
tochasticity in demography (Tuljapurkar, 1982a,b; Tuljapurkar
nd Orzack, 1980) has both exposed the risk of not properly
ccounting for variability in the environment and prompted the
econsideration of results based on constant environmental con-
itions. One example is about the estimation of the long-run
rowth of a population that goes through a stochastically deter-
ined sequence of environments. Tuljapurkar (1982a) showed
ow, when environments are independent, one can approximate
he long-run growth rate as the difference between the determin-
stic growth the population would have in the average environ-
ent and a nonzero term capturing the covariance structure of

raits in the population. This exposes the flaw inherent in using
rowth in the average environment alone to estimate growth
nder environmental stochasticity.
The other example reported by Steiner (2020), and the one of

nterest for the present work, is about how selection acts on traits
hat have specific ages of expression. In a classic work, Hamilton
1966) computed selection gradients on a number of life history
raits for a population that lives in a constant environment. These
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ttps://doi.org/10.1016/j.tpb.2022.05.001
040-5809/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a
c-nd/4.0/).
gradients display a declining pattern over reproductive ages. Ac-
cordingly, any trait change of a given magnitude that is limited to
a single age would have a smaller fitness effect the later the age
under consideration. With fluctuating environments, however,
fitness also depends on the variability in life history traits. This
variability is not accounted for in Hamilton’s results. Therefore,
when the environment changes with time, there is no obvious
reason that selection should operate progressively less forcefully
with age as it does when the environment is constant (Steiner,
2020).

However, there seems to be no specific analysis in the litera-
ture about how Hamilton’s study of age-specific selection trans-
lates, or fails to do so, to the case of stochastically fluctuating
environments. To provide such analysis is the aim of the present
work. Attention is here limited to selection on age-specific sur-
vival. Hamilton (1966) also studied selection on mutations with
other sorts of effects, e.g., protracted over several ages, with in-
fluence on the timing of other mutations or on fecundity. But his
result about age-declining selection on age-specific survival is tra-
ditionally seen as his most notable result (Kirkwood and Holliday,
1979; Partridge and Barton, 1993; Charlesworth, 1993; Baudisch,
2005; Caswell, 2007; Rose et al., 2007; Flatt and Schmidt, 2009;
Hughes, 2010; Wachter et al., 2013; Flatt and Partridge, 2018;
Maklakov and Chapman, 2019). Together with Hamilton’s gradi-
ent on age-specific fecundity, his gradient on age-specific survival
is often used as a basis for the more general claim that the force
of selection always declines with reproductive age.

This is how we shall proceed. Initially, we review demographic
notions and the computation of selection gradients for class-
structured populations in a constant environments. Then, we
recall Hamilton’s classic result and we elaborate upon its connec-

tion with elasticity analysis of population growth in a constant

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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nvironment. Subsequently, we review demographic notions and
he computation of selection gradients for class-structured pop-
lations in a stochastically fluctuating environment. Building on
he contributions of Tuljapurkar et al. (1990, 2003) to the elas-
icity analysis of population growth in variable environments,
e then look at three possible ways in which Hamilton’s classic
esult could be translated to changing demography induced by
nvironmental stochasticity. In one case, we obtain an exact gen-
ralization of Hamilton’s result, while in the other two cases we
ind counterexamples to a steady decline of selection on survival
ith reproductive age. Finally, we connect Hamilton’s result with
he general framework of genetic lineages in class-structured
opulations. We argue that this connection helps understand
oth his original result for a constant environment and the one
ase in which the result generalizes to a fluctuating environment.

. Selection on survival in a constant environment

.1. Demographic model

Throughout we adopt the framework of matrix population
odels, which is standard in the study of the ecology and evo-

ution of class-structured populations under both constant and
tochastic demography (Caswell, 2001). In this framework, classes
ay be based on any relevant individual property, e.g. age, size,
hysiological state or developmental phase, that can be used
o subdivide individuals in the population into separate classes.
lass abundances in the population are the components of a
ector x(t), with xj(t) the abundance in class j at t . The total

population size at t is X(t). With a constant environment and
no density or frequency dependent dynamics, there always are
ai,j individuals in class i at t+1 per individual in class j at t .
The matrix A = [ai,j] projects population abundances forward
in time: x(t+1) = Ax(t). In the long run, under assumptions
about A, which are here assumed to hold throughout, the popu-
lation grows at each time step by a factor equal to the dominant
eigenvalue λ>0 of A and reaches demographic stability: the
class distribution is stable and proportional to the right domi-
nant eigenvector w of A. The left dominant eigenvector v is the
reproductive value vector, its components measure the relative
contribution of individuals in each class to the population future
composition. The components of both these eigenvectors are
positive. They are normalized so that

e⊤w =

∑
j

wj = 1,

v⊤w =

∑
j

vjwj = 1,
(1)

where e is a vector of 1s and ⊤ indicates vector transposition.

2.2. Selection gradients

Before recalling Hamilton’s result, we briefly review the
theory of selection in class-structured populations that live a
constant environment. Assume that the matrix A captures the de-
mographic dynamics of a stable resident population. We consider
selection in this population combining the approach of Taylor and
Frank (1996) and that of Engen et al. (2011), which are here more
easily connected with perturbation results for matrix models
that will be useful later on. For more general approaches to
selection in class-structured populations also including stochastic
demography, see Rousset (2004), Rousset and Ronce (2004), En-
gen and Sæther (2014), Lehmann and Rousset (2014), Lion (2018)
and Priklopil and Lehmann (2021).

We start by noting that individuals in a class-structured pop-
ulation are not all equal. An individual has different survival
137
and reproductive prospects, and therefore different influences on
the population future composition, depending on the class this
individual currently is in. The demographic contribution of an
individual in class j at t to the population at t+1 is

∑
i ai,j. This

contribution, which includes offspring as well as the individual
itself if it survives (possibly while transitioning to some other
class), will generally be different from the contribution of an indi-
vidual in some other class k̸=j. Moreover, individuals contributed
by a single individual over one time step also differ among
them, as they can be in different classes at t+1. As an extreme
case, Ellner (2018) asks us to consider those offspring that die
before their first census: they go undetected by the demographic
model of Section 2.1 and never count towards the population
composition. How should we then treat offspring that survive
to first census yet are so small, compared to other offspring,
that have few chances of making it to reproductive maturity?
The standard way of dealing with disparity among individuals
due to class structure is to weight them by their reproductive
values (Fisher, 1930; Taylor, 1990; Cochran and Ellner, 1992;
Engen et al., 2009; Barton and Etheridge, 2011; Ellner, 2018; Lion,
2018; Grafen, 2020), because reproductive values precisely cap-
ture future contributions to the population. In practice, instead
of working with the census number xj(t) of individuals in class
j at t , one works with their reproductive value vjxj(t). The total
reproductive value in the population at t is V (t) =

∑
j vjxj(t).

At demographic stability, population size and total reproductive
value coincide since V (t) =

∑
j vjxj(t) = X(t)

∑
j vjwj = X(t),

where we have used the normalization in Eq. (1). Therefore, at
demographic stability both V (t) and X(t) change by a factor λ per
time step — note that the total reproductive value V (t), differently
from the census size N(t), changes exactly by this factor even
when the class distribution is not stable (Fisher, 1930; Caswell,
2001).

We can then define the fitness fj of a resident individual
currently in class j as its contribution to the total reproductive
value in the population at the next time point relative to its
current reproductive value,

fj =

∑
i

vi

vj
ai,j, (2)

(Taylor and Frank, 1996; Engen et al., 2011). In this way,
the fitness contribution of the fraction of reproductive-valued
weighted individuals in class j at demographic stability is

vjwjfj = wj

∑
i

viai,j = vjwjλ, (3)

where we have used the left eigenvector equation for reproduc-
tive values. Mean fitness in the population is

f =

∑
j

vjwjfj = λ, (4)

where we have used Eq. (3) and the normalization in Eq. (1).
Note that mean resident fitness coincides, as it should, with stable
geometric growth of the resident population.

Take then a quantitative phenotypic trait, like telomere length
or aggressiveness level. The resident trait value is z. The entries of
A are supposed to depend on this trait. Imagine that a mutation
emerges in the population so that mutants have trait value z + δ
with δ≪1. For δ=0, resident and mutant are identical. So long
as the mutant subpopulation is small, it experiences the set E
of conditions imposed by the resident population and mutant
demographic dynamics are captured by the matrix A(δ, E) with
dominant eigenvalue λ∗ (Metz et al., 2008). This matrix coincides
with the resident projection matrix when δ=0. Mean mutant
fitness is

f ∗
=

∑
vjwjf ∗

j (ai,j(δ, E)), (5)

j
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here reproductive values and class distribution are regarded
s constants at resident (neutral) values. Whether or not the
utation invades depends on the sign of the quantity

(z) =

(
1
f ∗

∂ f ∗

∂δ

) ⏐⏐⏐
δ=0

=
1
f

∑
j

vjwj
∂ f ∗

j

∂δ

⏐⏐⏐
δ=0

=
1
f

∑
i,j

viwj
∂ai,j(δ, E)

∂δ

⏐⏐⏐
δ=0

, (6)

hich is the derivative of mutant fitness with respect to mutant
eviation when this approaches zero. As Van Cleve (2020) noted,
n expression equivalent to Eq. (6) and based on an eigenvalue
erturbation result originally introduced to population biology
y Caswell (1978) is

(z) =

(
1
λ∗

∂λ∗

∂δ

) ⏐⏐⏐
δ=0

=
∂ ln λ∗

∂δ

⏐⏐⏐
δ=0

=
1
λ
v⊤

∂A(δ, E)
∂δ

⏐⏐⏐
δ=0

w. (7)

The quantity S(z) is the selection gradient on the trait z (Taylor
and Frank 1996, Eq. 29; Rousset 2004, Eq. 11.16; Ronce and
Promislow 2010, Eq. 2.1). If S(z) > 0, the mutation invades. If
(z) < 0, the mutation disappears. Observe that division by f (=
) is sometimes omitted from the expression for S(z). However,
his scaling is needed when considering fitness on the natural log
cale, as originally assumed by Hamilton (1966). Here, we retain
is assumption throughout.
The absolute magnitude of S(z) is evolutionarily relevant too,

s it is usually interpreted as the present force of selection
n the trait z, e.g. Hamilton (1966), Baudisch (2005), Ronce
nd Promislow (2010), Caswell and Shyu (2017), Gaillard and
emaître (2017), Sun et al. (2020), Giaimo and Traulsen (2022).
his parallels a traditional interpretation of selection gradients
or populations without explicit class structure, e.g. Arnold and
ade (1984), Meszéna G. Kisdi et al. (2001)

.3. Demographic model with classification by age

To get to the result by Hamilton (1966), we must consider the
pecial case of age classes. For this case, the projection matrix A
akes the form of the Leslie matrix, which we denote by L. The
robability that an individual of age j at t survives to be observed

in age class j+1 at t+1 is pj, while mj is the fecundity of this
individual. Reproduction starts at age α and it does not cease
until some later age ω, which also is the maximum attainable age.
Age-specific fecundity weighted by newborn survival populates
the first row of L. Remaining survival populates the Leslie matrix
subdiagonal. Zeros are everywhere else. Hence, L takes the form

L =

⎛⎜⎜⎝
p0m1 . . . . . . p0mω

p1 0 . . . 0

0
. . .

. . .
...

0 0 pω−1 0

⎞⎟⎟⎠ , (8)

(Charlesworth, 1994). At demographic stability, the age distri-
ution is stable and the Euler–Lotka equation,
ω∑
i=1

(
i−1∏
k=0

pk

)
miλ

−i
= 1, (9)

relates the resident life history, i.e. the time-homogeneous sched-
ule of age-specific survival (pj) and fecundity (mj), with its demo-
graphically stable geometric growth λ.

2.4. Hamilton’s result

We can now recall the original result by Hamilton (1966).
He computed the selection gradient on age-specific survival as-
suming mutations of small proportional effects. Up to a linear
138
approximation in the mutant deviation, introducing a propor-
tional increase in survival pj at age j is equivalent to introducing
an additive increase in ln pj. Using the above formalism, the
trait of Hamilton’s interest then was z = ln pj. He assumed no
density or frequency dependent dynamics in the population, so
that there is no need to specify the set E of conditions imposed
by the resident because different strategies do not interfere with
each other. Inserting a factor (1+δ) next to pj in Eq. (9) and
substituting resident growth with mutant growth, one obtains the
Euler–Lotka equation for the initial mutant population. Implicitly
differentiating ln λ∗(δ) with respect to δ in this equation and
valuating at δ = 0, Hamilton (1966) found that

(ln pj) =

ω∑
i=j+1

(∏i−1
k=0 pk

)
miλ

−i

T
> 0, (10)

where

T =

ω∑
i=1

i

(
i−1∏
k=0

pk

)
miλ

−i (11)

is a measure of the generation time in the resident popula-
tion (Charlesworth, 1994). As Hamilton noted, this selection gra-
dient has a general age pattern. As we compute the gradient for
each successive age j, we drop one term at a time. But S(ln pj) is
a sum of nonnegative terms, which are zero at pre-reproductive
ages (mi = 0 with i < α), while they are positive at reproductive
ages (mi > 0 with α ≤ i ≤ ω). Therefore,

S(ln p0) = S(ln p1) = · · · = S(ln pα−1) > S(ln pα) > · · · > S(ln pω−1).

(12)

In words, fitness is more sensitive to a proportional change
in survival at a reproductive age than to a change of the same
proportion at any later age. The change has the same fitness effect
at all pre-reproductive ages. This age pattern is general in the
sense that it is entirely independent of survival and fecundity
schedules of the resident population.

2.5. Hamilton’s result as an elasticity

Before introducing fluctuating environments, we recall a known
connection between Hamilton’s result and eigenvalue perturba-
tion methods for matrix population models. These methods are
useful for our purposes because their extension for environmental
stochasticity are needed when we try to translate Hamilton’s
result from the case of a constant environment to the case of a
variable environment.

The slope of the dominant eigenvalue λ of a projection matrix
A as a function of some parameter θ upon which the matrix
depends is
∂λ

∂θ
= v⊤

∂A
∂θ

w, (13)

here the derivative is evaluated at θ ’s present value, see Caswell
1978).

Elasticity analysis studies the gradient, in a log–log plot, of
as a function of θ when this parameter is assumed non-

egative (de Kroon et al., 1986, 2000; Caswell, 2001). The elas-
icity of λ to θ is

λ(θ ) =
θ

λ

∂λ

∂θ
=

⎧⎨⎩
∂ ln λ

∂ ln θ
θ > 0

0 θ = 0
(14)

From Eqs. (13)–(14), the elasticity of λ to θ = ai,j is

λ(ai,j) =
ai,jviwj

, (15)

λ
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ee Caswell (2001). Using this expression and the eigenvector
quations λvj =

∑
i viai,j and λwj =

∑
i aj,iwi, van Groenendael

t al. (1994) were the first to observe a fundamental property of
he elasticities of λ for any demographic classification:∑
i

eλ(ai,j) =
wj

λ

∑
i

ai,jvi = wjvj =
vj

λ

∑
i

aj,iwi =

∑
i

eλ(aj,i),

(16)

he sum of elasticities of λ to entries in column j equals the sum
f elasticities of λ to entries in row j.
Hamilton’s selection gradient on survival in Eq. (10) is known

o be formally equivalent to the elasticity of λ to survival, e.g.
Caswell, 2001; Jones, 2009),

λ(pj) = S(ln pj) j = 0, 1, . . . , ω − 1. (17)

Here, we expand upon this observation and derive a result
hat, as we will see in Section 5, has an exact counterpart under
nvironmental stochasticity. It seems that it has not been ac-
nowledged so far that the age-pattern of Hamilton’s gradient is a
irect consequence of the general balance property of elasticities
n Eq. (16). To show this, recall that eλ(ai,j) are nonnegative quan-
ities because λ is an increasing function of the matrix entries. In
articular, eλ(ai,j) = 0 only when the (i, j)-entry is zero, as Eq. (15)
akes evident. Let us then look at row j+1 and column j+1 of the
eslie matrix,

=

p0m1 . . . . . . p0mj+1 . . . . . . . . . p0mω

p1 0 . . . 0 . . . . . . . . . 0

0
. . .

. . .
... . . . . . . . . . 0

0 . . . pj 0 0 . . . . . . 0

0 . . . . . . pj+1
. . . . . . . . . 0

0 . . . . . . 0 pj+2
. . . . . . 0

0 . . . . . .
... . . .

. . .
. . . 0

0 . . . . . . 0 . . . . . . pω−1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(18)

hich are here highlighted in gray. Applying the result in Eq. (16)
o the Leslie matrix, we have that

λ(pj) = eλ(p0mj+1) + eλ(pj+1) (19)

The elasticity eλ(p0mj+1) is positive when j+1 is a reproductive
age, i.e. when mj+1 > 0 so that p0mj+1 > 0, while this elasticity
vanishes at juveniles ages, i.e. when mj+1 = 0. Therefore, Eq. (19)
implies that eλ(pj) = eλ(pj+1) when j+1 < α, where α is the first
eproductive age, while eλ(pj) > eλ(pj+1) when j+1 ≥ α. Applying
hen Eq. (16) to the first row and first column of a Leslie matrix,

ω

i=1 eλ(p0mi) = eλ(p0m1) + eλ(p1). If α > 1, then eλ(p0m1) = 0
and

∑ω

i>1 eλ(p0mi) = eλ(p1). If α = 1, then eλ(p0m1) > 0 and
ω

i≥1 eλ(p0mi) > eλ(p1). Putting everything together,

ω∑
i=1

eλ(p0mi) = eλ(p1) = · · · = eλ(pα−1) > eλ(pα) > · · · > eλ(pω−1).
(20)
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Moreover,
ω∑
i=1

eλ(p0mi) =

ω∑
i=α

∂ ln λ

∂ ln(p0mi)
=

ω∑
i=α

p0
∂(p0mi)

∂p0

∂ ln λ

∂(p0mi)

= p0
∂ ln λ

∂p0
= eλ(p0)

(21)

Therefore, from this and Eq. (17), we have that Eq. (20) cor-
responds to Eq. (12). In other words, we have just obtained the
age-pattern of Hamilton’s selection gradient on age-specific sur-
vival. Hamilton derived this pattern by reasoning on the algebra
of the analytic expression of his gradient. The present derivation
shows that such expression, i.e. a specific version of Eq. (6) (or
Eq. (15)) for the age-classified case, is not needed to get the
pattern. Structural properties of the Leslie matrix, i.e. its location
of zeros and nonnegative entries, and the balance properties of
elasticities for general matrix models of populations suffice.

3. Environmental stochasticity and selection

3.1. Demographic model

We now introduce stochastic fluctuations in the environment.
We do so by using the model introduced by Tuljapurkar (1990).
Suppose that the environment the resident population lives in can
be in m possible states. A stochastic process governs the sequence
of environmental states. In different environmental states, the
population exhibits different vital rates so that to each environ-
mental state there corresponds a projection matrix. Demographic
projection then takes the form

x(t + 1) = A(t)x(t), (22)

where the matrix A(t) ∈ {A1,A2, . . . ,Am} contains the vital rates
induced by the environment the population experiences at time
t . In practice, if at t the environment is in state l, then A(t) = Al.
When we consider the age-classified case, the matrix in Eq. (22)
is a Leslie matrix with fixed α (age at first reproduction) and ω

(maximum age) for all t . Define

λ(t) =
X(t + 1)
X(t)

, (23)

he time-specific growth rate, which is the factor by which the
opulation size X changes between t and t+1. Mild assumptions,
ere assumed to hold throughout, about the stochastic process
hat drives the sequence of environments and about the set of
rojection matrices corresponding to the environments (Cohen,
977a,b; Tuljapurkar, 1990) ensure that the time average of the
ogarithm of age-specific growth rates over any realization of
he demographic process eventually converges to the so-called
tochastic growth rate ln λs, which is given by

ln λs = lim
τ→∞

1
τ

τ−1∑
t=0

ln λ(t), (24)

nd is independent of the initial class distribution.
Tuljapurkar (1990) also introduced time-specific analogs of the

lass distribution vector and the reproductive value vector,

(t + 1) =
A(t)w(t)

λ(t)
, (25a)

⊤(t) =
v⊤(t + 1)A(t)

λ(t)
, (25b)

hich are obtained from a realization of the demographic process
enerated by iterating Eq. (22) from t = 0 up to t = τ − 1 and

where w(0) and v(τ ) are arbitrary nonnegative vectors scaled so
that the components of w(0) add up to 1 and v⊤(τ )w(τ ) = 1.
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he denominator λ(t) on the right hand side of the expressions
n Eq. (25) takes care of keeping this normalization throughout so
hat

e⊤w(t) =

∑
j

wj(t) = 1,

v⊤(t)w(t) =

∑
j

vj(t)wj(t) = 1,
(26)

for 0 ≤ t ≤ τ . In a constant environment, i.e. A(t) = A for all
t , the vectors in Eq. (25) converge to the right and left dominant
eigenvectors of A.

3.2. Selection gradients

The stochastic growth rate ln λs is the relevant measure of fit-
ness when the environment fluctuates (Tuljapurkar, 1982b; Metz
et al., 1992; Rand et al., 1994; Ferriere and Gatto, 1995), i.e. a rare
mutant that experiences the set E of conditions imposed by the
resident and has stochastic growth rate greater than the resident
invades. As we did for the case of a constant environment, we
briefly review here the theory of selection under environmental
stochasticity. We will need this theory in our attempt to extend
Hamilton’s result.

To compute the selection gradient on a trait z upon which
the projection matrices A1,A2, . . . ,Am depend, we proceed anal-
ogously to Section 2.2 (but see references therein for a more
general approach). In particular, we retain reproductive-value
weighting of individuals. Define the fitness at t of a resident
individual in class j as

fj(t) =

∑
i

vi(t + 1)
vj(t)

ai,j(t), (27)

hich is the contribution of the individual to the total reproduc-
ive value at t + 1 relative to the current reproductive value of
his individual. Thus, averaging over the relative abundances in
he classes at t while weighting individuals by their reproductive
alues, mean fitness in the resident population at t is

(t) =

∑
j

vj(t)wj(t)fj(t)

=

∑
j

wj(t)
∑

i

vi(t + 1)ai,j(t)

=

∑
j

vj(t)wj(t)λ(t)

= λ(t),

(28)

here we have used Eqs. (25b)–(26) to simplify. Eqs. (24) and
28) imply that the long-run average of time-specific mean resi-
ent fitness on the log scale equals the stochastic growth rate of
he resident population.

Consider now a small subpopulation of mutants with trait
alue z + δ that experience the conditions set by the resi-
ents. The projection matrices for the mutant subpopulation are
1(δ, E),A2(δ, E), . . . ,Am(δ, E), which coincide with the resident

matrices when δ = 0. The mutant has stochastic growth rate
ln λ∗

s . Mean mutant fitness at t is

f ∗(t) =

∑
j

vj(t)wj(t)f ∗

j (ai,j(δ, E, t)), (29)

where reproductive values and class distribution are taken at
resident (neutral) values. The derivative of ln f ∗(t) with respect
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to δ at δ = 0 is

S(z, t) =

(
∂ ln f ∗(t)

∂δ

) ⏐⏐⏐
δ=0

=

(
1

f ∗(t)
∂ f ∗(t)

∂δ

) ⏐⏐⏐
δ=0

=
1

f (t)

∑
j

vj(t)wj(t)
∂ f ∗

j (t)

∂δ

⏐⏐⏐
δ=0

=
1

f (t)

∑
i,j

vi(t + 1)wj(t)
∂ai,j(δ, E, t)

∂δ

⏐⏐⏐
δ=0

.

(30)

However, the mutant effect may be apparent at any time point
and we are interested in the expected geometric growth of the
mutant on the log scale. Hence, the selection gradient of our
interest, i.e. the counterpart of Eqs. (6)–(7) under environmental
stochasticity, is

S(z) = lim
τ→∞

1
τ

τ−1∑
t=0

S(z, t)

= lim
τ→∞

1
τ

τ−1∑
t=0

v⊤(t + 1) ∂A(δ,E,t)
∂δ

⏐⏐⏐
δ=0

w(t)

f (t)
, (31)

ssuming this limit exists and where we have used matrix no-
ation to make this expression more compact. Although the ap-
roach to S(z) here has been heuristic, Eq. (31) corresponds
o prior, established results by Tuljapurkar (1990) and Caswell
2005) about perturbations of the stochastic growth rate. This
eassures us about the existence of the limit in Eq. (31) and tells
s that we can also express this equation as

(z) =

(
∂ ln λ∗

s

∂δ

) ⏐⏐⏐
δ=0

. (32)

Looking for the cumulative change in a trait under selection
in the special case of a periodic environment, Lion (2018, Eq. 23)
derived a result analogous to Eq. (31). This result by Lion appears
to be consistent with the perturbation analysis by Caswell (2005)
of the stochastic growth rate in the presence of periodicity in the
environment.

Note that the expression for S(z) in Eq. (31) does not require
the variability between entries of the resident projection matri-
ces to be small. In particular, this expression does not rely on
the small-noise approximation, see Section 6, to the stochastic
growth rate (Tuljapurkar, 1982a; Tuljapurkar et al., 2003).

4. Proportional changes under a fluctuating environment

As we saw in Section 2.5, Hamilton’s result connects with
the elasticity of λ to the entries of the projection matrix. This is
because Hamilton studied the selection gradient on age-specific
survival by assuming mutations with proportional effect and by
equating fitness with ln λ. Age-specific survival is an entry of the
Leslie matrix and the elasticity of the dominant eigenvalue of L
to any entry of this matrix is a proportional sensitivity.

In the attempt of translating Hamilton’s result to stochastic
environments, it is then natural to look at results in the elastic-
ity analysis of λs. In particular, we recall here the contribution
of Tuljapurkar et al. (2003) to this analysis. Consider any class
structure. In a constant environment, introducing a proportional
change solely in the (i, j)-entry of a matrix model is an unam-
biguous move: the resident value is the fixed quantity ai,j, while
the mutant value is ai,j(1 + δ), which also is a fixed quantity.
With stochastically fluctuating environments, the number ai,j(t)
of individuals in class i at t + 1 per individual in class j at
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in the resident population is a random variable which takes
alues (A1)i,j, (A2)i,j, . . . , (Am)i,j, where (Ak)i,j is the (i, j)-entry of

Ak. The probability to take one or other value depends on the
stochastic process governing the sequence of environments; i.e. if
at t the environment is in state l, then ai,j(t) = (Al)i,j. The random
variable (A1(δ, E))i,j (A2(δ, E))i,j, . . . , (Am(δ, E))i,j describing the
same quantity for the mutant subpopulation may differ in a
proportional fashion from the resident in more than one way.

Assume, as in Hamilton (1966), that population dynamics are
density and frequency independent so that there is no need to
specify a set E of conditions imposed by the resident. Tuljapurkar
et al. (2003) distinguished three main ways in which a new
mutation in this population can induce a proportional change that
only affects the (i, j)-entry of the projection matrices:

1. Mutant values are

(Ak(δ, E))i,j = (Ak)i,j + δ(Ak)i,j, k = 1, 2, . . . ,m. (33)

In this way, all values of the random variable are pro-
portionally perturbed and the mutant deviates in ai,j(t) of
the same proportion with respect to the resident in all
m environments, i.e. at all t . Since a small proportional
increase in a positive quantity is equivalent, up to a linear
approximation, to a small additive increase of this quantity
on the natural log scale, the trait of interest here is z =

ln ai,j(t). Using Eqs. (28), (31) and (33), we have that the
relevant selection gradient is

S(ln ai,j(t)) = lim
τ→∞

1
τ

τ−1∑
t=0

vi(t + 1)ai,j(t)wj(t)
λ(t)

, (34)

which is formally equivalent to the so-called stochastic
elasticity of λs to ai,j(t),

eλs (ai,j) =
∂ ln λs

∂ ln ai,j
= S(ln ai,j(t)), (35)

see Caswell (2001, Eq. 14.98)
2. Suppose that the mutation induces a proportional change

in the standard deviation σi,j of ai,j(t) while keeping the
mean āi,j = E(ai,j(t)) unchanged, where E is the expec-
tation operator. The trait under selection is z = ln σi,j.
Recall that, for any random variable X and constant a,
Var(X + δ(X + a)) = Var(X) + δ2Var(X) + 2δCov(X, X) =

(1+δ)2Var(X). Hence, the random variable X +δ(X +a) has
standard deviation (1+ δ)σ (X), where σ (X) is the standard
deviation of X . Moreover, if we set a = −E(X), we have
that X and X + δ(X − E(X)) share the same mean, since
E(X + δ(X −E(X))) = E(X)+ δ(E(X)−E(X)) = E(X). In the
light of these considerations, mutant values are

(Ak(δ, E))i,j = (Ak)i,j + δ((Ak)i,j − āi,j), k = 1, 2, . . . ,m.

(36)

Using Eqs. (28), (31) and (36), the relevant selection gradi-
ent is

S(ln σi,j) = lim
τ→∞

1
τ

τ−1∑
t=0

vi(t + 1)(ai,j(t) − āi,j)wj(t)
λ(t)

, (37)

This gradient is formally equivalent to the elasticity of λs
to σi,j:

eλs (σi,j) =
∂ ln λs

∂ ln σi,j
= S(ln σi,j), (38)

see Tuljapurkar et al. (2003, Eqs. 6, 9-10).
3. Finally, the mutation may induce a proportional change

in the mean of a (t) while keeping its standard deviation
i,j
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unchanged so that z = ln āi,j. Since for any random variable
E(X + δE(X)) = (1 + δ)E(X) and the standard deviation is
invariant to location parameters, mutant values in this case
are

(Ak(δ, E))i,j = (Ak)i,j + δāi,j, k = 1, 2, . . . ,m. (39)

Using Eqs. (28), (31) and (39), the relevant selection gradi-
ent is

S(ln āi,j) = lim
τ→∞

1
τ

τ−1∑
t=0

vi(t + 1)āi,jwj(t)
λ(t)

, (40)

which is formally equivalent to the elasticity of λs to āi,j:

eλs (āi,j) =
∂ ln λs

∂ ln āi,j
= S(ln āi,j), (41)

see Tuljapurkar et al. (2003, Eqs. 6, 7-8).

Hamilton’s classic result in Eq. (10) assumes proportional
changes in age-specific survival. The above distinctions show that
this proportionality assumption has at least three possible coun-
terparts under environmental stochasticity. Hence, in the attempt
of extending Hamilton’s result, we should consider the behavior
of three separate quantities: S(ln pj(t)), S(ln σj) and S(ln p̄j), where
σj and p̄j are, respectively, the standard deviation and the mean
in survival at age j.

5. Uniform proportional changes in survival across environ-
ments

We first look at S(ln pj(t)), which is the selection gradient on
survival at age j when mutations have proportional effects on
survival at this age that are of the same magnitude across all envi-
ronments. To study this quantity, we recall the result by Claessen
(2005) that stochastic elasticities obey the same balance property
in Eq. (16) as the elasticities of stable population growth. Using
Eq. (25) and (34)–(35), the result by Claessen is∑

i

eλs (ai,j) = lim
τ→∞

1
τ

τ−1∑
t=0

∑
i

vi(t + 1)ai,j(t)wj(t)
λ(t)

= lim
τ→∞

1
τ

τ−1∑
t=0

vj(t)wj(t)

= lim
τ→∞

1
τ

τ∑
t=1

∑
i

vj(t)aj,i(t − 1)wi(t − 1)
λ(t − 1)

=

∑
i

eλs (aj,i),

(42)

which parallels Eq. (16). Applying this property to the specific
case of age structure and invoking Eq. (35), the same arguments,
mutatis mutandis, we put forth to show the equivalence between
Eq. (12) and (16) imply that

S(ln p0(t))=S(ln p1(t))= . . .

=S(ln pα−1(t))>S(ln pα(t))> . . . >S(ln pω−1(t)), (43)

a result that appears to be new in the literature. Since S(ln pj(t)) >

0, there always is positive selection on mutations with uniform
proportional effects on survival at age j. We can then conclude
that Eq. (43) exactly replicates Hamilton’s result under environ-
mental stochasticity: the force of selection on a mutation that
proportionally increases age-specific survival of the same mag-
nitude across all environments invariably decreases with repro-
ductive age. As in the case of a constant environment, structural
properties of the Leslie matrix together with balance proper-
ties of the stochastic elasticities in general matrix models imply
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he result. To get to it, no specific version of Eq. (34) for the
ge-classified case is needed.

. Model with three age classes and two environments

To understand whether or not the selection gradients S(ln σj)
and S(ln p̄j) follow the same age pattern as Hamilton’s original
gradient, we take an approach based on counterexamples. We
look for cases where S(ln σj) and S(ln p̄j) fail to decrease in mag-
nitude with reproductive age. This would be at variance with
the age pattern that is distinctive of Hamilton’s original gradient,
which steadily declines with reproductive age.

To find these counterexamples, we restrict our attention to
a simple demographic model for the resident population. We
assume that there are three age classes, all of them reproductive,
and two equiprobable environmental states. The Leslie projection
matrices for the two states are

L1 =

(a b c
d 0 0
0 p̄2 −

ϵ
2 0

)
, (44a)

2 =

(a b c
g 0 0
0 p̄2 +

ϵ
2 0

)
. (44b)

Average survival at age 1 is p̄1 = (d + g)/2. We use the
parameter ϵ to control the variance (ϵ/2)2 in resident survival
at age 2, while keeping the mean p̄2 fixed.

To obtain analytical results, we make use of the small-noise
approximation of Tuljapurkar (1982a) to the stochastic growth
rate. This approximation allows one to approximate ln λs in
Eq. (24) for any class structure provided variability in vital rates
is small. When environments are independent and identically
distributed, this approximation takes the form

ln λs ≈ ln λ −
1
2

∑
i,j

∑
l,k

∂ ln λ

∂ āi,j

∂ ln λ

∂ āk,l
Cov(ai,j, ak,l), (45)

here λ is the dominant eigenvalue of the average projection
atrix and the derivatives are those of ln λ with respect to the
ntries āi,j of the average projection matrix. It has been suggested
hat approximations to perturbations of the stochastic growth
ate can be obtained by perturbing Eq. (45) (Caswell, 2001; Morris
nd Doak, 2005; Shyu and Caswell, 2014), when the approxi-
ation therein is accurate. This will be the approach here to
pproximate S(ln σj) and S(ln p̄j) for the age-classified model in
q. (44). The approximation in Eq. (45) to the stochastic growth
ate of the resident for this model is

n λs ≈ ln λ −

(
∂ ln λ

∂ p̄1

)2 (g − d)2

8
−

(
∂ ln λ

∂ p̄2

)2
ϵ2

8

−
∂ ln λ

∂ p̄1

∂ ln λ

∂ p̄2

ϵ(g − d)
4

,

(46)

here λ is the largest real root of Euler–Lotka equation in Eq. (9)
arametrized with the average matrix entries. Equivalently, λ

s the dominant eigenvalue of 0.5L1 + 0.5L2. For this model,
uler–Lotka equation takes the form

λ−1
+ p̄1bλ−2

+ p̄1p̄2cλ−3
= 1. (47)

The dominant root of this equation can be found in closed form
ia the cubic formula,

=
A

1
3

3
−

B

3A
1
3

+
a
3

(48)

with

A = a3 +
1√

(2a3 + 9abp̄1 + 27p̄1p̄2c)2 + 4B3

2
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+
9
2
abp̄1 +

27
2

p̄1p̄2c

B = −a2 − 3bp̄1

Part of the calculation of λ via the formula in Eq. (48) may
involve complex numbers, although the final result is guaranteed
to be real (i.e. zero imaginary part) and positive by Perron–
Frobenius theorem (Caswell, 2001). Adapting Eqs. (10)–(11) to
our model, the derivatives in Eq. (46) are

∂ ln λ

∂ p̄1
=

1
λ2T

(
b +

cp̄2
λ

)
, (49a)

∂ ln λ

∂ p̄2
=

cp̄1
λ3T

, (49b)

where

T = aλ−1
+ 2p̄1bλ−2

+ 3p̄1p̄2cλ−3, (50)

is the generation time of the resident population for the model in
Eq. (44).

7. Proportional change in the standard deviation of survival

The gradient S(ln σj) quantifies selection on the standard de-
viation in survival at age j when mutations have proportional
effects on this standard deviation, but they leave mean survival
p̄j unchanged. Instead of working directly with an expression for
S(ln σj) derived from Eq. (37) for the age-classified case, we obtain
approximations to S(ln σ1) and S(ln σ2) for the model in Eq. (44)
by using Eq. (46). We then use these approximations to find a
counterexample to the decrease in selection with reproductive
age that we may expect if the selection gradient S(ln σj) would
follow the same age-pattern as Hamilton’s original gradient.

We first consider S(ln σ1). The only difference between resi-
dent and mutant is that the mutant standard deviation in survival
at age 1 deviates by a factor 1+δ from the corresponding resident
standard deviation. Looking at variances in survival, the deviation
factor is (1 + δ)2. Thus, the stochastic growth rate of the mutant
approximately is

ln λ∗

s (δ) ≈ ln λ−

(
∂ ln λ

∂ p̄1

)2

(1 + δ)2
(g − d)2

8

−

(
∂ ln λ

∂ p̄2

)2
ϵ2

8

−
∂ ln λ

∂ p̄1

∂ ln λ

∂ p̄2
(1 + δ)

ϵ(g − d)
4

,

(51)

where we have used the fact that resident and mutant have the
same average projection matrix and, therefore, the two matrices
have the same dominant eigenvalue. Differentiating Eq. (51) with
respect to δ and evaluating at δ = 0, we get

S(ln σ1) ≈ −

(
∂ ln λ

∂ p̄1

)2 (g − d)2

4
−

∂ ln λ

∂ p̄1

∂ ln λ

∂ p̄2

ϵ(g − d)
4

, (52)

which is an approximation to the selection gradient on the stan-
dard deviation in survival at age 1 under proportional effects of
mutations. With the same strategy, we also get

S(ln σ2) ≈ −

(
∂ ln λ

∂ p̄2

)2
ϵ2

4
−

∂ ln λ

∂ p̄1

∂ ln λ

∂ p̄2

ϵ(g − d)
4

, (53)

which is an approximation to the selection gradient on the stan-
dard deviation in survival at age 2 under proportional effects of
mutations. In virtue of Eq. (48), (49)–(50), both approximations
are in closed form.

Using these expressions, we report in Fig. 1 a region of the
parameter space where, for a range of values of ϵ, the inequality
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Fig. 1. Selection on standard deviation in survival at two successive reproductive
ges. The panel on the left and the one at the center report estimates (dots)
f, and analytic approximation (black lines) to, S(ln σ1) and S(ln σ2), which are

the selection gradients on the standard deviation in survival at age 1 and
at age 2, respectively, when mutations act in a proportional fashion. For the
underlying matrix population model see main text. The parameter ϵ modulates
variability in resident survival at age 2. Values for other model parameters are
a=0.01, b=0.05, c=2.4, d=0.9, g=0.88 and p̄2=0.525. For a range of ϵ values,
S(ln σ1)| is smaller than |S(ln σ2)|, thereby indicating weaker selection at age 1
han at age 2. For some ϵ>0, S(ln σ1) and S(ln σ2) take opposite sign. Analytic
approximations come from Eqs. (52)–(53). Estimates are from simulations of the
stochastic demographic process using Eq. (37) by setting τ=100000. Code for
these simulations is in the Supporting information. As a control for the goodness
of the agreement between approximations and simulations, the upper right
panel reports the resident stochastic growth rate ln λs as approximated both
via Eq. (24) and from simulations. As a control for the power of simulations,
the lower right panel reports C=eλs (b)+eλs (p2)−eλs (p1), which should be close
to zero, see Eq. (42). Where relevant, a horizontal gray line is added to the
panels as a visual aid to identify the zero value.

|S(ln σ1)|<|S(ln σ2)| holds, which means that the force of selec-
tion on the standard deviation on survival is stronger at age 2
that at age 1. The same figure shows that, for some values of
ϵ > 0, the gradients S(ln σ1) and S(ln σ2) take opposite signs,
which indicates that there may be positive selection on variability
in survival at one age and positive selection on variability in
survival at another age. Therefore, when mutations induce pro-
portional changes, selection limited to the standard deviation in
age-specific survival does not necessarily decrease with repro-
ductive age. This selection can even increase with reproductive
age and take different directions at different ages. This second
finding recapitulates for the specific case of age classes the gen-
eral finding of Tuljapurkar et al. (2003) for any class structure
that the quantity eλs (σi,j) may take different signs for different
ai,j(t). These analytic results are supported by estimates based on
stochastic simulations.

8. Proportional changes in mean survival

The gradient S(ln p̄j) quantifies selection on mean survival at
age j when mutations have proportional effects on mean survival,
yet they leave the standard deviation in survival σj unchanged.
As we did in the previous section, instead of working directly
with an expression for S(ln p̄j) derived from Eq. (40) for the age-
classified case, we obtain approximations to S(ln p̄1) and S(ln p̄2)
for the model in Eq. (44) by using Eq. (46). We then use these
approximations to find a counterexample to the decrease in se-
lection with reproductive age that we may expect if the selection
gradient S(ln p̄j) would follow the same age-pattern as Hamilton’s
original gradient.

Before obtaining these approximations, however, we recall
two properties of the more general quantity S(ln āi,j). First, Tul-
japurkar et al. (2003) showed that, for any class structure, the
143
quantity eλs (āi,j) in Eq. (41) is always positive when (Ak)i,j >

0 for at least some k. Therefore, the formally equivalent quan-
tity S(ln āi,j) always is positive whenever there is some demo-
graphic contribution of class j to class i. This indicates that there
never is selection against āi,j. In our case, this means that there
never is selection against mean age-specific survival. Second, the
expressions in Eqs. (34), (37) and (40) imply that

S(ln ai,j(t)) = S(ln āi,j) + S(ln σi,j). (54)

as shown in Tuljapurkar et al. (2003). Hence, mutations that
proportionally increase ai,j(t) in all environments by the same
magnitude can be interpreted as having a double effect: propor-
tionally increasing by the same amount both the mean āi,j and the
standard deviation σi,j of the demographic contribution of class-j
individuals to class i. This has an immediate implication for our
model when we look for a case where S(ln p̄1) < S(ln p̄2), i.e.
when selection on mean survival is stronger at age 2 than at age
1. Applying Eqs. (42) and (54) to our model, we get S(ln p̄1) =

S(ln p1(t))−S(ln σ1) = S(ln b)+S(ln p2(t))−S(ln σ1) and S(ln p̄2) =

S(ln p2(t)) − S(ln σ2). Hence,

S(ln p̄1) − S(ln p̄2) = S(ln b) − S(ln σ1) + S(ln σ2). (55)

Having already approximations to S(ln σ1) and S(ln σ2), see
Eqs. (52)–(53), we only need S(ln b) = eλs (b) to evaluate the
expression in Eq. (55). Using Eqs. (34)–(35), this elasticity is

eλs (b) = lim
τ→∞

1
τ

τ−1∑
t=0

v1(t + 1)bw2(t)
λ(t)

. (56)

However, we here approximate this quantity by differentiating
Eq. (46) with respect to ln b,

S(ln b) ≈
∂ ln λ

∂ ln b
−

(g − d)2

4
∂ ln λ

∂ p̄1

(
∂

∂ ln b
∂ ln λ

∂ p̄1

)
−

ϵ2

4
∂ ln λ

∂ p̄2

(
∂

∂ ln b
∂ ln λ

∂ p̄2

)
−

ϵ(g − d)
4

[(
∂

∂ ln b
∂ ln λ

∂ p̄1

)
∂ ln λ

∂ p̄2

+
∂ ln λ

∂ p̄1

(
∂

∂ ln b
∂ ln λ

∂ p̄2

)]
,

(57)

here, by implicit differentiation of Eq. (47),

∂ ln λ

∂ ln b
=

bp̄1
λ2T

, (58)

and, by differentiating Eqs. (49a)–(49b),

∂

∂ ln b
∂ ln λ

∂ p̄1
=

1
p̄1

∂ ln λ

∂ ln b
−

3p̄2c + 2bλ
λ3T

∂ ln λ

∂ ln b
−

∂ ln λ

∂ p̄1

∂ ln T
∂ ln b

, (59a)

∂

∂ ln b
∂ ln λ

∂ p̄2
= −

∂ ln λ

∂ p̄2

(
3
∂ ln λ

∂ ln b
+

∂ ln T
∂ ln b

)
, (59b)

with

∂ ln T
∂ ln b

=
∂ ln λ

∂ ln b

(
2 −

aλ2
+ 9p̄1p̄2c + 4p̄1bλ

λ3T

)
. (60)

Using Eqs. (48)–(50), (52)–(53) and (57)–(60), we can approx-
imate the right hand side of Eq. (55) in closed form. We use
the obtained expression to find regions of the parameter space
where selection on mean survival is stronger at age 2 than at
age 1 so that S(ln p̄1) < S(ln p̄2). Fig. 2 shows one such region.
This finding is supported by estimates based on stochastic sim-
ulations. Hence, under proportional changes, selection limited to
mean age-specific survival may increase with reproductive age,
differently from Hamilton’s original selection gradient in Eq. (10).
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Fig. 2. Selection on mean survival at two successive reproductive ages. The
left panel reports estimates (dots) of, and approximation (black lines) to, the
difference between the selection gradient S(ln p̄1) on mean survival at age 1
nd the selection gradient S(ln p̄2) on mean survival at age 2 when mutations

have proportional effects. For the underlying matrix population model see
main text. The parameter ϵ modulates variability in resident survival at age
2. Values for other model parameters are a=0.08, b=0.0016, c=3.2, d=0.72,
g=0.704 and p̄2=0.42. As variability in resident survival at age 2 increases,
positive selection on mean survival at age 2 intensifies to eventually become
stronger than positive selection on mean survival at age 1 so that the difference
S(ln p̄1)−S(ln p̄2) becomes negative. Analytical approximations are from Eqs. (52),
53) and (55)–(60). Estimates are from simulations of the stochastic demographic
rocess using Eq. (39) by setting τ=100000. Code for these simulations is in
he Supporting information. As a control for the goodness of the agreement
etween approximations and simulations, the upper right panel reports the
esident stochastic growth rate ln λs as approximated both via Eq. (24) and from
imulations. As a control for the power of simulations, the lower right panel
eports C=eλs (b)+eλs (p2)−eλs (p1), which should be close to zero, see Eq. (42).
here relevant, a horizontal gray line is added to the panels as a visual aid to

dentify the zero value.

. Revisiting Hamilton’s result

Under environmental stochasticity, whether or not selection
n age-specific survival declines with reproductive age seems
o depend on how proportional changes in survival are intro-
uced. But, as we will show in this section, Hamilton’s result
till contains a general truth about populations with age structure
hat holds both when the environment is constant and when it
tochastically fluctuates. To get there, we will analyze for the
pecial case of age structure the model of genetic lineages that is
ehind much of the contemporary, general theory of selection in
lass-structured populations under both constant and stochastic
emography, e.g. Taylor (1990), Taylor and Frank (1996), Rousset
2004), Rousset and Ronce (2004), Lehmann and Rousset (2014),
ardner (2015), Lion (2018), Priklopil and Lehmann (2021).

.1. Genetic lineage under a constant environment

Take a matrix model A that governs the dynamics of a very
large, demographically stable population of haploids under neu-
trality and with any class structure. The probability qi,j that a
randomly sampled gene in an individual in class i at some time
point descends from a gene in an individual in class j at the
previous time point in this population is

qi,j =
ai,jwj

λwi
, (61)

ecause, at demographic stability, ai,j/λ is the per-time-step de-
ographic contribution of each individual in j to class i relative to
opulation growth and there are constant fractions wj and wi of
he population in classes j and i, respectively. In the computation,
t is irrelevant whether descent of the gene is via survival, i.e. the
ene follows its carrier who moves from class j at t to class i at

t+1, or via reproduction, i.e. a copy of the gene is transmitted
 a
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from a parent in class j at t to an offspring that is first observed
in the population in class i at t+1. The matrix Q = [qi,j] is
he transition matrix of a Markov chain. The ‘‘system" the chain
escribes is a genetic lineage that, in backward time, visits various
tates, which are the classes in which the population is subdi-
ided (Bodmer and Cavalli-Sforza, 1968; Hill, 1972; Taylor, 1990,
996; Rousset, 2004; Lehmann, 2014; Bienvenu et al., 2017). At
ach time point, the genetic lineage is in exactly one class. Only
he class where the genetic lineage currently is in influences
here the genetic lineage will move next. The genetic lineage
oves between the classes by residing in genealogically related

ndividuals in the population that move through the classes, e.g.
y changing of size in the case of size classes. The genetic lineage
esides in one individual up to the individual’s birth, at which
oint the genetic lineage moves to the parent of this individual.
he genetic lineage then resides in the parent individual up to
he birth of this, at which point the genetic lineage moves to
he grandparent of our initial individual and so on. While in
orward time each individual in the population dies, following
he genetic lineage in backward time we only encounter reju-
enation and birth events, no deaths, and the genetic lineage
ersists indefinitely. By standard assumptions (i.e. irreducibility
nd primitivity) about the matrix model A, the genetic lineage
epeatedly visits all classes without ever getting trapped into
ne. Let then the vector u(t) give the current distribution of the
ineage in the classes. This vector is updated in backward time
ia the recursion u⊤(t − 1) = u⊤(t)Q. The theory of Markov
hains tells us that, in the long run, u(t) approaches the stationary
istribution π = (π1, . . . , πn)⊤, where n is the number of classes,
f the chain. The stationary distribution, which gives the long-
un fraction of time the genetic lineage spends in each class, is
roportional to the left eigenvector of Q corresponding to the
igenvalue 1. Thus, this distribution has the properties that π⊤

=
⊤Q and e⊤π = 1. To find the stationary distribution, one can
uess that πj = wjvj, where wjvj is the reproductive value of an
ndividual in class j times the stable population fraction in class j.
his quantity is often simply referred to as the reproductive value
f class j. Using Eq. (61) to multiply column j of Q with the vector
ith components w1v1, w2v2, . . . , wnvn, we have that∑
i

wiviqi,j =

∑
i

wivi
ai,jwj

λwi
= wj

∑
i

vi
ai,j
λ

= wjvj. (62)

Hence, setting π = (w1v1, w2v2, . . . , wnvn)⊤ solves both π⊤
=

⊤Q and e⊤π = 1, which reveals that our initial guess was
orrect: as is well known (Taylor, 1990; Taylor and Frank, 1996;
aylor, 1996; Rousset, 2004; Lehmann, 2014; Bienvenu et al.,
017), the reproductive value of class j corresponds with the
ong-run fraction of time that the genetic lineage spends in class j.

With this insight, let us go back to the specific case of age
lasses, i.e. A is a Leslie matrix. Observe that age classes are
eculiar compared to other kinds of demographic classes. For a
ontrast, adopt for a moment the usual, forward-time perspective
n a size-classified population. An individual in this population
an grow into one of several distinct classes of size depending on
he individual’s current size and on the extent of the individual’s
rowth over a time step. The individual can persist in a size class,
f it fails to grow further, or can even retrogress to a smaller
ize class because of lack of nutrients to support the current size.
ndividuals could also place their offspring in different classes,
ecause large individuals may have offspring that are larger than
hose of small individuals. Similar considerations apply to class
tructures other than age structure.
With age classes, instead, forward time dictates rigid rules

or demographic transitions. An individual is in age class j only
fter having gone through the exact sequence 1, 2, . . . , j−1 of age
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Fig. 3. Path of a genetic lineage in an age-classified population in backward time. Each dot is an age class (row) at a specific time (column). Age classes are
distinguished between pre-reproductive (white background) and reproductive (light blue background). Time flows backward from left to right. A genetic lineage (red)
follows a trajectory through age classes over time. We distinguish the generational passages of the genetic lineage from offspring to parent. Due to age structure,
the genetic lineage always climbs up diagonally from left to right connecting each age class at one time point with the previous age class at the previous time point.
Eventually, the genetic lineage hits the first age class. At this point, it ‘‘dives" into a reproductive age class and resumes diagonal climbing from there. By ‘‘diving",
the genetic lineage moves from one generation to the preceding one. Differently from diagonal climbing, which always is deterministic independently of fluctuations
in the environment, the ‘‘dive depth" is stochastic: reaching one or another reproductive age class depends on the distribution of parenthood probabilities over ages
at that time. Focus on a reproductive age class (dark blue row). The number of times the genetic lineage visits this age class is the number of red dots in this
row. After a visit to the focal age class, e.g. at the beginning of the generation of individual x, via diagonal movement the genetic lineage visits all preceding age
lasses up to the first. The subsequent ‘‘dive" into a reproductive age class determines whether the genetic lineage visits the focal age class again in the preceding
eneration. If the ‘‘dive" is to the focal age class or any later age class (i.e. below the dark blue row), then, by diagonal climbing, the genetic lineage will visit the
ocal age class in this generation. This is what happens, for example, in the generation of the parent of x. If the ‘‘dive" is into a reproductive age class preceding
he focal (i.e. above the dark blue row), this will not be visited by the genetic lineage in this generation. This is what happens, for example, in the generation of
he grandparent of x. The closer a reproductive age classes j is to pre-reproductive age classes, the more likely it is to be visited during any one generation. This is
ecause there are more reproductive age classes other than j the genetic lineage can ‘‘dive" into at the beginning of the generation (i.e. all age classes subsequent
o j) that still ensure a visit to j during that generation. Measuring time in generations, all pre-reproductive age classes and the first reproductive age class receive
he same number of visits: the number of generations elapsed. Eventually, the genetic lineage visits each reproductive age class a greater number of times than any
ater age class.
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lasses one at a time. If the individual survives through age class
, then this individual is found in age class j+1 in the next time
tep, provided j < ω. The only way an individual can get to the
irst age class is by being born and surviving to the first birthday.
he parent of this individual must be in a reproductive age class
≥ α) one time step before the offspring is first observed in the
opulation census.
Fig. 3 illustrates the consequences of all this for the path of a

enetic lineage through age classes in backward time. When the
enetic lineage moves from offspring to parent, it first finds itself
n the reproductive age class the parent was in while having that
ffspring. Which one reproductive age class exactly is hit depends
n the probability distribution of ages at parenthood at that
ime. The offspring-to-parent transition marks the passage of the
enetic lineage from one generation to the previous one. During
ach generation, the genetic lineage initially visits the parental
ge class at offspring birth and, then, all preceding age classes up
o the first. This has two main implications for the probability that
he genetic lineage has of visiting a given age class within any one
eneration. First, the probability of visiting each pre-reproductive
ge class and the first reproductive age class (α) is 1, because the
enetic lineage will visit for sure all these age classes. Second,
he probability of visiting a reproductive age class j equals the
robability that the parental age class at offspring birth is j or
ny later age class, as the genetic lineage will visit all age classes
rior to the parental age class at offspring birth. Hence, the earlier
he reproductive age class j of interest, the greater the probability
hat it will be visited within any given generation.

Looking then over many generations backward in time, the
enetic lineage visits all pre-reproductive age classes and the first
145
eproductive age class the same number of times, while each
eproductive age class gets visited a smaller number of times than
ny earlier reproductive age class. Thus, the long-run fraction πj

of time the genetic lineage spends in age class j must obey the
inequalities

π1 = π2 = · · · = πα > πα+1 > · · · > πω. (63)

To the best of our knowledge, that the peculiarity of age
structure implies this set of inequalities for the stationary distri-
bution of the Markov chain governed by Q does not seem to be
appreciated in the literature.

We can now connect this back to Hamilton’s result. It is known
that one can use the stable age distribution and the reproductive
value to express the gradient in Eq. (10) (Goodman, 1971; Kramer
et al., 2016; Hitchcock and Gardner, 2020). But see also Hill (1972)
and Kobayashi and Yamamura (2007), although these authors do
not refer to Hamilton’s work. The structure of the Leslie matrix in
Eq. (8) and the right eigenvector equation λw = Lw imply that
wj+1 = pjwj, because pj is the only nonzero entry in row j + 1
f the Leslie matrix. Combining this fact with Eqs. (15) and (17),

(ln pj) = wj+1vj+1, (64)

(Goodman, 1971; Kramer et al., 2016; Hitchcock and Gardner,
020), where the eigenvectors and their components are those
f the Leslie matrix. But the long-run fraction πj+1 of time the
enetic lineage spends in age class j + 1 equals the reproductive
alue of age class j+1, which in turn equals Hamilton’s selection
radient on survival at age j. In Eq. (63), we have then obtained
nce again the age-pattern (Eq. (12)) of Hamilton’s selection
radient. However, this time we did so by reasoning about the
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nderlying population genetics. His selection gradient happens
o have the same mathematical form as a neutral quantity: the
ong-run fraction of backward time that a genetic lineage spends
n an age class. Age structure imposes a general order relationship
o this quantity that the age pattern of the gradient in Eq. (10)
eflects.

.2. Genetic lineage under a fluctuating environment

Does the long-run fraction of time spent by a genetic lineage
n the age classes still obey inequalities like those in Eq. (63)
hen the environment fluctuates? Yes, the scheme in Fig. 3, upon
hich those inequalities are based, is entirely general. It does not
equire a stable age distribution or constant demography. The ge-
etic lineage always moves from one age class to the previous one
n one step over backward time. Fluctuating environments can
nly influence the probability distribution of ages at parenthood
hat, at every passage from one generation to the previous one,
overns the move of the genetic lineage from the first age class to
reproductive age class. This distribution depends on schedules
f survival and fecundity as well as on the age class abundances
hat are observed when the genetic lineage moves from one
eneration to the previous one. Survival, fecundity and age class
bundances typically change in response to fluctuations in the
nvironment. And so does the distribution of ages at parenthood,
ifferently from the case of stable demography under a constant
nvironment, where this distribution is constant over time. But
ur reasoning leading to Eq. (63) does not assume constancy
f this distribution. Fluctuating environments notwithstanding,
n backward time the genetic lineage eventually visits the age
lasses 1 through α the same number of times each, while it visits
ach reproductive age class a smaller number of times than any
arlier reproductive age class.
A more formal argument is as follows. Consider any class

tructure. Under fluctuating environments, the probability in
q. (61) that a random gene in class i at t + 1 comes from class j
t t becomes time dependent,

i,j(t) =
ai,j(t)wj(t)

λ(t)wi(t + 1)
. (65)

As shown by Lion (2018), the matrix Q(t) = [qi,j(t)] updates
the vector with jth component equal to wj(t)vj(t) in backward
time, since

wj(t)vj(t) =
wj(t)
λ(t)

∑
i

vi(t + 1)ai,j(t)
wi(t + 1)
wi(t + 1)

=

∑
i

wi(t + 1)vi(t + 1)qi,j(t),
(66)

here we have used Eq. (25). Therefore, the reproductive value
j(t)vj(t) contained in class j at t is the probability that, when
e look at the population at time t in the past, a genetic lineage
urrently present in the population is found in class j. Consider
ow the specific case of age classes. The long-run fraction π s

j+1
f time spent in age class j + 1 by a genetic lineage under
nvironmental stochasticity is

s
j+1 = lim

τ→∞

1
τ

τ−1∑
t=0

vj+1(t + 1)wj+1(t + 1), (67)

i.e. the expected reproductive value of age class j + 1, where the
limit is assumed to exist. Using Eqs. (25a), (34) and the structure
of the Leslie matrix (Eq. (8)), we can rewrite Eq. (67) as

π s
j+1 = lim

τ→∞

1
τ

τ−1∑ vj+1(t + 1)pj(t)wj(t)
λ(t)

= S(ln pj(t)), (68)

t=0
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where pj(t) is survival from age class j to age class j + 1 at time
t . There are two things to note about Eq. (68). First, the existence
of the limit in Eq. (34) reassures us about the existence of the
limit in Eq. (67). Second, as we have shown in Section 5, the
selection gradient S(ln pj(t)) obeys a specific order relationship
with respect to age (Eq. (43)) and, therefore,

π s
1 = π s

2 = · · · = π s
α > π s

α+1 > · · · > π s
ω, (69)

which means that, under environmental stochasticity, a genetic
lineage eventually spends progressively less time in a repro-
ductive age class the later the age under consideration, while
it spends the same amount of time in all pre-reproductive age
classes and in the first reproductive age class.

10. Results and discussion

Hamilton (1966) found that selection on age-specific survival
always gets attenuated with reproductive age. His result assumed
a constant environment and proportional effects of mutations.
On the basis of Tuljapurkar’s work on environmental stochas-
ticity, Steiner (2020) suggested that Hamilton’s result may not
hold in a fluctuating environment. Here, we have shown in detail
that this indeed is the case. Proportional changes induced by
mutations may alter different aspects of age-specific survival
when environmental conditions stochastically vary. Mutations
can proportionally change only mean survival, only the standard
deviation in survival or both the mean and the standard deviation
in survival simultaneously. We have shown analytically that, in
the first two cases, selection may increase with reproductive
age. When the mean and the standard deviation in survival are
simultaneously proportionally altered, instead, we have proven
selection on age-specific survival to always follow the age pattern
of decline predicted by Hamilton.

Concerning this last case, Tuljapurkar et al. (2003) suggested
that the when mutant deviations simultaneously increase the
mean and the standard deviation of a trait the corresponding
selection gradient may be hard to interpret as capturing a true
selective force, since selection can potentially act on the mean
and the standard deviation, separately. Adopting the view of
these authors, our result that the fitness of an invader with
proportionally increased mean and standard deviation in survival
declines with reproductive age may not reveal the existence
of a selective force on age-specific survival that declines with
reproductive age. However, an alternative viewpoint is possible.
As Hamilton (1966, p. 35) noted, ‘‘[t]o what extent and in exactly
what way life schedules will be moulded by natural selection
depends on what sort of genetical variation is available’’. This
suggests that we may shift our focus from how certain selection
gradients can be theoretically decomposed to whether actual mu-
tations proportionally alter vital rates by preferentially affecting
the mean vital rate, its standard deviation or both. This, however,
is an empirical problem that does not seem to be settled.

In this work, we have considered three distinct ways of
changing survival in a proportional fashion. What these have
in common is that the trait gets modified in some way in all
environmental states or habitats. But other ways of introduc-
ing proportional changes in a trait are possible. For example,
changes may only occur in an environmental state and not in
others (Caswell, 2005; Horvitz et al., 2005). Moreover, different
aspects of a trait variability can be proportionally modified by
mutations, and not only its standard deviation (Morris et al.,
2006). In the future, it would be interesting to study in detail
the fitness effect of these more subtle changes on age-specific
survival. However, the outcome of such study would not alter
our finding that, under stochastic demography, selection may or
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ay not decline with reproductive age depending on how exactly
urvival is proportionally altered by mutations.
Hamilton (1966) interpreted his result about weakening se-

ection on age-specific survival with age as one piece of evidence
hat aging is evolutionarily inevitable. Accordingly, a progressive
ncrease in mortality with reproductive age must evolve due to
he inherent bias of selection against late ages. It is currently
nclear that aging is a universal trait (Jones et al., 2014). More-
ver, Baudisch (2005) showed that, under constant demography,
amilton’s result may not hold if changes in age-specific survival
re not proportional. The present work shows what may be re-
arded as a different limitation of Hamilton’s result: even keeping
is proportionality assumption, the predicted decline of selection
n survival with age does not necessarily hold when demography
s stochastic. This limitation might even be stronger than the one
bserved by Baudisch, since fluctuating environments appear to
e the norm rather than the exception.
However, as noted above, much depends on the sort of ge-

etic variability that is available to selection. Understanding how
urvival and, more generally, life history traits change as a result
f genetic change, i.e. whether changes are age-specific or not,
roportional or additive, is an open empirical problem (Flatt and
chmidt, 2009). Therefore, there is no obvious implication of the
resent work as to the evolution of aging. A further complication
s the fact that mutational changes may also be specific to stages
e.g. size, phase or state) of the life cycle and not to ages (Per-
in et al., 1993; McNamara and Houston, 1996; Caswell and
alguero-Gómez, 2013; Steiner et al., 2014). And, in many situa-
ions, classification by stage may be biologically more meaningful
han classification by age (Caswell, 2001). Due to the non-trivial
apping of life cycle stages into ages, selection gradients for
tage-specific traits may reveal an increase of the force of selec-
ion with age (Caswell and Salguero-Gómez, 2013; Steiner et al.,
014).
Aside from suggesting what may be another potential limi-

ation to the generality of Hamilton’s result, our work also has
pars construens. We have shown where the age pattern con-

tained in Hamilton’s result originates from. The expression for
his selection gradient corresponds to the age-class reproductive
value in the resident population (Goodman, 1971; Kramer et al.,
2016; Hitchcock and Gardner, 2020), a neutral quantity. Class
reproductive values connect with the model of genetic lineages
that looks at the long-run fraction of time a gene spends in a
demographic class. Using this approach, we have shown that age
structure imposes rigid rules on the time spent by a gene in each
age class under both constant and stochastic demography. As it
turns out, the age pattern of Hamilton’s selection gradient is a
direct consequence of these rules.

Making explicit the connection between Hamilton’s selection
gradient on age-specific survival and age-class reproductive value
also highlights another aspect concerning the broader inter-
pretation of his result. Hamilton (1966) regarded his selection
gradient on survival together with other selection gradients he
derived that also decline with age, as evidence that, in general,
selection invariably weakens with reproductive age. This idea
of his has been widely shared. In particular, later authors have
mostly invoked Hamilton’s selection gradient on age-specific sur-
vival and his gradient on age-specific fecundity, e.g. Charlesworth
(1994), Hughes and Reynolds (2005), Rose et al. (2007), Flatt
and Partridge (2018), to conclude that selection wanes as age
increases. Note that Hamilton’s gradient on age-specific fecundity
also steadily declines with reproductive age, although under less
general conditions than that on survival, but Hamilton’s selec-
tion gradient on age-specific fecundity presupposes additive, and
not proportional, mutational effects (Baudisch, 2005). As briefly
reviewed above, the idea that the general decline of selection
147
with age should be inferred from the age-related decline of
some specific selection gradients can be challenged in different
ways, e.g. type of mutational effects and appropriateness of age
specificity.

A different perspective on the overall force of selection with
age is based on the equivalence, which escaped Hamilton’s at-
tention (Giaimo, 2021), between his selection gradient on age-
specific survival and age-class reproductive value. In general,
class reproductive values work as weights to the partial deriva-
tives of class-specific fitness with respect to mutant deviations in
the computation of selection gradients, as shown by the contem-
porary theory of selection in class-structured populations (Tay-
lor, 1990; Taylor and Frank, 1996; Rousset, 2004; Rousset and
Ronce, 2004; Lehmann and Rousset, 2014; Gardner, 2015; Prik-
lopil and Lehmann, 2021), see Eqs. (6) and (30) in the present
work. Consequently, age-class reproductive values are weights
to the derivatives of age-specific fitness in selection gradients
for age-classified populations (Engen et al., 2011; Hitchcock and
Gardner, 2020; Avila et al., 2021). This fact, together with the
decline of age-class reproductive value with reproductive age,
could serve as a basis for the statement that, in general, selection
always tends to weaken with age. The advantage of this per-
spective is that, to draw a conclusion about overall selection at
different ages, no selection gradient on a specific trait, e.g. on
age-specific survival and fecundity, is invoked. These gradients
require additional assumptions concerning which trait should
be chosen and how the trait changes upon mutation, e.g. in an
additive or in proportional fashion. Such assumptions are not
usually based on first principles (Moorad and Promislow, 2011),
but they represent more or less arbitrary modeling choices. Class
reproductive values, instead, capture general properties of the
genetics of the population and naturally appear in the generalized
formula for selection gradients.

The present work shows that, in a fluctuating environment,
the expected age-class reproductive value declines with repro-
ductive age. Equating the overall force of age-specific selection
with the age-class reproductive value (and not with the age-
trajectory of specific selection gradients), some results presented
here can be seen as supporting the view that selection invari-
ably declines with age. All in all, it appears that whether one
accepts, or rejects, the idea that, in general, the force of selection
always weakens with reproductive age has to do with how one
conceptualizes this force.

In summary, Hamilton’s result identifies a strict age pattern of
selection on age-specific survival under a constant environment
that may not hold when the environment fluctuates. However,
his mathematics still capture a general aspect of the genetics of
populations with age structure.
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