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A B S T R A C T   

Synucleinopathies are a group of progressive neurodegenerative diseases known for the accumulation of insol
uble aggregates containing the protein alpha-synuclein (aSyn). Recently, it has been assumed that pathology 
spreads in the brain during disease progression, implying that, at some point in the process, aSyn may exist 
outside of cells. In this context, extracellular-aSyn (e-aSyn) might transduce signals to the inside of the cells it 
interacts with, and/or be internalized by different types of cells through the extracellular matrix. Both negatively 
charged lipids and membrane receptors have been hypothesized as modulators of the loss of cellular homeostasis 
and cytotoxicity, and of the internalization of e-aSyn. Internalized e-aSyn causes the disruption of multiple 
cellular processes such as the autophagy lysosomal pathway (ALP), mitochondrial function, endoplasmic retic
ulum (ER)-stress, UPR activation, or vesicular transport. These processes happen not only in neurons but also in 
glial cells, activating inflammatory or anti-inflammatory pathways that can affect both neuronal function and 
survival, thereby affecting disease progression. 

In this review, we explore possible effects e-aSyn, all the way from the extracellular matrix to the nucleus. In 
particular, we highlight the glial-neuronal relationship as this is particularly relevant in the context of the 
spreading of aSyn pathology in synucleinopathies.   

1. Introduction 

Synucleinopathies, including Parkinson’s disease (PD), dementia 
with Lewy bodies (DLB), or multiple system atrophy (MSA), are a group 
of neurodegenerative diseases characterized by the abnormal deposition 
of aggregated forms of alpha-synuclein (aSyn), known as Lewy bodies 
(LBs), Lewy neurites (LNs), or glial cytoplasmic inclusions (GCIs) 
(Spillantini et al., 1997; Tu et al., 1998), in different cell types in the 
brain (Brás et al., 2020a). These aggregates are enriched in phosphor
ylated aSyn in serine 129 (paSyn) (Anderson et al., 2006) and in trun
cated forms of the protein (Liu et al., 2005; Kellie et al., 2014), 
suggesting that conformational changes in aSyn may explain the 

cytotoxicity found in some aggregated states and subsequent progres
sion and differences in the severity of the different pathologies. In 
addition, the contribution of aSyn to synucleinopathies is further sup
ported by familial forms of the diseases associated with point mutations 
and multiplications of the gene encoding for aSyn (SNCA) (Chartier- 
Harlin et al., 2004; Polymeropoulos et al., 1997; Krüger et al., 1998; 
Zarranz et al., 2004; Lázaro et al., 2014; Fujioka et al., 2014; Lesage 
et al., 2013). 

In physiological conditions, intracellular aSyn is thought to be 
mainly located in the presynaptic terminals (Maroteaux et al., 1988) of 
neurons, binding to the synaptic vesicle membrane (Man et al., 2021). 
The physiological function of aSyn is often associated with the recycling 
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and release of synaptic vesicles (Cabin et al., 2002; Gedalya et al., 2009; 
Murphy et al., 2000). Intracellular aSyn interacts with anionic lipids and 
vesicle-associated membrane protein 2 (VAMP2), a protein that partic
ipates in neurotransmitter release, promoting synaptic vesicle clustering 
(Diao et al., 2013). aSyn can also modulate SNARE-mediated vesicle 
fusion by interacting directly with the lipid membranes (Dewitt and 
Rhoades, 2013). 

Although our current understanding of the molecular underpinnings 
of synucleinopathies remain elusive, several factors are thought to play a 
role in the aggregation of aSyn including aging (Van Den Berge et al., 
2021), environmental factors such as toxins (Jang et al., 2009; William 
Langston et al., 1983; William Langston et al., 1984), mutations 
(Chartier-Harlin et al., 2004; Polymeropoulos et al., 1997; Krüger et al., 
1998; Zarranz et al., 2004; Lázaro et al., 2014; Fujioka et al., 2014; 
Lesage et al., 2013), and chemical alterations, such as posttranslational 
modifications (PTMs) in aSyn (de Oliveira et al., 2017; Vicente Miranda 
et al., 2017; Beyer and Ariza, 2013; Oueslati et al., 2010). 

2. Prion-like spreading of aSyn 

Different aggregated forms of aSyn have been shown to spread from 
cell to cell (Henrich et al., 2020; Henderson et al., 2019; Prusiner et al., 
2015), possibly in a prion-like manner, thereby affecting different tis
sues and anatomically-connected brain areas (Braak et al., 2003). In this 
context, the study of the interaction between extracellular aSyn (here 
abbreviated as e-aSyn) and different cell types, not only provides us key 
information regarding the physiological function of aSyn but also about 
its effects upon entry into the cell. E-aSyn can play physiological and 
also pathological roles, but this is still not well understood. During the 
spreading of pathology aSyn can be released from the cytosol of a cell to 
the extracellular matrix, and then taken up by neighboring cells. Thus 
far, studies focusing on the spreading and consequent deleterious effects 
of aSyn make use of approaches to mimic what are presumed to be 
pathological forms of e-aSyn, such as pre-formed fibrils (PFFs). To this 
end, recombinantly aSyn PFFs are typically added to cells or injected 
into different tissues in animal models (Delenclos et al., 2019; Gerdes 
et al., 2020). 

The spreading of aSyn can take place from cell-to-cell, from region- 
to-region, and also between organs (Foulds et al., 2013; Chang et al., 
2020; Challis et al., 2020). From the gut, where some types of PD are 
hypothesized to start (Challis et al., 2020), to the blood (Abd Elhadi 
et al., 2019), the spreading of extracellular aSyn may affect multiple cell 
types in the body. Thus, by investigating systemic effects of e-aSyn, we 
might obtain additional insight into the origin, progression, and 
plethora of symptoms present in the synucleinopathies, thereby identi
fying potential therapeutic targets. 

A variety of pathways and receptors have been implicated in the 
transfer of aSyn between neurons and immune cells. The discovery of 
receptor-mediated endocytosis and neuronal damage caused by e-aSyn 
opened a field investigation of pathological mechanisms. Membrane 
proteins, like the cellular prion protein (PrPC) (Ferreira et al., 2017), and 
receptors like the lymphocyte-activation gene 3 (LAG3) (Mao et al., 
2017), may play crucial roles in the toxicity and pathological spreading 
of e-aSyn. Since these proteins are also expressed in immune cells, they 
may impact on the interplay between these cells and other tissues and 
organs (Anderson et al., 2016; Brown et al., 1998; Liu et al., 2015). 

If pathological forms of e-aSyn are internalized, they may seed the 
aggregation of endogenous aSyn present inside the cells, and also 
directly damage organelles (Ganjam et al., 2019; Colla et al., 2012; Senol 
et al., 2021). In fact, mitochondrial impairments are thought to be one of 
the consequences of aSyn internalization (Ganjam et al., 2019; Ugalde 
et al., 2020; Park et al., 2020). In turn, mitochondrial dysfunction po
tentiates the aggregation of aSyn (Lee et al., 2002a), possibly causing a 
feedback loop that can eventually collapse on the cell death. Inside the 
cell, aggregated aSyn is believed to be degraded by the autophagy- 
lysosome pathway (ALP) (Webb et al., 2003). However, high levels of 

aggregated aSyn can impair lysosomal function and may escape degra
dation (Freeman et al., 2013), accumulating in the cytosol, and seeding 
the aggregation of endogenous aSyn (Senol et al., 2021). Aggregated e- 
aSyn was also shown to cause endoplasmic reticulum (ER) stress and ion 
imbalance (Paiva et al., 2018), vesicular transport alterations (Cooper 
et al., 2006), and genetic modifications in cells (Kontopoulos et al., 
2006), promoting cell stress. 

Glial cells are known to maintain homeostasis in the brain and pro
tect and support neurons (Graeber and Streit, 2010; Sofroniew and 
Vinters, 2010). In a pathological setting, the function of glial cells be
comes even more substantial. In synucleinopathies, glial cells such as 
microglia, can take up and process neuron-released aSyn, and respond 
by releasing cytokines and chemokines thereby mounting a pro- or anti- 
inflammatory response in the brain (George et al., 2019; Austin et al., 
2006; Choi et al., 2020). This can then modulate astrocytic function, 
playing a role in the progression of the diseases (Rothhammer et al., 
2018; Liddelow et al., 2017). 

Interestingly, the presence of glial cytoplasmic inclusions composed 
mainly of aggregated aSyn in oligodendrocytes is a pathological hall
mark of MSA. Although there is still an ongoing debate as to whether 
oligodendrocytes express aSyn, it is possible that aSyn accumulation in 
these cells may result from the transfer of aSyn from donor neurons, 
suggesting that oligodendrocytes may play an important role in aSyn 
pathology spreading in MSA. In vitro, oligodendrocytes are able to 
internalize e-aSyn monomers, oligomers and, although to a lesser extent, 
fibrils (Reyes et al., 2014) . 

In similarity to its effects in glial cells, pathological e-aSyn is also 
hypothesized to modulate the inflammatory state of the immune system. 
In fact, with aging, low-grade inflammation may emerge, thereby 
increasing the propensity to develop neurodegenerative disorders 
(Domingues et al., 2020). 

Herein, we discuss the effects of e-aSyn on different cell types, from 
neurons and glia to immune cells. 

3. Interaction of extracellular aSyn with membrane lipids 

As mentioned above, misfolded aSyn is thought to spread between 
neuroanatomically-connected regions of the brain in synucleinopathies 
(Braak et al., 2003). Several pathways and cellular responses have been 
hypothesized to play a role in this cell-to-cell transmission, leading to 
neuronal death and, therefore, progressive tissue damage (Vicente 
Miranda et al., 2017; Ferreira et al., 2017; Ugalde et al., 2020; Brás et al., 
2020b). 

The extracellular matrix is likely the first barrier that interacts with 
e-aSyn (Fig. 1). Similarly to intracellular aSyn, e-aSyn has also the 
ability to interact with phospholipids and fatty acids from the membrane 
through its N-Terminal (Eliezer et al., 2001). The positively charged 
lysine residues present in the N-terminus of aSyn bind preferentially to 
the negatively charged membranes (Zarbiv et al., 2014), altering mul
tiple membrane properties such as curvature and thickness (Braun et al., 
2012). In turn, this interaction may also affect the structure of aSyn itself 
(Davidson et al., 1998). Intracellular N-terminal-acetylated aSyn was 
shown to bind to membranes and to have reduced aggregation pro
pensity when compared to the non-acetylated form of the protein 
(Bartels et al., 2014; O’Leary et al., 2018). Phosphorylation of aSyn was 
also shown to inhibit interactions with membranes (Kuwahara et al., 
2012; Fiske et al., 2011). Therefore, it is possible that these and other 
posttranslationally modified forms of e-aSyn may affect the way the 
protein interacts with the extracellular side of the plasma membrane. 

The binding of the N-terminus of aSyn with membranes allows 
multiple partners, such as the SNARE complex (Lou et al., 2017), to 
interact with the intrinsically disordered C-terminal region. This sug
gests that this interaction may be highly relevant when it comes to the 
normal function of aSyn. The binding of aSyn with membranes is 
dependent on both membrane composition (Galvagnion et al., 2016) 
and potential mutations or post-translational modifications (PTMs) 
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(O’Leary et al., 2018; Fares et al., 2014; Ghosh et al., 2014; Robotta 
et al., 2017) in aSyn. aSyn mutants associated with familial forms of PD, 
such as the A30P or E46K mutants, show altered binding to anionic 
lipids, possibly affecting membrane interactions (Stöckl et al., 2008). In 
physiological conditions, aSyn can be occur as soluble unfolded mono
mers or as membrane-bound multimeric forms (Eliezer et al., 2001). The 
pathological forms of aSyn are thought to consist of beta-sheet rich 
oligomeric or fibrillar assemblies (Ghosh et al., 2015). 

Oligomeric forms of aSyn have been shown to cause membrane 
remodeling (Jiang et al., 2013), and curvature changes of the cellular 
membrane (Varkey et al., 2010), possibly leading to membrane per
meabilization (Zhu et al., 2003; Kayed et al., 2004). Fibrillar aSyn ag
gregates have been associated with abnormal accumulation of raft 
domains (Bucciantini et al., 2012). These direct effects of aSyn on 

membranes may play a pivotal role in neuronal damage in pathological 
conditions. Intracellular aSyn has been hypothesized to associate with 
the mitochondrial membrane, affecting mitochondrial curvature and the 
rate of fusion (Pozo Devoto and Falzone, 2017). 

Another proposed mechanism for membrane-mediated cytotoxicity 
is the permeabilization and disruption of membranes via the formation 
of pores by oligomeric aSyn. This hypothesis was based on the finding of 
annular-shaped aSyn structures (Lashuel et al., 2002) that could be 
incorporated into the lipid membrane, enabling unrestricted calcium 
influx and consequently excitotoxicity. Therefore, these pores could act 
as protein channels (Quist et al., 2005; Zakharov et al., 2007) that 
destabilize membrane permeability (Zhu et al., 2003). The incorpora
tion of aSyn pores may also cause damage and thinning of the membrane 
(Chaudhary et al., 2016), which, by itself, could modulate diffusion 

Fig. 1. Interaction between e-aSyn and the extracellular matrix. e-aSyn may induce lipid membrane perturbations and also seed the aggregation of monomeric aSyn. 
In the plasma membranes of different cells, different receptors/proteins may have the ability to interact with e-aSyn, causing a multitude of responses. 
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transport across the membrane. Consistently, it has been shown that 
different aSyn mutations (Lashuel et al., 2002; Zakharov et al., 2007; 
Volles and Lansbury, 2002) and PTMs may affect the efficiency of the 
leakage, supporting the idea that distinctive organizational assemblies 
of aSyn oligomers may mediate different pathological pathways. 

Certain lipid compositions of membranes may also affect the way 
that aSyn multimerizes, and promote a transition from an alpha-helical 
form into a beta-sheet-rich form that may be cytotoxic (Varkey et al., 
2010; Volles and Lansbury, 2002; Sharon et al., 2003; Necula et al., 
2003; Bodner et al., 2009; Bodner et al., 2010; Perrin et al., 2001; Ter
akawa et al., 2018). Membrane interactions have been shown to induce 
the formation of dimeric aSyn (Drescher et al., 2010). Importantly, 
membrane-bound aSyn has higher aggregation propensity in brain 
fractions and can also seed the aggregation of cytosolic aSyn (Lee et al., 
2002b). 

Interestingly, it was shown that GM1 and GM3, lipids present in 
exosomes, can catalyze aSyn aggregation (Marie et al., 2015). Mem
branes in the brain are known to have an increased number of fatty 
acids, such as polyunsaturated fatty acids (PUFAs), that may play a role 
in neurological disorders. These fatty acids promote the formation of 
soluble aSyn oligomers (Sharon et al., 2003) that can play a role in 
disease modulation (Perrin et al., 2001; Fecchio et al., 2013). 

The use of aSyn knock-out mice revealed a link between aSyn and 
lipid metabolism. These mice display altered metabolism of brain 
PUFA’s in neurons and astrocytes (Guschina et al., 2021; Castagnet 
et al., 2005), suggesting that altered levels or function of aSyn in the 
brain may affect lipid composition and, thereby, affect the seeding or e- 
aSyn. 

4. Interactions of extracellular aSyn with membrane receptors 
and membrane proteins 

Several membrane protein receptors have been shown to mediate the 
effects of e-aSyn (Fig. 1). Consistently, in vitro incubation of cells with 
unspecific proteases aiming to trim cell surface proteins reduce aSyn 
internalization (Lee et al., 2008a). 

A cell surface protein that was shown to modulate cell-to-cell 
spreading of exogenous aSyn is LAG3 (Mao et al., 2017). This immu
noglobulin family member is expressed in neurons, microglia, and pe
ripheral immune cells, like natural killer cells, B cells, T cells, and 
dendritic cells (Anderson et al., 2016; Liu et al., 2018). Although the role 
of LAG3 has been extensively investigated in immune-mediated diseases 
such as cancer (Andrews et al., 2017) and autoimmune disorders (Hu 
et al., 2020), its role in the CNS remains elusive. LAG3 has been shown to 
bind recombinant mouse aSyn PFFs, but not monomers (Mao et al., 
2017). LAG3 has four Ig-like domains (Triebel et al., 1990), and the 52- 
109 region of the D1 domain was found to be responsible for this 
interaction (Mao et al., 2017). 

LAG3-aSyn colocalizes with multiple Rab proteins, such as the early 
endosomal marker Rab5, and with other endosomal GTPases (Mao et al., 
2017). These endosomal markers have been strongly implicated in the 
internalization of e-aSyn (Sung et al., 2001). LAG3 deletion or inhibition 
decreases the endocytosis of aSyn PFFs, and reduces dopaminergic loss 
in vivo, inhibiting both cell-to-cell transmission and aSyn pathology 
(Mao et al., 2017). This reduced neurotoxicity was also found in 
neuronal cell cultures expressing A53T, where blockade of LAG3 func
tion reduces the levels of aSyn phosphorylated on serine 129 (paSyn) 
and PFF toxicity, suggesting that this interaction may also play a role in 
familial forms of synucleinopathies (Mao et al., 2017). 

LAG3 can be cleaved by metalloproteases and exist as a soluble form 
(soLAG3) (Li et al., 2007). This form is increased in the serum of PD 
patients and is associated with an increase in the severity of non-motor 
symptoms (Cui et al., 2019; Guo et al., 2019). LAG3 was also identified 
as a significant predictor of regional brain atrophy in PD patients in a 
study that compared genetic data from genome-wide association studied 
(GWAS) and high-quality regional imaging from magnetic resonance 

imaging (MRI) (Freeze et al., 2018). In any case, although several studies 
support an important role of LAG3 in synucleinopathies, there is still 
controversy regarding its function and expression in the nervous system 
(Emmenegger et al., 2021). Therefore, additional studies will be 
necessary to clarify the role of LAG3 in synucleinopathies. 

The Na+ /K+ -ATPase (NKA) is an enzyme found in the membrane of 
all animal cells, exporting three sodium ions and importing two potas
sium ions using ATP, affecting numerous processes, most notably the 
control of neural activity (Clausen et al., 2017). Its discovery culminated 
in a Nobel Prize in Chemistry in 1997 (Skou, 1998). NKA complex is 
composed of three subunits (Geering, 2008). The α3 subunit of the NKA 
complex has been associated with neurodegenerative diseases, such as 
Alzheimer’s disease (AD) (Petrushanko et al., 2016; Ohnishi et al., 
2015), PD (Shrivastava et al., 2015), and amyotrophic lateral sclerosis 
(ALS) (Ruegsegger et al., 2016). This subunit interacts with amyloid-b 
(Ohnishi et al., 2015), SOD1 (Ruegsegger et al., 2016), and aSyn, 
possibly mediating the endocytosis of these proteins into neuronal cells 
(Shrivastava et al., 2015). This cell surface partner of aSyn was identi
fied, along with neurexin 1a and 2a, using a proteomic-based analysis 
(Shrivastava et al., 2015). The interaction traps α3-NKA within clusters 
of aSyn, ultimately leading to α3-NKA redistribution and decreased ef
ficiency in the sodium export after action potential affecting the 
neuronal refractory period (Shrivastava et al., 2015). Mutations within 
this subunit are associated with diseases such as rapid-onset dystonia 
Parkinsonism (De Carvalho Aguiar et al., 2004), a rare disease that is 
characterized by PD-like symptoms that are not improved by levodopa 
(Brashear et al., 1997). 

More recently, the cellular prion protein (PrPC) has been shown as a 
promising therapeutic target. This cell surface glycoprotein anchored 
via glycophosphatidylinositol (Stahl et al., 1987) is expressed in most 
cells but increased in the CNS (Wulf et al., 2017), and is thought to 
regulate metal homeostasis (Brown et al., 2001), cell proliferation 
(Bribián et al., 2012), adhesion and differentiation (Prodromidou et al., 
2014), survival (Doeppner et al., 2015), and death (Carulla et al., 2011), 
to maintain myelin (Bremer et al., 2010), and to contribute to T cell 
activation (Mattei et al., 2004), and inflammation (Liu et al., 2015). 
Nevertheless, it is mostly known for its role in multiple neurodegener
ative diseases ranging from prion diseases to Alzheimer’s disease 
(Schwarze-Eicker et al., 2005; Laurén et al., 2009; Takahashi et al., 
2011). In fact, the term prion derives from “proteinaceous infectious par
ticle”, as the protein was initially identified in prion diseases (Prusiner, 
1982). The physiological form of the protein PrPC is rich in alpha-helical 
structure, and converts into a protease-resistant misfolded beta-sheet 
rich form known as PrPSc that aggregates into amyloids and plaques 
and causes cell death (Cohen et al., 1993). PrPSc is able to catalyze the 
conversion of PrPC into its pathological form, and this is our current 
understanding of its infectious nature (Wang et al., 2018). 

The interaction between PrPC and aSyn was shown to promote not 
only the transfer of aSyn in multiple cells (Urrea et al., 2018; Urrea et al., 
2017; Aulić et al., 2017; Thom et al., 2021), but also to cause synaptic 
dysfunction and impairment of long-term potentiation (Ferreira et al., 
2017). PrPC increases the uptake of fibrillary forms of aSyn in cell lines 
and in primary mouse neurons (Urrea et al., 2018). This interaction 
takes place through the N-terminal region of PrP, which is known to 
interact with amyloid structures (Rösener et al., 2020). Oligomeric aSyn 
has been shown to interact with PrPC, leading to Fyn kinase-mediated 
phosphorylation of mGluR5, thereby activating the NMDAR2B and, ul
timately, leading to an increase in intracellular calcium and synaptic 
dysfunction causing long-term potentiation abnormalities (Ferreira 
et al., 2017). This interaction has been hypothesized to promote the 
formation of cofilin/actin rods by rearranging the cytoskeleton and 
affecting actin dynamics, blocking axonal transport (Brás et al., 2018). 
Similarly to LAG3, there is also debate regarding the role of PrPC on 
aSyn-pathology, as other studies suggested that PrP does not interact 
with or modulate neuronal death in the presence of aSyn oligomers (La 
Vitola et al., 2019) . A major issue is whether the same types of 
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oligomers were being used in the different studies. 
The FcγRIIB receptor is known for its role in the immune system, 

where it is mainly expressed (Anania et al., 2019), playing a pivotal role 
in phagocytosis and cytokine stimulation (Tridandapani and Anderson, 
2008; Nimmerjahn and Ravetch, 2008). This receptor is also expressed 
in neurons, binding specifically to aSyn fibrils, and mediating the 
transmission of aSyn and Lewy body-like inclusion formation (Choi 
et al., 2018). This receptor does not act as a direct receptor but rather as 
a sensor of aSyn, activating lipid raft-dependent endocytosis (Choi et al., 
2018). FcγRIIB is also present in microglia, where it mediates inhibition 
of aSyn phagocytosis (Choi et al., 2015), suggesting it may play a role in 
the spreading of aSyn pathology from neuron to neuron while simulta
neously inhibiting the microglial cleansing activity. 

Heparan sulfate (HS) in proteoglycans can function as a receptor, 
mediating the uptake of e-aSyn fibrils in neuronal and non-neuronal cell 
lines (Holmes et al., 2013). The interaction between the negative 
sulfated HS and aSyn fibrils seems to be mediated by the positive charges 
of the protein. Besides, addition of soluble heparin to cells in culture 
competitively inhibited cell binding and uptake of aSyn fibrils into 
primary neurons (Karpowicz et al., 2017; Ihse et al., 2017). 

More recently, a CRISPR-based screen in HEK293 identified 
SLC35B2 and myosin-7B (MYO7B) as critical regulators of e-aSyn PFFs 
endocytosis. Since SLC35B2 is a regulator of HS proteoglycan (HSPG) 
biosynthesis, SLC35B2 KO cells were unable to internalize e-aSyn PFFs, 
since HSPG was shown to be essential for the interaction and recruit
ment of PFFs to the cell surface. Again, these interactions were shown to 
be mediated by negative charges of HS and the clustered K-T-K motifs in 
the aSyn PFFs structure. MYO7B regulates e-aSyn PFFs cell entry by 
maintaining a plasma membrane-associated actin network, which con
trols membrane dynamics (Zhang et al., 2020). 

The role of glial cells in aSyn-associated neurodegeneration cannot 
be overstated. Microglia have been shown to take up and release aSyn, 
thereby being a relevant player in the cell-to-cell spreading (George 
et al., 2019) and clearing of aSyn (Choi et al., 2020). Glial membrane 
receptors have also been shown to potentially mediate the effects of e- 
aSyn. Toll-like receptors (TLR) are membrane receptors expressed 
mainly in innate immune cells, where they have the ability to recognize 
pathogenic molecules (El-Zayat et al., 2019). Once these receptors 
recognize a pathogen they can activate or suppress inflammatory re
sponses, transcriptional factors, and phagocytosis (Kawasaki and Kawai, 
2014; Doyle et al., 2004). In synucleinopathies, TLR2 (La Vitola et al., 
2018) and 4 (Choi et al., 2020) mediate the inflammatory response by 
microglia in the presence of e-aSyn, affecting cytokine and chemokine 
release (Choi et al., 2020). They also mediate phagocytosis and glial- 
mediated cleaning of toxic form of aSyn. In microglia, TLR2 enables 
the internalization of aSyn oligomers released from neuronal cells. This 
receptor has been associated with PD and is significantly increased in PD 
patient brains. Interestingly, TLR2 levels were correlated with the 
accumulation of pathological aSyn in Lewy bodies. Its activation in 
neurons also showed to increase the levels of endogenous aSyn in 
neuronal models, resulting in an increase in the levels of autophagy 
markers (Dzamko et al., 2017). These results suggested a promising 
therapeutic potential for this receptor, which culminated in the exploi
tation of immunotherapy-based strategies targeting TLR2, which 
showed to ameliorate accumulation of aSyn, neuroinflammation, 
behavioral problems and neurodegeneration in PD/DLB mouse models, 
bocking both transmission and neurodegeneration associated with the 
interaction between the receptor and e-aSyn. It was also suggested that 
TLR2 may play a role in the gut-brain interaction, relevant in PD (Gor
ecki et al., 2021). 

Interestingly, many of the membrane proteins mentioned above are 
present both in the nervous and immune systems. LAG3 is also a known 
immune checkpoint receptor involved in immunoregulation and T cell 
function and immune homeostasis, inhibiting T cell proliferation and 
activation (Anderson et al., 2016), suggesting it might play a role in 
potential extracellular aSyn responses in immune cells. 

It remains unclear whether different forms of e-aSyn (such as olig
omers, fibrils, or exosome-packed protein) are internalized via distinct 
receptors or different endocytic mechanisms. Understanding how e-aSyn 
gets access to the cell interior, especially into neurons, will help to 
elucidate the mechanisms of PD pathology and will open new frontiers 
for therapeutic interventions. 

5. Extracellular aSyn in packages: exosomes and endocytosis 

Different aSyn species have been found in exosomes, suggesting this 
may be another route for the transfer of aSyn between cells (Emma
nouilidou et al., 2010; Danzer et al., 2012). It has been reported that 
neurons and microglia take up e-aSyn oligomers very efficiently when 
they are associated with exosomes (Bliederhaeuser et al., 2016). A 
recent study has shown that monomeric and oligomeric aSyn were found 
in exosomes purified from the plasma of PD patients. These exosomes 
were rapidly engulfed by BV2 mouse microglial cells, inhibiting auto
phagy, thereby leading to its accumulation in the cytosol and, eventu
ally, to its release to the extracellular space in exosomes, suggesting 
microglia play a role in the transmission of aSyn pathology. Further in 
vivo studies in mice, after unilateral injection into the striatum of human 
plasma exosomal aSyn demonstrated the localization of exogenous 
human exosomal aSyn in nigral neurons, and the presence of high mo
lecular weight aSyn species, suggesting that exogenous human exosomal 
aSyn seeded the aggregation of endogenous aSyn in vivo after engulf
ment of exosomes by microglia cells (Xia et al., 2019). 

Additional evidence on the importance of the endocytic pathway on 
aSyn internalization comes from in vitro and in vivo studies, where in
hibition of the endocytic pathway, by lowering temperature, by using 
dynamin-1 defective mutants or by inhibiting endocytosis with dyna
sore, reduces the uptake of monomeric, oligomeric and PFF e-aSyn (Lee 
et al., 2008a; Cipollini et al., 2008; Desplats et al., 2009; Samuel et al., 
2016; Sacino et al., 2017; Lee et al., 2008b). Internalization of e-aSyn, 
independent of the aggregation state, in neurons in in vivo models de
pends on dynamin activation and can be inhibited by endocytosis in
hibitors (Hansen et al., 2011). 

6. Transfer of aSyn via tunneling nanotubes 

aSyn can exploit different pathways to spread between cells. Using 
quantitative fluorescence microscopy in co-cultured neurons, aSyn fi
brils were found to be transferred from a donor to an acceptor cell inside 
lysosomal vesicles via tunneling nanotubes (TNTs). In particular, aSyn 
fibrils were able to seed soluble aSyn aggregation in the cytosol of 
acceptor cells. This suggests that neuronal cells overloaded with aSyn 
aggregates in lysosomes can dispose of this material by TNT-mediated 
intercellular (Abounit et al., 2016). 

More recently, the mechanism of lysosome-TNT-mediated transfer 
was further detailed. e-aSyn fibrils seem to subvert lysosomal structure 
and function, using them as Trojan horses for seeding and propagation 
between cells. Using super-resolution microscopy, e-aSyn fibrils were 
found to affect the morphology of lysosomes, to induce lysosomal 
membrane permeabilization (LMP), and to impair lysosomal function. e- 
aSyn fibrils also induce peripheral redistribution of lysosomes, probably 
mediated by transcription factor EB (TFEB), since e-aSyn fibrils induce 
TFEB nuclear translocation. This increases the efficiency of aSyn transfer 
to neighbor cells. It was also shown that seeding of soluble aSyn in the 
“acceptor” cells takes place mainly inside lysosomes from donor cells, 
since they displayed LMP. Furthermore, by using a heterotypic coculture 
system, donor cells bearing aSyn fibrils were found to transfer damaged 
lysosomes to acceptor cells, while receiving healthy lysosomes by TNTs 
(Senol et al., 2021). 

Recently, using co-culture and monoculture systems of differentiated 
THP-1 and SH-SY5Y cells, aSyn was found to bind migrating mito
chondria within TNTs, suggesting that this transfer mechanism may also 
contribute to cell-to-cell spread of aSyn aggregates and disease 
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propagation (Valdinocci et al., 2021). 

7. Extracellular aSyn can induce lysosomal and autophagy 
dysfunction 

Whether produced inside the cell, or taken up from the extracellular 
environment, it is believed that the main pathway for degradation of 
aggregated forms of aSyn is the autophagy-lysosome pathway (ALP) 

(Lee et al., 2004; Cuervo et al., 2004) (Fig. 2). Upon internalization of e- 
aSyn, the protein co-localizes with markers of the endocytic pathway 
(such as EEA1 and Rab5), and hours after internalization, it can 
assemble into high-molecular-weight oligomers and co-localize with 
markers of late endosomal and lysosomal compartments (Lamp-1) 
(Karpowicz et al., 2017; Konno et al., 2012). 

ALP dysfunctions have been implicated in the accumulation of aSyn 
aggregates leading to their release and uptake by adjacent cells, in a 

Fig. 2. Extracellular-aSyn (e-aSyn) induces different pathological responses. e-aSyn species (fibrils, PFFs, oligomers, or others, shown in red) can be found free, or 
associated with exosomes or ectosomes in the extracellular space. e-aSyn may then be internalized via endocytosis and/or receptor-mediated endocytosis. e-aSyn 
gains access to lysosomes from the endocytic pathway, and may cause lysosomal dysfunction, rupture, permeabilization and the release of species that may seed the 
aggregation/toxic conversion of endogenous aSyn (green). e-aSyn or intracellular aSyn may interact with mitochondria and induce their dysfunction, increased 
production of ROS and, ultimately, fragmentation. At ER membranes, e-aSyn may form toxic oligomers, induce stress-mediated UPR, raise cytoplasmatic Ca2+

concentration, and trigger apoptosis. e-aSyn may also inhibit vesicular ER-Golgi traffic, induce chromatin acetylation interacting with TADA2a, and induce 
DNA damage. 
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prion-like cycle of propagation (Sacino et al., 2017; Steiner et al., 2011; 
Jang et al., 2010; Bae et al., 2015). Strikingly, the levels of plasma 
oligomeric aSyn are higher in patients with different lysosomal storage 
diseases (LSD) then in matched controls (Pchelina et al., 2014; Shachar 
et al., 2011; Suzuki et al., 2007), and examination of postmortem sub
stantia nigra from PD patients showed that key lysosomal enzymes such 
as cathepsin D (CtsD), lysosomal-associated membrane protein (LAMP- 
2A), and the lysosomal hydrolase acid β-glucosidase (known as GCase) 
are reduced or less active (Chu et al., 2009; Gegg et al., 2012). Mutations 
in GBA1, that encodes for GCase, also known as glucocerebrosidase, are 
among the most common known genetic risk factors for LB disorders 
(Mazzulli et al., 2011; Bultron et al., 2010). 

In primary neurons, pharmacological inhibition of GCase activity 
causes a dose-dependent increase in the pathological burden of LB-like 
inclusions initiated by treatment with e-aSyn PFFs. GCase activity also 
modulates neuronal susceptibility to pathological e-aSyn insult, when 
endogenous aSyn aggregation was induced by very low concentrations 
of e-aSyn PFFs (Henderson et al., 2020). 

Furthermore, in mouse cortical neurons and differentiated dopami
nergic cells, GCase activity is inhibited by e-aSyn PFFs, but not by e-aSyn 
monomers, suggesting a positive feedback loop in aSyn aggregation and 
accumulation regulated by GCase (Gegg et al., 2020). 

A possible explanation for the involvement of GCase deficiency/ 
inactivity in PD is the accumulation of its substrate, glucosylceramide, 
that strongly induces the formation of toxic aSyn oligomers, as shown in 
an iPSC-derived midbrain culture model, where GCase activity was 
inhibited pharmacologically. 

Accumulation of intra-lysosomal aSyn species might induce their 
release to the cytoplasm, leading to LB formation, mitochondrial 
dysfunction, endoplasmic reticulum stress, cell-to-cell transmission by 
exocytosis etc (Fig. 2). Indeed, treatment of neuronal cells with aSyn 
aggregates (mimicking putative e-aSyn), results in the accumulation of 
aSyn in the lysosome, inducing its rupture. This has also been observed 
upon cell-to-cell transfer of aSyn aggregates (Freeman et al., 2013; 
Flavin et al., 2017). 

Furthermore, after the endocytosis of e-aSyn species (oligomers or 
fibrils), these can colocalize with lysosomal markers (LAMP-1 and 
LAMP-2A), causing lysosome enlargement and reduction of CtsD 
enzyme activity (Hoffmann et al., 2019). Furthermore, e-aSyn PFFs 
added to HEK293 cells or cultured primary neurons, seed the formation 
of inclusions by endogenous that cannot be effectively degraded (Tanik 
et al., 2013; Vasili et al., 2022). 

8. Extracellular aSyn can induce mitochondrial dysfunction 

Mitochondrial dysfunction is a hallmark of PD and other synuclei
nopathies. Neurons in general, and dopaminergic neurons in particular, 
have high-energy demands, and dysfunction in mitochondria highly 
impacts their physiology. 

Different species of aSyn affect mitochondrial biology and dynamics 
(fission and fusion, mitophagy, mitochondria retrograde/anterograde 
transport), protein importing and bioenergetics (Bose and Beal, 2016; 
Smith et al., 2005) (Fig. 2). aSyn has been shown to interact directly 
with mitochondrial membranes and several proteins, such as the 
translocases of the outer membrane 20 (TOM 20) and complex I (CI) 
proteins among others. Since mitochondria is also involved in apoptosis, 
perturbations in their function can trigger cell death (Di Maio et al., 
2016; Buhlman, 2016; Devi et al., 2008; Reeve et al., 2015). In agree
ment, e-aSyn oligomers induce selective oxidation of the ATP synthase 
beta subunit and mitochondrial lipid peroxidation in rat primary neu
rons. This oxidation increases the opening of the permeability transition 
pore (PTP), triggering mitochondrial swelling and, ultimately, cell death 
(Ludtmann et al., 2018). 

Oligomers of aSyn were also shown to impair mitochondria through 
interactions with cardiolipin, an anionic phospholipid present mostly in 
the inner mitochondrial membrane (Hoch, 1992). aSyn oligomers were 

found to induce robust permeabilization of mitochondrial-like vesicles 
and to trigger cytochrome c release from isolated mitochondrial upon 
cardiolipin binding (Camilleri et al., 2013). 

In a primary neuronal model where PFFs induce the endogenous 
neuronal accumulation of paSyn (Volpicelli-Daley et al., 2011), the 
majority of the paSyn (considered pathogenic aSyn) was shown to 
associate with mitochondria. Importantly, PFFs display a stronger 
binding to purified mitochondria than monomers, revealing a prefer
ential mitochondrial binding by aggregated aSyn (Wang et al., 2019). 

Another mechanism of mitochondrial dysfunction induced by e-aSyn 
oligomers is by interfering with mitochondrial protein import systems. 
e-aSyn oligomers can localize to the outer mitochondrial membrane and 
bind to TOM20, somehow leading to increased ROS production (Di Maio 
et al., 2016). 

Mitochondrial dynamics, including fission/fusion, morphology, 
mitophagy and cellular transport is also affected by oligomeric e-aSyn. 
Oligomeric e-aSyn induces mitochondrial damage by downregulating 
the protein Parkin, a PD-associated E3 ubiquitin ligase that mediates the 
degradation of defective mitochondria, being a key regulator of 
mitophagy. Loss of parkin function leads to the accumulation of 
damaged mitochondria (Narendra et al., 2008; Hammerling et al., 2017; 
Chung et al., 2020; Chen and Dorn, 2013). In PC12 cells, e-aSyn oligo
mers induce oxidative/nitrosative stress and cause parkin S-nitro
sylation. This PTM induces an increase in the autoubiquitination and 
degradation of parkin which, in turn, results in cell death. On the other 
hand, parkin overexpression protects PC12 against toxicity induced by 
e-aSyn oligomers (Wilkaniec et al., 2019). 

Also, e-aSyn impairs mitochondrial biosynthesis due to the parkin- 
dependent reduction of PGC-1α levels, the master regulator of mito
chondrial biogenesis, leading to the accumulation of abnormal mito
chondria (Wilkaniec et al., 2021). The authors claimed that these 
findings provide the first compelling evidence for the direct association 
of e-aSyn-mediated parkin depletion and impaired mitochondrial func
tion in PD, thus linking parkin dysfunction and e-aSyn signaling in PD 
pathophysiology. 

Astrocytes perform a neuroprotective role by taking up e-aSyn olig
omers, but long-term storage of these species can affect their mito
chondrial integrity (Lindström et al., 2017). Treatment of mouse 
astrocytes with different e-aSyn species (monomers, oligomers, or fi
brils) activates astrocytes and increases cytokine levels and markers of 
oxidation. However, only oligomeric species induce mitochondrial 
dysfunction and increase extracellular hydrogen peroxide production 
(Chavarría et al., 2018). Also, treatment of astrocytic cultures with anti- 
aSyn oligomer antibodies prevents aSyn accumulation and mitochon
drial damage (Gustafsson et al., 2017). 

e-aSyn can also induce mitochondrial dysfunction via stimulation of 
outer cellular membrane receptors. Aggregated e-aSyn interacts with 
neuronal purinergic P2X7R and induces intracellular calcium mobili
zation (Wilkaniec et al., 2017). More recently, treatment of SH-SY5Y 
cells with oligomeric e-aSyn was found to lead to a P2X7R-dependent 
decrease in mitochondrial membrane potential as well as to an eleva
tion of mitochondrial ROS production, resulting in breakdown of 
cellular energy production. Moreover, e-aSyn induces P2X7R-dependent 
deregulation of AMP-activated protein kinase, and reduces parkin levels. 
Activation of pathways of programmed cell death were observed after 
P2X7R stimulation in response to e-aSyn (Wilkaniec et al., 2020). In fact, 
several other studies have suggested a role for the purinergic receptor 
P2X7R in aberrant signaling in PD (Van Weehaeghe et al., 2019; Lee 
et al., 2011). 

9. Extracellular aSyn can induce endoplasmic reticulum (ER)- 
stress and UPR activation 

Several studies have implicated ER-stress and hipper-activation of 
unfolded protein response (UPR) signaling pathways in PD. There are 
several mechanisms through which aSyn aggregates might induce ER- 
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stress, such as via the direct binding to ER membranes, dysregulation of 
intracellular vesicular transport , ion imbalance (e.g. Ca2+ and iron), and 
UPR activation, all of which can ultimately cause neuronal cell death 
(Fig. 2). 

Aggregated forms of e-aSyn, as well as aSyn overexpression, can 
induce programmed cell death in neurons through either caspase- 
dependent or -independent pathways, due to chronic activation of the 
UPR caused by a sustained ER-stress in response to the accumulation of 
aggregated proteins (Lin et al., 2007; Walter and Ron, 2011). e-aSyn 
oligomers induce ER-stress in differentiated SH-SY5Y cells, leading to 
upregulation UPR related and programmed cell death genes (Song et al., 
2017). 

ER stress was also reported in brain slices from a transgenic rat model 
of PD treated with aSyn aggregates. aSyn activates ER stress mediators 
associated with PERK that activate ATF6 signaling, leading to the 
expression of GRP78, eIF2a and the pro-death apoptotic proteins CHOP 
and caspase-12, thereby inducing neurodegeneration (Gorbatyuk et al., 
2012). 

Ion imbalance is another mechanism through which aSyn can induce 
ER-stress. ER calcium release is triggered after inositol-1,4,5- 
triphosphate receptor (IP3R) stimulation by IP3. The inositol-1,4,5- 
triphosphate kinase B (ITPKB) inactivates IP3 and has a variant 
(thymine-to-cytosine substitution) associated with reduced risk of spo
radic PD (Chang et al., 2017). In primary neurons, knockdown or 
pharmacological inhibition of ITPKB increases the levels of phosphor
ylated, insoluble aSyn pathology induced by e-aSyn PFFs. Conversely, 
ITPKB overexpression reduces e-aSyn PFF-induced aSyn aggregation. 
Also, ITPKB inhibition or knockdown increased intracellular Ca2+ levels 
in neurons, leading to an accumulation of Ca2+in mitochondria that 
show increased respiration, suggesting e-aSyn-induced pathology is 
mediated by ITPKB by the regulation of ER-to-mitochondria 
Ca2+transport. Furthermore, the effects of ITPKB on mitochondrial 
Ca2+import and respiration can be prevented by pretreatment with 
pharmacological inhibitors of the mitochondrial Ca2+uniporter com
plex, which is also enough to reduce e-aSyn PFF induced pathology in 
neurons. Taken together, ITPKB may act as a negative regulator of e- 
aSyn induced aSyn aggregation and, highlighting the importance of 
functional ER-to-mitochondria Ca2+flux in PD (Apicco et al., 2021). 

aSyn aggregates, but not monomers, have been shown to bind to and 
activate SERCA, the most important ER-Ca2+ pump, and to induce the 
release of Ca2+ to the cytosol in neuronal cells. Treatment of cell cultures 
with SERCA inhibitors normalize cytosolic Ca2+ levels, protect cells 
from stress, and improve viability. The interaction between aSyn ag
gregates and SERCA was also detected in human DLB brain tissue (Betzer 
et al., 2018). 

Finally, e-aSyn may affect cellular iron metabolism mediated by ER- 
stress. Treatment of neuronal cells with e-aSyn PFFs changes the 
expression of key proteins involved in iron metabolism, such as the 
divalent metal transporter 1 (DMT1), the iron transporter (FPN), the 
iron regulatory protein 1 (IRP1) and hepcidin. Pretreatment of cells with 
the endocytosis inhibitor dynasore reverses these effects of e-aSyn (Mi 
et al., 2021). 

Microgliosis is considered an important event in PD (Wu et al., 
2002). ER-stress and mitochondria disfunction work together, via pro
tein kinase C delta (PKCδ), in promoting e-aSyn-induced microglia 
activation. PKCδ is activated in PD brains and in PD models, where it 
participates in reactive microgliosis (Zhang et al., 2007; Gordon et al., 
2012). In particular, e-aSyn PFFs induce increased levels of PKCδ, 
oxidative stress, mitochondria dysfunction, upregulation of the ER-stress 
classical markers ATF4, IRE1-a and eLF2a, and activation of NLRP3 
inflammasome in primary microglia cells and in the SN of mice after e- 
aSyn PFF injection into the striatum. 

Primary microglia cells treated with e-aSyn PFFs display increased 
expression of thioredoxin-interacting protein (TXNIP), an endogenous 
inhibitor of the thioredoxin (Trx) pathway, a major antioxidant protein 
system, and a known inducer of NLRP3 inflammasome activation. 

Knockdown of PKCδ in cells challenged with e-aSyn PFF is enough to 
reduce ER-stress, reduce expression of TXNIP and activation of NLRP3 
inflammasome. Moreover, attenuation of mitochondrial ROS via mito- 
apocynin and inhibition of ER-stress signaling with Salubrinal reduces 
the induction of the ER-stress/TXNIP/NLRP3 signaling axis, suggesting 
that mitochondrial dysfunction and ER-stress act in concert to promote 
microglial activation in response to e-aSyn PFF (Samidurai et al., 2021). 

10. Effects of extracellular aSyn in the nucleus 

Recently, it was shown that e-aSyn PFFs induce changes in the levels 
of histone 3 acetylation in the striatum and in the SN of mice injected 
with PFFs. Those changes seemed to be related to decreased transcrip
tional adapter 2-alpha (TADA2a) levels. TADA2a is a component of the 
p300/CBP-associated factor and is important in the process of histone 
H3/H4 acetylation. Consistently, using the BioID system in SH-SY5Y 
cells overexpressing WT or A53T-aSyn, the authors identified TADA2a 
as strong binding partner of aSyn (Roux et al., 2012). Furthermore, the 
levels of TADA2a and acetylated histone H3 are decreased in the SN of 
PD brains (Lee et al., 2021). 

Furthermore, e-aSyn was shown to alter the expression of sirtuins, 
DNA-bound poly(ADP-ribose) polymerases (PARPs), and other stress 
response and pro-survival proteins in PC12 cells. Sirtuins and PARPs are 
nicotinamide adenine dinucleotide (NAD)-dependent enzymes, involved 
in histone deacetylation and in poly-ADP-ribosylation processes, 
respectively (Mendoza-Alvarez and Alvarez-Gonzalez, 1993; 
Houtkooper et al., 2010; Strosznajder et al., 2010). Oligomeric e-aSyn 
also enhances expression of the pro-apoptotic protein Bax, reduces the 
anti-apoptotic protein Bcl2, and induces free radical production, de
creases mitochondria membrane potential and activates programmed 
cell death (Motyl et al., 2018) (Fig. 2). 

In different cell types (N27, primary neurons, astrocytes and 
microglia) and in mice, treatment with e-aSyn PFFs induces toxicity and 
reduces the levels of Lamin B1 and HMGB1, both nuclear proteins and 
established markers of cellular senescence (Verma et al., 2021), further 
confirming effects of e-aSyn in the nucleus of cells. 

11. Contribution of extracellular aSyn to neuroinflammation 

Neuroinflammation involves the participation of microglia and as
trocytes. It is well-established that a vicious cycle operates in PD, where 
the neuronal death taking place in early stages of PD triggers the acti
vation of microglia, which, in turn, causes additional neuronal death by 
releasing several pro-inflammatory molecules (Fig. 3). Neuro
inflammation is also present in MSA and DLB, and correlates with the 
density of inclusions and disease duration (Ozawa et al., 2004; Ahmed 
et al., 2012a; Amin et al., 2020). 

The detection of activated microglial cells in animal models (San
chez-Guajardo et al., 2013), in human postmortem brains samples 
(Harms et al., 2021), and in in vivo positron emission tomography (PET) 
imaging studies (Gerhard et al., 2006; Ouchi et al., 2005) supports the 
possibility that microglia become activated even before neuronal death. 
In fact, aggregated forms of aSyn released by neurons (e-aSyn) can 
activate microglia directly (Sanchez-Guajardo et al., 2013; Zhang et al., 
2005; Alvarez-Erviti et al., 2011; Su et al., 2008), or indirectly, via the 
induction of reactive A1 astrocytes (Chou et al., 2021; Lee et al., 2010; 
Mavroeidi and Xilouri, 2021) (Fig. 3). 

As explained above, it has been shown that oligomeric e-aSyn in
teracts with TLR2, activating p38 MAPK and NFκB, resulting in the 
production of NO, IL-1β, TNFα and IL-6 (Kim et al., 2013). Neuron- 
released e-aSyn also activates the leucine-rich repeat kinase 2 (LRRK2) 
via TLR2, promoting the nuclear translocation of NFATc2 and the 
release of TNFα and IL-6 cytokines (Kim et al., 2020). e-aSyn monomers 
and oligomers interact with TLR2 and TLR5, activating the NLRP3 
(NOD-, LRR- and pyrin domain-containing protein 3) inflammasome 
(Scheiblich et al., 2021), activating caspases and, thereby, the 

R. Domingues et al.                                                                                                                                                                                                                             



Neurobiology of Disease 168 (2022) 105696

9

processing of pro-IL1 into IL-1β. Monomers, oligomers and fibrils of 
aSyn also interact with TLR4, inducing the nuclear translocation of NFκB 
and secretion of TNFα, chemokine CXCL1 and NO (Fellner et al., 2013) 
(Fig. 3). 

Another possible microglial receptor for aggregated e-aSyn is the Fcγ 
receptor for IgG antibodies, and this interaction promotes nuclear 
accumulation of NFκB/p65 and IL-1α release (Cao et al., 2012). e-aSyn 
aggregates also interact with CD11b (a marker for CD8+ cytotoxic T cell 
activation and memory in virus infection) activating RhoA, and Rho- 
associated protein kinase (ROCK), thereby inducing NADPH oxidase 
(Nox2) to generate H2O2. This leads to phosphorylation of Lyn, a Src 
family kinase, and cortactin, an F-actin–associated protein, culminating 
in the reorganization of actin filaments and the migration of microglia 

towards the source of e-aSyn (Wang et al., 2015; Hou et al., 2018). 
e-aSyn aggregates also bind CD36, inducing Fyn kinase activity, 

PKCδ and NFκB/p65 nuclear translocation which, in turn, promotes 
NLRP3 inflammasome activation (Panicker et al., 2019). 

Overall, these signaling pathways triggered by e-aSyn aggregates in 
microglia culminate in the generation of pro-inflammatory mediators 
such as NO, TNFα, IL-6 and IL-1β, which induce neuronal degeneration 
(Copas et al., 2021), while C1q, IL-1α and TNFα induce astrocyte acti
vation (Liddelow et al., 2017) (Fig. 3). Astrocyte activation, in turn, 
produces more NO, IL-1α, IL-1β and IL-6 (Copas et al., 2021). Further
more, the secretion of neuroprotective molecules, such as neurotrophic 
factors and glutamate uptake, is decreased in activated astrocytes 
(Copas et al., 2021; Takaki et al., 2012), aggravating this toxic scenario. 

Fig. 3. Crosstalk between e-aSyn released from neurons and glial cells. Neurons produce different forms of aSyn and secrete them to the extracellular space. These e- 
aSyn forms act through distinct receptors and can activate microglia. Activated microglia release a plethora of factors, some of which lead to neuronal degeneration 
and others to astrocyte activation. Reactive astrocytes secrete pro-inflammatory factors and reduce the secretion of neuroprotective molecules, and take up gluta
mate, thereby promoting the degeneration of neurons. Secreted pathological e-aSyn forms can also interact with astrocytic receptors, inducing the activation of glial 
cells. Microglia and astrocytes internalize e-aSyn forms but may be unable to digest them, accumulating these proteins intracellularly and possibly favoring their 
spread through other healthy CNS sites. 
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As mentioned before, astrocytes can also become active or reactive 
by the direct contact between TLR4 with recombinant e-aSyn, inducing 
the expression of pro-inflammatory cytokines and NO production 
(Rannikko et al., 2015). 

Fibrillar e-aSyn can also interact with a yet unidentified receptor 
activating the receptor-interacting protein kinases-1 (RIPK1) and − 3 
(RIPK3) followed by NFκB signaling (Chou et al., 2021). 

Pathogenic aSyn also functions as a chemoattractant factor binding 
to CD11b and attracting microglia to sites where it is heavily produced 
by neurons (Wang et al., 2015). Moreover, it is speculated that the total 
amount of misfolded aSyn released by neurons increases during disease 
progression. This may direct impact on the immune response mounted, 
as studies have shown that the ability of e-aSyn to initiate a pro- 
inflammatory response is greater when the protein is misfolded (as 
oligomers or fibrils) (Hoffmann et al., 2016), or influenced by PD- 
associated mutations (Hoenen et al., 2016; Roodveldt et al., 2010). 

Considering the major role and influence of neuroinflammation in 
PD pathogenesis, several therapeutic approaches aimed at modulating 
neuroinflammation are being considered, such as inhibition of A1 as
trocytes, anti-TNF or anti-NFκB therapies (Copas et al., 2021; Mar
ogianni et al., 2020; Cardinale et al., 2021), as discussed below. 

12. Peripheral immune responses in PD: a field in its infancy 

The identification of early, specific predictors of PD is being eagerly 
pursued by the PD scientific community, as this would enable earlier 
diagnosis and, possibly, earlier therapeutic intervention. Assuming toxic 
aSyn species exist, as postulated by the gain of toxic function theory, 
toxic aSyn species may not only affect CNS cells, but also peripheral 
immune cells. In this way, immune cells could sense and respond to toxic 
e-aSyn species in the gastrointestinal tract, blood, or derived from the 
CNS, by adjusting the activation pattern, receptor expression, and/or the 
secretion of specific cytokines/chemokines. Although our understanding 
of the precise mechanisms that connect peripheral immune responses, 
innate and adaptative, and PD has advanced in recent years, there are 
still several gaps to be filled. Below, we focus on responses from cells 
other than glia. 

Only a few reports have investigated the immune response against e- 
aSyn at the periphery once neuroinflammation and brain injuries are 
already in progress or in latency. This means that we need to investigate 
further what happens outside the CNS, as this may lead to the identifi
cation of alarm signs and targets for intervention. This is particularly 
relevant if we think that PD may begin in the olfactory bulb or in the gut, 
and not necessarily in the brain. 

aSyn aggregates can activate several immune cells outside the CNS, 
such as T-cells, macrophages, monocytes, and neutrophiles. Injecting e- 
aSyn PFFs in the striatum of WT mice, results in an increase in the 
number of leukocytes, B, T, NK cells, and monocytes in the spleen when 
compared to e-aSyn monomer injected mice. A similar increase was 
observed in the inguinal lymph nodes, although no changes were 
observed in the number of circulating cells in the blood of these mice. 
Instead, a decrease in the total number of monocytes, neutrophils, and 
NK cells was detected (Earls et al., 2019). Since this was an exploratory 
study, further studies will be necessary to understand the peripheral 
responses in synucleinopathies. 

In blood samples from PD patients, stored 10 years before the onset 
of the motor symptoms, in combination with samples from other PD 
cohorts with patients at different times of motor diagnosis, an inverse 
correlation between the number of years after disease onset and T cell 
reactivity was observed (Lindestam Arlehamn et al., 2020). A very 
specific CD25-CD127- T cell subset that produces IL-10 in response to 
aggregated e-aSyn suggests a compensatory anti-inflammatory mecha
nism operating in early stages of PD. These findings indicate that specific 
T cell reactivity to aggregated aSyn is a feature of premotor and early 
motor PD and, if combined with other symptoms that have been linked 
to PD, are good predictors of the disease. 

Ageing progressively decreases the ability of macrophages (and 
microglia) to phagocytose e-aSyn (Bliederhaeuser et al., 2016). Macro
phages can be directly activated by e-aSyn leading to increased in
flammatory response and e-aSyn uptake and clearance. Both the N- 
terminal and C-terminal domains of aSyn, but not the NAC region, are 
necessary for macrophage activation, which is accompanied by ERK 
activation (Lee et al., 2009). Furthermore, the scavenger role of mac
rophages is important for e-aSyn clearance outside the CNS. More 
recently, in iPSC-derived macrophages from PD patients were found to 
clear fibrillar e-aSyn in an actin-dependent pathway. However, this 
phagocytic capacity was compromised by an excess of endogenous or 
exogenous aSyn (Haenseler et al., 2017). 

The evidence supporting the involvement of neutrophils in PD is still 
more limited at the present moment. Our group investigated the 
participation of neutrophil extracellular traps (NETs) in amyloid dis
eases using an in vitro approach. Fibrils of aSyn can induce the release of 
NETs, and the proteases associated with these traps can digest the am
yloid fibrils into toxic aggregates (Azevedo et al., 2012). Whether neu
trophils and their traps can play a role in PD, in the gut or even in the 
brain, will require additional investigation. 

Phagocytosis of e-aSyn by monocytes depends on the receptors they 
express. Therefore, characterization of receptor expression profiling of 
phagocytic cells will be necessary to allow a detailed understanding of 
the mechanisms used by these cells to clear e-aSyn. Interestingly, 
impairment of lysosomal function caused either by GBA mutations or by 
decreased enzymatic activity, as observed in monocytes from PD pa
tients, leads to failure of e-aSyn clearance (Wijeyekoon et al., 2018). 
HLA-A (MHC class I) and HLA-DR and HLA-DQ (MHC class II) molecules 
from monocytes bind to e-aSyn and induce high levels of T cell responses 
to e-aSyn in the CNS (Sulzer et al., 2017; Williams et al., 2018; Ahmed 
et al., 2012b; Fiszer et al., 1994; Schröder et al., 2018). 

In animal models, intravenous administration of e-aSyn PFFs and 
ribbon oligomers after LPS priming, results in an increase in the popu
lation of brain resident microglia and in leukocytes recruited to the 
spinal cord and to the brain (Peralta Ramos et al., 2019). 

Clearly, additional studies are necessary for to address the involve
ment of peripheral immune responses in synucleinopathies. 

13. Extracellular aSyn and autoimmune responses 

Several genes associated with PD are also associated with different 
autoimmune diseases (e.g. rheumatoid arthritis, ulcerative colitis, or 
Crohn’s disease) according to genome-wide association studies (Buhat 
and Tan, 2014; Foo et al., 2016; Hui et al., 2018; Witoelar et al., 2017). 
In addition, there is a network of interactions between the protein 
products of genes associated with autoimmune diseases and those of 
genes associated with PD (Witoelar et al., 2017). Here, we focus on the 
role of e-aSyn in a possible autoimmune response. 

Autoimmunity can result from an abnormal processing of self- 
proteins, which can generate epitopes presented by MHC that are then 
recognized by specific T cells that escape tolerance during thymic se
lection. The production of autoantibodies against specific epitopes of 
aSyn, that could give PD an autoimmune component, has been contro
versial since there are studies showing either an increase or decrease of 
the levels of these antibodies in CSF, serum, and blood (Papachroni 
et al., 2007; Yanamandra et al., 2011; Majbour et al., 2016; Horvath 
et al., 2017; Abd-Elhadi et al., 2016). It is important to emphasize that 
endogenous damage-associated molecular patterns (DAMPs), such as 
epitopes in aSyn, can elicit an autoimmune response that transforms the 
dopaminergic neurons exposing these epitopes via MHCI as a target of 
CD8+ killer cells, thereby destroying them. Alternatively, the response 
may target the secreted e-aSyn, aiding in its clearance (Bae et al., 2012). 
These DAMPs in endogenous e-aSyn might emerge after conformational 
changes in its structure due to oligomerization and fibrillation. Based on 
this, immunotherapy is currently being explored as a possible strategy 
against PD, either by active or passive immunization (Bae et al., 2012; 
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El-Agnaf et al., 2017; Brudek et al., 2017). 
A recent study focused on the study of aSyn epitopes that are capable 

of eliciting a humoral immune response, using a pool of peptides derived 
from aSyn (9-10 amino acid peptides - MHCI binders, and 15 amino acid 
peptides - MHCII binders) to simulate PBMCs from PD patients or from 
healthy controls (Sulzer et al., 2017). Different responses were identified 
and, interestingly, two antigenic regions in aSyn were identified - the 
first in the N-terminal region, containing the segment 31/32-45/46, and 
the second in region near the C-terminal, containing the segment 116- 
140, and requiring phosphorylation on S129 for its antigenicity. This 
elegant study revealed that peptides derived from two regions of aSyn 
induce an immune response in PD patients. Epitopes at the N-terminal 
end of the protein were specifically displayed by two MHCII beta chain 
alleles, DRB5*01:01 and DRB1*15:01, associated with 30% of PD pa
tients, as well as an additional MHCII allele and an MHCI allele not 
previously associated with PD. This response is enacted mostly by IL-5 
secreting CD4+ T cells, as well as IFNγ CD8+ cytotoxic T cells. Thus, 
immune responses to e-aSyn associated with PD have both MHCI and II 
components. 

14. Conclusion 

Synucleinopathies are thought to involve the spreading of e-aSyn 
between cells. Misfolded e-aSyn may cause a plethora of deleterious 
effects not only in dopaminergic neurons, associated with motor 
symptoms, but also in different cell types. The significant association of 
aging with synucleinopathies suggests that the concept of inflammaging 
may be highly relevant in these disorders. The misconception that 
neurodegenerative disorders arise exclusively due to damage in the 
nervous system arises from the clinical definition of these diseases. 
Nevertheless, it is important to consider that the CNS is an immune- 
privileged site. In this context, the spreading of pathological e-aSyn 
can have effects starting on the extracellular matrix all the way into the 
intracellular environment, affecting multiple organelles. 

The full extension of the relationship between the immune system 
and synucleinopathies remains elusive but the effects that e-aSyn has on 
immune cells is starting to emerge. Misfolded e-aSyn can spread, dam
age the receiving cells, and cause direct cell death or damage-associated 
inflammation through both innate and adaptive immune activation. 
Therefore, studying the immune system in the context of neurodegen
erative diseases is of high interest. Importantly, the use of the immune 
system’s natural specificity against different targets, there is a great 
hope in immunotherapy for tackling multiple diseases, from cancer to 
PD. However, since the immune system can act as a double edge sword 
due to the differences between normal and uncontrolled inflammation, 
as present in multiple autoimmune diseases, it will be essential to 
thoroughly investigate its involvement in synucleinopathies in order to 
exploit it as a source for biomarkers and for targets for therapeutic 
intervention. 
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