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Abstract

We propose a new production mechanism for keV sterile neutrino dark matter which relies
neither on the oscillations between sterile and active neutrinos nor on the decay of additional
heavier particles. The dark matter neutrinos are instead produced by thermal freeze-out,
much like a typical WIMP. The challenge consists in balancing a large Yukawa coupling
so that the sterile neutrinos thermalize in the early universe on the one hand, and a small
enough Yukawa coupling such that they are stable on cosmological scales on the other. We
solve this problem by implementing varying Yukawa couplings. We achieve this by using a
three-sterile neutrino seesaw extension to the SM and embedding it in a Froggatt-Nielsen
model with a single flavon. Because the vev of the flavon changes during the electroweak
phase transition, the effective Yukawa couplings of the fermions have different values before
and after the phase transition, thus allowing for successful dark matter genesis. Additionally,
the hierarchy in the flavour structure is alleviated and the origin of the light neutrino masses
are explained by the interplay of the seesaw and Froggatt-Nielsen mechanisms.

1 Introduction

The phenomenon of neutrino flavour oscillations, which has been observed [1–3] and confirmed by
many experiments [4,5] and for which the 2015 Nobel Prize was awarded [6], implies definitively
that active neutrinos have tiny non-vanishing masses. Also, there is an overwhelming amount of
evidence for the existence of a non-baryonic substance, which makes up almost one quarter of the
energy density of the Universe today and is generally referred to as Dark Matter (DM) [7–11].
It is widely accepted that the origin of the light neutrino masses and the fundamental nature of
the Dark Matter of the Universe are evidence of the incompleteness of the Standard Model (SM)
of particle physics as a theory of nature. Perhaps the simplest and most elegant solution to the
problem of neutrino masses is delivered by the well known seesaw mechanism of type I [12–16].
Therein, at least two right-handed (RH) SM singlet fermions are introduced, which have a
Majorana mass term and couple to the SM neutrinos through a Yukawa coupling, thus repairing
the left-right asymmetry in the matter content of the theory; these are the right-handed (also
called sterile) neutrinos. Just like in the case of all other fermions, the neutrinos get a Dirac
mass term through the Higgs mechanism. The full neutrino-mass-matrix contains the Majorana
mass matrix and the Dirac mass matrix. After diagonalization, and assuming that the elements
of the Majorana matrix are much larger than those of the Dirac matrix, the active-neutrino
mass matrix arises and is suppressed by the large entries in the Majorana matrix, thus elegantly
explaining the smallness of the masses of the active neutrinos. This minimal extension of the
SM is also highly appealing because one (or many) of the sterile neutrinos could play the role
of the DM of the Universe (see for instance νMSM [17]). There are two basic requirements for
this to be the case: firstly, there has to be a viable mechanism to produce the right density of
sterile neutrinos in the early universe, i.e. the observed relic abundance. Secondly, the sterile
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neutrinos must be stable on cosmological timescales, i.e. they must be compatible with the
indirect (non-)detection observations. This last issue is non-trivial because the sterile neutrinos,
being massive and coupled to the active neutrinos by the Yukawa term, may decay into SM
particles. Given the results of the indirect detection searches, it has turned notoriously difficult
to reconcile these two requirements with each other: the most straightforward way to produce
sterile neutrino DM in the early Universe is through the oscillations with active neutrinos,
the so-called ”Dodelson-Widrow mechanism” [18]. However, this simplest scenario has already
been ruled out by indirect search observations [19,20] because the Dodelson-Widrow mechanism
requires a sizeable mixing between active and sterile neutrinos; however, if one allows for large
enough mixing angles, the decay rate of the DM neutrinos increases, thus conflicting with indirect
detection results. This constrains can be somewhat alleviated if the oscillations that produce the
DM occur resonantly (the so-called Shy-Fuller mechanism [21]) but this requires the presence of
a lepton asymmetry at temperatures well below the Electroweak (EW) scale, which is hard to
motivate. Another possibility is that sterile neutrinos are produced by the decay of additional
dark-sector heavy particles, see for example [22–24]. However, such models depart from the
minimal seesaw extension to the SM and in them the active-sterile coupling plays little to no
role at all, thus rendering indirect searches less relevant.

Therefore, an alternative mechanism for sterile neutrino DM genesis on the basis of the
Yukawa coupling is desirable. We obtained our inspiration from another very popular candidate
as a DM particle, a generic Weakly Interacting Massive Particle (WIMP). WIMPs are coupled
to the SM by some portal with an interaction strength similar or smaller than the weak inter-
actions of the SM. Thanks to such interactions WIMPs are generally thought to be in thermal
equilibrium with the primordial plasma until their interaction rate falls below the expansion rate
of the Universe as it expands and cools, at which point the comoving density of the WIMPs gets
frozen-out and remains constant thereafter. This production mechanism is usually referred to as
”freeze-out”, and until now it has not been considered for sterile neutrinos because the Yukawa
coupling necessary to thermalize them would also make them highly unstable - they would not
survive long.

Here we propose a scenario where this problem is solved by implementing varying Yukawa
couplings. The main idea is simple: if the neutrino Yukawa coupling is allowed to be large
enough in the early universe for the sterile neutrinos to thermalize, but later drops to much
smaller values such that their interaction rate turns smaller that the expansion rate of the Uni-
verse, then the relic abundance of sterile neutrinos will be fixed by a process similar to the WIMP
freeze-out. Varying Yukawa couplings have been studied in the past, particularly in the context
of EW Baryogenesis [25–27]. There are many ways to implement varying Yukawa couplings
and, in principle, any of them could work to thermalize sterile neutrinos in the early Universe
and then induce their freeze-out to generate the observed DM relic abundance. For concrete-
ness, however, we will examine the implementation of varying Yukawa couplings involving the
Froggatt-Nielsen mechanism.The Froggatt-Nielsen (FN) mechanism is a popular way to explain
the flavour structure in the SM (i.e. the mass hierarchy in the fermion sector). It employs a new
scalar field, called the flavon, and an additional U(1) flavour symmetry under which the flavon
and the fermions are charged. The bare Yukawa couplings, which within this framework were
all initially of order 1, become effectively suppressed by the vev of the flavon in a hierarchical
pattern determined by the different flavour charges of the fermions. In this work we consider
the possibility that the flavon vev changes during the Electroweak Phase Transition (EWPT),
varying from a value similar to the flavour scale before the EWPT to a somewhat smaller value
afterwards. This is a reasonable consideration because the scalar potential responsible for the
EWPT will contain both the Higgs and the flavon fields and therefore it will find its minimum in
the Higgs-flavon field space. Thus, during the EWPT, as the potential relaxes to its true mini-
mum, one should not expect the coordinate of the new minimum along the flavon axis to remain
constant. On the contrary, it is sensible to expect that the flavon-coordinate of the minimum
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will also change as the Higgs-coordinate changes. As a consequence, the Yukawa couplings will
have different effective values before and after the phase transition. As we will see, something
similar to this will also happen to the Majorana masses of the sterile neutrinos.

Here we will formulate a concrete low energy FN model which explains neutrino masses and
oscillations via the seesaw mechanism as well as the flavour hierarchy in the lepton sector via the
FN mechanism. Moreover, we will show that the variation in the flavon vev leads to effectively
varying Yukawa couplings that allow for the thermalization of the sterile neutrinos before the
EWPT and their freeze-out afterwards, such that the lightest sterile neutrino with keV mass
plays the role of the DM and its relic abundance is set by thermal freeze-out.

The outline of this paper is as follows. We begin in Section 2 by reviewing the seesaw
mechanism and briefly discussing the keV neutrino as a DM candidate. Then, in Section 3 we
introduce the DM production mechanism and compute the DM relic abundance. In Section 4
we formulate a low energy FN model to implement the varying Yukawa couplings for DM
production, the light neutrino masses and the lepton flavour hierarchy, before stating some
concluding remarks in Section 5.

2 The keV sterile neutrino as the Dark Matter particle

We start by reviewing the general Type I seesaw mechanism. The SM is extended by three1

neutral Majorana fermions that are also singlets with respect to the SM symmetry, (νR)i. With
the presence of these sterile neutrinos the Lagrangian gets the following additional terms:

−L ⊃ iν̄R /∂νR + L̄ Yν φ̃νR +
1

2
νcRMR νR + h.c., (1)

where φ̃ is the dual Higgs field, L stands for the SU(2) lepton doublets, Yν is the neutrino
Yukawa matrix and MR is the Majorana mass matrix. After the spontaneous breaking of the
EW symmetry by the vev of the Higgs v, a Dirac mass matrix for the neutrinos is generated
with mD = Yν v/

√
2. The mass term for all six neutrinos can then be formulated as

−Lν,mass =
1

2
νcMMν νM + h.c. =

1

2
νcM

(
0 mD

mT
D MR

)
νM + h.c., (2)

where the basis is defined by νM = (νL,e, νL,µ, νL,τ , ν
c
R,1, ν

c
R,2, ν

c
R,3)T and Mν is a 6× 6 matrix.

The full neutrino mass matrix can first be block diagonalized to

M′ν = diag(mν , MN ) (3)

and, assuming that the seesaw condition holds, namely that mD �M , we obtain

mν ≈ mDM
−1mT

D, MN ≈MR, (4)

whereby these matrices can be further diagonalized by the appropriate matrices V and U

md
ν = V T mν V = diag(m1,m2,m3), Md

N = UT MN U = diag(M1,M2,M3), (5)

resulting in three very light neutrino mass eigenstates νi, mostly composed of the active flavours,
and three heavy states Ni, mostly composed of the sterile neutrinos. The active-sterile mixing
is then of the order θ ∼ mDM

−1
R .

It is the lightest sterile neutrino N1 which we want to consider as the DM particle. The
so-called Tremaine-Gunn Bound [28] states that a fermionic DM particle candidate must be

1The low energy neutrino data can be explained within the type I seesaw framework with two neutrinos or
more. However, anticipating Section 4 we discuss the case of three sterile neutrinos, which is also the case in the
well known νMSM.
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heavier than ∼ 1 keV. This model independent constrain is based on the fact that the densest
phase space distributions for fermionic DM particles may not be larger than that allowed by the
Pauli exclusion principle. Thus, sterile neutrinos with masses in the keV scale are the lightest
viable fermionic DM candidates. They are also appealing because they would be warm dark
matter (WDM), meaning that they tend to suppress the power of structure formation at small
scales, offering a possible solution to the satellite problem and the core-cusp problem [29,30].

Regardless of how they are produced, sterile neutrinos with a Yukawa coupling to the SM as
in Eq. (1) are never completely stable. The interaction strength/probability of N1 with the SM
will be characterised by the sum of the square of its mixing angle with all active neutrinos [31],
i.e.

θ2
1 =

∑
α=e,µ,τ

θ2
α,1 =

∑
α=e,µ,τ

v2 |(Yν)α1|2
M2

1

=
∑

α=e,µ,τ

|(mD)α1|2
M2

1

. (6)

Through this mixing, sterile neutrinos with keV masses can decay at tree level to three active
neutrinos, N1 → νi ν̄j νj . The fact that DM must still exist today means that the lifetime
of unstable DM should be comparable to the age of the universe, delivering a constraining
relationship between M1 and θ1. However, an even more constraining relation is obtained by the
sub-dominant one-loop decay N1 → νi γ, where the produced photon is almost monochromatic
with energy Eγ = M1/2. These photons, which for M1 ∼ keV will lie in the X-Ray part of the
spectrum, can be searched for in space with X-Ray telescopes [32–34]. The non-observation of
this smoking-gun signal has placed a limit on the mixing angle of sterile neutrino DM [35],

sin2(2θ1) . 3× 10−5

(
keV

M1

)5

, (7)

assuming that N1 makes up 100% of the DM abundance.
Since the year 2014 there has been a lot of debate concerning a suspicious X-Ray line with

an energy of Eγ = 3.55 keV. The signal has been detected from a multitude of sources, such
as galaxy clusters, the Andromeda galaxy and our own galactic center, and a multitude of
instruments e.g.XMM-Newton, Chandra, EPIC, Suzaku, ACIS and Fermi, just to name a few.
The reader may find a review in [36]. This signal can be interpreted as the smoking-gun photon
from sterile neutrino DM decay, implying a DM mass of M1 = 7.1 keV. While this is a very
attractive hypothesis and there have been many arguments made in its favour [35], it remains
controversial. The line could also originate from astrophysical processes [37] or appear as a
consequence of unaccounted systematics [38]. Particularly, the line has not been observed from
dwarf spheroidal galaxies, which were expected to provide the cleanest DM decay signal because
of their high mass-to-light ratio and correspondingly low X-Ray background [39]. The debate
for the correct interpretation of this signal is still ongoing and one can only hope that more data
and further analysis will bring clarity.

In any case, if we insist on the DM interpretation of the signal, an alternative to the Dodelson-
Widrow mechanism for DM production is needed, because the mixing angle necessary to explain
the relic abundance by the Dodelson-Widrow mechanism is incompatible with the value that
would correspond to the 3.55 keV line. Although resonant production is still allowed, it would
require an additional mechanism to generate a large lepton asymmetry well after the EWPT,
which is not well motivated. To address this situation, we propose in the following section an
alternative production mechanism that provides an explanation to the 3.55 keV signal that is
compatible with the DM hypothesis.

3 Sterile neutrino Dark Matter genesis by freeze-out

To simultaneously explain the phenomena of active neutrino oscillations and to offer a viable
DM candidate, three sterile neutrinos are needed: one to play the role of the DM and the other
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Field Li ERj Nk Θ φ

U(1)FN Charge qLi qRj qNk −1 0

Table 1: FN charges for the lepton doublets Li, charged singlets ERj , sterile neutrinos Nk, the
flavon Θ and the Higgs φ, respectively.

two of them to generate the masses of the light neutrinos. Thus, we consider an extension to
the SM by three sterile neutrinos. In this work we will insist that the relic abundance of the
lightest sterile neutrino N1, which shall play the role of the DM particle, is produced in the early
Universe by thermal freeze-out, similar to a typical WIMP, and not by oscillations from active
neutrinos or by the decay of additional heavier particles. For this to work, N1 must have a
large enough Yukawa coupling so that it comes into thermal equilibrium with the SM bath. On
the other hand, a large Yukawa coupling translates into a large active-sterile mixing angle θ1,
which would lead to a rapid decay of the DM particles and contribute a sharp line at E = M1/2
to the X-Ray background and from sources with a large DM density or mass to light ratio.
These problems are solved if, by some mechanism, the Yukawa coupling varies during the early
universe, going from large values at early times, to smaller values at later times. Even though
there are many ways to implement varying Yukawa couplings [25], we here chose to do so by
embedding the seesaw extension in a Froggatt-Nielsen model. This has the added benefit that
it also helps to explains the flavour hierarchy.

The Froggatt-Nielsen (FN) mechanism [40] attempts to resolve the flavour hierarchy puzzle
by introducing a scalar field, called the flavon2 Θ, and a global flavour symmetry U(1)FN, under
which the flavon and all fermions are charged. The flavon is set to have a U(1)FN charge of −1,
while the fermions fi may have any integer as their charge qfi and the Higgs field φ is not charged
under the flavour symmetry, see Table 1. Consequently, the Yukawa terms in the Lagrangian
arise from non-renormalizable operators that contain powers of the flavon such that the terms
are invariant under the U(1)FN symmetry. Thus, below the flavour scale ΛFN the usual Yukawa
terms in the SM Lagrangian must be replaced by

Yij fLi φ fRj −→ Yij fLi φ fRj

( 〈Θ〉
ΛFN

)qL,i + qR,j

. (8)

The key idea is that below the flavour scale ΛFN the flavon has a non-vanishing vev, and
therefore each entry in the Yukawa and Majorana matrices gets rescaled by powers of the FN
factor, defined as λ := 〈Θ〉/ΛFN. This resolves the flavour hierarchy puzzle because, if λ < 1,
then each entry is effectively suppressed by powers of λ according to the sum of FN charges
of the fermions involved. Thus, the observed flavour hierarchy is the result of the different FN
charges of the fermions and not due to a mysterious hierarchy in the Yukawa couplings, which in
this framework are all allowed to be of order unity. This mechanism is usually employed in the
quark sector, where the FN suppression factor is set to λ ≈ 0.22, in resemblance of the Cabibbo
angle. However, in this work we will apply these tools to the lepton sector to study the posibility
of sterile neutrino DM. For the lepton sector, the relevant terms in the effective Lagrangian are

−Leff ⊃ L̄i Y E
ij φERj

( 〈Θ〉
ΛFN

)qL̄i+qRj
+ L̄i Y

ν
ij φ̃ νRj

( 〈Θ〉
ΛFN

)qL̄i+qNj
(9)

+
1

2
νcRi (MR)ij νRj

( 〈Θ〉
ΛFN

)qNi+qNj
+ h.c.,

2The flavon encodes the Froggatt-Nielsen messengers, which are heavier particles that are integrated out below
the flavour scale ΛFN.
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Figure 1: Location of the minimum of the scalar potential in field space and shift in the value
of the flavon vev caused by the electroweak symmetry breaking (EWSB).

where qL,R,N are the U(1)FN charges of the SU(2) charged doublets, singlets and sterile neutrinos
respectively, as given in Table 1, and all fermions should be understood as containing all three
generations.

To achieve the thermal freeze-out of sterile neutrinos, we propose to implement varying
Yukawa couplings in the following way, resembling [27, 41]. Since the scalar potential of the
theory will include both the Higgs φ and the flavon Θ, the true minimum of the scalar potential
will be located at a point in the (φ,Θ)-field space. Below the flavour scale but prior to the
EWPT (i.e. at a temperature T with ΛEW < T < ΛFN), the vev of the Higgs is 〈φ〉 = v = 0
while the vev of the flavon is 〈Θ〉 = we 6= 0 and has already broken the flavour symmetry (the
subscript e stands for early, as in we is the vev of the flavon at times earlier than the EWPT). If
we set we = ΛFN, then the FN factor would be λ = 1 at early times and the Yukawa couplings of
order unity would not be suppressed. Crucially, this means that the sterile neutrinos would be in
thermal equilibrium because their Yukawa couplings would be as strong as that of the top quark.
Then, as the Universe cools down, the EWPT kicks in and plays a key role: as the Higgs gets
its vev and the scalar potential relaxes to its true minimum, it is reasonable to expect that this
minimum lies at a completely new position in the (φ,Θ)-field space, or in other words, during
the EWPT the vev of the flavon gets dragged along by the vev of the Higgs. This is illustrated
in Fig. 1. If after the EWPT the vev of the flavon ends up at a value 〈Θ〉 = wl = εΛFN with
ε < 1, then the Yukawa couplings get suppressed by powers of ε (here, the subscript l stands for
late, as in wl is the vev of the flavon at times later than the EWPT). This suppression could
be drastic enough to force the sterile neutrinos to decouple from thermal equilibrium and could
even make the lightest sterile neutrino stable on cosmological time scales and thus evade the
X-Ray bounds. In this context, the FN suppression factor λ can be understood as describing a
path in field space with boundaries given by

λ(〈φ〉) =

{
1, for 〈φ〉 = 0

ε, for 〈φ〉 = v.
(10)

The precise trajectory in field space during the EWPT is not relevant. What matters is that
the flavon vev has different values in the different phases, as sketched in Fig. 1.

Note from Eq. (9) that this mechanism not only suppresses the Yukawa matrices but also the
Majorana mass matrix is affected. Just like the Yukawa matrices, the Majorana mass matrix
can be understood as effectively having different values before and after the EWPT. As we will
discuss below, this issue is highly significant for DM genesis. In terms of the λ parameter, and
recalling Eq. (4), we can write the (j, k) elements of the effective sterile neutrino mass matrix

6



Meff as

(Meff)jk = (MN )jk [λ(〈φ〉)]qNj + qNk =

{
(M̃)jk = (MN )jk, for T > TEW

(M)jk = (MN )jk ε
qNj + qNk , for T < TEW

, (11)

where M̃ stands for the early Majorana mass matrix, i.e. before it is suppressed by the shift in the
flavon vev at the EWPT and M is the late Majorana mass matrix, i.e. the suppressed Majorana
mass matrix after the EWPT. Diagonalising the M̃ and M gives us the masses of the sterile
neutrinos before and after the EWPT respectively. We will refer to the early (i.e. unsuppressed)
and late (i.e. suppressed) mass of the lightest sterile neutrino, i.e. the DM neutrino, as M̃1 and
M1 respectively.

The assumption that the suppression of the Yukawa couplings is enough to force the sterile
neutrinos to drop out of thermal equilibrium (i.e. to freeze-out) is now enough to compute the
relic abundance of the lightest sterile neutrino as described in the following. The contribution
to the total energy density of the Universe from the frozen-out DM neutrinos, which are non-
relativistic today, is given by [42]

ΩDM h2 =
s0 yfoM1

ρcrit/h2
, (12)

where s0 is the entropy density today, yfo is the frozen-out comoving number density of the
sterile neutrinos, ρcrit is the critical density of the Universe and the Hubble parameter today is
given by H0 = 100h km s−1Mpc−1. The early masses of the sterile neutrinos will be of the same
order as the Majorana scale, which is expected to be higher than ΛEW. Thus, shortly before
the EWPT the sterile neutrinos with early mass M̃1 will be non-relativistic and their comoving
density in equilibrium will be given by

yeq(T, M̃1) =
45

(2π5)3/2gs

(
M̃1

T

)3/2

e−M̃1/T , (13)

where gs is the effective entropic number of degrees of freedom in the plasma. Then, when
the EWPT occurs and shifts the vev of the flavon, the drastically suppressed Yukawa couplings
force the sterile neutrinos to drop out of thermal equilibrium and their comoving density is
frozen at yfo = yeq(TEW , M̃1). Notice that while it is the early mass M̃1 that comes into yfo in
Eq. (13), the relic abundance today is proportional to the late mass M1 in Eq. (12), because
the energy density of non-relativistic DM today is given by number density of DM particles
nDM = s0 · yfo times their mass today, i.e. the late mass M1. Thus, the relic abundance of our
DM sterile neutrinos in this framework as given in Eq. (12) can be understood as a function of
three parameters, namely the freeze-out temperature, which here is equal to the temperature of
the EWPT, Tfo = TEW and the early and late mass of the DM neutrinos M̃1 and M1.

Using the values from reference [43] for ΩDM h2, s0 and ρcrit, we can plot Eq. (12) in the
(M̃i,Mi) plane. The results can be seen in the left panel of Fig. 2. Each line represents a
combination of suppressed and unsuppressed masses such that Eq. (12) returns the full DM
abundance with the freeze-out temperature Tfo = TEW as an additional parameter. For example,
at TEW = 150 GeV and M1 = 7.1 keV, the early DM mass should be M̃1 ≈ 1 TeV for N1 to
account for all of the DM of the Universe. Similarly, the right panel of Fig. 2 depicts the relic
abundance of sterile neutrinos for a fixed freeze-out temperature. For instance, with TEW =
150 GeV, if the two heavier sterile neutrinos have a mass of M2 = 10 keV and M3 = 50 keV
after the EWPT and a mass of M̃2 = 2 TeV and M̃3 = 3 TeV before, then their contribution to
the DM abundance will be negligible. It is easy to understand why this is the case: when the
induced freeze-out at TEW generates the DM abundance from the N1 population, the population
of N2,3 is already depleted by the Boltzmann factor exp(−M2,3/TEW ) because of their larger
masses M2,3 > M1.
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Figure 2: Left panel: lines for which the combinations of early and late masses result in a
100% contribution from the sterile neutrinos to the DM abundance of the Universe for different
freeze-out temperatures Tfo = TEW . For example, with a late mass of M1 = 7.1 keV and at a
decoupling temperature of Tfo = 150 GeV, one can see that if the early mass is M̃1 ≈ 1 TeV, then
the sterile neutrino can account for 100% of the DM density. Right panel: At a fixed freeze-out
temperature of Tfo = TEW = 150 GeV, the lines show the combinations of early and late masses
for which the sterile neutrinos contribute 100%, 10% and 1% to the DM abundance. Above the
uppermost line, the contribution can be considered negligible.

It is thus clear that successful DM production by the mechanism proposed in this work
depends only on three parameters: the temperature of the EWPT and the early and late masses
of the sterile neutrinos.

4 Towards a model with a keV neutrino as Dark Matter, active
neutrino masses and lepton flavour hierarchy

Now we attempt to construct a low energy FN model that accomplishes the following goals:

(i) generate the light masses and mixing of the active neutrinos in accordance with experi-
mental data through the type I seesaw mechanism.

(ii) alleviate the flavour hierarchy in the lepton sector by exploiting the synergy of the seesaw
and FN mechanisms.

(iii) provide a DM candidate by implementing varying Yukawa couplings in the early universe
to allow sterile neutrinos to be in thermal equilibrium and then freeze-out into long-lived
stability, as described in the previous section.

In other words, the task is to specify the FN charges of all leptons so that, with O(1) elements
in all Yukawa matrices, the above conditions are satisfied. The relevant part of the Lagrangian
is given in Eq. (9). We postulate that the FN suppression factor λ has the following values
before and after the EWPT:

λ =
〈Θ〉
ΛFN

=

{
1 : before EWPT

ε = 0.1 : after EWPT
. (14)
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Our starting point is the mass Lagrangian for the lepton sector in the broken EW phase:

−Lm = ELα (mE)αβ ERβ + νLα (mD)αi νRi +
1

2
νcRi (M)ij νRj , (15)

(mE)αβ = v εqL̄α Y E
αβ ε

qEβ , (mD)αi = v εqL̄α Y ν
αi ε

qNi , (M)ij = εqNi (MN )ij ε
qNi , (16)

recalling that qf stands for the FN charge of the fermion f (cf. Table 1). Note that we can
write the matrices in Eq. (16) with the help of diagonal matrices containing the corresponding
FN suppression factors, i.e.

QL̄ = diag(εqL̄e , ε
qL̄µ , εqL̄τ ), QN = diag(εqN1 , εqN2 , εqN3 ), (17)

and analogously for QE . Also, we can extract the Majorana scale ΛM from the bare Majorana
matrix such that we have MN = ΛM Y N , with a coefficient matrix Y N whose entries are all
close to O(1). Then the mass matrices can be written as

mE = v QL Y
E QE , mD = v QL Y

ν QN , M = ΛM QN Y
N QN . (18)

Contrary to the situation in the νMSM [17,44], where one can usually choose a flavour basis in
which mE and M are both diagonal, we cannot do that here because each entry in the matrices
above gets an individual FN suppression factor.

We begin by considering the Majorana matrix. We are aiming for DM sterile neutrinos with
late-time mass in the keV range. From Eq. (11) and Fig. 2 we see that the early mass eigenvalues
should be in the TeV range, i.e.

M̃d = ŨT MN Ũ = ŨT ΛM Y N Ũ ∼ 103 GeV (19)

with an orthogonal matrix Ũ ∼ O(0.1) and Y N ∼ O(1) it follows that we should set

ΛM = 104 GeV. (20)

We can now estimate the FN charges of the sterile neutrinos necessary to get suppressed masses
in the keV range. The late mass eigenvalues are obtained with another orthogonal matrix U as

Md = UT QN (ΛM Y N )QN U (21)

Demanding that Md ∼ 10−6 GeV and with U ∼ O(0.1), Y N ∼ O(1) and ΛM = 104 GeV we
arrive at

Md ∼ 10−6 GeV implying that ε
qNi+qNj ∼ 10−9, (22)

which means that a good guess would be qNi ∼ 4. Here we will discuss two particular choices:

QN =

ε4 ε4

ε4

 as option 1, and QN =

ε5 ε4

ε4

 as option 2. (23)

In the case of option 1, because all sterile neutrinos have the same FN charge, meaning that
QN is proportional to the identity matrix, both the early and late mass matrices M and M̃ are
diagonalised by the same orthogonal matrices, or in other words, U = Ũ . This is not the case
for option 2. Up to this point we have been fixed the Majorana scale ΛM and have two possible
choices for the FN charges of the sterile neutrinos such that we the early and late masses of the
sterile neutrinos lie in the required range for successful DM production (see Eqs. (12) and (13)
and Fig. 2).
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Next we continue and consider the Dirac matrix mD from Eq. (18). Our goal is to choose
qLi and the entries of Y ν such that the requirements from the beginning of this section are
satisfied. We start by considering the Casas-Ibarra parametrization [45], which assumes the
type I seesaw mechanism and parametrizes the Dirac mass matrix with the mass eigenvalues
of the active and sterile neutrinos as input. However, the standard form of the Casas-Ibarra
parametrization assumes that the charged lepton mass matrix mE and the heavy neutrino mass
matrix M can be chosen to be diagonal - Casas and Ibarra did not have a FN embedding in
mind [45]. In contrary, since we are in a FN model, this is not the case. Therefore we rederive
the Casas-Ibarra parametrization using our non-diagonal matrices Eq. (18) and obtain

mD = i V ?
√
md
ν R Ũ

√
M̃d ŨT QN , (24)

or equivalently

QL̄ Y
ν =

i

v
V ?
√
md
ν R Ũ

√
M̃d ŨT . (25)

where R is any arbitrary orthogonal matrix. Here, the matrix V is the matrix that diagonalises
the light neutrino mass matrix mν , i.e.md

ν = V †mνV . The freedom one has to choose R reflects
the fact that there are multiple possible choices for the entries of Y ν that lead to the eigenvalues
in md

ν . Also, recall from Eq. (6) that to compute θ2
1 we need mD,

θ2
1 ∝

∑
α

|(mD)α1|2 = |m†DmD|11 = (QN Ũ
√
M̃d ŨT R†md

ν R Ũ
√
M̃d ŨT QN )11. (26)

Concerning these last three equations the following remarks are in place:

• The matrix md
ν contains the masses of the light neutrinos. Although the absolute scale

remains to be determined, we know from oscillation data that [46]

∆m2
21 = m2

2 −m2
1 = 7.5× 10−5 eV2, |∆m2

31| = |m2
3 −m2

1| = 2.5× 10−3 eV2. (27)

Thus, assuming normal ordering and taking the lightest neutrino to be massless as a
benchmark point, we can set

m1 = 0 eV, m2 = 8.7× 10−3 eV, m3 = 5× 10−2 eV. (28)

With this, we can now consider md
ν as known. At the end of this section we will also

investigate the case of non-vanishing m1.

• Another ingredient is V , which is the matrix that diagonalises mν . In the SM, where one
can assume the charged lepton mass matrix to be diagonal, V is just the PMNS matrix.
However, within a FN model mE is in general non-diagonal, but can be diagonalised by
two unitary matrices, WL and WR,

md
E = W †LmEWR. (29)

The PMNS matrix, whose parameters have been measured in oscillation experiments with
a few percent precision [46], is given by VPMNS = W †L V . Then, for a given WL, we can
compute V by

V = WL VPMNS. (30)

Thus, by analysing the diagonalization pattern in the charged lepton sector we can easily
obtain the matrix V .

10



• Notice that Eq. (25) is independent of QN , i.e. it is independent of the FN charges of the
sterile neutrinos. We can use Eq. (25) to estimate the FN charges of the SU(2) lepton
doublets. By simply taking M̃d ∼ 104 GeV, Y ν ∼ O(1) and R, V, Ũ ∼ O(0.1) we conclude
that qL̄i = 7, or in other words

QL̄ = diag(ε7, ε7, ε7). (31)

• From Eq. (26) we see that θ2
1 turns out to be independent of V . Also, with regards to

QN it actually only depends on (QN )11 = εqN1 , i.e. it is independent of qN2,3 . We can

again use Eqs. (6) and (26) to get a naive estimate of θ2
1 by taking M̃d ∼ 104 GeV and

R, Ũ ∼ O(0.1). For a DM mass of M1 = 7.1 keV we find θ2
1 ∼ 10−7 which is not small

enough to evade the X-Ray bound Eq. (7) which demands θ2
1 . 4 · 10−10. Therefore, we

have to investigate Eq. (26) further to see if the freedom to choose any orthogonal matrix
R allows us to make θ2

1 small enough.

By now we have already specified

ΛM = 104 GeV, QL = diag(ε7, ε7, ε7), QN =

{
diag(ε4, ε4, ε4) : option 1,

diag(ε5, ε4, ε4) : option 2.
(32)

To continue and be able to properly compute mD and θ2
1 from Eqs. (24) and (26), we must

make a choice to specify V , Ũ and M̃d. To determine V we begin by considering the charged
leptons, for which the mass eigenstates are known to be md

E = diag(me,mµ,mτ ) = (0.511 ×
10−3, 0.105, 1.776) GeV. There are infinitely many non-diagonal matrices mE that have these
eigenvalues. We pick a particular choice by randomly generating two unitary matrices WL and
WR and inverting Eq. (29). From the resulting mE we see that a good choice is

QE = diag(ε−3, ε−4, ε−4) (33)

in order for Yukawa matrix Y E to have O(1) entries, or in other words, we find that qE =
{−3,−4,−4} is the right choice of FN charges for the charged SU(2) singlets. In this framework,
this is the origin of the hierarchy in the charged lepton masses (see the Appendix for an example).
Furthermore, having selected a specific WL we can then compute the matrix V by plugging WL

into Eq. (30) and using the values from [46] for the PMNS matrix. After doing so Y E , qE and
the matrix V can be considered known.

To determine Ũ and M̃d we now turn to the Majorana sector, whereby we first consider
option 1 from Eq. (23). Notice first that because in option 1 all sterile neutrinos have the same
FN charge, QN will be proportional to the unit matrix, i.e.QN = ε4 1, and as a consequence,
the late and early Majorana matrices will be related to each other simply by M = ε8 M̃ . They
will also be diagonalized by the same orthogonal matrix, i.e.U = Ũ and their diagonal versions
will also be proportional to each other, Md = ε8 M̃d. This means that, if we make a choice
for the late masses of the sterile neutrinos Mi, the early masses M̃i are also immediately fixed.
For the DM neutrino we set M1 = 7.1 keV and for the other two sterile neutrinos we arbitrarily
choose M2 = 20 keV and M3 = 30 keV; other choices are also possible and lead to qualitatively
similar results as long as N2 and N3 do not contribute to the DM density (see comments below
and also the right panel of Fig. 2). Thus, from our choice of

Md = diag(7.1, 20, 30) keV it follows that M̃d = diag(710, 2000, 3000) GeV. (34)

We can see from the left panel of Fig. 2 that the lightest sterile neutrino can indeed account for
100% of the DM if the EWPT occurs at TEW ∼ 100 GeV. Furthermore, when the DM neutrino
freezes-out at TEW and sets the DM relic abundance, the other two heavier neutrinos, which
were also in thermal equilibrium with M̃2,3 & 2000 GeV, have already been depleted by their
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Figure 3: The mixing angle squared for the lightest sterile neutrino with all active neutrinos, θ2
1,

as a function of the free parameters of the arbitrary orthogonal matrix R from Eq. (35), i.e. the
angles (α, β, γ) that parametrize R as three consecutive orthogonal rotations. The smallest
values are obtained in the dark blue regions of the parameter space, which seem to form three
bands around α = −π, 0, π and β = −π, 0, π.

Boltzmann distributions and do not contribute to ΩDMh
2, as can also be seen from the right

panel of Fig. 2. Again, there are many non-diagonal Majorana matrices that have the eigenvalues
specified in Eq. (34). We can pick a specific one by randomly generating an orthogonal matrix
Ũ and computing M̃ = Ũ M̃d ŨT , and because M̃ = ΛM Y N and since we have already fixed
ΛM = 104 GeV, we expect to obtain the coefficient matrix Y N ∼ O(1) close to order unity.

Now we finally have all ingredients to compute θ2
1, which, from Eqs. (6) and (26), is given

by

θ2
1 =
|m†DmD|11

(M1)2
=

1

(M1)2
(QN Ũ

√
M̃d ŨT R†md

ν R Ũ
√
M̃d ŨT QN )11, (35)

where the orthogonal matrix R is arbitrary. We are interested in the choices of R that lead to a
very small mixing angle θ2

1. As any orthogonal matrix, R has three independent parameters and
one possible parametrization of it consists of the product of three 3× 3 rotation matrices with
angles α, β and γ around three orthogonal directions respectively. Ideally, we would insert this
general parametrization of R in Eq. (35) and simply compute its global minimum as a function
of the three rotation angles α, β and γ. However, the resulting system of equations is highly
nonlinear, which makes the optimazation task difficult and inefficient. It is more feasible to
numerically search for a local minimum, but for that we need to identify a region in the parameter
space (α, β, γ) in the vicinity of which the minimum is expected to be found. To graphically
find such regions, we sample values of θ2

1 in a (α, β, γ) cube. The result, which can be seen in
Fig. 3, indicates the regions of the parameter space (α, β, γ) for which θ2

1 becomes interestingly
small in dark blue color. These regions appear to form three bands around α = −π, 0, π and
β = −π, 0, π. The parameter γ seems to have less of an effect.

To have a closer look we plot the plane at γ = 0, which is representative for the whole cube.
The result is θ2

1 as a scalar field over the (α, β) plane and can be found in Fig. 4, where in the
left panel we can see that there are four regions of interest where θ2

1 gets very small (the regions
on the edges should not be counted twice because of periodicity). As an example, we zoom
into the region of interest at (α, β) = (π, π) in the right panel of Fig. 4. For our DM sterile
neutrino with mass M1 = 7.1 keV, the X-Ray bound of Eq. (7) demands θ2

1 . 4.2× 10−10. This
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Figure 4: Left panel: contour lines for the mixing angle of the lightest sterile neutrino N1 with
all active neutrinos, as defined in Eq. (35). There are infinitely many neutrino Yukawa matrices
Y ν that could lead to the eigenvalues defined in Eq. (28). The Casas-Ibarra parametrization
captures this freedom in the three free parameters contained in the arbitrary orthogonal matrix
R, which can be parametrised as a general rotation in three dimensions. Thus, θ2

1 in Eq. (35)
can be understood as a function of the three rotation angles (α, β, γ) contained in the matrix
R. In order to be compatible with the X-Ray bounds, we want to find the matrices R that
make θ2

1 the smallest. In Fig. 3 we sampled values of θ2
1 in the parameter space (α, β, γ). This

plot is a cut of the cube in Fig. 3 at γ = 0. We clearly find four different regions in the (α, β)
plane where θ2

1 gets very small, potentially realising the longevity of the sterile neutrino DM (the
regions of interest in the edges should not be counted twice because of the periodicity of this
parametrization of R). As can be seen in Fig. 3, this cut of the cube at γ = 0 is representative
of the whole parameter space, and cuts at other values of γ are qualitatively equivalent to the
one presented here and have always four regions of local minima.
Right panel: We zoom into the local minimum of the upper right corner in the left panel of the
figure and confirm that θ2

1 indeed turns small enough for the DM sterile neutrinos to be safe
from the X-Ray constrains Eq. (7), which, for M1 = 7.1 keV demand that θ2

1 . 4.2× 10−10.

bound is respected with R(α, β) for any (α, β) point in the right panel of Fig. 4. In fact, the
numerically determined minimum is found at (α, β) = (3.26997, 3.18663) and has a value of
(θ2

1)min = 1.59× 10−20. We emphasise that this is not the only region where we find orthogonal
matrices R that make our sterile neutrino DM compatible with the X-Ray bound from Eq. (7):
alone in the left panel of Fig. 4 we have three other such regions, and keep in mind that the
angle γ, which is also a free parameter of R, was set to γ = 0 in the right panel of Fig. 4, but
any other value of γ would lead to qualitatively equivalent results, as we checked. Thus, there
are infinitely many regions in the parameter space of R which allow our DM neutrino to evade
the X-Ray bounds. Furthermore, although we arrived at the result of Fig. 4 after using one
randomly generated orthogonal matrix3, namely Ũ , we checked that the results of this analysis
are qualitatively unaltered if we use a different Ũ in Eq. (35). In that case Fig. 3 might then
look slightly different, but that is irrelevant; what matters is only whether or not it is possible
to find matrices R such that the X-Ray bound is respected, and as it turns out, the answer
yes in all cases. Thus, we conclude that it is always possible to find many matrices R such
that our lightest sterile neutrino N1 is a good DM candidate that satisfies the X-Ray constrain
Eq. (7). Also, for many of these viable choices of R, the neutrino Yukawa couplings turn out to
be all close to order 1, as are the Yukawa matrix for the charged leptons Y E and the coefficient

3We also randomly generated WL to calculate V , but that plays no role in the computation of θ2
1; it only comes

into the computation of mD, see Eqs. (24) and (26).
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matrix for the Majorana mass matrix Y N . The hierarchy in the lepton masses is thus explained
by interplay between the seesaw mechanism and the FN charges of the leptons. And, since
we started our computations with the Casas-Ibarra parametrization, the masses of the active
neutrinos also come out correctly.

We now make a few remarks about option 2 for the choice of FN charges of the sterile
neutrinos (see Eq. (23)), where, instead of all sterile neutrinos having the same charge of 4, we
choose qN = {5, 4, 4} which is implies QN = diag(ε5, ε4, ε4). In this case, there is an additional
complication, namely that the eigenbasis of the early and late Majorana mass matrices are not
the same. Recall that their definition is

M̃ = ΛM Y N , M = ΛM QN Y
N QN . (36)

If the sterile neutrinos have different FN charges, then these two matrices are not proportional
to each other, which means that they will be diagonalized by two different matrices Ũ 6= U
and their diagonal versions also will not be proportional to each other. We can still choose the
late Majorana mass eigenvalues as Md = diag(7.1, 20, 30) keV and use a randomly generated
orthogonal matrix U to find M = U Md UT . Then to calculate θ2

1 and check for the longevity
of the DM neutrino, we need to first compute the early mass matrix

M̃ = Q−1
N M Q−1

N (37)

and then compute its eigenvalues, which are the elements of M̃d, and its normalized eigenvectors,
which are the columns of Ũ . However, recall from Eq. (12) and Fig. 2 that successful DM
production with M1 = 7.1 keV and at reasonable freeze-out temperatures for the EWPT, say
TEW ∈ [100, 300] GeV, requires that M̃1 ∈ [700, 2000] GeV and M2,3 & 3000 GeV. Thus, we
must make sure that the early mass eigenvalues of the sterile neutrinos satisfy these conditions4,
which depend on the randomly generated matrix U . We checked that DM genesis is successful
for ∼ 70% of the randomly generated U matrices. As a representative example, consider a case
in which the early Majorana mass eigenvalues were M̃d = diag(1.19, 2.86, 124.94) TeV. The
lightest sterile neutrino contributes 100% of the DM density for TEW ≈ 165 GeV and the other
two sterile neutrinos do not contribute to it at all, as can be seen in Fig. 5. Now that we
know that DM production is successful with these mass eigenvalues and freeze-out temperature
TEW ≈ 165 GeV, we can then plug M̃d and Ũ into Eq. (35) and repeat the previous analysis
using the same parametrization of R as a general rotation matrix in three dimensions to see if
the DM neutrinos are sufficiently long lived. The result looks qualitatively very similar to Fig. 4;
there are four local minima in the vicinity of (α, β) = (0, 0), (0, π), (π, 0), (π, π), the value of the
minima is θ2

1 ∼ 10−21, which means that the X-Ray bound Eq. (7) are satisfied within infinitely
many regions of the parameter space of R around the local minima. This shows that for this
new DM production mechanism to work it is not necessary that all sterile neutrinos have the
same FN charges.

Up to this point we have focused on a DM neutrino with mass M1 = 7.1 keV, which is
particularly interesting because a suspicious X-Ray signal has been detected [47]. Now we
turn to the possibility of DM neutrinos with masses different than M1 = 7.1 keV. For this it is
best to return to the previous choice of FN charges for the sterile neutrinos, i.e. option 1 from
Eq. (23), where all three sterile neutrinos have the same FN charge qN = {4, 4, 4}. We will
soon see why this is convenient. Our starting point is the same choice of late sterile neutrino
mass eigenvalues with which we have been working all along, namely Md = diag(7.1, 20, 30) keV.
The corresponding early mass eigenvalues are M̃d = diag(0.71, 2, 3) TeV. By multiplying the late
mass eigenvalues with a dimensionless parameter s and letting s vary, we can homogeneously vary

4When the FN charges of all sterile neutrinos are the same qNi = qN , this is not necessary, because the late
and early Majorana mass eigenvalues are proportional to each other as Md = ε2 qN M̃d and we can therefore
choose the late eigenvalues such that the early eigenvalues lie in the right range for successful DM genesis
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Figure 5: Contribution to the DM abundance as a function of the early and late sterile neutrino
mass for freeze-out at TEW = 165 GeV and FN charges of the sterile neutrinos given by qN =
{5, 4, 4}. The dashed line marks the position of our DM neutrino at M1 = 7.1 keV. One clearly
sees that with a corresponding early mass eigenvalue of M̃1 ≈ 1.2 TeV the lightest sterile neutrino
N1 makes up 100% of the DM relic abundance. The other two sterile neutrinos with late masses
M2 = 20 keV and M3 = 30 keV and early masses M̃2,3 & 2.5 TeV contribute practically nothing
to the DM density as their equilibrium density has already been completely depleted by their
Boltzmann suppression at the moment of freeze-out.

all late and early mass eigenvalues, because with the current choice of FN charges Md and M̃d are
proportional to each other. Of course, for s = 1 we recover the case that we have been studying
so far. Next we determine how θ2

1 changes when the sterile neutrino mass eigenvalues vary as
determined by the dimensionless parameter s. From Eq. (35) we see that θ2

1 is proportional to

two powers of
√
M̃d while being inversely proportional to (M1)2. Consequently, the dependence

is θ2
1 ∝ s−1. This allows us to extrapolate from the point (M1 = 7.1 keV, θ2

1 ≈ 10−21) to span
a wide area of the (M1, θ

2
1) plane, the results of which can be seen in Fig. 6. We checked that

the extrapolation delivers correct results by explicitly computing θ2
1 for different combinations

of late and early mass eigenvalues. At this point we also relax the fix-point assumption that one
of the active neutrinos is massless and compute one point in the parameter space to extrapolate
from for non-vanishing values of m1. We find that the ability of this DM candidate to evade
the X-Ray bounds relies on the lightest active neutrino being massless or at least much lighter
than the other two active neutrinos. In Fig. 6 each solid black stands for a different mass for
the lightest active neutrino, with the line at the bottom representing the case of one massless
active neutrino. The region above each line is the portion of the parameter space where the FN
model and DM production mechanism proposed here delivers a viable DM candidate, the lightest
sterile neutrino, which is stable on cosmological timescales and evades the X-Ray constrains.
Furthermore, for s = 7.05 the late DM mass reaches M1 = 50 keV while the corresponding early
mass reaches slightly over M̃1 = 5 TeV. For this combination of masses to achieve successful DM
production according to Eq. (12), the freeze-out temperature would need to be TEW ≈ 550 GeV,
which is not unreasonable.
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Figure 6: The parameter space for sterile neutrino DM. The red region in the upper part of the
plot is excluded by the X-Ray survey NuSTAR GC (2016) [19]. In the framework presented in
this work, how far down the mixing angle can be pushed depends on the absolute mass scale of
the active neutrinos. Each solid line gives, for the denoted mass of the lightest active neutrino,
the smallest mixing angle that could be reached with the given DM mass, while still recovering
the known squared mass differences and oscillation data of the active neutrinos. Thus, the area
above each line is the region of the parameter space where the framework proposed here gives us
a viable DM candidate, the lightest sterile neutrino produced by the thermal freeze-out induced
during the EWPT. If the lightest active neutrino is massless, then sin2(2θ1) can be as small as
10−21 and safely evade all X-Ray bounds.

5 Conclusions

In this work, we have proposed a new mechanism for keV sterile neutrino DM genesis in the
early Universe that relies neither on the oscillations between active and sterile neutrinos nor
on heavier parent particles which produce the DM sterile neutrinos in their decay. Instead,
the sterile neutrinos are produced by freeze-out from thermal equilibrium, much like a typical
WIMP, without introducing any additional coupling or interactions for the sterile neutrinos
beyond their Yukawa term, by which they generate the masses of the light neutrinos through the
type I seesaw mechanism, and the FN interactions encoded by the flavon and visible only in the
UV-complete theory. This possibility has not been considered in the past because for the sterile
neutrinos to be in thermal equilibrium their Yukawa couplings would need to be sizeable, which
would compromise their stability. Indeed, the decay of sterile neutrinos with a non-vanishing
Yukawa coupling is unavoidable and has been searched for with X-Ray surveys, placing strict
upper bounds on the mixing angle between sterile and active neutrinos, and equivalently, on the
Yukawa coupling. As we pointed out previously in [41], this can be solved by varying Yukawa
couplings: if, by some mechanism, the Yukawa couplings were large at early times but became
very small at later times, then the sterile neutrinos could have been in thermal equilibrium in
the early Universe, then decouple and stay stable on cosmological timescales thereafter.

Here we have presented an implementation of varying Yukawa couplings by formulating a FN
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model for the leptonic sector expanded by three sterile Majorana neutrinos. In this framework
the Yukawa couplings and the Majorana mass matrix of the sterile neutrinos are rescaled powers
of the FN suppression factor, which is proportional to the vev of the flavon. We argue that
during the Electroweak phase transition, when the vev of the Higgs changes from 0 to v as the
scalar potential finds its true minimum, it is reasonable to expect that the vev of the flavon
will change too. We have shown that, assuming for concreteness that the FN factor was close
to 1 before the Electroweak phase transition and 0.1 afterwards, it is possible for the sterile
neutrinos to be produced by thermal freeze-out and later evade the current X-Ray constrains.
Because of their unsuppressed Yukawa couplings, the sterile neutrinos, like all other fermions,
are in thermal equilibrium before the Electroweak phase transition. When the phase transitions
occurs and the vev’s of the Higgs and the flavon get their late-time values, the Yukawa couplings
get suppressed, and in the case of the sterile neutrinos this suppression is so drastic that they
are forced to decouple from the thermal bath and are able to stay compatible with the X-Ray
constrains. In this sense it is the phase transition itself which induces the decoupling of the
sterile neutrinos. Furthermore, the change in the FN factor during the phase transition also
provokes a change in the masses of the sterile neutrinos. A consequence of this is the fact that
reproducing the observed relic abundance by this induced freeze-out mechanism relies on the
interplay between the early- and late masses of the sterile neutrinos as well as on the temperature
of the phase transition, which is also the temperature of freeze-out. For DM masses in the keV
range, the Majorana scale and the masses of the sterile neutrinos in the early Universe should be
on the TeV scale and the temperature of the phase transition should lie between 100−600 GeV.

In the specific FN realization proposed here, we show that successful DM genesis is possible
while also obtaining Yukawa couplings and entries in the Majorana coefficient matrix that are
all of order unity or close to it, thus somewhat alleviating the flavour puzzle in the lepton
sector by the different FN charges of the leptons, and avoiding a severe hierarchy in the Yukawa
couplings. The smallness of the active neutrino masses and oscillation phenomena are explained
by the synergy of the FN model and the type I seesaw mechanism. We empirically find that
the smallest value of the mixing angle of the DM neutrino with all active neutrinos that can be
achieved in this framework depends of the absolute scale of the active neutrino masses, and is
minimal in the case of one massless active neutrino.

At this point, one remark concerning the spectrum of the sterile neutrino dark matter pro-
duced by this mechanism is in place. Right until the moment of induced freeze-out by the
phase transition, the sterile neutrinos have a non-relativistic thermal spectrum, i.e. it would be
cold DM. The question of whether this changes after the phase transition due to the effective
suppression of the Majorana masses is non-trivial and will be connected to the dynamics of the
phase transition. In Ref. [48] it has been discussed that larger Yukawa couplings could lead to
the EWPT becoming a first order phase transition, for which the friction between the bubble
wall and the plasma plays an important role in the wall dynamics, among other things [49]. A
detailed analysis of this issue lies beyond the scope of this work.

In summary, with only three additional sterile neutrinos and one flavon (which encodes the
FN messengers that are integrated out at low energies - of course) the framework proposed
here allows us to alleviate the flavour problem, the origin of the masses of active neutrinos
and their oscillation phenomena and produces a viable and appealing DM candidate. Future
investigations should look into the possibility of also addressing the baryogenesis/leptogenesis
problem and explore other possible implementations of varying Yukawa couplings to achieve the
same goals.
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Appendix: One specific benchmark point

We start with the following mass eigenvalues for the SM leptons:

md
E = diag(0.511× 10−3, 0.105, 1.776) GeV, (38)

md
ν = diag(0, 8.7× 10−3, 5× 10−2) eV, (39)

and for the mass of the sterile neutrinos before the EWPT we choose

M̃d = diag(710, 2000, 3000) GeV. (40)

The FN charges for the charged singlets, the doublets, and the sterile neutrinos are taken to be

qE = {−3, −4, −4}, qL = {7, 7, 7}, qN = {4, 4, 4}. (41)

respectively. The bare Majorana mass matrix is given by M̃ = ΛM Y N , where we set ΛM =
104 GeV, and is related to its diagonal version by the orthogonal matrix Ũ , which we set to

Ũ =

−0.200 −0.696 −0.690
0.868 0.209 −0.460
−0.465 0.687 −0.559

 , leading to Y N =

0.242 0.054 0.027
0.054 0.125 0.077
0.027 0.077 0.203

 (42)

After the EWPT, the suppressed mass eigenvalues of the sterile neutrinos are

Md = diag(7.1, 20, 30) keV. (43)

Since in this case all sterile neutrinos have the same FN charge, the eigenbasis of the matrices
M̃ and M are the same. The randomly generated unitary matrix WL, used to diagonalize the
charged lepton mass matrix by md

E = W †LmEWR and compute the matrix V = WL VPMNS used
in Eq. (24) is given by

WL =

−0.598 + i 0.289 −0.508− i 0.023 −0.548 + i 0.009
−0.377 + i 0.531 0.558 + i 0.123 0.161− i 0.474
−0.364− i 0.057 0.485− i 0.424 −0.054 + i 0.668

 . (44)

Finally, the Yukawa matrices for the neutrinos and charged singlets are

|Y ν | =

0.030 7.381 1.031
0.029 4.681 4.068
0.025 3.308 4.142

 , |Y E | =

3.14 2.59 2.98
1.89 2.21 2.86
5.57 3.28 3.53

 . (45)

The mixing angle for the DM neutrino with all active neutrinos is θ2
1 = 2.86 × 10−10 which is

below the bound of θ2
1 bound = 4.16× 10−10 at a DM mass M1 = 7.1 keV.
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