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We study numerically the scalar wave emission by a non-spherical oscillation of neutron stars in a scalar-
tensor theory of gravity with kinetic screening, considering both the monopole and quadrupole mode emission.
In agreement with previous results in the literature, we find that the monopole is always suppressed by the
screening effect, regardless of the size of the screening radius, rsc. For the quadrupole mode, however, our
analysis shows that the suppression only occurs for screening radius larger than the wavelength of scalar waves,
λwave, but not for rsc < λwave. This demonstrates that to fully understand the nature of this theory, it is necessary
to study other more complex systems, such as neutron star binaries, considering a wide range of rsc values.

I. INTRODUCTION

The ample evidence for the current accelerated expansion
of the Universe has hinted at the existence of some new
physics at cosmological scales [1–8]. One of the simplest
modifications to general relativity (GR), which can provide
a possible explanation of this phenomenon, is the so-called
scalar-tensor theories, where an additional scalar degree of
freedom is minimally (e.g. quintessence [9–12]; see also
Refs. [13, 14] for reviews) or non-minimally coupled to the
gravitational metric (see Refs. [15–18] for a review on scalar-
tensor gravity). On cosmological scales, it is possible to
measure and constrain physical parameters that capture this
novel behaviour [19–23], showing that modifications to GR
are roughly O(1). This means that we can expect similar de-
viations on small scales too. However, solar system [24, 25]
and binary pulsars [26–30] tests show no violations of the
predictions of GR there. In addition, radio observations of
pulsars (neutron stars) accompanying white dwarfs constrain
the emissivity of scalar-type gravitational waves (hereafter re-
ferred to simply as scalar waves), and thus, the parameter
space for some scalar-tensor theories has been significantly
limited [30–32]. More recently, consistency with GR has also
been shown by null tests with gravitational-wave observations
[33–37].

One possible solution to this problem is employing an ap-
propriate screening mechanism, by which the effects of the
scalar field are suppressed on local scales so that GR phenom-
ena can be reproduced, while on cosmological scales, mod-
ifications to GR remain appreciable. Some well-studied ex-
amples of this behaviour are the chameleon [38], symmetron
[39], and Vainshtein [40–42] screening (see also Refs. [43–45]
for reviews). Even though screening effects have been studied
extensively in a range of simplified scenarios, such as weak-
gravity and spherical symmetry approximations (see, e.g.,
Refs. [46–56]), they are not so well-understood in strongly
self-gravitating and dynamical environments, such as the dy-
namical neutron star spacetime. For example, the emission
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mechanism of scalar waves has not been yet well-understood.
In order to fully characterise the screening effect in dynami-
cal spacetimes, for which no linearization or symmetry of the
system can be employed, numerical relativity (NR), by which
the solution of the fully non-linear systems can be obtained, is
needed.

NR simulations of compact objects in scalar-tensor theories
with a kinetic screening effect have been performed in a few
recent studies [57–62], some of which report a non-trivial na-
ture of the scalar-wave emission. In particular, in Ref. [59],
the authors find that the quadrupole scalar wave emission may
not be screened in the case of a binary neutron star inspiral.
This study focuses on the cases with a small screening radius
(. 140 km), which is smaller than the wavelength of gravita-
tional and scalar waves. We argue here that in such setting,
the screening effect may not be significant and one could ex-
pect different behaviour when larger screening radii, which
are more realistic, are considered.

In this paper, we study numerically the emission of scalar
waves from non-spherically oscillating neutron stars in the
same scalar-tensor theory employed in Ref. [59]. Our NR sim-
ulation is performed in the Jordan frame in contrast to previ-
ous works [58, 59], which employ the Einstein frame instead.
Doing this has two advantages: (i) the equations for hydrody-
namics are not changed and have a conservative form, same as
in GR; and (ii) the gravitational and scalar waves are extracted
independently from the spacetime metric and the scalar field,
respectively. We will show that if the screening radius is larger
than the wavelength of scalar waves, the screening effects on
the scalar waves (i.e., the suppression of the scalar wave emis-
sion) is always significant irrespective of the multipoles con-
sidered.

The paper is organised as follows. In Sec. II we summarise
the basic equations that we employ. Section III presents a
formulation for computing equilibrium and quasi-equilibrium
states, necessary for the initial conditions in NR simulation.
Section IV presents numerical solutions of 1.4M� spherical
neutron stars and summarises the properties of a neutron star
spacetime in the presence of the kinetic screening. In Sec. V
we explore the non-spherical oscillation of neutron stars ob-
tained in Sec. IV, in particular focusing on the generation and
propagation of quadrupole scalar waves. Finally, we discuss
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our results and summarise our conclusions in Sec. VI. In Ap-
pendix, we describe the 3+ 1 formulation of the basic equa-
tions and methods of the analysis for scalar waves.

Throughout this paper, we use the units of c = 1 = h̄,
where c and h̄ denote the speed of light and the reduced
Planck constant, respectively. In these units the Planck length,
`p := G1/2 = 1.616× 10−33 cm and the Planck mass, Mp :=
G−1/2 = 2.176× 10−5 g. The subscripts a and b denote the
spacetime tensor components, and i, j, and k denote the spa-
tial components.

II. BASIC EQUATIONS

In this work we consider a scalar-tensor theory with kinetic
screening, in which the action in the so-called Jordan frame is
given by [24, 63–65],

S =
1

16πG

∫
d4x
√
−gφ

[
R+

(
3
2
+

K̂
α2

s

)
gab ∇aφ ∇bφ

φ 2

]
+Smatter(χmatter,gab) , (1)

The corresponding action in the Einstein frame can be found
in, e.g., Refs. [59, 66]. Here R and ∇a are the Ricci scalar and
covariant derivative associated with the spacetime metric gab,
φ(> 0) is the scalar field and K̂ is a function of the canonical
kinetic term of the scalar field, X . Smatter is the action of the
perfect fluid, with χmatter representing the fluid quantity. The
kinetic term of the scalar field is defined as,

X = ḡab
∇̄aϕ̄∇̄bϕ̄ = φ

−1gab
∇aϕ̄∇bϕ̄ , (2)

where ḡab is the spacetime metric in the Einstein frame, ∇̄a

is its covariant derivative, ϕ̄ = lnφ/
√

16πGα2
s , and αs is a

coupling constant. Following Ref. [59], we consider the case,

K̂(X) =−1
2
+

β1

4Λ4 X− β2

8Λ8 X2 · · · , (3)

where Λ is the strong-coupling scale (i.e., λ := Λ−1 deter-
mines the length scale of screening), and β1 and β2 are con-
stants of order unity. Here we choose β1 = 0 and β2 = 1 as
it has been shown (see Refs. [67, 68]) that this is a necessary
condition for having a well-posed initial value formulation, as
well as screening static solutions. Screening is expected to
occur in the strong field zone, where X > Λ4 is satisfied. We
suppose that φ → 1 (i.e., X → 0) for r→ ∞.

For β1 = β2 = 0 this theory is equivalent to the Fierz-
Jordan-Brans-Dicke (FJBD) theory [63–65], with Brans-
Dicke parameter of the form,

ω(X) :=−3
2
− K̂(X)

α2
s

, (4)

with X = 0.
Then the basic equations for the geometry, scalar field, en-

ergy momentum tensor, Tab, and rest-mass continuity are as

follows,

Gab = 8πGφ
−1Tab

−
(

3
2
+

K̂
α2

s

)
φ
−2
[
(∇aφ)∇bφ − 1

2
gab(∇cφ)∇c

φ

]
− X

α2
s φ 2

∂ K̂
∂X

∇aφ∇bφ +φ
−1(∇a∇bφ −gab2gφ), (5)

∇
a (F∇aφ) = 8πGα

2
s T, (6)

∇aT a
b = 0, (7)

∇a(ρua) = 0, (8)

where Gab is the Einstein tensor associated with gab, T = T a
a ,

ua is the fluid four velocity, ρ is the rest-mass density, and

F :=−2
∂ (XK̂)

∂X
= 1−β1

X
Λ4 +

3β2

4
X2

Λ8 + · · · . (9)

To derive Eq. (6), we used the trace of Eq. (5),

−R = 8πGφ
−1T +

(
3
2
+

K̂
α2

s
− X

α2
s

∂ K̂
∂X

)
(∇aφ)∇aφ

φ 2

− 3
φ
2gφ , (10)

where 2g = ∇a∇a.
For Tab, we consider the stress-energy tensor for a perfect

fluid,

Tab = (ρ +ρε +P)uaub +Pgab, (11)

where ε and P are the specific internal energy and pressure
of the fluid. In the Jordan frame the fluid matter is coupled
only to the gravitational field, as seen in Eq. (7). Hence, the
equations for the perfect fluid are the same as those in GR in
this frame.

The basic equations in the 3+1 formulation for the grav-
itational field are derived simply by contracting nanb, naγb

i,
and γa

iγ
b
j with Eq. (5). Here, γab = gab + nanb denotes the

spatial metric, and na is the unit normal to the spatial hyper-
surfaces. The 3+1 form of the scalar field equation is derived
from Eq. (6) by defining Π :=−na∇aφ or Π̂ :=−Fna∇aφ .

The evolution of the scalar field and its conjugate momen-
tum have the following form,

(∂t −β
k
∂k)φ =−αΠ, (12)

(∂t −β
k
∂k)Π̂ =−Di

(
αFDi

φ
)
+αKΠ̂

+8πGαα
2
s T . (13)

In terms of Π and φ , X can be written as

X =
1

16πGα2
s φ 3

[
(Dkφ)Dk

φ −Π
2
]
. (14)

From these one can also obtain an algebraic equation for X ,

f (X) := X− 1
16πGα2

s φ 3

[
(Dkφ)Dk

φ − Π̂2

F(X)2

]
= 0 . (15)

For a detailed description of the 3+1 equations of the system,
we refer the reader to Appendix A.
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The evolution equations for the gravitational fields
are solved numerically in the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) formalism [69, 70] with the moving-
puncture gauge [71, 72], as done in Ref. [73]. In particu-
lar, we evolve the conformal factor W := ψ−2 (with ψ :=
(detγi j)

1/12), the conformal metric γ̃i j :=ψ−4γi j, the trace part
of the extrinsic curvature K, the conformally-weighted trace-
free part of the extrinsic curvature Ãi j := ψ−4(Ki j−Kγi j/3)
(with Ki j the extrinsic curvature), and the auxiliary variable
Γ̃i := −∂ j γ̃

i j. Introducing the auxiliary variable Bi and a pa-
rameter ηs, which is typically set to be∼M−1, M being the to-
tal mass of the system, we employ the moving-puncture gauge
in the form of [74],

(∂t −β
j
∂ j)α =−2αK, (16)

(∂t −β
j
∂ j)β

i = (3/4)Bi, (17)

(∂t −β
j
∂ j)Bi = (∂t −β

j
∂ j)Γ̃

i−ηsBi, (18)

where α and β i are the lapse function and shift vector, respec-
tively.

The spatial derivative is evaluated by a fourth-order cen-
tral finite difference scheme, except for the advection terms,
which are evaluated by a fourth-order non-centred finite dif-
ference. For the time evolution, we employ a fourth-order
Runge-Kutta method (see Ref. [75]). We use the same scheme
for the evolution of the scalar field as for the tensor, because
the structure of the equations is essentially the same.

To solve the hydrodynamics equations, we evolve ρ∗ :=
ραutW−3, ûi := hui, and e∗ := hαut −P/(ραut), with h be-
ing the specific enthalpy. The advection terms are handled
with a high-resolution shock capturing scheme of a third-order
piecewise parabolic interpolation for the cell reconstruction.
For the equation of state (EOS), we decompose the pressure
and the specific internal energy into cold and thermal parts as,

P = Pcold +Pth , ε = εcold + εth . (19)

Here, Pcold and εcold are functions of ρ , and their forms are
determined by nuclear-theory-based zero-temperature EOSs.
Specifically, the cold part of both variables are determined
using the piecewise polytropic version (see, e.g., Ref. [76])
of the APR4 EOS [77], for which the maximum mass of the
neutron stars is ≈ 2.2M�.

Then the thermal part of the specific internal energy is de-
fined from ε as εth := ε − εcold. Because εth vanishes in
the absence of shock heating, εth is regarded as the finite-
temperature part (and thus, this part is minor in the present
study). The thermal pressure is determined by a Γ-law EOS,

Pth = (Γth−1)ρεth , (20)

and we choose Γth equal to 1.8, following Refs. [73, 76].

III. FORMULATION FOR INITIAL CONDITIONS

Here we outline the formulation for computing quasi-
equilibrium configurations for a binary in a circular orbit with

angular velocity Ω following Refs. [78–80]. This description
is also valid for computing static spherical stars with Ω = 0.

To derive quasi-equilibrium configurations, for simplicity,
we assume the conformal flatness of the three metric, such
that

γi j = ψ
4 fi j , (21)

where fi j is the flat spatial metric, and employ the confor-
mal thin-sandwich prescription. We also impose the maxi-
mal slicing K = 0. For integrating the hydrodynamics equa-
tions, we assume the presence of a helical Killing vector,
ξ a = (∂t +Ω∂ϕ)

a. For the fluid part, the basic equations in
the Jordan frame are the same as those in GR. Thus, assuming
that the velocity field is irrotational, the first integral of the
hydrodynamics equations is readily determined in the same
manner as those in GR [81, 82].

The basic equations for the tensor field are obtained from
the Hamiltonian and momentum constraints, together with the
evolution equation for K (see Appendix A) under the maximal
slicing condition, K = 0 = ∂tK. Except for the modifications
introduced by the presence of the scalar field, φ , the equations
are again the same as in GR. The Hamiltonian and momentum
constraints are written as,

(0)
∆ψ =−2πGφ

−1
ρhψ

5− 1
8

Ãi jÃi j
ψ

5

− ψ5

8

[
ω

φ 2

{
Π

2 +(Diφ)Di
φ
}
+2φ

−1DiDi
φ

− 2Π2

α2
s φ 2 X

∂ K̂
∂X

]
, (22)

and

(0)
Di(ψ

6Ãi
j) = ψ

6

[
8πGφ

−1J j +

(
ω− X

α2
s

∂ K̂
∂X

)
φ
−2

Π

(0)
Djφ

+φ
−1(

(0)
DjΠ− Ãi

j

(0)
Diφ)

]
, (23)

respectively. Here Di is the covariant derivative with respect to

γi j,
(0)
∆ and

(0)
Di are the Laplacian and covariant derivatives with

respect to fi j, ρh := Tabnanb, and Ji := −Tabnaγb
i. Ãi j is the

trace-free conformal extrinsic curvature, satisfying K j
i = Ã j

i
for K = 0. The equation for Ãi j can be obtained from the
evolution equation for γi j with Eq. (21) and has the form,

Ãi j =
1

2α

(
fik

(0)
Djβ

k + f jk

(0)
Diβ

k− 2
3

fi j

(0)
Dkβ

k

)
, (24)

where indices of Ãi j, Ãi j, and
(0)
Di are raised and lowered by f i j

and fi j. The condition K = 0 = ∂tK yields the equation for α ,
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which leads to the equation for χ := αψ in the form,

(0)
∆ χ = χψ

4
[

2πGφ
−1(2S+ρh)+

7
8

Ãi jÃi j

+
1
8

ωφ
−2{7Π

2− (Diφ)Di
φ
}

− 1
4α2

s φ 2 X
∂ K̂
∂X

(
2(Dkφ)Dk

φ +Π
2
)

+
3

4φ
(DiDi

φ −22gφ)

]
, (25)

where S := Tabγab. Note that we replace 2gφ using

2gφ =
1
F

(
8πGα

2
s T − (∇aX)(∇aφ)

∂F
∂X

)
=

1
F

(
8πGα

2
s T −

{
(DkX)Dkφ +(na

∇aX)Π
}

∂F
∂X

)
,

(26)

and will replace the Laplacian term of DiDiφ using the equa-
tion for φ , as defined below.

For the scalar field, if we simply set Π = 0, Eq. (13) (with
K = 0) leads to an elliptic equation for φ ,

DiDi
φ = ψ

−4

[
(0)
∆ φ +2ψ

−1(
(0)
Diψ)

(0)
Di

φ

]
=−(Di lnα)Di

φ

+F−1
[

8πGα
2
s T − (Dkφ)(DkX)

∂F
∂X

]
, (27)

with X = (Dkφ)Dkφ/(16πGα2
s φ 3). The treatment with Π= 0

is justified in the case where the gravitational radiation reac-
tion timescale is much longer than the orbital period, 2π/Ω.
With the choice of Π = 0, the equation for 2gφ simplifies to

2gφ = F−1
[

8πGα
2
s T − (Dkφ)(DkX)

∂F
∂X

]
. (28)

Furthermore, Eqs. (22), (23), and (25) are also simplified
given the choice of Π = 0.

To obtain the solution for spherical stars in exact equilib-
rium, we set Ω = 0, β k = 0, Ãi j = 0, and solve the elliptic
equations only for ψ , χ , and φ with appropriate boundary con-
ditions at r = 0 and r→ ∞. The hydrostatic equation has the
form,

αh = const. (29)

The asymptotic behaviour of ψ , χ , and φ for r→∞ is given
by

ψ → 1+
MADM

2r
, (30)

χ → 1− 2MK−MADM

2r
, (31)

φ → 1+
2MS

r
, (32)

where MADM, MK, and MS are the ADM mass, Komar mass,
and scalar charge. The tensor mass, which is a conserved
quantity in scalar-tensor theories and the ADM mass in the
Einstein frame, is defined from MADM and MS by [83]

MT = MADM +MS . (33)

The virial relation, which is satisfied in stationary and quasi-
equilibrium solutions, is written as [84]

MK = MADM +2MS = MT +MS . (34)

Equation (27) indicates that in the far zone, for which X <
Λ4 is satisfied, |φ − 1| is of the same order of magnitude as
α2

s GM/r, where M denotes the mass of the system. Using the
definition of X in Eq. (14), the magnitude of X/Λ4 is written
as

∼ α4
s λ 4

16π`2
p

( rg

r2

)2
, (35)

where rg = GM/c2 is the gravitational radius. Thus the
screening effect occurs for r . rsc := αsλ (rg/`p)

1/2. Here
λ ≈ 1.97× 10−11 cm(Λ/1MeV)−1. In the following, we
specify the strength of the screening by the dimensionless pa-
rameter

β :=
λ 8

`4
pr4

g,�
≈ 1.20×1028

(
λ

5×10−11 cm

)8

≈ 1.08×1028
(

Λ

0.4MeV

)−8

, (36)

where rg,� = GM�/c2. Using this parameter, the radius of the
screening region can be expressed as

rsc = αsβ
1/8(rgrg,�)

1/2

= 5.53×102 km
(

αs

0.1

)(
β

1028

)1/8( rg

1.4rg,�

)1/2

= 5.58×102 km
(

αs

0.1

)(
Λ

0.4MeV

)−1( rg

1.4rg,�

)1/2

.

(37)

IV. SPHERICAL NEUTRON STARS

In this section we summarise how the screening effect ap-
pears in static spacetimes by showing solutions of spherical
neutron stars of MT = 1.4M� for a wide range of β , defined
in Sec. III. We find that the qualitative behaviour of φ , F(X),
and geometric quantities is essentially the same for other val-
ues of MT, and thus, we focus only on this specific mass case.
We fix αs = 0.1. For the 1.4M� neutron star, the stellar radius
(circumferential radius) is ≈ 11.1 km and the scalar charge is
≈ 0.018M� irrespective of the value of β . The validity of the
numerical equilibrium profile is confirmed by the fact that the
virial relation is satisfied within a relative error < 10−4.
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FIG. 1. φ −1 (left) and F(X) (right) as functions of the radius in isotropic coordinates for spherical neutron stars of mass, MT = 1.4M�. The
dashed slope line in the right panel indicates that F(X) outside the stellar surface is approximately proportional to r−1.6.

Fig. 1 plots the profiles of φ − 1 (in the left panel) and
F(X) (right panel) as functions of the coordinate radius r (in
isotropic coordinates) for β = 1 and 1016–1036. Note that for
β = 1, F(X)≈ 1 for the entire region, and hence, the solution
may be considered as that in the FJBD theory. It is found that
the central value of φ −1, φc−1, decreases with the increase
of β , reflecting the screening effect. The value of φc− 1 is
approximately proportional to β 1/8, i.e., proportional to the
screening radius, rsc, for β ≥ 1016.

The right panel of Fig. 1 demonstrates that Eq. (37) approx-
imately indicates the screening region of F(X) & 2. For the
larger values of β , we find a wider screening region, whereas
for β . 1016, the screening region disappears. Around the
stellar centre, F(X) approaches unity because D jφ = 0 = Π

in such a region, and thus, the screening is absent near the
stellar centre. Note that the peak of F(X) (and thus X in our
present choice) always appears near the stellar surface (which
is located at r ≈ 8.9 km). Outside the stellar surface, F(X)
decreases approximately proportional to r−n, where n ≈ 1.6
(denoted by the red dashed line on the plot). The reason for
this is explained by the following analysis. Outside the neu-
tron star, Eq. (6) is integrated to give (in the present case),

αψ
2r2F∂rφ = 8πGα

2
s

∫
T αψ

6r2dr = 2MT . (38)

Assuming that F ∝ r−n and φ ∝ r−p, the left-hand side is ap-
proximately proportional to r1−p−n, resulting in n= 1− p. On
the other hand, X is approximately proportional to (∂rφ)

2 ∝

r−2p−2, and for X � 1, F(X) ∝ X2 ∝ r−4p−4, resulting in
n = 4p+4. Thus we obtain p =−3/5 and n = 8/5. 1

For X � 1, it scales as X ∝ r−4, and thus, F(X) steeply
approaches unity. Inside the stellar surface, F(X) increases

1 We note that this relation should be satisfied sufficiently outside the matter
source even for stationary and quasi-stationary spacetime (but the powers,
n and p, depend on the chosen function of F(X)) and that grasping the be-
haviour of F(X) plays an important role for understanding the propagation
property of scalar waves (see Sec. V).
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FIG. 2. 1−αψ2 as a function of the coordinate radius for spherical
neutron stars of MT = 1.4M�. The dashed lines denote the slope of
r−1 and r−2.

with the radius for MT = 1.4M�. However, this is not always
the case for high-mass neutron stars (MT & 2M� for the APR4
EOS), for which T (= −ρ(1+ ε)+ 3P) can be positive for a
very high-density region. For such a star, F(X) becomes unity
not only at r = 0 but also at an stellar interior; thus, F(X) does
not increase monotonically inside the star. However, outside
such a radius, F(X) starts to increase again until the stellar
surface.

Fig. 2 plots 1−αψ2 = 1− χψ as a function of the coor-
dinate radius, r. In GR, where MS = 0, this quantity falls off
as r−2 in isotropic coordinates (as shown by the green dashed
line) due to the presence of the virial relation (see Eqs. (30),
(31), and (34)). On the other hand, in the presence of the scalar
charge, it goes as MS/r (purple dashed line). This plot shows
that in the presence of screening, 1−αψ2 ∝ r−2, while out-
side the screening region it behaves approximately as MS/r.
As already mentioned, the scalar charge depends only weakly
on the value of β , and hence, in the far region, the profile of
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each other.

αψ2 is essentially the same for any value of β 2.

V. NON-SPHERICAL OSCILLATION OF SPHERICAL
NEUTRON STARS

Here, we explore the emission of scalar and gravitational
waves from oscillating neutron stars. As a zeroth-order solu-
tion, we take the MT = 1.4M� neutron stars from Sec. IV.
We also perform simulations for a high-mass neutron stars
with MT = 1.9M� and find very similar results to the 1.4M�
case. Thus, in the following, we present only the results for
MT = 1.4M�. All the simulations are performed for β ≤ 1032,
i.e., Λ & 0.1 MeV.

To excite a small quadrupole oscillation we superimpose

ux = σx and uy =−σy , (39)

where we set σ = 1.0× 103 s−1. The oscillation velocity is
at most 3% of the speed of light near the stellar surface, and
hence, the density and pressure profiles remain close to the
spherical ones. However, the quadrupole mode, l = |m| = 2,
of scalar and gravitational waves is still appreciably excited,
so in the following, we pay particular attention to this mode.

The numerical simulations are performed using a fixed-
mesh refinement code, SACRA [75], covering the radius of
spherical neutron stars by N = 45 and 55 grid points in the
finest computational domain. We find that the dependence of
the numerical results on the grid resolution is very weak in the
present problem, and we always show the result for N = 55 in
the following. For scalar waves we directly analyse φ − 1 in
the far region of r & λwave. For gravitational waves, we ex-
tract the outgoing component of the complex Weyl scalar (the

2 We note that outside the screening region, the geometrical profile is the
same as that in the FJBD theory with a Brans-Dicke parameter, as defined
in Eq. (4), ω = (−3+α−2

s )/2, irrespective of the value of β .
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FIG. 4. Waveforms of the quadrupole mode for scalar waves as func-
tions of t− r for β = 1, 1016, 1020, 1024, 1028, and 1032. The wave-
forms extracted at r = 591 km are shown together. For β = 1028 and
1032, correction factors of F0.6 and F0.5 are multiplied, respectively
(see Appendix B on the correction factor).

so-called Ψ4). For more details, see Appendix B. Our simula-
tions are performed at longest for 15 ms. For high values of β ,
we find that it is in fact not trivial to perform a long-term sim-
ulation (with duration longer than 10 ms) as a small numerical
error often emerges in the primitive recovery process of deter-
mining X from Eq. (15) and in some cases leads to a patho-
logical solution (see Appendix A for details). However, it is
still possible to draw an important conclusion from relatively
short-term simulations as we will show. We leave developing
an implementation for a long-term simulation (with duration
of� 10 ms) for future work.

We perform simulations for β = 1, 1016, 1020, 1022, 1024,
1026, 1028, 1030, and 1032, as well as in GR (i.e., in the ab-
sence of the scalar field or φ = 1). When β = 1, F(X) ≈ 1
in the entire region, and hence, the results are essentially the
same as those in the FJBD theory.

Fig. 3 shows the evolution of the central density for β = 1,
1020, 1024, and 1028 as well as in GR. Due to the input pertur-
bation, the star oscillates with time not only non-spherically
but also spherically, and as a result, the central density also
varies with time. In this figure we can see that the oscillation
pattern and amplitude depend very weakly on the value of β ,
although the ones with larger screening effect (i.e. β ≥ 1024)
appear to agree best with GR. Since the oscillation pattern is
approximately identical for all the models, we may consider
that the source of the scalar and gravitational wave emission
is approximately identical in the present setting.

We indeed find that the gravitational waveforms depend
only very weakly on the value of the β parameter (see Fig. 7
in Appendix B). In particular, for β & 1024, i.e., where the
screening effect to the scalar wave generation becomes no-
ticeable, the gravitational waveforms are in a good agreement
with those in GR. For β = 1 (approximately same as the FJBD
case), the amplitude of gravitational waves is slightly higher
than those in GR, reflecting a significant contribution of the
scalar field in determining the stellar profile.
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fies rsc = λwave for the quadrupole mode. For the monopole mode,
rsc = λwave is satisfied at β 1/8 ∼ 460 in the present case.

By contrast, the amplitude of scalar waves depends strongly
on the β parameter in spite of approximately the same emis-
sion source, although the frequency is always identical in all
cases. Fig. 4 shows the quadrupole mode of scalar waves as
a function of t− r for β = 1, 1016, 1020, 1024, and 1028, and
Fig. 5 summarises the wave amplitude as a function of β 1/8.
These plots show that, for rsc < λwave, scalar waves are emit-
ted to the far zone broadly in the same manner as in the FJBD
case, in which screening is absent. Interestingly, we find that
for rsc > λwave, where the screening effect plays an important
role, the amplitude of scalar waves is suppressed3. The rea-
son for the suppression can be seen in the large value of F(X)
inside the screening radius. By rewriting Eq. (6) as

∇
a
∇aφ +(∇a lnF)∇aφ = 8πGα

2
s T F−1 , (40)

we can see that the factor F−1 suppresses the scalar wave gen-
eration associated with the matter motion by T .

One point to be added is that the suppression in the wave
amplitude is not as large as the one by the F factor. For ex-
ample, for β = 1028, F > 102 for r = 1–20 km, while the sup-
pression fraction in the wave amplitude is∼ 1/10. The reason
for this is that the wave amplitude, defined by φ22(r/M), in-
creases during the outward propagation inside the screening
radius, i.e., for r < rsc, by F−η (see Appendix B for details).

As we can see in Fig. 5, the amplitude of quadrupole scalar
waves depends only weakly on β for rsc . λwave/3 (i.e.,

3 Besides the amplitude dependence on β , a phase misalignment among the
scalar waves is found. The reasons for this are discussed in more detail in
Appendix B.
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FIG. 6. Waveforms (∂tφ00r) of the monopole mode for scalar waves
as functions of t − r for β = 1, 1016, 1020, 1024, and 1028. The
waveforms extracted at r = 591 km are shown together.

β . 1020), with he steep decline starting only at rsc ∼ λwave
This suggests that the suppression effect by F−1 in the wave
generation and the amplification effect during the propagation
of waves in the region of F > 1 is likely to be balanced for the
quadrupole mode.

On the contrary, for the monopole we find that the steep
decline does not start at the point of rsc = λwave, where the
wavelength of the monopole mode is ∼ 80 km, and thus,
rsc = λwave(l = m = 0) is satisfied at β ≈ 2× 1021. The
decrease of the asymptotic amplitude is again approximately
proportional to β−1/8, satisfied for a wide range of β values,
as can be seen in the filled squares of Fig. 5. This can also be
seen clearly in Fig. 6, which shows the monopole waveforms
for β = 1, 1016, 1020, 1024, and 1028, extracted at r = 591 km.
We should note that in this case, we analyse ∂tφ00 simply be-
cause it is clearer to see the oscillation mode. This is in agree-
ment with the results found in seen in Ref. [58], in which the
authors analyse the amplitude of l = m = 0 scalar waves emit-
ted by the spherical oscillation of a neutron star. Therefore,
we can conclude that while the steep decline of the amplitude
is always found irrespective of the modes for rsc > λwave, in
the case of rsc . λwave, the emergence of the screening effect
on the scalar wave emission depends on the modes consid-
ered, presumably reflecting the generation mechanism (e.g.,
the main generation location) of each mode.

Finally, we consider the results of Ref. [59], in which
the authors explored scalar and gravitational waves from the
late inspiral phase of binary neutron stars, in the case where
λwave(& 300km)> rsc ≈ 140 km4. From our present analysis
our suspicion is that one cannot expect the screening effect
to appear in the quadrupole mode during the inspiral in that
setting. We argue that to fully understand the screening effect

4 Note that for typical binary neutron stars, the orbital period at their in-
nermost stable circular orbits is ∼ 2 ms, and thus, the wavelength of the
quadrupole mode is & 300 km.
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on the quadrupole mode, one should consider parameters, for
which rsc > 300 km. As we discussed above, the screening ef-
fect may appear in the low-multipole mode even for the case
of rsc < λwave, which means one can expect to find screen-
ing in the dipole mode even for small screening radii, as they
report.

VI. DISCUSSION

By analysing an oscillating spherical neutron star, we have
confirmed that in a scalar-tensor theory with kinetic screening,
the scalar wave emission is suppressed for a screening radius,
rsc, larger than the wavelength of the emitted waves, λwave,
irrespective of multipole modes considered. Therefore, inside
the screening radius satisfying the condition rsc > λwave, both
the matter motion and wave emission are essentially the same
as those in GR.

However, for a screening radius rsc . λwave, we have found
emission of quadrupole scalar waves with a large amplitude,
comparable to that in FJBD theory and additionally that the
amplitude depends only weakly on rsc. Therefore, if the anal-
ysis were to be restricted to small values of rsc, this could
have lead to the conclusion that no screening effect is present
in these theories. We argue that to fully understand the nature
of this theory it is necessary to perform the analysis at a wide
range of rsc values, including rsc > λwave.

For the monopole mode, we have confirmed that the screen-
ing effect appears even for the case of rsc < λwave as was
also found previously in Ref. [58]. Furthermore, we have
found that, irrespective of the modes considered, the asymp-
totic scalar wave amplitude decreases roughly as r−1

sc when
rsc > λwave. For ground-based gravitational wave detectors,
such as advanced LIGO and advanced Virgo, the lower limit
of the frequency in the sensitive band of gravitational waves
is about 10 Hz, and thus, the upper limit of the observable
wavelength is ≈ 3×104 km. Therefore, if rsc > 3×104 km, it
would be difficult to detect scalar-type gravitational waves due
to the screening in this kind of scalar-tensor theories. A num-
ber of previous solar system experiments have reported no ev-
idence for the presence of a scalar field effect, which implies
that rsc has to be larger than the solar radius (≈ 7× 105 km).
Thus, the detection of scalar waves, e.g., from neutron-star os-
cillations and inspiraling binary neutron stars, by the ground-
based gravitational wave detectors might be unlikely in kinetic
screening theories.5

Our analysis in this paper has focused only on scalar
and gravitational waves from oscillating neutron stars. To
fully understand the emission mechanism of scalar waves in
screened modified gravity theories, we should also perform
simulations for other systems, such as binary neutron stars for

5 Note, however, that when a black hole is formed dynamically, scalar waves
of a characteristic wave shape with an appreciable amplitude can be emit-
ted even in the presence of the screening effect irrespective of rsc because
the non-uniform scalar field disappears after the formation of the black
hole (e.g., Refs. [58, 85, 86]).

a wide range of rsc. As we have pointed out here, the emis-
sivity of scalar waves is determined by the profile of F(X),
and if the profile for other systems is similar to that of single
neutron stars, we can expect the conclusion to be the same;
i.e., that the scalar wave emission is suppressed in the pres-
ence of screening with rsc > λwave irrespective of the multi-
pole modes. Thus, the question is what the profile of F(X)
is for other systems. We leave this further investigation for
subsequent work.
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Appendix A: 3+1 formulation

Here we describe the 3+1 form of the gravitational and
scalar fields equations. By contracting Eq. (5) with nanb, the
Hamiltonian constraint is derived as

R k
k +K2−Ki jKi j

= 16πGφ
−1

ρh +
ω

φ 2

[
Π

2 +(Diφ)Di
φ
]

− 2Π2

α2
s φ 2 X

∂ K̂
∂X

+
2
φ
(−KΠ+DiDi

φ) , (A1)

where R k
k is the three-dimensional Ricci scalar.

And contracting Eq. (5) with naγb
i gives the momentum

constraint,

DiKi
j−D jK = 8πGφ

−1J j

+

(
ω− X

α2
s

∂ K̂
∂X

)
φ
−2

ΠD jφ

+ φ
−1(D jΠ−Ki

jDiφ) , (A2)

and so the evolution equation can be obtained by contracting
Eq. (5) with γa

iγ
b
j,

∂tKi j = αRi j−8πGαφ
−1
[

Si j−
1
2

γi j(S−ρh)

]
+ α(−2KikK k

j +KKi j)

− DiD jα +β
kDkKi j +KikD jβ

k +K jkDiβ
k

− α

(
ω− X

α2
s

∂ K̂
∂X

)
φ
−2(Diφ)D jφ

− αφ
−1 (DiD jφ −Ki jΠ)− α

2φ
γi j2gφ

− α

2φ 2 γi j

(
(Dkφ)Dk

φ −Π
2
) X

α2
s

∂ K̂
∂X

, (A3)
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where Ri j is the spatial Ricci tensor and Si j := Tabγa
iγ

b
j with S

its trace.
Equation (A3) together with the Hamiltonian constraint

yields the following evolution equation for K,

(∂t −β
k
∂k)K = 4πGαφ

−1(S+ρh)+αKi jKi j−DiDi
α

+ αωφ
−2

Π
2 +αφ

−1 (DiDi
φ −KΠ

)
− αX

2α2
s φ 2

∂ K̂
∂X

(
(Dkφ)Dk

φ +Π
2
)
− 3α

2φ
2gφ ,

(A4)

and thus, the evolution equation for Ãi j = ψ−4(Ki j−Kγi j/3),
where ψ = (detγi j)

1/12 is the conformal factor, is written in
the form

(∂t −β
k
∂k)Ãi j =

α

ψ4

(
Ri j−

1
3

γi jR k
k

)
−ψ

−4
(

DiD jα−
1
3

γi jDkDk
α

)
+ Ãik∂ jβ

k + Ã jk∂iβ
k− 2

3
Ãi j∂kβ

k

+α

(
KÃi j−2ÃikÃ k

j

)
−8πG

α

ψ4φ

(
Si j−

1
3

γi jS
)

− α

ψ4φ 2

(
ω− X

α2
s

∂ K̂
∂X

)[
(Diφ)D jφ −

1
3

γi j(Dkφ)Dk
φ

]
− α

ψ4φ

(
DiD jφ −

1
3

γi jDkDk
φ −ψ

4Ãi jΠ

)
. (A5)

The term, 2gφ , in the right-hand side of Eq. (A4) is unde-
sirable in numerical evolution because of the presence of the
time derivative of Π. Therefore, to handle this term, we use
the following expression of 2gφ ,

2gφ = DkDk
φ +

Dkα

α
Dk

φ −KΠ+na
∇aΠ

= DkDk
φ +

Dkα

α
Dk

φ −KΠ

+
φ

α
(∂t −β

k
∂k)

(
Π

φ

)
− Π2

φ
, (A6)

and redefine the evolution equation for K̄ := K +3Π/(2φ) as

(∂t −β
k
∂k)K̄ = 4πGαφ

−1(S+ρh)+αKi jKi j−DiDi
α

+α

(
ω +

3
2

)
φ
−2

Π
2− 1

2
αφ
−1 (DiDi

φ −KΠ
)

− αX
2α2

s φ 2
∂ K̂
∂X

(
(Dkφ)Dk

φ +Π
2
)
− 3

2φ
(Dkα)Dk

φ ,

(A7)

which guarantees the hyperbolicity of the geometric equa-
tions.

Equation (6) is rewritten into a set of equations, (12) and
(13), which are first-order in the time derivatives. Once φ

and Π̂(= F(X)Π) are determined from these equations, X (as
well as F(X) and Π) are obtained from Eq. (14), which is
considered to be an algebraic equation for X (see Eq. (15).

For the present choice of K̂(X) (and F(X)), Eq. (15) has one or
two or three real solutions for X . For a small value of Π̂2, there
is only one real solution. However, for a value of Π̂2 larger
than a critical value, there are more than two real solutions.
For the case that there are two real solutions, one should be a
multiple solution. In this case, the solution satisfies not only
Eq. (15) but also the following,

d f (X)

dX
= 1− Π̂2

8πGα2
s φ 3F(X)3

dF
dX

= 0 . (A8)

This solution (d f (X)/dX = 0) has a pathology, and hence, in
its presence the computation breaks down (see below). There-
fore, for a problem in which Π̂ is initially small everywhere
(i.e., f (X) > 0), but later it increases significantly leading to
f (X) ≤ 0 at points, it is possible that the computation breaks
down.

If X is determined, K is obtained from K = K̄− 3Π/(2φ).
We also note that D jX , which appears in the computation of
D jF = (dF/dX)D jX , is calculated as

D jX =−3X
φ

D jφ +
1

8πGα2
s φ 3

[
(D jDkφ)Dk

φ −
Π̂D jΠ̂

F(X)2

+
Π̂2

F(X)3
dF
dX

D jX
]
, (A9)

and hence,

D jX =

[
−3X

φ
D jφ +

1
8πGα2

s φ 3

{
(D jDkφ)Dk

φ −
Π̂D jΠ̂

F(X)2

}]

×
[

1− 1
8πGα2

s φ 3
Π̂2

F(X)3
dF
dX

]−1

. (A10)

This shows that 1−Π̂2/(8πGα2
s φ 3F3)(dF/dX) (i.e., d f/dX)

has to be non zero in general. This implies that if the solution
of X is a multiple root of Eq. (15), a discontinuity appears in
the scalar field and the computation in general breaks down in
the present formulation. In this work, we present results for
which such a pathology is not encountered.

Appendix B: Extraction method

Here we analyse multipole components of scalar and grav-
itational waves. For the scalar waves, we define

φlm = Re
(∮

d cosθdϕ(φ −1)Ylm(θ ,ϕ)

)
, (B1)

where Ylm is the spherical harmonics, and pay attention to
the l = m = 2 mode. Gravitational waveforms are analysed
by first extracting the outgoing component of the complex
Weyl scalar and by decomposed into multipole modes [75].
Since the waves are approximately monochromatic, the grav-
itational wave amplitude, hlm, may be calculated from each
multipole mode of the complex Weyl scalar, Ψlm, by

hlm = 2ω
−2
w |Ψlm| , (B2)
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FIG. 7. Gravitational and scalar waveforms of the (l = m = 2) quadrupole mode as functions of the retarded time, t− rex, in GR (upper left),
for β = 1 (upper right), 1016 (middle left), 1020 (middle right), 1024 (lower left), and 1028 (lower right). For gravitational waves, we plot the
real part of the complex Weyl scalar, Ψ22. For each panel, the waveforms are plotted with several extraction radius, rex ≈ 236 (magenta), 354
(green), 472 (blue), 591 (orange), and 709 km (yellow). (For the upper and middle panels as well as for gravitational waves, all the curves
approximately overlap with each other.) Note that the high amplitude waves found at t − r ≈ 0 are the junk radiation numerically induced
during the relaxation of the given initial data to those fitted to the computational setting. Note that the vertical scale is the same for all the
panels.

where ωw is the angular velocity of scalar waves and in
the present case GMωw ≈ 0.087 with M = 1.4M�. Thus,
hlm(r/M)≈ 260|Ψlm|(rM).

Fig. 7 plots the quadrupole waveforms of gravitational and
scalar waves for β = 1, 1016, 1020, 1024, and 1028, as well as in
GR. The amplitude of Ψ22(rexM) is∼ 4×10−5 irrespective of
the value of β . For scalar waves, if the condition, rsc . λwave,

is satisfied, the asymptotic amplitude is φ22(rex/M) = (2–3)×
10−5. The order of magnitude for this agrees approximately
with the expected value calculated by (MS/M)(v/c)2 where
v ∼ σR ∼ c/30 with R the stellar radius and MS/M ∼ α2

s =
10−2. In addition, the waveforms with different extraction
radii as functions of the retarded time, t− rex, approximately
align with each other for the case where rsc . λwave. This
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behaviour is always found for gravitational waves irrespective
of the screening effect.

By contrast, for rsc & λwave, the amplitude defined by
φ22(rex/M) increases with the extraction radius whenever
rex . rsc. Moreover, the waveforms with different extraction
radii as functions of the retarded time, t − rex, do not over-
lap for this case, because of the presence of a large factor of
F(X)� 1 in the screening region (see the scalar waveforms
for β = 1024 and 1028). To determine the asymptotic ampli-
tude of scalar waves, we have to extract them in a far zone,
in which F(X) ≈ 1 or we perform an extrapolation. In the
present work, we consider the latter possibility for high val-
ues of β ≥ 1028.

Since F(X) decreases approximately proportional to r−n

with n≈ 1.6 outside the neutron stars (see Fig. 1), it is possible
to predict the behaviour of the amplitude for λwave . r . rsc
using the following method. Neglecting the curvature effect
(i.e., assuming the flat spacetime), approximating F as a fixed
background and setting T = 0, the equation of φlm can be writ-

ten as [
−∂

2
t +∂

2
r +

2−n
r

∂r−
l(l +1)

r2

]
φlm = 0 . (B3)

In addition, we assume that φlm ∝ exp(iωwt). The general
solution of Eq. (B3) is written in terms of the outgoing com-
ponent of the modified Bessel function, Zν ,

φlm = r(n−1)/2Zν(ωwr)exp(iωwt) , (B4)

where ν =
√

l(l +1)+(n−1)2/4. Since the amplitude of
Zν is proportional to r−1/2 for ωwr � 1 irrespective of ν ,
the wave amplitude of φlm is proportional to rn/2−1. Thus
for n = 1.6, φlm ∝ r−0.2, which implies that φlm(rex/M) ∝

r0.8
ex ∝ F−1/2; i.e., the amplitude defined by φlm(rex/M) in-

creases with radius. For β = 1028, we find that φ22(rex/M)
is approximately proportional to F(X)−0.6 of r = rex because
for this case, the screening region with r > λwave is rather nar-
row. However, for β = 1030 and β = 1032, we confirm that the
relation of φ22(rex/M) ∝ F−1/2 is satisfied well. Thus, for de-
termining the asymptotic amplitude in these cases, we utilise
this approximate relation. In Fig. 8, we plot φlm(rex/M)Fη

as a function of the retarded time with η = 0.6 and 0.5 for
β = 1028 and 1032, respectively, showing that this extraction
method works well.

The analysis performed here also gives the reason that a
phase misalignment is found among the scalar waves of dif-
ferent values of β plotted in Fig. 4 and among those with the
different extraction radii for β ≥ 1024 plotted in Fig. 7. As
described in Eq. (B4), the wave phase is determined by the
functional form of Zν . Thus during the propagation of scalar
waves in a region of F > 1, the wave phase is changed and
this is reflected in the asymptotic wave phase.

We note that not only for MT = 1.4M� but also for other
values of MT we find that F ∝ r−1.6 is approximately satisfied
outside the neutron star with r < rsc. Thus, the analysis shown
here is likely to be valid for any neutron star.

The above analysis also shows that for n < 0, the ampli-
tude defined by φlm(rex/M) decreases with the radius. Thus,
if a wave is generated in r . 8 km, the wave amplitude is
suppressed, and hence, the wave amplitude should depend
strongly on the wave generation region.
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