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1 Introduction 
 
1.1   Computational Psychiatry  
 
Psychiatric disorders are characterized by aberrant cognitive, emotional and social functions. 

However, the understanding of these abnormalities, their underlying mechanisms and how they 

give rise to psychopathology remain poorly understood (Friston, Stephan, Montague, & Dolan, 

2014; Huys, Maia, & Frank, 2016; Montague, Dolan, Friston, & Dayan, 2012; Stephan & 

Mathys, 2014; Wang & Krystal, 2014). Consequently, psychiatry remains a medical discipline 

that draws upon consensus-based diagnostic instruments, namely the DSM-IV (American 

Psychiatric Association, 2013) and ICD-10 (World Health Organization, 1992), which rely on 

the categorisation of patients’ verbal reports and behavioural observations.  

In light of relatively low rates of recovery from psychiatric disorders, it is assumed that 

biomarkers (i.e. measurable indicators that reflect biological dysfunctions) could help to 

improve diagnostic procedures and the prediction of treatment success. However, despite 

longstanding efforts, no validated biomarkers exist for the vast majority of psychiatric 

disorders.  

Computational psychiatry is a burgeoning field that aims to bridge the gap between 

phenomenological subjective experience and the underlying neurocognitive mechanisms and 

therefore may be highly relevant to the development of novel biomarkers (Paulus, Huys, & 

Maia, 2016). The theory-driven approaches of computational psychiatry mainly employ 

algorithmic models to explain behaviour and the underlying neural processes (Lis & Kirsch, 

2016; Montague et al., 2012). In particular, the aim of this approach is to understand how the 

brain computes beliefs and how they guide optimal decision-making.  Consequently, (sub)-

optimal choices may rely on (aberrant) belief computations, both of which are thought to 

constitute central aspects in psychiatric disorders (Friston et al., 2014). Importantly, abnormal 

decision-making and maladaptive beliefs about the social environment may be of particular 

relevance for psychiatric disorders, which have been construed as disorders of social cognition 

and interaction (Schilbach, 2016). For this reason, the present project adopted a computational 

approach to investigate learning and decision-making within a social context (Lis & Kirsch, 

2016; Schilbach, 2015). 

 



 2 

1.2  Social cognition in psychiatry  

1.2.1 Mentalization as transdiagnostic impairment 

Previously, psychiatric disorders have been construed as disorders of social interactions that 

affect the reciprocal exchange between two or more individuals (Schilbach, 2015). These 

impairments are thought to emerge from dysfunctional beliefs about the self and others that 

evolve as a result of aberrant mentalization (Frith & Frith, 2006; Schilbach, 2016). 

Mentalization describes the ability to understand one’s own and other people’s behaviours in 

terms of their underlying mental states such as intentions or feelings (Fonagy, Luyten, & 

Bateman, 2015; Frith & Frith, 2006). In social interactions, mental states are usually concealed, 

which is why we need to use external, overt signals to make attributions of the mental states in 

order to predict the actions of others (Diaconescu, Hauke, & Borgwardt, 2019). This ability is 

crucial for guiding behaviour in social interactions (Domes, Schulze, & Herpertz, 2009) and 

impaired mentalization may therefore give rise to altered beliefs and misinterpretations that lie 

at the core of social interaction problems in various psychiatric disorders (Schilbach, 2016).  

 
1.2.2 Methodological advances in social neuroscience 

Different paradigms have been used to probe mentalization, such as the Reading the Minds in 

the Eyes Test (RMET) (Baron-Cohen, Wheelwright, Hill, Raste, & Plumb, 2001) and the 

Strange Stories and Strange Cartoons Task (Happé, 1994). In the RMET, participants are asked 

to attribute mental states from photographed eyes and in the strange stories tasks, participants 

are asked to make inferences on the underlying intentions of the stories characters. 

Traditional ToM tasks adopt a third-person perspective that involves interpreting other peoples’ 

behaviour via observation. However, these tasks fall short of the highly dynamic and reciprocal 

nature of social interactions in everyday life (Schilbach et al., 2013). The rise of second-person 

neuroscience has therefore prompted methodological and technical developments making tasks 

more ecologically valid (Redcay & Schilbach, 2019; Schilbach et al., 2013). An important 

contribution in this endeavour came from economic exchange games (Lis & Kirsch, 2016; 

Montague et al., 2012; Redcay & Schilbach, 2019), in which social interactions are simulated 

in a more realistic, yet controlled, manner. In these tasks, participants are usually asked to play 

with real or alleged partners in order to maximise a profit (Lis & Kirsch, 2016; Robson, Repetto, 

Gountouna, & Nicodemus, 2020) requiring them to engage in mentalization (Frith & Singer, 

2008). The well-controlled laboratory setting allows for the application of computational 

models to mechanistically explain the observed behaviour, which thus gives insight into the 
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underlying mechanisms of (social) behaviour, providing algorithmic descriptions of feedback 

processing (i.e. learning) and decision-making. These computational models can be based in 

reinforcement learning theory or Bayesian algorithms to whose description we now turn. 

 

1.3  Computational Models of learning 

1.3.1 Reinforcement learning 

Computational models of learning and decision-making propose how we should optimally 

integrate previous beliefs and newly observed data, e.g. feedback, in order to optimise goal-

directed behaviour (Dayan & Daw, 2008). They provide putative algorithmic descriptions of 

how the values of different options are computed and chosen from in order to maximise 

outcomes. The most influential reinforcement learning algorithm (Rescorla & Wagner, 1972) 

computes the difference between the predicted "($) and actual outcome &($), i.e. prediction 

errors '($), that is used to update expectations about a particular state of the world. This 

prediction error is the driving force of learning. For instance, in an experiment in which 

stimulus-reward associations are learned during multiple trials (k), the predicted value of this 

stimulus "($()) is a function of the current prediction "($) and the prediction error '($) 

weighted by a learning rate *. 

 

'($) = &($) − "($)                  (Equation 1) 

"($()) = "($) + * ∗ '($)								 (Equation 2) 

 

The prediction error '  is positive when the received reward is higher than predicted, and 

negative when it is smaller than predicted. The learning rate scales the impact of the prediction 

error on the belief update and accounts for the speed of learning, i.e. how strongly new feedback 

is integrated. A high learning rate would imply fast changes in predictions in light of the most 

recent information, a slow learning rate would imply that prediction errors do not have a strong 

impact on future predictions. Reinforcement learning models have contributed a great deal to 

our understanding of the neurobiological underpinnings of reward learning but also of social 

learning, i.e. learning about or from others (Lockwood & Klein-Flügge, 2019) (cf. section 1.5).  

However, there are a number of limitations of reinforcement learning models (Gershman, 2015; 

Mathys, Daunizeau, Friston, & Stephan, 2011). One major limitation is that the predicted value 

of a stimulus is represented as a point estimate rather than a probability distribution, which not 

only entails a prediction but also its uncertainty. Another, related limitation is that the learning 
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rate can only vary between individuals and contexts but not within individuals. More 

specifically, learning rates should be adjusted depending on the certainty of the environment 

and the certainty of previous experiences (e.g. Behrens, Woolrich, Walton, & Rushworth, 

2007). The next section presents how Bayesian learning models overcome these limitations. 

 
1.3.2 Bayesian inference 

The Bayesian brain hypothesis conceptualises our brain as an inference machine that holds 

internal mental representations or beliefs about states of the world, that guide our perception in 

the form of top down predictions (Friston et al., 2014). This internal model is also called a 

generative model of sensory inputs because it describes a probabilistic mapping of the hidden, 

latent states to the sensory signals that are observable, i.e. the probability of the data Y, given 

states X P(Y|X), that describe how the hidden parameters generate the sensory inputs 

(likelihood). In the generative model, the likelihood of the data or sensory evidence is combined 

with a-priori beliefs called priors P(X) to infer the most likely environmental cause (X) that 

generated the data Y P(X|Y), which is termed posterior. The process by the which prior beliefs 

change to posterior beliefs is inference and can be performed by means of the Bayes’ rule.  

In Bayesian inference prior and posterior beliefs are represented as probability distributions 

with means and variances (inverse precisions) and the extent to which posterior beliefs change 

in light of new observations depends on a delicate balance between the precision of the sensory 

data and the precision of the prior belief (Equation 3 and Figure 1). Consequently, the belief 

update in Bayesian learning models resemble the equation of reinforcement learning models 

introduced in 1.3.1 with the difference that the learning rate is defined by the ratio between the 

confidence or precision of the sensory data and the precision of the prior belief (Equation 3). 

These are termed precision weights or dynamic learning rates because prediction errors are not 

always weighted to the same extent. Instead, surprising events are given more weight when the 

precision of the prior belief is lower relative to the precision of the sensory data (Mathys et al., 

2014;  Mathys et al., 2011). Crucially, Bayesian learning models can instantiate belief updating 

across different hierarchical levels, in which higher levels represent beliefs about more abstract 

features of the world.  

 

∆belief	 ∝ 	 789:;<;=>?@AB?@CDDE
789:;<;=>FG@DG	HB?@BI

	× 	prediction	error  (Equation 3) 
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Figure 1. Bayesian belief update. This figure illustrates the principles of Bayesian inference whereby a prior belief 

(prediction) is combined with the likelihood (e.g. sensory data) to generate a posterior belief (updated prediction). 

All come in the forms of Gaussian probability distributions with means and variances (inverse precisions). The 

discrepancy between the prior belief and the likelihood is the prediction error. The extent to which this error is 

used to update the prior belief depends on the variance of the prior and the likelihood. When prior beliefs with 

decreased precisions meet sensory data with increased precision, the belief update is biased towards the more 

reliable sensory data (depicted in upper panel). If the sensory data has a decreased precision relative to the prior 

precision (as depicted in the lower panel), the posterior is dominated by the prior belief. The figure was created 

using Matlab R2017a. 

 
 
1.3.3 Mentalization as special case of inference 
 
As discussed above, the delicate balance between the precision of the data and precision of the 

prior belief is a prerequisite for adaptive inference (Haker, Schneebeli, & Stephan, 2016). In 

turn, it has been argued that an imbalance in those quantities could give rise to maladaptive 

beliefs in psychopathology (Mathys, 2016; Stephan & Mathys, 2014). Just as we need to infer 

the causes of our sensations, we need to infer the causes of the actions and emotions of others 

and this happens, to a large extent automatically outside of conscious perception (Frith & Frith, 

2006). During social interaction, we mostly rely on automatic inferences, whereby social 

signals are not unbiasedly processed but instead are processed through the lens of pre-acquired 

priors or implicit assumptions that can be understood as a “practical know-how” for social 

interaction (Schilbach, 2016). Therefore, social inference can be understood as a special case 
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of unconscious inference. However, social learning has mostly been studied using experimental 

paradigms of explicit mental state attribution. In fact, some research suggests that mentalization 

impairments in psychiatric disorder pertain more to automatic and implicit rather than explicit 

processes (Kronbichler et al., 2019; Langdon, Seymour, Williams, & Ward, 2017; Senju, 

Southgate, White, & Frith, 2009).  

 
1.4 Neural correlates of social and non-social learning  

Social learning refers to the process by which we learn about other people’s actions and their 

consequences (Joiner, Piva, Turrin, & Chang, 2017). In addition to learning the association 

between others’ actions and consequences, we infer on hidden traits (Hackel, Doll, & Amodio, 

2015) or intentions (Diaconescu et al., 2017) of others, which engages mentalization. 

Therefore, an ongoing matter of debate concerns the question of whether learning from others 

engages the same neural mechanisms as those involved in learning from own experiences such 

as primary rewards. Alternatively, the account of domain-specificity suggests that social 

inference relies on distinct brain regions that are specifically evolved for social cognition 

(Joiner, Piva, Turrin, & Chang, 2017; Lockwood & Klein-Flügge, 2019; Ruff & Fehr, 2014; 

Wittmann, Lockwood, & Rushworth, 2018).   

Model-based approaches to fMRI have been used to elucidate the question of domain-

specificity by probing the neural correlates pertaining to learning and decision-making for 

social and non-social aspects at the same time (cf. section 1.7, Behrens, Hunt, & Rushworth, 

2009). Whereas traditional fMRI designs contrast blood oxygen level dependent (BOLD) 

activity between different conditions of stimulus input or behaviour, computational modelling 

allows more mechanistic insights by uncovering hidden variables that may underlie the 

observed data, such as the predictions during decisions and the errors associated with them 

during outcome processing. In model-based fMRI, parameters that fluctuate on a trial-by-trial 

basis can be used as predictors of the BOLD response. This way, one can investigate which 

computations are instantiated by what brain areas at a certain point in time (Behrens, Hunt, & 

Rushworth, 2009). Indeed, mounting evidence indicates that the neural computations 

underlying social and non-social learning share a substantial degree of similarity, in addition to 

being partially dissociable. 

 

1.4.1 Non-social learning  
  
Research investigating non-social learning by means of reinforcement learning models have 

convergently demonstrated the role of dopamine in reward learning (Daw & Doya, 2006; 
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Montague, Hyman, & Cohen, 2004; Wolfram Schultz, 2007, 2013). Single-cell recordings in 

animals and fMRI studies in humans have found reward prediction error signals in 

dopaminergic neurons of the ventral tegmental area (VTA) and substantia nigra (SN) of the 

midbrain (Klein-Flügge, Hunt, Bach, Dolan, & Behrens, 2011; Schultz, Dayan, & Montague, 

1997; Wolfram Schultz, 2013) and the ventral striatum (vSTR) (Delgado, Nearing, LeDoux, & 

Phelps, 2008; Garrison, Erdeniz, & Done, 2013; O’Doherty, Cockburn, & Pauli, 2017), which 

receives dopaminergic projections from the midbrain. Activity in dopaminergic areas increases 

with positive reward prediction errors (reward larger than predicted) and decreases with 

negative reward prediction errors (reward smaller than predicted) (Delgado et al., 2008). In 

addition, the striatum has also been implicated in aversive prediction errors, for instance during 

pain or fear conditioning (Delgado, Li, Schiller & Phelps, 2008). However, aversive prediction 

errors mostly activate the amygdala and insula, which is central in risk and error monitoring 

(Garrison et al., 2013). 

Thus, corroborating evidence shows that non-social reward learning is largely dependent on 

dopamine-signalling in the striatum, which is involved in the evaluation of stimuli and 

controlling actions pertaining those stimuli in order to make decisions that lead to reward and 

avoid punishment. Therefore, altered hedonic experience, i.e. anhedonia, which is a core 

symptom of many psychiatric disorders, is thought to be associated with aberrant dopaminergic 

signalling (Chekroud, 2015). In addition, striatal activity has been shown to be implicated in 

the rewarding experiences during social interactions (Pfeiffer et al., 2014). However, the 

computational and neural underpinnings of social anhedonia and social learning in psychiatric 

disorders have not yet been investigated.  

 

1.4.2 Social learning  
  

A number of studies have investigated the neural underpinnings associated with social-learning 

by means of computational modelling (Lockwood & Klein-Flügge, 2019). Social learning is a 

multifaceted construct, which can either entail learning about the consequences of one’s own 

behaviour on others (e.g. learning about being helpful or liked) or the consequences of other’s 

behaviour on own experiences (e.g. learning about the helpfulness or trustworthiness of 

someone) (Behrens, Hunt, & Rushworth, 2009; Joiner, Piva, Turrin, & Chang, 2017; Lockwood 

& Klein-Flügge, 2019; Ruff & Fehr, 2014; Wittmann, Lockwood, & Rushworth, 2018).   

This project concentrated on studying the computational and neural processes associated in 

learning to take advice and trust others.  
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Similarly, previous studies have employed the iterated trust game in order to investigate the 

neural processes associated with learning to trust others (Delgado, Frank, & Phelps, 2005; 

Fareri, Chang, & Delgado, 2012; King-Casas et al., 2005; Phan, Sripada, Angstadt, & McCabe, 

2010). In the trust game, an investor is given an amount of money of which they can decide to 

send all, some or nothing to the trustee. The amount sent is usually multiplied before the trustee 

then decides whether to return all, just a part or none back to the investor. While the investor 

could earn more by sharing, he/she takes the risk of the trustee not reciprocating the money. 

Positive social feedback, in this case signalling reciprocated vs. unreciprocated cooperation, 

recruit the striatum (both the caudate and putamen) as well as the orbitofrontal cortex (OFC) 

(Delgado, Frank, & Phelps, 2005; Fareri, Chang, & Delgado, 2012; King-Casas et al., 2005; 

Phan, Sripada, Angstadt, & McCabe, 2010).  

King-Casas et al. (2005) elegantly demonstrated that the caudate is involved in building a 

reputation about the other person during a trust game, as activity in this region that is associated 

with feedback learning, signals trust during decision phases in later phases of the interaction, 

after a reputation was built. This is in line with findings of non-social learning showing that the 

striatum is signalling the probability of primary rewards (Daw & Doya, 2006). Negative 

violations of social reward, such as unreciprocated vs. reciprocated cooperation have been 

associated with activity in the (anterior) insula (Delgado et al., 2005). This accords with studies 

demonstrating insula activity in response to misleading advice (Diaconescu et al., 2017) or 

social exclusion (Eisenberger, Lieberman, & Williams, 2003). 

These findings support the notion that social learning rests on domain-general learning 

structures such as the striatum and insula. However, other studies have pointed to some degree 

of domain-specificity with regard to social learning: In the seminal work of Behrens, Hunt, 

Woolrich, & Rushworth (2008), social learning and non-social learning were directly 

compared. This study used a Bayesian learning model that extended the structure of 

reinforcement learning models by adopting a dynamic learning rate that scales prediction errors 

depending on the volatility of the environment, i.e. speed of contingency changes. Participants 

were asked to learn about the winning probability of two cards. In addition, a social advice was 

provided at each trial in the form of a red framing of one of the two cards. Participants were 

previously introduced to the actor that was allegedly giving advice with changing intentions. 

The model-based analysis revealed that non-social reward prediction errors about the winning 

card were associated with activity in the vSTR, whereas social prediction errors recruited the 

dorsomedial prefrontal cortex (dmPFC), middle temporal gyrus (MTG) and temporoparietal 

junction (TPJ) (Behrens et al., 2008) which are regions that are implicated in ToM and 
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mentalization (Frith & Frith, 2006). Additionally, the learning rate for both cues correlated with 

activity in the anterior cingulate, albeit in different sub regions: the reward learning rate was 

correlated with activity in the sulcus of the anterior cingulate cortex (ACCs) whereas the social 

learning rate correlated with activity in the gyrus of the anterior cingulate cortex (ACCg).  

A modified version of this task was more recently employed in conjunction with a more 

sophisticated computational approach to learning (Diaconescu et al., 2014, 2017; Sevgi, 

Diaconescu, Henco, Tittgemeyer, & Schilbach, 2020). Here, Diaconescu et al. (2017) adopted 

a hierarchical Bayesian model (Hierarchical Gaussian filter) to investigate the neural correlates 

of hierarchical precision-weighted prediction errors during a task in which participants were 

asked to infer on an advisors trustworthiness. In this study, precision-weighted prediction errors 

pertaining the social outcome, were associated with wide spread activation such as the 

dorsolateral prefrontal cortex (dlPFC), anterior cingulate cortex (ACC), insula and the midbrain 

(VTA/SN) but also in TPJ and dmPFC which concurs with the results shown by Behrens et al., 

(2008). Moreover, prediction errors about the volatility of the social advice was represented in 

the basal forebrain, containing cholinergic neurons. Crucially, this same pattern was found in 

an earlier task using a perceptual inference task (Iglesias et al., 2013). These findings suggest 

that apart from domain-general learning computations in the reward circuitry, social learning 

rests on additional, specified brain regions that may be uniquely social.  

 
1.5 Learning and decision-making in psychiatric disorders  

The application of reinforcement learning models and Bayesian learning models are central in 

computational psychiatry because of the main assumption that disorders of the mind can be 

reconstrued as disorders of learning and decision-making (Mathys, 2016). Until now, studies 

on learning and decision-making in psychiatric disorders have largely concentrated on non-

social reward learning. For instance, impaired hedonic experience in psychopathology may be 

captured by altered learning about monetary rewards, which is associated with aberrant striatal 

signalling (Chekroud, 2015). Despite aberrant social cognition being a central diagnostic 

criterium for many psychiatric disorders (Schilbach, 2016), the underlying computational 

mechanisms and how they relate to social anhedonia remain largely unknown. To investigate 

this, the present PhD thesis investigated learning and decision-making in patients with major 

depressive disorder (MDD), schizophrenia (SCZ) and borderline personality disorder (BPD). 

Despite heterogenous presentations of these disorders, they commonly have been associated 

with impaired learning and decision-making in social and non-social contexts, as outlined in 

the following.  
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1.5.1 Major depressive disorder 

 
MDD is characterised by a marked inability to experience reward (anhedonia) and loss of 

interest in pleasurable activities as well as negative beliefs about the self and others 

(Weightman, Air, & Baune, 2014). Studies using classical reinforcement learning tasks showed 

that reduced reward sensitivity in MDD (Harlé, Guo, Zhang, Paulus, & Yu, 2017; Henriques & 

Davidson, 2000) was associated with blunted activity patterns in the vSTR, which were 

correlated with symptoms of anhedonia (Gradin et al., 2015; Gradin et al., 2011; Harlé et al., 

2017; Rothkirch, Tonn, Köhler, & Sterzer, 2017). Anhedonia is also associated with reduced 

motivation to engage in social interactions and impaired social cognition (Kupferberg, Bicks, 

& Hasler, 2016). However, little is known about the computational aspects of social learning in 

MDD.  

Previously, Safra, Chevallier, & Palminteri (2019) found that the severity of depressive 

symptoms were associated with reduced performance in a learning task when the choices of a 

co-player were presented, suggesting a negative-audience effect. Studies employing economic 

games such as the trust game showed that patients with MDD exhibit stronger emotional 

reactions to unpleasant social interactions and weaker reactions to pleasant social interactions 

(Robson et al., 2020), which is in line with a negativity bias. Most importantly, patients with 

MDD show a reduced integration of feedback in social games to adapt behaviour accordingly 

(Robson et al., 2020). Reduced reward processing has been associated with the notion of learned 

helplessness or negativity biases (Chekroud, 2015), which may imply overly precise priors of 

negative predictions (Clark, Watson, & Friston, 2018). Whether these findings pertain to more 

general reward processing impairments is yet to be investigated.  

 
1.5.2 Schizophrenia 

 
SCZ is a disorder characterised by hallucinations and persecutory delusions (positive 

symptoms) as well as deficits in emotional expression (negative symptoms). In addition, people 

suffering from schizophrenia show marked impairments in mentalizing functions (Green, 

Horan, & Lee, 2015). Studies employing reinforcement learning models provided evidence for 

impaired reward learning in medicated (Strauss, Waltz, & Gold, 2014; Waltz et al., 2009) and 

unmedicated patients with SCZ (Juckel et al., 2006; Schlagenhauf et al., 2014), which was 

associated with blunted responses in the vSTR in response to positive prediction errors, which 

is in line with findings of patients with MDD. In addition, social interaction tasks such as the 
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trust game have found smaller striatal activity during cooperative responses, suggesting that 

patients with SCZ may experience social interactions as less rewarding (Gromann et al., 2013; 

Robson et al., 2020).  

While SCZ patients appear to have difficulties in learning about rewarding events, a number of 

findings point to increased, but not adaptive learning, of non-predicting cues. This is in line 

with the notion of salience over-attribution to neutral or irrelevant stimuli (Kapur, 2003; 

Winton-Brown, Fusar-Poli, Ungless, & Howes, 2014). In addition, studies employing the 

reversal learning task, have demonstrated impairments in tracking the changing probabilistic 

reward associations indicated by high choice switching behaviour (Culbreth, Gold, Cools, & 

Barch, 2016; Schlagenhauf et al., 2014). Similarly, studies adopting trust games have shown 

less strategic decisions, accepting unfair offers less and rejecting fair offers more (Robson et 

al., 2020).  

Thus, not knowing what information to regard and disregard as well as high choice switching 

may be related to aberrant beliefs pertaining the volatility of the environment (Deserno et al., 

2020; Diaconescu et al., 2019; Sterzer, Voss, Schlagenhauf, & Heinz, 2018), which is a more 

abstract feature of the environment and can be modelled using hierarchical Bayesian models 

such as the hierarchical Gaussian filter (HGF; (Lomakina et al., 2014; Mathys et al., 2011). In 

fact,  Deserno et al. (2020) showed that patients with SCZ showed increased initial beliefs about 

volatility that were associated with stronger belief updates. However, with regard to social 

learning, Diaconescu et al. (2019) suggested that in patients with psychosis, enhanced belief 

precision is associated with an increased belief rigidity and a decreased propensity to update 

the model about a confederate. This in contrast would be associated with a reduced estimation 

of volatility. Although these two suggestions imply different roles for volatility with regard to 

the social and non-social domains, no study has systematically tested this in patients with SCZ. 

 
1.5.3 Borderline personality disorder 

 
BPD is a complex psychiatric disease that is marked by interpersonal instability as well as 

emotional and behavioural dysregulation and impaired decision-making (Gunderson, Herpertz, 

Skodol, Torgersen, & Zanarini, 2018). Patients with BPD show a substantial symptomatic 

overlap with patients with SCZ, displaying increased self-referential thinking and paranoid 

ideation. In addition, patients also show increased levels of depression. However, learning and 

decision-making is less well understood in BPD compared to MDD or SCZ.  

Unlike patients with SCZ, patients with BPD showed intact reversal learning in non-social 

environments (Berlin, Rolls, & Iversen, 2005; Dixon-Gordon, Tull, Hackel, & Gratz, 2017), 
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but did show impairments when the context was emotional (Dixon-Gordon et al., 2017). Studies 

employing the trust game showed that BPD patients’ interactions were characterized by reduced 

trust and less cooperation impeding the maintenance of reciprocal relationship within the 

experimental setting (King-Casas et al., 2005; Saunders, Goodwin, & Rogers, 2015; Unoka, 

Seres, Áspán, Bódi, & Kéri, 2009). Interestingly and somehow contradictive, when performing 

mentalizing tasks, patients with BPD have demonstrated comparable or even improved 

performance compared to healthy controls (HC) (Fertuck et al., 2009; Frick et al., 2012) and 

higher confidence in their decisions (Schilling et al., 2012). This may reflect specifically rigid 

beliefs (overly precise priors) about others (Sharp, 2014), similar to those observed in 

psychosis. However, patients with BPD often show unstable beliefs about others that polarize 

between idealization and approach and devaluation and rejection. In a predictive-coding 

framework this would point to extreme beliefs with decreased precision causing an 

overweighting of prediction errors and constantly changing models of others.  Remarkably 

however, a recent study employing a probabilistic learning task in conjunction with 

computational modelling found that patients with BPD showed reduced learning for social but 

also non-social cues when they became less predictive of the outcome, i.e. volatile (Fineberg et 

al., 2018). The authors suggested that this might be due to higher expected baseline volatility 

in participants with BPD. However, the computational model employed in that study did not 

explicitly model beliefs about volatility. Moreover, this finding supports the notion of learning 

impairments in social and non-social contexts, challenging the domain specificity hypothesis. 

 
1.6 Aim of Thesis 

The aim of the present PhD thesis was to investigate the computational mechanisms that pertain 

to probabilistic reward and social learning in healthy controls (HC) and participants with 

different psychiatric disorders that are known to exhibit social learning and decision-making 

dysfunction, in particular SCZ, BPD & MDD.  

Previous studies probing the neural correlates of learning by means of computational modelling 

(Behrens et al., 2008, 2007; Diaconescu et al., 2014, 2017) have used paradigms of explicit 

mental state attribution. However, some research suggests mentalization impairments in 

psychiatric disorders pertain more automatic rather than explicit processes (cf. section 1.4; 

Kronbichler et al., 2019; Langdon et al., 2017; Senju et al., 2009). Therefore, the current thesis 

adopted a probabilistic reward learning task (Sevgi et al., 2020) containing a social cue about 

which no explicit instruction was given in order to assess the spontaneous use of social 

information during the learning and decision process. In the task, cards with varying winning 
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probabilities had to be chosen. In addition, the task included a computer-generated face that 

gazed towards one of these cards providing helpful or misleading advice. In order to directly 

compare social and non-social inference, we applied parallel reinforcement learning models 

and hierarchical Bayesian models to behavioural data to obtain a profile of each participant’s 

particular way of updating beliefs about the two types of information. In addition, our modelling 

framework was specifically designed to quantify the relative weighting of predictions about 

social and non-social information. 

 
1.6.1 Neural correlates of social and non-social learning and decision-making 

In the fMRI study, I used the learning trajectories as well as the weighting factor from the best 

performing model, the HGF (Mathys et al., 2014; Mathys et al., 2011) and used them as 

predictors in a model-based fMRI analysis. This approach was employed to investigate the 

neural correlates of social and non-social inference in healthy participants. More specifically, 

we asked whether social learning signals (i.e. prediction errors) during uninstructed inference 

would yield neural activations similar to those found in studies of instructed inference (Behrens 

et al., 2008; Diaconescu et al., 2017). In addition, we probed the neural correlates of social and 

non-social predictions during choice and evaluated whether inter-individual variance in the 

propensity to use the social cue during decision-making would be reflected in differential neural 

activity. 

 
1.6.2 Transdiagnostic mechanisms of social and non-social learning and  

decision-making 

As outlined in chapter 1.5., Bayesian accounts of psychiatric disorders argue for an imbalance 

between belief precision and data precision that give rise to aberrant inference and maladaptive 

beliefs (Haker et al., 2016; Mathys, 2016; Stephan & Mathys, 2014). During the past years, 

these accounts have started to be formally tested (e.g. Deserno et al., 2020; Lawson, Rees, & 

Friston, 2014), albeit with a focus on non-social inference. Given the ubiquity of social 

impairments in psychiatric disease, the current study investigated learning and decision-making 

in a social context. More specifically, since our paradigm consisted of social and non-social 

cues, we aimed to systematically investigate whether potential aberrances in learning pertain 

certain aspects of the environment or rather general process that are independent of the domain. 

To test this, we used the learning trajectories of the winning model (HGF) to extract precision 

weights (i.e. dynamic learning rates) when learning about social and non-social contingencies 

and their volatility to investigate inference style in both domains at the same time. In addition, 
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we investigated whether patient groups differed in the extent to which social predictions are 

weighted during decisions and whether this is reflected in scores of social anhedonia. 
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2 Bayesian modeling captures inter-individual differences in social belief 

computations in the putamen and insula 

 

This chapter includes the first study that used model-based fMRI in healthy controls to 

investigate the neural activity associated with social and non-social predictions and inter-

individual differences in the propensity to weight social over non-social predictions. The 

findings highlight the role of the insula in tracking both social and non-social predictions during 

decision-making and in signalling prediction errors during learning. Moreover, the results 

showed that individual differences in the extent to which participants weighted their social 

predictions were correlated with activity in the putamen and insula. These findings demonstrate 

the usefulness of model-based fMRI in uncovering the behavioural and neural mechanisms of 

spontaneous social cue integration in learning and decision-making. The manuscript was 

accepted in Cortex in 2020. 
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Abstract 

 

Computational models of social learning and decision-making provide mechanistic tools to 

investigate the neural mechanisms that are involved in understanding other people. While most 

studies employ explicit instructions to learn from social cues, everyday life is characterized by 

the spontaneous use of such signals (e.g. the gaze of others) to infer on internal states such as 

intentions. To investigate the neural mechanisms of the impact of gaze cues on learning and 

decision-making, we acquired behavioural and fMRI data from 50 participants performing a 

probabilistic task, in which cards with varying winning probabilities had to be chosen. In 

addition, the task included a computer-generated face that gazed towards one of these cards 

providing implicit advice. Participants’ individual belief trajectories were inferred using a 

hierarchical Gaussian filter (HGF) and used as predictors in a linear model of neuronal 

activation. During learning, social prediction errors were correlated with activity in inferior 

frontal gyrus and insula. During decision-making, the belief about the accuracy of the social 

cue was correlated with activity in inferior temporal gyrus, putamen and pallidum while the 

putamen and insula showed activity as a function of individual differences in weighting the 

social cue during decision-making. Our findings demonstrate that model-based fMRI can give 

insight into the behavioural and neural aspects of spontaneous social cue integration in learning 

and decision-making. They provide evidence for a mechanistic involvement of specific 

components of the basal ganglia in subserving these processes. 

 

Keywords: Learning and decision-making, Social inference, Bayesian modelling, fMRI 
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1. Introduction 

Successful social interaction requires learning from others and making decisions that in turn 

lead to rewarding experiences. Although similar to reward learning in non-social contexts, 

social learning is thought to engage different processes by which not only reward associations 

are learned, but also the hidden traits (Hackel, Doll, & Amodio, 2015) or states (e.g. intentions) 

(Diaconescu et al., 2017) which may modulate these associations. Accordingly, social learning 

has been found to engage brain regions that may have a unique role in social cognition in 

addition to the neural circuitry involved in non-social learning (Joiner, Piva, Turrin, & Chang, 

2017; Lockwood & Klein-Flügge, 2019; Ruff & Fehr, 2014; Wittmann, Lockwood, & 

Rushworth, 2018).  

Reinforcement learning studies have repeatedly found that striatal activity is associated with 

non-social reward prediction errors, i.e. the difference between actual and expected reward (cf. 

Dayan & Daw, 2008; O’Doherty, Cockburn, & Pauli, 2017), but also reward prediction errors 

in various social contexts (e.g. Báez-Mendoza & Schultz, 2013; Burke, Tobler, Baddeley, & 

Schultz, 2010; Hackel et al., 2015; Lockwood, Apps, Valton, Viding, & Roiser, 2016; 

Lockwood & Klein-Flügge, 2019). For instance, in trust games in which participants are 

required to make risky investments with other players, parts of the striatum including the 

caudate and putamen show stronger activations in response to reciprocated cooperation 

(Delgado, Frank, & Phelps, 2005; Fareri, Chang, & Delgado, 2012; King-Casas et al., 2005). 

Activity in these regions is also associated with reward predictions about others during trust 

decisions (King-Casas et al., 2005; Diaconescu et al., 2017). Negative violations of social 

reward, such as unreciprocated cooperation (Rilling, King-Casas, & Sanfey, 2008), misleading 

advice (Diaconescu et al., 2017) and social exclusion (Eisenberger, Lieberman, & Williams, 

2003) have been associated with activity in the insula, which is also involved in risk and error 

monitoring in non-social contexts (cf. Iglesias et al., 2013). 

In addition, some brain regions may be more strongly involved in social learning than in non-

social learning. For instance, paradigms in which participants were asked to learn about the 

trustworthiness of a partner through trial and error (Behrens, Hunt, Woolrich, & Rushworth, 

2008; Diaconescu et al., 2017; King-Casas et al., 2005) have been used to show that social 

prediction errors engage brain areas previously associated with mentalization, such as the 

temporoparietal junction (TPJ) and the dorsomedial prefrontal cortex (dmPFC). Other studies 

highlighted the domain specificity of the anterior cingulate gyrus (ACCg) when learning from 

others (Apps, Lesage, & Ramnani, 2015; Apps, Rushworth, & Chang, 2016; Lockwood, Apps, 

Roiser, & Viding, 2015). 
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The majority of studies which investigated the neural correlates of learning the trustworthiness 

of others, thereby probing mentalization, instructed participants explicitly to learn from a 

partner’s advice (Behrens et al., 2008; Diaconescu et al., 2017). Most everyday life social 

interactions, however, require us to automatically infer on mental states by using nonverbal 

signals such as gaze behaviour (Schilbach et al., 2013). Therefore, in the current study, we 

decided to investigate the neural mechanisms of uninstructed social learning and decision-

making by means of functional magnetic resonance imaging (fMRI). 

To this end, we employed an established probabilistic learning task (Sevgi, Diaconescu, Henco, 

Tittgemeyer, & Schilbach, 2020) in which participants can learn from two types of information, 

i.e. a non-social cue (cards with different colours) and a social cue (gaze shift of a face presented 

in the centre of the screen), in order to maximize the reward associated with a card draw (Figure 

1A). In this task, participants were not explicitly instructed to pay attention to the face in order 

to probe the spontaneous use of social information. Three types of computational models of 

learning and decision-making were used to fit participants’ choices. These models varied in 

their complexity of the belief updating process and have been employed in previous studies of 

learning under uncertainty (DeBerker et al., 2016; Iglesias et al., 2013). Furthermore, the 

modelling framework was constructed in such a way that it allowed us to estimate the relative 

weight participants were affording to their learned beliefs about the social cue compared to the 

non-social cue when predicting the outcome of the task. We also captured the usage of the 

social cue by means of model-agnostic measures, i.e. subjective post-experimental reports as 

well as gaze fixations during decision-making by means of simultaneous eye-tracking. 

The learning trajectories as well as the weighting factor from the best performing model, the 

hierarchical Gaussian filter (HGF; Mathys et al., 2014; Mathys, Daunizeau, Friston, & Stephan, 

2011), were used as predictors in model-based fMRI analysis to uncover the neural mechanisms 

of social and non-social learning and decision-making. We evaluated whether social learning 

signals during uninstructed inference would yield neural activations similar to those found in 

studies of instructed inference (Behrens et al., 2008; Diaconescu et al., 2017). This allowed us 

to evaluate whether inter-individual variation in the propensity to use the social cue during 

decision-making is reflected in differences of neural activity. We expected the striatum to be 

involved in the representation of social cue probabilities and were specifically interested in 

investigating whether individual differences in weighting the social over non-social information 

in the task were also represented in this part of the brain. We further evaluated the estimated 

uncertainty for social and non-social cues during decision-making. We predicted that the insula 

would code both social and non-social uncertainty and asked whether social uncertainty is 
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additionally tracked by regions involved in mentalization. Furthermore, we probed the neural 

correlates of social and non-social prediction errors and predicted to find overlapping 

activations in the anterior cingulate and insula as well as activations associated with social 

learning in brain regions involved in mentalizing, such as the TPJ and the dmPFC (Behrens et 

al., 2008; Diaconescu et al., 2017).  

 

2. Methods  

 

2.1 Participants 

A total of 55 healthy volunteers (28 female; mean age 25.2± 5.6 years, range: 18 – 48 years) 

participated in the study. These participants were recruited through the Max Planck Institute of 

Psychiatry as well as local universities. They were all right-handed, had normal or corrected-

to-normal vision and reported no history of neurological or psychiatric disease. Furthermore, 

they did not meet any contraindications for magnetic resonance imaging (MRI) measurement, 

such as metal implants or claustrophobia. All participants stated to be non-smokers and none 

of them reported current intake of psychoactive medication. All participants were naïve to the 

purpose of the experiment and provided informed consent to take part in the study after a 

written/verbal explanation of the study procedure. Participants received a reimbursement for 

participation and an additional amount of money (1-6 Euro) that depended on their score in the 

task. The study was in line with the Declaration of Helsinki and approval for the experimental 

protocol was granted by the local ethics committee of the Medical Faculty of the Ludwig-

Maximilians-University of Munich. Five measured participants were not included in the 

analysis: two were excluded due to abnormalities in the structural brain scans, one due to 

technical issues with the task presentation on the scanner monitor, one participant did not 

perform the task according to the instruction, and one participant was excluded because an 

exclusion criterion (nicotine abuse) applied, which was communicated subsequent to 

measurement. Accordingly, we analysed data from 50 participants (25 female; mean age 24.8 

± 5 years, range: 18 – 48 years). 

 

2.2 Experimental paradigm and procedure 

Participants completed a probabilistic learning task, comprising a non-social and a social cue 

(Figure 1A). The task, initially introduced by (Sevgi et al., 2020), consisted of 120 trials and 

lasted approximately 20 min. Participants were instructed to choose one of two cards (green or 

blue) on every trial and were told that the winning probability of the colours would change 
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throughout the task. A computer-generated face was presented at the centre of the screen during 

the entire trial. At the trial start, the face looked down, then raised its eyes to look directly at 

the participant, and then shifted its gaze towards one of two cards presented on either side of it 

(Figure 1A). Independently of the winning probability of the card colours, the probability of 

the face gazing towards the winning card, thus providing a social cue, was also systematically 

manipulated. Participant choice was enabled two seconds after the gaze shift of the face and 

lasted until a response was made. Trials were not counted if the participant pressed a button 

before the choice was enabled or if they took more than 5 seconds to respond after the choice 

was activated. In these cases, the screen showed “response too early/late” and the outcome of 

the choice was not displayed. The choice phase was followed by a jittered delay (2–4 seconds) 

before the outcome (correct/wrong) was presented for 2 seconds. During choice, both cards 

were showing reward values (ranging from 1-9), which were added to a cumulative score that 

was presented during the feedback phase if the participant chose the correct card. When the 

answer was wrong, the score remained the same. Participants were told that the numbers were 

sampled randomly and that they were not associated with the winning probabilities of the cards. 

Participants were told that if they were completely uncertain about the winning probabilities, 

they might want to pick the card associated with a higher reward value. The outcome was 

signalled to the participant by a green check mark (correct choice) or a red cross (incorrect 

choice. All trials were separated by a jittered inter-trial interval (3-6 seconds) and 12 of these 

inter-trial intervals were jittered at longer durations (12-15 seconds), similar to including null 

trials. 

Prior to the task, participants were informed that the card winning probabilities would change 

during the task. Participants were not explicitly instructed to learn about the social cue, but were 

merely told that the face in the centre of the screen was included to make the task more 

interesting. The probability schedule of the social cue was orthogonal to the non-social cue as 

shown in Figure 1B. During the first half of the experiment, the winning probability of the blue 

card was stable at 75% (trials 1–60), followed by a volatile period where winning probability 

changed from 20% (trials 61-80; 101-120) to 80% (trials 81-100). The gaze schedule started 

with a stable phase with 75% accuracy (trials 1–40), followed by a volatile period where gaze 

accuracy changed from 20% (trials 41-50; 61-70) and 80% (trials 51-60; 71-80). During trials 

80-120 the gaze accuracy had a probability of 12%. For 8 participants, who were recruited 

during the pilot phase of the study, the volatile phase of the social cue started 10 trials later. 

The paradigm was presented by Presentation software (Presentation Version 16.3, Build 

12.20.12, Neurobehavioural Systems Inc., Berkeley, California, USA, www.neurobs.com) 
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running on a Microsoft Window XP operating system and stimuli were presented on a 30-inch 

LCD OptoStim H-3/30 Medres MRI compatible monitor on a background of grey luminance 

with a resolution of 1024x768 and a refresh rate of 60 Hz. Participants responded to Stimuli 

using two buttons on a response box (LSC-400B controller, Lumina, Cedrus).  

Prior to the MRI session, participants were asked to answer a standard set of questionnaires 

used in the research group. It included the autism quotient (AQ; Baron-Cohen, Wheelwright, 

Skinner, Martin, & Clubley, 2001) emotional quotient (EQ; Anticipatory and Consummatory 

Interpersonal Pleasure Scale (ACIPS; Gooding & Pflum, 2014), Liebowitz Social Anxiety 

Scale (LSAS; Liebowitz, 1987), the Becks Depression Inventory (BDI-II; Kühner, Bürger, 

Keller, & Hautzinger, 2006), the Social Network Questionnaire (SNQ; Linden, Lischka, 

Popien, & Golombek, 2007), the Toronto Alexythimia Scale (TAS; Bagby, Taylor, & Parker, 

1994) as well as the Reading the Mind in the Eyes Test (RMET; Baron-Cohen, Wheelwright, 

Hill, Raste, & Plumb, 2001). The psychometric data was analysed within the scope of a different 

study. In addition, participants filled out a post-experimental questionnaire to assess the 

subjective learning experience during the task, asking how difficult the task was (from 0 to 

100), how much they used the gaze (from 0 to 100) and how much it helped them during the 

task (from 0 to 100). The results of the post-experimental questionnaire can be seen in the 

appendix (Table A. 1). 

 

2.3 Computational Modelling 

The modelling approach followed the “observing the observer” framework in which two types 

of models (perceptual and response models) are paired in order to allow the inference of an 

observer (i.e., the experimenter) on the inference of a participant: Perceptual models describe 

the participant’s belief trajectories about the hidden causes (states) of the sensory inputs (here: 

social and non-social cue); the response models describe how these beliefs are translated into 

decisions (Daunizeau et al., 2010).  

 

2.3.1 Perceptual Models  

We used 3 perceptual models that had been employed in previous studies (cf. Iglesias et al., 

2013) and that varied with regard to the complexity of the belief updating process. Perceptual 

model 1 comprises two parallel hierarchical Gaussian filters (HGF; Mathys et al., 2014; Mathys 

et al., 2011), which are inversions of generative models of the sensory inputs the participant 

experiences, i.e. card and gaze outcomes (Figure 2). This approach assumes that participants 

are dynamically updating their beliefs (i.e., posterior probability distributions) in order to infer 
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on the hidden environmental states R that cause the experienced sensory inputs. In the 

generative model, these “to-be-inferred-on” states are coupled in a three-level hierarchy: The 

lowest level  R)STUV  represents the accuracy of the gaze in a binary form (1=correct, 

0=incorrect), level RWSTUV		represents the tendency of the gaze to be correct or incorrect and 

level RXSTUV			represents the volatility of this tendency to be accurate. Correspondingly, the 

lowest level R)YTZ[			represents the accuracy of the blue card in a binary form (1=correct, 

0=incorrect), level RWYTZ[	represents the tendency of the blue card to be correct or incorrect and 

level RXYTZ[				represents the volatility of the tendency of the blue card to be correct. The third 

state evolves as a first-order autoregressive (AR(1)) process. The second state evolves as a 

Gaussian random walk with a step size determined by the state at the third level. The probability 

of R)			is a sigmoid transformation of RW. 

"(R) = 1) = )
)(9]7	(^	_`	)

                (1) 

Given trial-wise responses of participants that indicated whether they had followed the advice 

implicit in the gaze, this model was inverted in order to infer participant-specific parameters 

and belief trajectories (Mathys et al., 2014). This resulted in belief trajectories at three 

hierarchical levels a = 1,2,3.  The beliefs ef
($) about the state of the environment are updated 

on every trial g via prediction errors 'f^)
($)  from the level below weighted by a precision ratio 

(Equations 2-3) where the beliefs’ precision hf
($) on each level is equal to the inverse variance 

of the belief hf
($) = 1/jf

($). Thus, the precision ratio causes larger belief updates when the 

precision of the posterior belief is low and the precision of the data is high. 
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The evolution of beliefs is governed by participant-specific parameters: pWYTZ[	 and 

pWSTUV	determine the participant-specific evolution rate at the second level. As such, they 

describe how fast contingencies of gaze and card stimuli with outcome change in general, 

independent of phasic spikes and dips. pXYTZ[	 and pXSTUV	play the corresponding role at the 

third level, representing the evolution rates of the volatilities of the contingencies. Refer to table 

A2 in the appendix for configurations of priors used in parameter estimation.  

Perceptual model 2 is a parallel (gaze and card) version of the Sutton K1 model which assumes 
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a learning rate that varies over time as a function of recent prediction errors (Sutton, 1992). 

Perceptual model 3 is a parallel classical reinforcement learning model which assumes a 

learning rate that is fixed and participant-specific (Rescorla & Wagner, 1972). 

 

2.3.2 Response Models 

In all response models, a combination of first level predictive beliefs about gaze ê),STUV
(r) 	and 

card ê),YTZ[
(r) contingency with outcome (called ‘accuracy’ in what follows), weighted by 

precision was mapped onto decisions (Equation 4). The combined belief was modelled as the 

sum of the posterior predictive expectation of gaze accuracy ê),STUV
(r)  and card accuracy ê),YTZ[

(r)  

weighted by weights sSTUV
(r)  and sYTZ[

(r)  (Equation 5 & 6), which are a function of the precisions 

of gaze and card accuracy predictions, respectively. Since beliefs were modelled in the gaze 

space (i.e., all cues and outcomes were parameterized with respect to the card receiving the 

gaze), the posterior predictive expectation of card ê),YTZ[
(r)   was translated into gaze space, so 

that ê),YTZ[
(r) = 	 ê),YTZ[

(r)  if the gaze went to the blue card, but ê),YTZ[
(r) = 	1 −	 ê),YTZ[

(r)  if the gaze 

went to the green card.  The precisions ht) (Equation 7 & 8) were calculated as the inverse 

variances of a Bernoulli distribution of the posterior card and gaze estimates at the first level of 

the hierarchy. This entails that precision increases when ê)
(r) moves away from 0.5. The 

constant parameter u > 0 is a weight on the precision of gaze accuracy representing the relative 

sensitivity of a participant to the social input compared to the non-social input. Simulations 

reported in Figure 3 illustrate the implications of high and low u values for decision-making. 

 

x(r) = 	sSTUV
(r) 	ê),STUV

(r) + sYTZ[
(r) 	ê),YTZ[

(r)           (4) 
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We coded participants’ responses y in terms of congruency with the ‘advice’, that is, whether 

participants chose the card that was indicated by the gaze shift (1) or not (0). In the response 
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model, the probability of following the advice Ä&ÅxSTUV
(r)  was modelled as a logistic sigmoid 

(softmax) function of combined belief x(r) (Equation 4), weighted by the expected reward of 

the card when following the advice &STUV	or not &ÇÉrSTUV (Equation 9). 

	

"&ÅxSTUV = "ÑÖ(r) = 1Ü = 1 á1 + exp â−ä(r) á&STUV
(r) x(r) − &ÇÉrSTUV

(r) Ñ1 − x(r)Üãåãç             (9) 

 

The extent to which a participant’s beliefs map onto actions is dependent on inverse decision 

temperature ä(r). A larger ä(r)implies a more deterministic relationship between actions and 

belief whereas a smaller ä(r) is indicative of a weaker relationship and more erratic or stochastic 

behaviour. We implemented four different versions of ä(r) to test different hypotheses 

(mechanisms) of belief-to-response mapping. We inverted models in which ä(r) was either (1) 

a combination of the log-volatility of the third level for both gaze and card combined with 

constant participant-specific decision noise é	(Equation 10), (2)  a combination of the log-

volatility of the third level for gaze  and participant-specific decision noise (Equation 11), (3) a 

combination of the log-volatility of the third level for card and participant-specific decision 

noise (Equation 12) or (4) the participant-specific decision noise alone (Equation 13).  

1)	ä(r) = é	expá−êX,YTZ[
(r) − êX,STUV

(r) ã	      (10) 

 2) ä(r) = é	expá−êX,STUV
(r) ã                      (11) 

3)	ä(r) = é	expá−êX,YTZ[
(r) ã                       (12) 

4)ä(r) = é                                                 (13) 

 

2.3.3 Combination of perceptual and response models 

Overall, we used six different models to model learning and decision-making: the HGF was 

combined with all four response models. Due to the lack of a third level, the Sutton K1 and 

Rescorla Wagner models were only combined with the response model 4 in which decision 

noise was a participant-specific decision noise parameter (Equation 13). We used the HGF 

toolbox version 4.1, which is part of the software package TAPAS 

(https://translationalneuromodeling.github.io/tapas). A quasi-Newton optimization algorithm 

was employed for estimation. 
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2.4 Model selection 

For model comparison we used the log model evidence (LME), which is calculated in the HGF 

Toolbox during estimation and represents a trade-off between model complexity and model fit. 

The LME values for each of the 6 model configurations for each participant were subjected to 

random-effects Bayesian Model Selection (spm_BMS in SPM12 ; www.fil.ion.ucl.uk/spm) to 

find the expected posterior probabilities (EXP_P), i.e. the probability for each model of it 

having generated the responses for a randomly chosen participant out of all models in the model 

space. We also report the exceedance probability (XP) and protected exceedance probability 

(PXP), i.e. the probability that a given model better explains the data than any other model in 

the comparison space (Stephan et al., 2009;  Rigoux et al., 2014).  

 

 
Figure 1A: Trial flow and task design. On every trial, participants choose one of two cards  (green & blue). After 

the choice is logged, an hourglass is presented followed by a green tick or a red cross depending on whether the 

response was correct or wrong. With every correct response, the score of the chosen card is added onto a 

cumulative score that participants were instructed to maximize and which determined the additional amount (1–6 

euro) paid to the participant at the end of the experiment. B: Probability schedule of the social (blue) and non-

social (red) cue. C: Two parallel learning systems that describe participants’ learning about the probability and 

volatility of the social (blue) and non-social (red) cues. The circles (blue and red) and the diamond (purple) 

represent states that change in time (i.e. trial t), whereas the squares denote parameters estimated across time (see 

Methods 2.3).  
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2.5 Behavioural Analysis 

As a proof-of-concept analysis for our computational parameter u (i.e. the weighting of gaze 

input), we correlated this parameter with subjective reports given in response to a post-

experimental questionnaire, asking participants how much they used the gaze (on a scale from 

from 0 to 100) and how much it had helped them during the task (on a scale from 0 to 100). 

Also, we tested the association with the parameter u and the percentage of trials in which a 

participant chose the card that had been indicated by the gaze. In addition, advice taking 

behaviour (card chosen indicated by gaze) was subjected to a repeated measures ANOVA with 

Task Phase as within-subject factor (gaze accuracy high vs. gaze accuracy volatile vs. gaze 

accuracy low) and u as covariate. Statistical tests were performed using JASP (Version 0.9; 

https://jasp-stats.org/) and Matlab (Version 2018a; www.mathworks.com). 

 

2.6 fMRI acquisition and preprocessing 

fMRI data were acquired with a 3-Tesla MR imaging system (MR750, GE, Milwaukee, USA) 

using a 32-channel head coil. Anatomical screening was performed acquiring T1-weighted 3D 

inversion recovery fast spoiled gradient-echo scans with a voxel size of 1x1x1 mm. Whole 

brain functional images were acquired (AC-PC-orientation, interleaved bottom-up, slice 

number = 40, inter-slice gap = 0.5 mm, TE = 20 ms, TR = 2000 ms, flip angle=90°, voxel size 

= 3 × 3 × 3 mm, FOV 24 × 24 cm, matrix 96 × 96, resulting in-plane resolution 4 × 4 mm). 

Each run lasted approximately 30 min, resulting in around 900 volumes.   

Preprocessing of fMRI data was performed using MATLAB and SPM12 (Statistical Parametric 

Mapping Software, www.fil.ion.ucl.ac.uk/spm). Slice time correction was applied to account 

for the order of initially acquired interleaved slices. Using rigid body transformation, images 

were then spatially realigned to the volume mean and 6 motion regressors were obtained, which 

were later used as nuisance regressors in the GLM. The participant’s structural scan was then 

co-registered to the volume mean.  The co-registered structural image was segmented and 

parameters obtained by this process were applied for normalising functional and structural 

images to the Montreal Neurological Institute (MNI) standard template with a voxel resolution 

of 2 x 2 x 2 mm for functional images and 1 x 1 x 1 mm for structural images. In addition, to 

account for respiratory, cardiac, or vascular activity, a CompCor analysis was performed using 

the PhysIOtoolbox (Kasper et al., 2017;  https://translationalneuromodeling.github.io/tapas). 

Using this method, time courses of voxels within WM and CSF (masks obtained from 

segmentation) were extracted from the smoothed images and subjected to a principal 
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components analysis. The first three principal components of both WM and CSF entered the 

GLM as nuisance regressors as well as six movement parameters generated by the realignment 

step. For each nuisance regressor, we also included the absolute first order derivate. Due to 

losing the structural scan of one subject when transferring data (after preprocessing), the GLM 

of one participant only contained the twelve motion nuisance regressors, without the principal 

components of WM and CSF. 

 

2.7 fMRI analysis 

First-level 

In our neuroimaging analysis we investigated the neural correlates of the following 

computational trajectories: The belief about the probability of the gaze to give correct advice 

(ê),STUV
(r) ), the variance (i.e. uncertainty) of this belief (sl),STUV

(r) ), and the variance about the 

probability of the winning card colour (sl),YTZ[
(r) ). We did not use ê),YTZ[

(r)  in the analysis since we 

didn’t expect neural activity with regard to the winning probability of the blue or green card 

(the coding of blue = 1 and green = 0 was arbitrary). In addition, we investigated the neural 

correlates of the social prediction error signal ')STUV
(r)  and the non-social prediction error signal 

')YTZ[
(r)  (an example of these trajectories can be seen in Figure 2). 

In order to investigate whether neural activity change was associated with these parameters, we 

defined voxel-wise general linear models (GLMs) on the first level of analysis. In the main 

GLM analysis the choice phase was modelled starting from the time point of the gaze shift until 

the response of the participant. The choice phase was parametrically modulated with the 

participant-specific belief trajectories ê),STUV
(r) . The outcome phase of the task (modelled for 2 

seconds starting at outcome presentation) was parametrically modulated by four regressors: The 

first regressor contained ')STUV
(r)  neutralised, where the choice was wrong by setting the 

regressor’s value to zero. In the second regressor, ')STUV
(r)  was set to zero where the choice was 

correct. This way we could evaluate ')STUV
(r)  for wrong, correct, and all choices. This was 

important since the surprise about the social cue has a different relevance depending on whether 

the participant’s choice was correct or wrong. Therefore, misleading advice that preceded a 

correct choice might be differently valenced than misleading advice that preceded a wrong 

choice. According to the same rationale, the third and fourth regressors contained |')YTZ[
(r) | 

neutralized where the gaze was correct and where it was incorrect, respectively. The absolute 

value of prediction error was chosen because it was an arbitrary choice whether to code blue 
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outcomes as 1 and green ones as 0 or the other way around. In this analysis, we also examined 

the prediction error signal for all trials, irrespective of social cue accuracy and separately for 

trials in which the social cue was correct or wrong. Due to a correlation between ê),STUV
(r)  and 

sl),STUV
(r) , we estimated sl),STUV

(r)  and  sl),YTZ[
(r)  in a separate GLM, which was the same as the one 

described above but differed in that the choice phase was modulated by sl),STUV
(r)  and  sl),YTZ[

(r)  

and not by ê),STUV
(r) . For completeness, we also estimated a GLM that included all parametric 

regressors (ê),STUV
(r) , sl),STUV

(r)  and sl),YTZ[
(r) ) as modulators of the choice phase (cf. appendix). 

 

To investigate the neural correlates of fixations (see Methods, section 2.8 for acquisition and 

analysis) on the face during choice, we defined another GLM, in which the choice regressor 

was parametrically modulated by the fixation proportions on the face area. This GLM was 

estimated for 44 participants, as some participants had to be discarded due to insufficient quality 

of the eye tracking data (i.e. blurred corneal reflection).  

In all GLMs, we modelled missed responses with separate regressors and all regressors were 

convolved with a canonical hemodynamic function. In addition, all parametric regressors were 

z-scored and not orthogonalized. 

 

Second-level  

Contrast images for each parametric modulator were estimated at the first level against baseline. 

These contrast images were entered into a second level one-sample t-test for group level 

inference and we examined positive and negative effects of the contrasts. We also compared 

positive (')STUV
(r) > 0, i.e., gaze helpful) and negative social prediction errors (')STUV

(r) < 0, i.e., 

gaze misleading) directly, by entering subject-wise pairs of positive and negative contrast 

images of the parametric modulator containing the prediction error signal ')STUV
(r)  into a paired 

t-test. We also directly compared negative social prediction errors during incorrect outcomes 

(i.e. participant followed misleading gaze) with negative social prediction errors during correct 

outcomes (i.e. participant didn’t follow misleading gaze) as well as positive social prediction 

errors during correct outcomes (i.e. participant followed helpful gaze) with positive social 

prediction errors during incorrect outcomes (i.e. participant didn’t follow helpful gaze). 

To examine individual differences in brain areas associated with ê),STUV
(r) , we included the social 

weighting factor u	estimated from the winning computational model as a variable of interest in 

the respective t-tests. As a non-computational equivalent, we used the subjective report of the 
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post-experimental questionnaires (Tab. A1), stating the extent to which participants used the 

gaze during the task. In this analysis, we included 48 participants since the data of two 

participants was missing (Tab. A1). Since u	and the post-experimental questionnaire were 

correlated (Fig. 2a), these two were entered separately in the second level analysis. To examine 

individual differences in brain regions correlated with -sl),YTZ[
(r) 	as a function of weighting the 

non-social cue, we used −	u for the computational covariate and −	Question3 for the 

questionnaire covariate. Clusters were formed at uncorrected p = 0.001, followed by a cluster-

level correction for multiple testing, with significance defined as cluster-level p-values < 0.05 

after correction for family-wise error rate (FWE). 

Figure 2. Example of participant-specific learning trajectories for both cues. A) Prediction error ')YTZ[		  (red) about 

trial outcome in terms of the non-social cue and B) prediction error ')STUV		 	(blue) about the trial outcome in terms 

of the social cue. C) Variance (uncertainty) of prediction about non-social cue sl)	YTZ[
	  and D) social cue sl)	STUV.

	 	E) 

The red trajectory shows the posterior expectation of the blue card to be correct. The true trial outcomes with 

respect to the blue card (blue correct=1; green correct=0) are shown in dark red dots and the responses with respect 

to the card (blue card=1; green card=0) shown in light red dots. F) The blue trajectory shows the posterior 

expectation of the social advice to be correct. The true trial outcomes with respect to the gaze (correct=1; 

incorrect=0) are shown in dark blue dots and the responses with respect to the gaze (follow=1; not follow=0) are 

shown in light blue dots. Green dots marked missed trials. 
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2.8 Eyetracking Data Acquisition and Analysis 

Eye movement data was acquired employing an infrared pupil-corneal reflection-based eye-

tracking system (Eyelink 1000 Plus, SR Research, Osgoode, ON, Canada), which was 

connected to an MR compatible fibre-optic camera head. The camera head consisted of a 75 

mm lens and an MR- compatible LED Illuminator. A first-surface reflecting mirror was 

attached to the scanner head coil to reflect participants’ eye movements. The distance between 

mirror and eye-tracker was 125 cm and the distance between eyes and monitor was 240 cm. 

We used a nine-point calibration to map the gaze position onto screen coordinates and we 

acquired data using a sampling rate of 2000 Hz. Preprocessing of eye tracking data was 

performed using Matlab (Version 2017a; www.mathworks.com). We segmented fixations 

during the choice phase starting from the point of the advice until the response of the participant. 

We also calculated mean fixation points during the inter-trial interval (ITI). Due to the long 

operating distance between eyes and monitor in the scanner, we observed a shift in fixation 

data, which was different for all participants. We calculated a shift distance in the x and y 

coordinates for each participant by subtracting the mean measured fixation points during the 

ITI’s from the coordinates of the fixation cross that was presented during the ITI. This shift 

value for both coordinates was then applied to the segmented fixation points of the decision and 

outcome phase. 

In order to investigate the relationship between u and the gaze data further, we used a general 

linear model approach similar to the one employed in the fMRI analyses: We created 

participant-specific fixation heatmaps for each trial (768x1024x120) for the choice phase as 

well as for the outcome phase. When generating the heatmaps, we smoothed the fixation maps 

using a Gaussian kernel with mu of fixation’s Cartesian coordinate and SD of 1° corresponding 

to a full-width-at-half-maximum of approximately 2.35° (Lahnakoski et al., 2014). We further 

defined pixel-wise GLMs to analyse those regions of the screen where the number of fixations 

correlate with the social weighting factor	u. 

Furthermore, in order to incorporate fixation data into our GLM model, we calculated the 

proportion of face fixations during the decision phase. For this, we counted fixation points 

falling onto the region of the screen where the face was presented and fixation points falling on 

all remaining parts of the screen. We then divided the number of fixations points from the rest 

of the screen by the number of fixation points falling on the face. In all eye-tracking analyses, 

6 participants had to be discarded from further analysis due to blurred corneal reflection signals. 
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3. Results 

3.1 Bayesian Model Comparison & Selection 

Random effects BMS revealed a clear superiority for the three-level HGF in combination with 

a response model in which decision noise is a combination of the log-volatility for both gaze 

and card combined with participant-specific log-volatility for card êX,YTZ[ and participant-

specific decision noise é (XP= 0.9370; PXP= 0.627; EXP_P = 0.464; Table 1). Therefore, we 

used this model for all subsequent analyses. Mean parameter estimates can be seen in the 

appendix (Tab A. 3).  

 

3.2 Simulations 

While keeping the perceptual model parameters fixed at the prior values, we simulated inferred 

choice probabilities (in gaze space (Equation 9) and in card space) of agents with variable u 

values to investigate how this parameter will affect choice probabilities with regard to the social 

information (Figure 3A) and the non-social information (Figure 3B) respectively. The 

simulations show that u represents a relative sensitivity parameter for the social input over the 

non-social input such that high u values mean that the integrated belief is characterized by an 

increased sensitivity of the social information (gaze correct vs. gaze wrong) and at the same 

time a decreased sensitivity, i.e. increased stochasticity, with regard to the non-social 

information (blue card vs. green card correct). 

 
Figure 3: Simulation for an agent with same perceptual parameters but different social cue weighting. The plot 

shows A) the different probability trajectories for taking the advice (p (y=1 | b) with varying u values (highest 

values (log(5) coded in blue, lowest values (log(-5) coded in light colours) and B) different probability trajectories 

for taking the blue card (p(y=1 |  b) with varying u values (highest values (log(5) coded in blue, lowest values 

(log(-5) coded in light colours). The actual input of the gaze (1= correct; 0=incorrect) is shown in blue in A) and 

the input of the card on a given trial (1= blue; 0=green) is shown in green in B). 
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3.3 Behavioural statistics: Advice-taking & fixation behaviour 

We found that the social weighting factor u	was significantly correlated with subjective 

reports of having used the gaze during the task (rs(48) = 0.453, p = 0.001) and the subjective 

report of finding the gaze helpful (rs(48) = 0.292, p = 0.044) (Figure 4A,B). The social 

weighting factor u was positively correlated with the proportion of trials in which the gaze 

was followed (rs (48) = 0.487, p < 0.001) (Figure 4C). The same was the case for the 

subjective report of using the gaze (rs (48) = 0.449, p = 0.001). Furthermore, when looking at 

advice-taking behaviour, the repeated measures ANOVA revealed a main effect of task phase 

(F(2,96) = 57.050, p < 0.001, h2=0.543) showing that participants’ advice-taking behaviour 

varied with the probability by which the gaze was giving a helpful advice. Post-hoc t-tests 

showed that participants followed the advice significantly more often in the high-accuracy 

phase (80%) compared to the volatile phase (t(50)= 7.357, p < 0.001, d =1.04). During the 

low-accuracy phase (20%) participants chose the advice significantly less compared to the 

volatile (t(50)= 2.911, p = 0.016, d = 0.41) and compared to the high accuracy phase (t(50)= 

8.340, p < 0.001, d = 1.179).  

There was a main effect of the covariate u	(F(1,48) = 17.54, p < 0.001, h2=0.268) and a 

significant interaction between the covariate u and the magnitude of the effect of task phase 

on behaviour (F(2,96) = 6.832, p = 0.002, h2=0.125) indicating that participants with a higher 

u are more sensitive to the social cue probability. Furthermore, the GLM analysis of the 

fixation data revealed that fixation points falling on the face area of the social stimulus (p < 

0.001, uncorrected) during choice phase were significantly correlated with u (Figure 4D). 

Figure 4 A) Association between estimated values of computational parameter u and subjective reports of having 

used the gaze and B) finding it helpful during decision-making. C) Association between u and % of trials where 

gaze was followed. D) Mean proportion of fixations on face area during all trials and u; Pixel-wise analysis of 
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smoothed fixation data revealed that u is correlated with the time people spend looking at the face (p<0.001, 

uncorrected) during the choice phase of the trials. 

 

3.4 fMRI results 

Social and non-social prediction and precision during decision-making 

During the choice phase of the task, the subjective predicted advice accuracy ê),STUV
(r)  correlated 

with activity in the right and left inferior temporal gyri, left and right inferior parietal lobule, 

left and right precentral gyri, right postcentral gyrus, left and right superior frontal gyrus, left 

and right fusiform gyri, and the right putamen, superior orbital gyrus and pallidum (Figure 5 

and Table 2). Self-reports of having used the gaze during decision-making were associated with 

higher activity related to ê),STUV
(r) 	in the right rectal gyrus, right and left putamen and insula 

(Figure 6 and Table 3) across participants. Differences in activation strength as a function of u 

were associated with activity in the right inferior occipital gyrus (Table A.4). Significant 

clusters were neither found for the correlation with  1 − ê),STUV
(r)  (the subjective predicted 

probability of a misleading gaze) nor for the variance of the prediction sl),STUV
(r)  and   1 − sl),STUV

(r) . 

Results for ê),STUV
(r)  when estimated together with sl),STUV

(r)  and sl),YTZ[
(r)  in one GLM can be seen 

in Table A.5 & A.6. 

Fig. 5 fMRI results for predicted accuracy of advice (ê),STUV
(r) ) during the choice phase of the task. Cluster-forming 

threshold: p<0.001, cluster-level threshold p< 0.05, FWE corrected. [x y z] coordinates refer to the MNI 

coordinates of the respective slices. See Table 2 for further information on cluster extents and peak voxel 

coordinates. 
 



 36 

 
 Fig. 6 The contrast in the left shows brain areas showing differential responses to  ê),STUV

(r) as a function of the 

subjective report of having used the gaze during decision-making. The right plot depicts the correlation between 

the subjective report and the highest peak in the insula. Cluster-forming threshold: p<0.001, cluster-level threshold 

p< 0.05, FWE corrected. The Y coordinate refer to the MNI coordinate of the respective slice. See Table 3 for 

further information on cluster extents and peak voxel coordinates. 

 

In the choice phase of the task, the negative contrast on the variance of the belief about the 

winning card colour (1-sl),YTZ[
(r) ) correlated with the right insula and right rolandic operculum 

(Fig. 7 and Table 4). Neither the −	u (computational non-social weight) nor – Question3 

(subjective non-social weight), were correlated with brain activity related to	1-sl),YTZ[
(r) . No 

significant clusters were found for the positive contrast (sl),YTZ[
(r) ). 

 

 
Fig. 7. Significant clusters for the negative contrast of the variance of the prediction of the winning card colour 

(sl),YTZ[
(r) ) during the choice phase of the task. Cluster-forming threshold: p< 0.001 uncorrected, cluster-level 

threshold p < 0.05, FWE corrected. [x y z] coordinates refer to the MNI coordinates of the respective slices. See 

Table 4 for further information on cluster extents and peak voxel coordinates. 
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Social and non-social prediction error during outcome 

For negative social prediction errors (')STUV
(r) < 0, i.e., gaze misleading) during wrong choice 

outcomes, we observed significant activations in the right inferior frontal gyrus, right insula, 

rolandic operculum and left posterior medial frontal gyrus (Fig 8 and Table 5). No significant 

activations were found for negative social prediction errors during correct choice outcomes or 

when evaluating both correct and wrong choices. The analyses looking at the positive prediction 

error signals (')STUV
(r) > 0, i.e., gaze helpful) revealed significant activations in the right lingual 

gyrus and middle occipital gyrus, but only in correct choice outcomes (Table 6).  

When we directly compared negative prediction errors during incorrect outcomes against 

negative prediction errors during correct outcomes we found the same activation in the right 

insula, rolandic operculum and left posterior medial frontal gyrus gyrus as when evaluating 

negative social prediction errors against baseline during incorrect outcomes. When we directly 

compared positive prediction error signals during correct outcomes against positive prediction 

errors during incorrect outcomes, we also found the same activation in the right lingual gyrus 

and middle occipital gyrus as when evaluating positive social prediction errors against baseline 

during correct outcomes. 

Comparing negative with positive social prediction errors, we found the same activation in the 

right inferior frontal gyrus, right insula, rolandic operculum and left posterior medial frontal 

gyrus but only when evaluating incorrect outcomes. The activation was found in the same 

regions as when evaluating negative social prediction errors against baseline during wrong 

outcomes.  

 

Fig. 8 Neural correlates of (')STUV
(r) ) during wrong choice outcomes. The negative contrast on the parametric 

modulator of the outcome phase reflects BOLD activity in regions correlated with negative social prediction errors. 

Cluster-forming threshold: p<0.001, cluster-level threshold p< 0.05, FWE corrected. [x y z] coordinates refer to 

the MNI coordinates of the respective slices. See Table 5 for further information on cluster extents and peak voxel 

coordinates. 
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Next, we looked at the absolute prediction error of the advice (')YTZ[
(r) ), signalling the surprise 

about the cue colour. When the social cue was correct, we found significant bilateral activations 

in the posterior medial frontal gyri, anterior and middle cingulate cortex and insula (Fig 9, Table 

7). When looking at the modulation of ')YTZ[
(r)  during all outcomes irrespective of advice 

accuracy, only the cluster in the posterior-medial, superior frontal gyrus and middle cingulate 

cortex and the cluster in the left insula was significant (Table 7). When the social cue was 

incorrect, no significant clusters were found for ')YTZ[
(r) . The results for the negative contrast on 

')YTZ[
(r)  looking at activity correlated with a decrease in surprise about the winning card colour 

can be seen in Table A. 7. 

Fig. 9 Neural correlates of absolute learning signal (')YTZ[
(r) ). The positive contrast on the parametric modulator 

reflects BOLD activity in regions correlated with amount of surprise about the accuracy of the card colour when 

social cue was correct. Cluster-forming threshold: p<0.001, cluster-level threshold p< 0.05, FWE corrected. [x y 

z] coordinates refer to the MNI coordinates of the respective slices. See Table 7 for further information on cluster 

extents and peak voxel coordinates. 
 

 

4. Discussion 

In this study, we used model-based fMRI to uncover the neural mechanisms of inference on 

social and non-social cues during a probabilistic learning task using a three-level hierarchical 

Bayesian model describing parallel learning. Furthermore, we assessed individual differences 

in the relative weight granted to social over non-social information during the task and 

demonstrated that the estimated values of the corresponding parameter accord with model-

agnostic equivalents such as subjective reports and eye gaze behaviour during the task. In 

addition, we showed that the weight on social information during decision-making correlates 

with individual differences in brain activation during decision-making, in particular in the 

putamen and insula.  
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4.1 Social and non-social prediction error activations 

Negative social prediction errors (')STUV
(r) < 0, i.e., gaze misleading) during wrong choices 

recruited the right anterior insula, as well as the right inferior frontal gyrus and the left posterior-

medial frontal gyrus. For correct choices these activations were absent, suggesting that the 

deception of the social cue was not relevant when participants succeeded in selecting the 

winning card on a given trial. 

Activation in the anterior insula in response to negative social prediction errors is in line with 

insula activity in response to misleading advice in a previous study of explicit mentalizing 

(Diaconescu et al., 2017), as well as unreciprocated cooperation in the trust game (King-Casas 

et al., 2008; Rilling et al., 2008), social exclusion (Eisenberger et al., 2003) and to (negative) 

surprise about the expected offer of a confederate in a fairness game (Xiang, Lohrenz, & 

Montague, 2013). These findings support the notion that the anterior insula plays an important 

role in tracking risk in uncertain environments (Bossaerts, 2010; d’Acremont, Lu, Li, Van der 

Linden, & Bechara, 2009). In particular, the right anterior insula has been found to be involved 

in the integration of (arousing) interoceptive states into decision-making, potentially by 

signalling aversive events that are to be avoided in the future (Rilling, King-Casas, & Sanfey, 

2008). In our study, participants did not know if and to what extent the social cue will provide 

them helpful or misleading advice. The activity in the insula and inferior frontal gyrus to 

negative social prediction errors (i.e. misleading advice) was only observed in trials in which 

participants did not receive the reward. In other words, the insula/inferior frontal gyrus 

activation signalled occasions where the participant should not have followed the gaze. 

We also found significant correlations with non-social prediction errors ')YTZ[
(r)  in the left and 

right insula, a pattern resembling prediction error activation in a sensory learning paradigm 

(Iglesias et al., 2013), which underlines the insula’s role in error monitoring irrespective of the 

domain of learning (Diaconescu et al., 2017).  

For positive social prediction errors (gaze more helpful than predicted) during correct 

outcomes, we found activity in the right occipital and lingual gyrus but not in reward-associated 

areas as reported by others (Biele et al., 2011; Delgado et al., 2005; Fareri, Chang, & Delgado, 

2012; Fouragnan et al., 2013). This may reflect the directing of visual attention towards 

relevant, in our case, social stimuli. Indeed, reward learning signals were previously also  found 

in the occipital cortex by Payzan-LeNestour, Dunne, Bossaerts, & O’Doherty (2013). 

In the present study, social prediction errors did not significantly activate brain regions that 

have been associated with mentalization, such as the TPJ or the dmPFC (Behrens et al., 2008; 
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Diaconescu et al., 2017; Koster-Hale et al. 2017) or that have been associated with 

observational learning such as the ACCg (Apps et al., 2015, 2016; Lockwood et al., 2015). A 

crucial difference between the present and other social learning studies is that our study did not 

involve instruction with respect to an opponent or confederate. Instead, we merely presented 

the computer-generated face because we wanted to investigate the spontaneous integration of 

social information into decision making. Indeed, a subgroup of our participants claimed not to 

have used the social information during the task. Possibly, these participants concentrated more 

on the non-social feedback to predict the outcome, relying less on social feedback to adapt their 

behaviour, thus reducing statistical power to detect effects of social inference in the group 

analysis. 

 

4.2 Social and non-social prediction and precision 

We found that the belief about the social cue, i.e. the inferred probability of the gaze to give a 

correct advice (ê),STUV
(r) ), was associated with activity in the inferior temporal gyri, inferior and 

superior parietal lobule as well as parts of the striatum including the right putamen and 

pallidum. The striatum’s involvement in tracking the belief about the accuracy of social advice 

during choice accords with earlier findings regarding the role of this region in encoding the 

value of social interaction partners (Báez-Mendoza & Schultz, 2013; Baumgartner, Heinrichs, 

Vonlanthen, Fischbacher, & Fehr, 2008; Delgado et al., 2005; King-Casas et al., 2005; Rilling 

et al., 2008) and of the non-social aspects of a learning environment (cf. O’Doherty, 2004). 

The present results suggest that the magnitude of BOLD activity related to advice accuracy in 

the putamen and anterior insula may be modulated as a function of individual differences in 

employing the social cue during decision-making. Specifically, the recruitment of the putamen 

and insula was more pronounced for participants that integrated the social cue into their 

decision-making, as indicated by subjective reports. Activity changes in the insula that correlate 

with advice accuracy during choice are in line with a previous finding of insula activity 

correlating with the predicted value of the action of another person (Apps et al., 2015). 

Our finding that putamen and insula activities were correlated with increased weighting of 

social information needs to be seen in light of a limitation of the current study: we did not have 

a non-social control condition, for instance in form of an arrow pointing to one of the cards. 

Therefore, we cannot fully determine whether individual differences in social cue weighting 

associated with insula and putamen activity can be attributed to purely social or more general 

learning processes. In fact, co-activation of putamen and insula has previously been found in 

non-social cueing tasks (Hopfinger, Buonocore, & Mangun, 2000). Remarkably however, these 
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regions show significantly stronger activations for directional gaze cues compared to arrows in 

a spatial cueing task in healthy participants (Greene et al., 2011).  

These findings raise the potential of our method for studying aberrant social inference in 

psychiatric disorders (Diaconescu, Hauke, & Borgwardt, 2019; Frith, 2004), which is often 

associated with deficits in automatic but not explicit integration of social cues (Callenmark, 

Kjellin, Ronnqvist, & Bolte, 2014; Senju, Southgate, White, & Frith, 2009). Specifically, 

patients with schizophrenia have a tendency to over-attribute the meaning and salience of social 

signals (Diaconescu, Hauke, & Borgwardt, 2019; Frith, 2004). It would be interesting to 

investigate whether this would be reflected in processing abnormalities in the insula and 

putamen. 

Interestingly, while we found significant activations in the right insula correlating negatively 

with uncertainty about the winning card colour, we did not find differential activity in the insula 

as a function of non-social cue weighting (−	u). While we did not find significant activations 

with regard to uncertainty about the social cue, we found that fixation frequency on the face 

during choice, which may in itself reflect the degree of decision uncertainty (Brunyé & 

Gardony, 2017), was correlated with activations in the superior temporal gyrus (at a less 

conservative statistical threshold). This is in line with this region’s role in mentalization and 

suggests that these processes are triggered in the absence of explicit instructions to mentalize. 

  

5. Conclusions 

The present study used model-based fMRI to demonstrate commonalities and differences in the 

neural mechanisms of social and non-social cue integration during learning and decision-

making. While activations related to the non-social cue were associated with activity change in 

the middle and anterior cingulate and insula, negative social prediction errors additionally 

extended into the inferior frontal gyrus. During decision-making, tracking the uncertainty of 

the non-social cue was associated with activity change in the insula, while tracking the 

probabilistic accuracy of the social cue showed activity in the inferior temporal gyrus, putamen 

and pallidum, regions known for their relevance in reward-based processing. The putamen and 

the insula showed activity as a function of individual differences in weighting the social cue 

during decision-making. Our findings demonstrate the usefulness of model-based fMRI for the 

study of the spontaneous use of social cues in learning and decision-making, and they provide 

evidence for the involvement of specific components of the basal ganglia in these processes. 
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Tables 
Table 1. Bayesian Model Selection results. Posterior model probabilities (EXP_R) and Protected Exceedance 

Probabilities (PXP). 
 

Model 1 
 

Model 2 
 

Model 3  Model 4 
 

Model 4 
 

Model 6 
 

EXP_R 0.464 0.098 0.077 0.031 0.289 0.042 

PXP 0.627 0.067 0.067 0.067 0.105 0.067 

XP 0.937 0 0 0 0.063 0 

 
Table 2.  fMRI results for predicted accuracy of advice (ê).STUV

(r) ) during the choice phase. 

  Cluster MNI coordinates 
Region (left/right) Pcluster k Tpeak x y z 

R Inferior Temporal Gyrus 0 1749 7.9 52 -60 -6 
R Fusiform Gyrus   4.14 40 -72 -18 
R Middle Occipital Gyrus   4.01 50 -82 4 
L SupraMarginal Gyrus 0 1057 6.25 -58 -24 36 
L Inferior Parietal Lobule    4.4 -54 -36 50 
R Precentral Gyrus 0 4401 6.15 58 10 30 
L Precentral Gyrus   5.32 -34 -10 58 
R Superior Frontal Gyrus   5.14 26 -6 68 
L Posterior-Medial Frontal   4.8 -8 -4 68 
L Superior Frontal Gyrus   4.75 -22 -8 72 
L Inferior Parietal Lobule    4.74 -34 -42 50 
R Superior Frontal Gyrus   4.73 20 4 72 
R Postcentral Gyrus 0 1424 5.91 54 -22 34 
R SupraMarginal Gyrus   5.62 62 -16 28 
R Inferior Parietal Lobule    4.03 44 -34 48 
L Inferior Temporal Gyrus 0.001 524 5.77 -50 -68 -8 
L Middle Temporal Gyrus   3.29 -56 -58 2 
White Matter 0.004 421 5.04 16 6 -12 
R Putamen   4.32 18 14 -10 
R Pallidum   4.08 22 2 0 
R Superior Orbital Gyrus   3.95 18 22 -18 
L Inferior Temporal Gyrus 0.028 274 4.39 -40 -28 -26 
L Fusiform Gyrus   4.23 -38 -32 -28 
L Inferior Temporal Gyrus   4.21 -44 -24 -20 
L Cerebelum (VI)   3.93 -32 -40 -28 

 
 
Table 3. Neural correlates of differential responses to  ê).STUV

(r) as a function of the subjective report of having 
used the gaze during decision making. 
  Cluster MNI coordinates 
Region (left/right) Pcluster k Tpeak x y z 
L Insula Lobe 281 281 4.78 -26 12 -16 
L Putamen   4.04 -22 16 0 
R Rectal Gyrus 234 234 4.65 20 18 -12 
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R Putamen   3.83 30 10 0 
R Insula Lobe   3.36 36 6 12 

 
 
Table 4. fMRI results for the negative contrast on the predicted variance of the winning card colour 
sl).YTZ[
(r) 	during the choice phase. 

  Cluster MNI coordinates 
Region (left/right) Pcluster k Tpeak x y z 
R Insula Lobe 0.003 381 5.51 36 6 10 
R Rolandic Operculum  4.68 46 -2 14 

 
 
 
Table 5. fMRI results for negative social prediction error (')STUV

(r) < 0. i.e. gaze misleading) during wrong 
choices. 

  Cluster MNI coordinates 
Region (left/right) Pcluster k Tpeak x y z 
R Inferior Frontal Gyrus (p. Orbitalis) 0 769 5.9 36 32 -4 
R Insula Lobe   4.95 36 22 -4 
R Inferior Frontal Gyrus (p. Triangularis)   4.82 50 28 2 
R Rolandic Operculum   3.84 52 8 4 
L Posterior-Medial Frontal 0.009 312 4.87 0 4 64 

 
 
 
Table 6. fMRI results for positive social prediction error (')STUV

(r) > 0. i.e. gaze helpful) during correct choices. 

  Cluster MNI coordinates 
Region (left/right) Pcluster k Tpeak x y z 
R Lingual Gyrus  499 4.59 14 -98 -8 
R Middle Occipital Gyrus  3.66 36 -96 0 

 
  
Table 7. fMRI results for |')YTZ[

(r) | during outcome phases where advice was correct. 

  Cluster MNI coordinates 

Region (left/right) Pcluster k Tpeak x y z 

Advice correct       
L Insula Lobe 0 568 5.54 -42 14 -2 

R Middle Cingulate Cortex 0 1020 5.39 8 20 38 

L Posterior-Medial Frontal   5.24 -4 12 48 

L Middle Cingulate Cortex   5.1 -2 20 38 

R Posterior-Medial Frontal   4.1 8 8 54 

R Anterior Cingulate Cortex   3.78 6 30 26 

L Anterior Cingulate Cortex   3.55 2 38 26 
R Inferior Frontal Gyrus (p. 
Orbitalis) 0.002 422 5.32 34 24 -8 

R Insula Lobe   5.16 42 18 -4 

All outcomes             
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L Insula Lobe 0.032 225 5.11 -44 12 -4 

L Posterior-Medial Frontal  0.001 492 4.81 -4 12 48 

R Superior Frontal Gyrus   4.08 14 4 74 

R Middle Cingulate Cortex   3.79 8 20 36 
 
 

 
  



 53 

APPENDIX for “Bayesian modelling captures inter-individual differences in social 

belief computations in the putamen and insula” 
 

1. Methods 

Table A. 1 Descriptive statistics of post-experimental questions all participants. After the experiment subjects 
were asked to rate the difficulty of the task from 0 - easy to 100 - very difficult (Q1). how helpful they found the 
gaze during decision making from 0 – not helpful at all to 100 – very helpful (Q2) and how much they took the 
gaze into account from 0 – not at all to 100 – very much (Q3).  

   Q1  Q2  Q3  
Mean   38.19  26.48  38.10  

Std. Deviation   28.17  28.29  35.27  

Minimum   1  0  1  

Maximum   100  90  100  
 
Missing values  3  2  2 
 
Tab. A. 2. Details on prior configurations for all perceptual models (HGF, ST-K1 & RW) and response model. 

   Level 1 Level 2 Level 3 

HGF Prior Mean Prior Variance Prior Mean Prior Variance Prior Mean Prior Variance 

 
 

- -  0  0  1 0  

 
 

- -  Log (0.4)  1  Log (0.1) 1  

  

- -   

  

 0  Logit (0.1) 2  

 
 

- -  0  0  1 0  

  Log (1) 0  Log (1)  0  - -  

  - -  -3  4  -6 4 

ST-K1 Prior Mean Prior Variance 

 
 

Log (1) 0.5 

 
 

Log (1) 0 

   Logit (0.5) 0 

 
 

Logit (0.005) 1 

 RW Prior Mean Prior Variance 

  Logit (0.5) 0 

  Logit (0.5) 1 

 
 
 

Response  
Model Prior Mean Prior Variance 

e($ìî) 
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   Level 1 Level 2 Level 3 

HGF Prior Mean Prior Variance Prior Mean Prior Variance Prior Mean Prior Variance 

 u Log (1) 16 

 é Log (16) 16 

 
Table A. 3. Mean posterior estimates of parameters of interest estimated from winning model. 

 
   pWYTZ[	 pWSTUV	 pXYTZ[	 pXSTUV	 é u 

Mean   -3.317  -3.193  -5.889  -6.000  1.402  -1.343  

Std. Deviation   1.765  1.931  0.3263  0.09111  0.7764  2.609  

Minimum   -9.166  -8.899  -6.105  -6.322  -1.551  -4.574  

Maximum   -0.5981  -0.6706  -4.340  -5.702  3.393  3.721  

Missing values   0  0  0  0  0  0  

 

 

2. Results 
 

Table A. 4. fMRI results for differential responses to  ê).STUV
(r) as a function of the computational weighting 

parameter u. 

  Cluster MNI coordinates 
Region (left/right) Pcluster k Tpeak x y z 

White Matter 0.03 268 4.32 36 -76 -4 
R Inferior Occipital Gyrus  4.21 46 -82 -2 

 

Table A. 5. fMRI results for predicted accuracy of advice (ê).STUV
(r) ) during the choice phase when estimated in 

GLM containing all parametric modulators. 

       
  Cluster MNI coordinates 

Region (left/right) Pcluster k Tpeak x y z 
R Inferior Temporal Gyrus 0 1553 7.29 54 -60 -6 
R Fusiform Gyrus   3.93 42 -72 -18 
R Cerebelum (VI)   3.7 46 -34 -32 
L SupraMarginal Gyrus 0 717 5.75 -56 -28 34 
L Inferior Parietal Lobule   4.13 -54 -36 50 
L Inferior Temporal Gyrus 0.003 450 5.72 -50 -68 -8 
R SupraMarginal Gyrus 0 958 5.24 54 -20 28 
R Postcentral Gyrus   5.22 64 -14 26 
R Superior Temporal Gyrus   3.8 60 -32 22 
L Inferior Parietal Lobule 0 2448 5.19 -32 -42 52 
L Paracentral Lobule   5.11 -18 -14 66 
L Precentral Gyrus   5.1 -44 -10 56 
L Postcentral Gyrus   5.05 -34 -10 58 
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L Posterior-Medial Frontal   4.8 -2 -6 68 
L Superior Parietal Lobule    4.57 -28 -44 62 
R Precentral Gyrus 0.017 318 4.92 58 10 30 
R Inferior Frontal Gyrus (p. Opercularis)  3.93 52 8 18 
RPrecentral Gyrus 0.001 567 4.51 20 -18 70 
R Middle Frontal Gyrus   4.27 40 -6 60 
R Superior Frontal Gyrus   4.09 26 -6 66 
R Caudate Nucleus 0.005 410 4.44 12 8 -12 
R Putamen   4.17 18 16 -10 
R Pallidum   3.99 22 4 0 
R Superior Orbital Gyrus   3.78 18 22 -18 
R Olfactory cortex   3.46 10 18 -12 

 
 
Table A. 6. Neural correlates of differential responses to  ê).STUV

(r) as a function of the subjective report of having 
used the gaze and as a function of computational weighting parameter u	(in GLM containing all parametric 
modulators). 

  Cluster MNI coordinates 
Region (left/right) Pcluster k Tpeak x y z 

Subjective Report           
R Rectal Gyrus 0.001 557 4.75 20 16 -12 
R Putamen   4.66 32 10 2 
R Insula Lobe   3.91 38 6 12 
R Rolandic Operculum  3.87 46 2 12 
White Matter 0.033 262 4.52 10 -56 -30 
R Cerebelum (IX)  4.49 14 -46 -38 
R Cerebelum (VIII)  4.11 20 -54 -42 
White Matter 0.04 248 4.21 26 -12 -8 
R Putamen   4 34 -12 -6 
R Hippocampus   3.97 28 -22 -14 
R Pallidum   3.95 18 -4 -2 
R Thalamus   3.37 16 -18 -2 
Computational Weighting Parameter u         
R Inferior Occipital Gyrus 0.013 330 4.55 36 -74 -6 
L Postcentral Gyrus 0.006 391 4.34 -18 -32 68 
L Precentral Gyrus  4.01 -28 -30 60 
L Paracentral Lobule  3.94 -14 -32 82 

 
 
 
 
Table A. 7. FMRI results on negative contrast of |')YTZ[

(r) | during outcome phases where advice 
was incorrect and during all outcomes.  
  Cluster MNI coordinates 
Region (left/right) Pcluster k Tpeak x y z 
All outcomes             
R Caudate Nucleus 0 813 6.28 12 16 -8 
R Amygdala   4.89 26 0 -14 
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R ParaHippocampal Gyrus  4.32 22 -4 -24 
R Putamen   3.84 32 -2 8 
L Middle Occipital Gyrus 0 1160 5.18 -32 -90 18 
L Precuneus   4.84 -8 -58 14 
L Middle Occipital Gyrus  4.3 -26 -80 34 
L Cuneus   4.15 -18 -58 22 
L Middle Occipital Gyrus  3.63 -42 -86 24 
L Inferior Temporal Gyrus 0 1464 5.04 -36 -42 -16 
L Inferior Occipital Gyrus  4.84 -50 -74 -6 
L Middle Occipital Gyrus  4.04 -38 -78 -2 
L Hippocampus   4.04 -28 -20 -16 
L Middle Temporal Gyrus  4.04 -42 -60 -4 
R Middle Cingulate Cortex 0.004 348 4.78 4 -40 32 
L Posterior Cingulate Cortex  3.87 -6 -46 30 
L Putamen 0.025 240 4.53 -20 10 -6 
L Olfactory cortex  3.74 -20 4 -14 
L Caudate Nucleus  3.56 -10 14 -10 
L Hippocampus   3.33 -18 -6 -14 
White Matter 0 624 4.45 18 38 -10 
L Mid Orbital Gyrus  4.1 -2 50 -8 
R Rectal Gyrus   3.96 2 50 -20 
L Paracentral Lobule 0.045 206 4.05 -2 -26 52 
R Posterior-Medial Frontal  3.84 6 -16 58 
L Middle Cingulate Cortex  3.49 0 -26 44 
Advice incorrect             
L Inferior Temporal Gyrus 0 2961 6.14 -46 -58 -14 
L Fusiform Gyrus  5.97 -38 -50 -16 
L Inferior Occipital Gyrus  5.52 -48 -74 -4 
L Middle Occipital Gyrus  4.63 -40 -76 -2 
L Superior Occipital Gyrus  4.6 -26 -72 22 
L Lingual Gyrus   4.19 -26 -96 -16 
R Amygdala 0.002 402 5.36 18 4 -16 
R Rectal Gyrus   3.75 12 14 -14 
R Putamen   3.7 18 18 -8 
L Olfactory cortex 0.032 230 4.97 -22 4 -14 
L Putamen   4.27 -24 10 0 
R Inferior Occipital Gyrus 0 1017 4.75 30 -100 -4 
R Middle Occipital Gyrus  4.74 32 -86 20 
R Middle Temporal Gyrus  4.5 46 -48 -4 
R Inferior Temporal Gyrus  3.96 52 -58 -8 
R Inferior Frontal Gyrus (p. 
Opercularis) 0.006 336 4.7 52 10 26 
RPrecentral Gyrus  4.2 62 6 32 
R Mid Orbital Gyrus 0.029 234 4.22 4 48 -6 
R Superior Medial Gyrus  3.89 4 58 0 
L Middle Cigulate Cortex 0.008 315 4.16 -2 -38 34 
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Neural correlates of face fixations during choice  
 
Increased fixations on the face during choice correlated with increased activity in the right 
superior temporal gyrus, inferior parietal lobule and angular gyrus (Fig A.1. Table A.5).  
 

 
Fig. A. 1. Neural correlates of face fixations during choice. The positive contrast on the parametric modulator 
reflects BOLD activity in regions correlated with proportion of gaze fixations on the social cue. Cluster-forming 
threshold: p<0.005. cluster level threshold p< 0.05. FWE corrected. [x y z] coordinates refer to the MNI 
coordinates of the respective slices. See Table A. 6 for further information on cluster extents and peak voxel 
coordinates. 
 
Table A. 5. fMRI results for face fixations during choice.  

    Cluster MNI coordinates 
Region (left/right) Pcluster k Tpeak x y z 

R Superior Temporal Gyrus 0.003 945 4.31 48 -46 20 
R Inferior Parietal Lobule    3.79 44 -62 58 
R Angular Gyrus   3.25 60 -60 36 
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3 Aberrant computational mechanisms of social learning and decision-making in 

schizophrenia and borderline personality disorder 

 
This chapter includes the second, behavioural study that adopted a computational psychiatry 

approach to investigate social and non-social learning in decision-making in patients with BPD, 

SCZ and MDD. The findings demonstrated a commonality in decision-making in patients with 

BPD and SCZ that was characterised by an excessive reliance on the social information during-

decision-making. In addition, the results demonstrate a distinguishing learning pattern in 

patients with BPD that was characterised by blunted learning of the probabilistic contingencies 

of both social and non-social outcomes, in conjunction with an exaggerated learning about their 

volatility. The study highlights the potential for computational modelling in individually 

estimating aberrant social learning and decision-making patterns and may improve our 

understanding of the fundamental social impairments in psychiatric disorders. The manuscript 

has been submitted for publication. 
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Abstract 

 

Psychiatric disorders are ubiquitously characterized by debilitating impairments in social 

functioning. These difficulties are thought to emerge from aberrant social inference. In order to 

elucidate on the computational mechanisms that may underlie such aberrations, patients 

diagnosed with major depressive disorder (N=29), schizophrenia (N=31), and borderline 

personality disorder (N=31), and healthy controls (N=34) performed a probabilistic reward 

learning task in which participants could learn from social and nonsocial information. We 

applied computational modeling of behavior to assess learning and decision-making parameters 

estimated for each participant. Participants with borderline personality disorder showed slower 

learning than healthy controls from both social and non-social information but increased 

learning of environmental volatility for both types of information. Compared to controls and 

major depressive disorder patients, borderline personality disorder and schizophrenia patients 

both showed more reliance on their social, relative to their non-social predictions when making 

choices. Major depression patients did not differ significantly from controls. This is the first 

study to apply a computational approach to social and non-social inference transdiagnostically 

across three different psychiatric patient groups. Computational modeling revealed impaired 

learning from social and non-social information in borderline personality disorder characterized 

by an exaggerated sensitivity to changes in environmental volatility. Compared to controls, 

patients with borderline personality disorder and schizophrenia showed an over-reliance on 

their beliefs about the predictive value of social relative to non-social information during 

decision-making. This supports a mechanistic computational account of the exaggerated need 

to make sense of and rely on other people’s minds (over-mentalizing) which is prominent in 

both disorders. 
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Author Summary 

 

People suffering from psychiatric disorders frequently experience difficulties in social 

interaction, such as an impaired ability to use social signals to build representations of others 

and use these to guide behavior. Compuational models of learning and decision-making enable 

the characterization of individual patterns in learning mechanisms that may be disorder-specific 

or disorder-general. We employed this approach to investigate the behavior of healthy 

participants and patients diagnosed with depression, schizophrenia, and borderline personality 

disorder while they performed a probabilistic reward learning task which included a social 

component.  

We found that learning in patients with borderline personality disorder was characterized by a 

reduced flexibility in the weighting of newly obtained social and non-social information 

according to its predictive value. Instead, we found exagerrated learning of the volatility of 

social and non-social information. Additionally, we found a pattern shared between patients 

with borderline personality disorder and schizophrenia who both showed an over-reliance on 

predictions about social relative to non-social information during decision-making. Our 

modeling provides a computational account of the exaggerated need to make sense of and rely 

on other people’s minds, which is prominent in both disorders. 
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Introduction 

 

Impairments in social cognition are frequently experienced by people suffering from a 

psychiatric disorder. For instance, patients with major depressive disorder (MDD) and 

schizophrenia (SCZ) show a reduction in (social) reward sensitivity and motivation to engage 

in social interactions [1–5]. Despite high levels of social anhedonia, patients with SCZ show a 

tendency to over-interpret the meaning of social signals [6]. Individuals with borderline 

personality disorder (BPD) suffer from rapidly changing beliefs about others that polarise 

between approach and rejection [7]. Together, these impairments are associated with aberrant 

inferences/beliefs about oneself and the social environment. 

In computational terms, the emergence of aberrant inference can be ascribed to an impaired 

ability to adjust learning in response to environmental changes [8]. Bayesian learning models 

allow for a parsimonious algorithmic description of changes in beliefs relevant for accurate 

inference: belief updates can be written as a surprise signal (prediction error) weighted by a 

learning rate [9]. The learning rate depends on the ratio between the precision of the sensory 

data and the precision of the prior belief [10,11]. Whereas healthy participants increase their 

learning rate more strongly in volatile compared to stable environments [12,13], patients with 

autism do so less owing to an over-estimation of environmental volatility [8]. Impairments in 

the estimation of environmental volatility have also been proposed as a mechanism for 

psychosis and SCZ [14,15] as well as MDD [16]. One recent study found that, unlike healthy 

controls, participants with BPD did not show an increase in learning when social and reward 

contingencies became volatile [17]. The authors suggested that this might be due to higher 

expected baseline volatility in participants with BPD. However, the computational model 

employed in that study did not explicitly model beliefs about volatility.  

Adopting previous suggestions of aberrant volatility learning in psychiatric disorders and its 

role in impaired probability learning, the current study employed Bayesian hierarchical 

modeling to investigate probabilistic (social) inference in a volatile context learning across 

three major psychiatric disorders, which have previously been associated with social 

dysfunction: MDD, SCZ and BPD. Here, the current study investigated whether volatility and 

probability learning is equally affected when inferring on the hidden states of non-social and 

social outcomes across the three different disorders. We further asked whether aberrant social 

learning and decision-making were associated with differences in social anhedonia. 

To this end, we adopted a probabilistic reward learning task (introduced in [18]), in which 

participants could learn from two types of information: non-social and social information. In 
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order to probe the spontaneous rather than explicitly instructed use of social information as in 

previous social learning studies [12,13,19,20], we did not explicitly tell participants to learn 

about the social information. We used the hierarchical Gaussian filter (HGF; [10,11]) to obtain 

a profile of each participant’s particular way of updating beliefs when receiving social and non-

social information while making decisions in a volatile context. The HGF is a generic 

hierarchical Bayesian inference model for volatile environments with parameters that reflect 

individual variations in cognitive style. We went beyond other recent computational psychiatry 

studies using the HGF (e.g., [8,21–25]) in that we used two parallel HGF hierarchies for social 

and non-social aspects of the environment (cf. [26,27]). Our modeling framework was 

specifically designed also to quantify the relative weight participants accorded their beliefs 

about the predictive value of social compared to non-social information in decision-making.  

 

Materials and Methods 

 

Participants 

 

Patients were recruited for the present study after an independent and experienced clinician 

diagnosed them using ICD-10 criteria for 1) a depressive episode (F32), schizophrenia (F20) 

and emotionally unstable personality disorder (F60.3). HC and patients with MDD were 

recruited through the Max Planck Institute of Psychiatry. Patients with SCZ were recruited at 

the Department of Psychiatry and Psychotherapy at the University Hospital Munich. Patients 

with BPD were recruited at the kbo-Isar-Amper-Klinikum in Haar, Munich. All participants 

were naïve to the purpose of the experiment and provided informed consent to take part in the 

study after a written and verbal explanation of the study procedure. The study was in line with 

the Declaration of Helsinki and approval for the experimental protocol was granted by the local 

ethics committee of the Medical Faculty of the Ludwig-Maximilians University of Munich. 

Detailed exclusion criteria are listed in the Supplementary Methods.  

Participants were chosen prior to analysis such that groups were matched for age (c	
W=5.302, 

P=0.151; Kruskal-Wallis one-way non-parametric ANOVA because of difference in age 

variance between groups, see Table S1). Exclusion criteria were a history of neurological 

disease or injury, reported substance abuse at the time of the investigation, a history of 

electroconvulsive therapy, and diagnoses of comorbid personality disorder in the case of MDD 

and SCZ. Furthermore, 9 participants had to be excluded from the analysis due to one of the 

following reasons: unsaved data due to technical problems (1 HC, 2 BPD). Prior participation 
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in another study which involved the same paradigm (1 HC), always picking the card with the 

higher reward value (1 HC), either following (1 SCZ) or going against (1 BPD) the gaze on 

more than 95% of trials (indicating a learning-free strategy), interruption of the task (1 SCZ), 

change to the diagnosis following study participation (1 MDD). The final sample consisted of 

31 HC, 28 MDD, 29 SCZ and 28 BPD. We additionally acquired psychometric data 

(Supplementary Methods and Table S1) to further characterize the participants: All patients 

were asked to fill out questionnaires measuring autistic traits with the autism spectrum quotient 

(AQ [28]) and social anhedonia symptoms with the Anticipatory and Consummatory 

Interpersonal Pleasure Scale (ACIPS; [29]). We additionally assessed positive and negative 

symptoms using the Positive and Negative Syndrome Scale (PANSS [30]) and mood symptoms 

using the Calgary Depression Scale for Schizophrenia (CDSS [31]) in patients with SCZ. To 

assess the severity of Borderline Personality Disorder we used the short version of the 

Borderline Symptom List (BSL-23 [32]). Additional questionnaires were employed but 

analyzed within the scope of a different study and therefore not presented here. Demographic 

data as well as details regarding the medication can be seen in the Supplementary Methods, S2 

Table). 

Experimental paradigm and procedure 

 

After giving informed consent, participants were seated in front of a computer screen in a quiet 

room where they received the task instructions. In the probabilistic learning task introduced in 

[26],  participants were asked to choose between one of two cards (blue or green) in order to 

maximize their score which was converted into a monetary reward (1-6 €) that was added to 

participants’ compensation at the end of the task. An animated face was displayed between the 

cards, which first gazed down, then up towards the participant, before it shifted its gaze towards 

one of the cards (Fig 1A). The blue and green card appeared randomly on the left and right side 

from the face and participants responded using ‘a’ or ‘l’ on a German QWERTZ keyboard. 

When a response was logged within the allowed time (6000 ms), the chosen card was marked 

for 1000 ms until the outcome (correct: green check mark/wrong: red cross) was displayed for 

1000 ms. When the correct card was chosen, the reward value (1-9) displayed on the card was 

added to the score. Participants were instructed that these values were not associated with the 

cards’ winning probabilities, but that they might want to choose the card with the higher value 

if they were completely uncertain about the outcome. When the wrong card was chosen or 

participants failed to choose a card in the allotted time, the score remained unchanged. 

Participants were told that the cards had winning probabilities that changed in the course of the 
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experiment but they were not informed about the systematic association between the face 

animation’s gaze and the trial outcome. Specifically, they were not told that the probability with 

which the face animation pointed towards the winning card on a given trial varied 

systematically throughout the task according to the schedule given in Fig 1B. Instead, we 

simply told participants that the face was integrated into the task to make it more interesting. 

The probabilistic schedules for social and non-social information were independent from each 

other in order to estimate participant-specific learning rates separately for both types of 

information. In the first half of the experiment (trials 1–60), the card winning probabilities were 

stable, whereas in the second half (trials 61–120) they changed (volatile phase). The social cue 

had a stable contingency during trials 1-30 and trials 71-120, whereas contingency was volatile 

during trials 31-70. We used two types of schedules for the social cue which were each 

presented to half of the participants. In one schedule (depicted in Fig 1B), the probability of the 

social cue looking towards the winning card was 73% in the first stable phase (trial 1-30) and 

therefore started as congruent to the winning card (congruent-first). The second probability 

schedule was flipped, so that the probability of the social cue looking towards the winning card 

was 27% in the first stable phase (incongruent-first). In total, 15 control participants received 

the congruent-first schedule, 15 participants with MDD, 14 with SCZ and 15 with BPD. 

Positions of the cards on the screen (blue left or right) were determined randomly. The task was 

programmed and presented with PsyToolkit [33]. 

 
Fig 1. Task design and computational decision and inference model. (A) Participants were asked to make a choice 

between blue and green cards after the gray shading on the colored rectangles (cards) had disappeared (i.e., 750 
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ms after the face shifted its gaze towards one of the cards). After a delay phase, the outcome was presented 

(correct/wrong). If the choice was correct, the reward amount (number on the chosen card) was added to a 

cumulative score. The task consisted of 120 trials. (B) Probability schedules from which outcomes were drawn. 

Volatile phases are marked in grey. (C) Posteriors are deterministic functions of predictions and outcomes. 

Predictions in turn are deterministic functions of the posteriors of previous trials. Decisions y(ú)	are 

probabilistically determined by predictions and decision model parameters ζ and β. Deterministic quantities are 

presented as boxes and probabilistic quantities in circles.  

 

Computational Modeling 

 

Observing the observer 

 

We modeled behavior in the ‘observing the observer’ (OTO) framework [34,35]. This entails a 

response model, which probabilistically predicts a participant’s choices based on his/her 

inferred beliefs, and a perceptual model, on which the response model depends because it 

describes the trajectories of participants’ inferred beliefs based on experimental inputs. The 

OTO framework is conceptually very similar to the idea of inverse reinforcement learning [36]. 

 

Perceptual Model 

 

As a perceptual model we used two parallel HGF hierarchies to represent concurrent 

hierarchical learning about the social (predictive value of gaze) and non-social (predictive value 

of card color) aspects of the task environment. The HGF is an inference model resulting from 

the inversion of a generative model in which states of the world are coupled in a three-level 

hierarchy: At the lowest level of the generative model,  R)STUV	and R)YTZ[  represent the two 

inputs in a binary form (social cue: 1=correct, 0=incorrect; card outcome: 1=blue wins, 0=green 

wins). Level RWSTUV		 and RWYTZ[		represent the tendency of the gaze to be correct and the 

tendency of the blue card to win. State RWSTUV	 and RWYTZ[		evolve as first-order autoregressive 

(AR(1)) processes with a step size determined by the state at the third level. Level RXSTUV				and   

RXYTZ[				represent the log-volatility of the two tendencies and also evolve as first-order 

autoregressive (AR(1)) processes. The probabilities of R)STUV	 = 1	and R)YTZ[		 = 1	are the 

logistic sigmoid transformations of RWSTUV		and RWYTZ[		(Equation 1). 

 

"ÑR)(r) = 1Ü = )
)(9]7	(^	_`(})	)

                (1) 
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Participants’ responses y were coded with respect to the congruency with the ‘advice’ 

(1=follow; 0=not follow) and were used to invert the model in order to infer the belief 

trajectories at all three levels a = 1,2,3.   

On every trial g, the beliefs ef
($) (and their precisions hf

($)) about the environmental states at 

the a-th level are updated via prediction errors 'f^)
($)  from the level below weighted by a precision 

ratio  üf
($)(Equation2-3). This means that belief updates are larger (due to higher precision 

weights) when the precision of the posterior belief (hW($) or hX
($)) is low and the precision of 

the prediction htW
($)is high. Consequently, prediction errors are weighted more during phases of 

high volatility (cf. Figure S1, panel C, dotted blue trajectory). For the analysis, we used 

q(üW
($))		(Equation 4), which is a transformation of üW

($) (Equation 3) (cf. [37], supplementary 

material) that corrects for the sigmoid mapping between first and second level, effectively 

making q(üW
($))		an uncertainty (inverse precision) measure for first-level beliefs.  

∆ef
($)	 	∝ 			üf

($)'f^)
($) 			(a = 2,3)	                             (2) 

 

üW
($) 	= 	 )

k`(A)
																			                                          (3)  

 

†(üW
($)) = 		üW

($)		(°á	eW
($)ã â1 − °á	eW

($)ãå)         (4) 

 

üX
($) = 	 kl`

(A)

ko
(A)				                                                         (5) 

 

Participant-specific parameters pWYTZ[	 and pWSTUV	represent the learning rates at the second 

level, i.e. the speed at which association strengths change. Correspondingly, pXYTZ[	and 

pXSTUV	represent the learning rates of the volatilities.  

 

Response Model 

 

In the response model a combined belief x(r)  (Equation 6) was mapped onto decisions, which 

resulted from a combination of both the inferred prediction ê),STUV
(r) 	that the face animation’s 

gaze will go to the winning card and the inferred prediction ê),YTZ[
(r) 		that the color of the card 

that the gaze went to would win (see example in S1 Fig). The inferred prediction ê),STUV
(r)  and 
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ê),YTZ[
(r) 		were weighted by  sSTUV

(r)  and sYTZ[
(r)  (Equation 7-8), which are functions of the 

respective precisions (ht),STUV
(r)  and ht),YTZ[

(r) , Equation 9-10).  The precisions (Equation 9-10) 

represent the inverse variances a Bernoulli distribution of ê),STUV
(r)  and ê),YTZ[

(r) . 

The constant parameter u represents the weight on the precision of the social prediction 

compared to the precision of the non-social prediction (Equation 7). In other words, this 

parameter describes the propensity to weight the social over the non-social information. We 

investigated the effect of varying the social weighting factor u, by simulating the combined 

belief x(r) (Equation 6) of agents with same perceptual parameters (fixed at prior values as 

depicted in S3 Table) but different u values (Fig 5B&C). 

 

x(r) = 	sSTUV
(r) 	ê),STUV

(r) + sYTZ[
(r) 	ê),YTZ[

(r)           (6) 

sSTUV
(r) = 	

ykln,z{|B
(})

ykln,z{|B
(}) (kln,~{GE

(}) 	
                               (7) 

sYTZ[
(r) = 	

kln,~{GE
(})

ykln,z{|B
(}) (kln,~{GE

(}) 	
                               (8) 

ht),STUV
(r) = 	 )

�ln,z{|B
(}) 	()^�ln,z{|B

(}) )	
                          (9) 

ht),YTZ[
(r) = 	 )

�ln,~{GE
(}) 	()^�ln,~{GE

(}) )	
                          (10) 

 

In the response model, used the combined belief x(r) (Equation 6) in a logistic sigmoid 

(softmax) function to model the probability  Ä&ÅxSTUV
(r)   (Equation 11). In this function, the belief 

was weighted by the predicted reward of the card when the advice is taken &STUV	or not &ÇÉrSTUV 

(Equation 11). 
 

"&ÅxSTUV = "ÑÖ(r) = 1Ü = 1 á1 + exp â−ä(r) á&STUV
(r) x(r) − &ÇÉrSTUV

(r) Ñ1 − x(r)Üãåãç           (11) 

 

The mapping of beliefs onto actions varied as a function of the inverse decision temperature 

ä(r), where large	ä(r) implied a high alignment between belief and choice (low decision noise) 

and a smaller ä(r) a low alignment between belief and choice (high decision noise).  Our four 

different response models varied in terms of how ä(r) was defined. In response model 1, ä(r) 

was a combination of the log-volatility of the third level for both cues combined with constant 

participant-specific decision noise é	(Equation 12). In response model 2, ä(r) was a 
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combination of the log-volatility of the third level for the social cue and participant-specific 

decision noise (Equation 13) and in response model 3 ä(r) was a combination of the log-

volatility of the third level for the non-social cue and participant-specific decision noise 

(Equation 14). In model 4,	ä(r) only included the participant-specific decision noise (Equation 

15).  

1)	ä(r) = é	expá−êX,YTZ[
(r) − êX,STUV

(r) ã					(12) 

 2) ä(r) = é	expá−êX,STUV
(r) ã																							(13) 

3)	ä(r) = é	expá−êX,YTZ[
(r) ã                      (14) 

4)ä(r) = é                                                (15) 

We used the HGF toolbox, version 4.1, which is part of the software package TAPAS 

(https://translationalneuromodeling.github.io/tapas) for parameter estimation. We fitted six 

alternate combinations of perceptual and response models, which were subjected to random-

effects Bayesian Model Selection [38,39] (spm_BMS in SPM12; 

http://www.fil.ion.ucl.uk/spm), cf. Supplementary Methods. The HGF was compared against a 

Sutton K1 model [40] and a Rescorla Wagner learning model with a fixed learning rate [41]. 

We used the implementation of these models in the HGF toolbox and adjusted them in the same 

way as the HGF so that the model engages concurrent parallel learning about the social and 

non-social aspects of the task environment. These widespread and powerful perceptual models 

were chosen for comparison as in previous studies [24,42]. The HGF was combined with all 

four response models. The non-hierarchical models were combined with response model 4 only, 

owing to the lack of third-level belief trajectories. Details of the prior settings of all models can 

be seen in S3 Table. 

 

Model comparison and validity 

 

The log model evidence (LME) for each participant and each model were subjected to Bayesian 

Model Selection [38,39] (spm_BMS in SPM12) in order to estimate the expected posterior 

probabilities (EXP_P), the exceedance probability (XP) and the protected exceedance 

probability (PXP).  
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Posterior predictive validity of model parameters and task performance 

 

To test the robustness of the model, we simulated responses based on the estimated parameters 

from the best fitting model and checked whether these responses produce the same group 

differences that were observed in the real behavioral data, i.e. different performance accuracy. 

For this analysis, behavioral responses were simulated based on the posterior estimates of 60 

participants (we simulated 15 randomly sampled participants of each of the four groups 10 

times). These simulated responses were used to calculate performance (i.e., % of accurate 

responses) which was then entered into a one-way ANOVA as described in the methods 

(statistical analysis).  

 

Statistical Analysis  

 

Performance (% correct responses) was subjected to a one-way ANOVA with group (HC vs. 

MDD vs. SCZ vs. BPD) and schedule (congruent first vs. incongruent first) as between-subject 

factors. Advice taking (advice followed or not on a given trial) was subjected to a mixed 

ANOVA with social accuracy (high vs. low) and schedule stability (stable vs. volatile) as 

within-subject factors. Group (HC vs. MDD vs. SCZ vs. BPD) and schedule (congruent first 

vs. incongruent first) were included as between-subject factors.  

Mean precision weights on the second and third level (†(üW	 ) and üX	 ) separately entered two 

mixed ANOVAs as dependent variables with schedule stability as a within-subject factor 

(stable vs.volatile), information type as within participants factor (social vs. non-social). The 

group (HC vs. MDD vs. SCZ vs. BPD) and schedule (congruent first vs. incongruent first) were 

between subject factors.  

We subjected the posterior estimate for u to a one-way ANOVA with group (HC vs. MDD vs. 

SCZ vs. BPD) as between-subject factor and schedule (congruent first vs. incongruent first) as 

a covariate. 

We hypothesized that social anhedonia (measured by the Anticipatory and Consummatory 

Interpersonal Pleasure Scale, ACIPS) would be associated with a reduction in learning in the 

social domain. To test this, we first performed a one-way ANOVA with ACIPS scores as 

dependent variable and group as the factor (HC vs. MDD vs. SCZ vs. BPD) followed by a 

multivariate regression with ACIPS as dependent variable and the social learning rates pWSTUV	 

and the weighting factor u as predictors of social learning and decision making. The group 
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factor (HC vs. MDD vs. SCZ vs. BPD) was entered as covariate. This analysis was done for all 

participants who completed the ACIPS questionnaire (n=106 of ntotal=116).  

All ANOVA post hoc t tests were Bonferroni-corrected for multiple comparisons. All p-values 

are two-tailed with a significance threshold of p <.05. Statistical tests were performed using 

JASP (Version 0.9 2.0; https://jasp-stats.org/) or Matlab (Version 2018b; 

https://mathworks.com). 

 

Results 

 

Behavior  

 

There was a significant difference between the groups in the overall performance, i.e. % of 

correct responses (F(3,108)=7.504, p<0.001, Fig 2A): Post-hoc comparisons showed that both 

patients with SCZ and BPD performed significantly worse compared to HC and patients with 

MDD (SCZ–HC t=3.781, pbonf=0.002, SCZ–MDD t=2.817, pbonf=0.035, BPD–HC t=3.732, 

pbonf=0.002, BPD–MDD t=2.78, pbonf=0.038). There was no significant difference in 

performance between patients with BPD and SCZ (t=-0.01, pbonf=1.000) nor between HC and 

patients with MDD (t=0.88, pbonf=1.000). Performance was not significantly affected by the 

schedule order (congruent first vs. incongruent first; F(1,108)=0.027, p=0.870) or its interaction 

with the patient groups (F(3,108)=1.302, p=0.278).  

We found a main effect of social accuracy (F(1,108)=227.935, p<0.001) whereby participants 

followed the gaze more during phases of high accuracy compared to phases of low accuracy 

(t=14.94, pbonf <0.001) (Fig 2C). Advice taking was not significantly affected by the schedule 

stability (F(1,108)=0.503,  p=0.480), indicating that advice taking did not differ between stable 

and volatile phases. Advice taking was not significantly affected by an interaction between 

accuracy of the social information and Group (F(3,108)=2.222, p=0.09), or by an interaction 

between social accuracy, schedule stability and Group (F(3,108)=1.47, p=0.227). However, 

there appeared to be a group difference during the volatile low accuracy trials (rightmost data 

points in Fig 2.C). 
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Fig 2. Behavioral results. (A) Patients with SCZ and BPD show poorer performance in task compared to HC and 

patients with MDD. (B) There was no difference between groups with respect to the percentage of trials in which 

the advice was taken. Boxes mark 95% confidence intervals and vertical lines standard deviations. (C) Patients 

with BPD followed the advice significantly more compared to patients with MDD during volatile phases of low 

accuracy. 
 

Bayesian Model Selection & Validity 

 

Model comparison showed that the HGF including subject specific decision noise as well as 

the volatility estimate êX,STUV  and êX,YTZ[ outperformed the other HGF models as well as the 

Rescorla Wagner and Sutton-K1 models with subject specific decision noise only  (PXP=0.958; 

XP=0.998). See Table 1 for further details and S4 Table for mean posterior parameter estimates.  

Table 1. Bayesian Model Selection results.  

BMS Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

EXP_R 0.492 0.067 0.032 0.015 0.028 0.267 

XP 0.998 0 0 0 0 0.002 

PXP 0.958 0.008 0.008 0.008 0.008 0.01 

Posterior model probabilities (EXP_R), Exceedance Probabilities (XP) and Protected Exceedance Probabilities 

(PXP). Model 1 refers to the HGF combined with response model 1, Model 2 refers to the HGF combined with 

response model 2, Model 3 refers to the HGF combined with response model 3, Model 4 refers to the HGF 

combined with response model 4, Model 5 refers to the Sutton K-1 Model combined with response model 4, Model 

6 refers to the Rescorla Wagner Model combined with response model 4. 
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Posterior predictive validity of model parameters and task performance 

 

We simulated responses using the posterior mean parameter values of 60 randomly chosen 

participants from the best fitting model to demonstrate that this model was capable of 

reproducing the group differences that were observed in the real behavioral data, i.e. different 

performance accuracy.  

The ANOVA of the simulated data showed that for performance accuracy, as in the real data, 

there was a main effect of group (F(3,592) = 35.776, p<0.001) with significantly lower 

performance for SCZ and BPD patients compared to HC and patients with MDD (all 

comparisons: pbonf <.001). As in the real data, performance did not significantly differ between 

HC and MDD or between BPD and SCZ (HC–MDD pbonf =0.216; BPD–SCZ pbonf =1.000). 

Whereas there was no significant main effect of Schedule as in the real data, there was a 

significant Group  ×  Schedule effect (pbonf <.001) which was not observed in the real data. 

While the real data do point towards an interaction between Group and Schedule, this 

interaction only reached significance in the simulated data. This is most likely due to an increase 

of power since every participant was simulated 10 times reaching n=600, compared to n=116 

as in the real analysis. For the same reason, the group differences in simulated performance 

have larger effect sizes compared to the group differences in real performance. 

 

Dynamic learning rates – second level 

 

For the averaged precision weights (i.e., dynamic learning rates) for learning about the social 

q(üWSTUV) and non-social q(üWYTZ[), we found a main effect of task phase (F(1,108)=18.628, 

p<0.001), showing that q(üW) is higher in volatile compared to the stable phases (t=-4.419, pbonf 

<0.001) (Fig 3A). There was no significant interaction between Phase and Information Type, 

which indicates that q(üW) increases similarly during social and non-social volatility (F(1,108)= 

1.654, p=0.201). However, the increase in q(üW) in volatile phases was stronger when 

participants received the congruent-first schedule (F(1,108)=3.988, p=0.048). There was a 

significant main effect of group (F(3,108)=3.939, p=0.01), and the post-hoc t-tests revealed that 

participants with BPD showed significantly lower precision weights on the second level 

compared to HC (t=3.346, pbonf=0.007). The difference in q(üW) between groups was not 

affected by Information type (F(3,108)= 0.946, p=0.421) or its interaction with Phase 

(F(3,108)= 1.644, p=0.184) (for full table of  results see S5 Table). 
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Dynamic learning rates – third level 

 

We found a main effect of task phase on precision weights at the third level (F(1,108)=125.99, 

p<0.001), showing that üX is higher in volatile compared to the stable phases (t=-10.06, pbonf 

<0.001) (Fig 3B). There was a significant main effect of group (F(3,108) =7.159, p<0.001), and 

post-hoc t tests showed that participants with BPD showed significantly higher precision 

weights at the third level compared to all other groups (BPD–HC t=-4.332, pbonf<.001; BPD–

MDD t=-3.51, pbonf=.004; BPD–SCZ t=-3.21, pbonf=.01). In addition, there was a significant 

Phase  ×  Group interaction (F(3,108) = 6.98,  p<0.001) showing that participants with BPD 

increase their precision weights for both modalities significantly more compared to the other 

groups when volatility increases. There was a trend of BPD patients showing stronger increases 

in üX in response to social compared to non social volatility (F(3,108)=2.625, p=0.054). The 

analysis also revealed that üX were affected by the order of schedule (F(1,108)=5.118, 

p=0.026), with üX higher for participants receiving the incongruent-first schedule (i.e gaze 

starts of being highly misleading) compared to the congruent-first schedule (i.e gaze starts of 

being highly helpful). This effect was not modulated by Group (F(3,108)=2.53, p=0.061). See 

S6 Table for full table of results. 

 
Fig 3. Results for mixed ANOVA using precision weights for updating beliefs about social and non-social 

contingency and volatility. (A) Precision weights q(üW) and (B) precision weights üX . Overall, q(üW) and üX  

increase when transitioning from stable to volatile phase. Patients with BPD show reduced overall q(üW). At same 

time, patients with BPD show higher üX  compared to the other groups and a more pronounced increase in response 

to volatility. Bars indicate SEM. See also S2 Fig. 
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Social Weighting 

 

The parameter u was a measure of the weight given to the social prediction relative to the 

learned non-social prediction. Since u was restricted to the positive domain, estimate 

distributions were analyzed log-space, where they were less skewed. We found significant 

group differences in log(u) (F(3,108)=6.79, p>0.001 (Fig 5A). Both patients with BPD and 

patients with SCZ showed significantly higher u  estimates compared to controls (BPD: t=-

3.681, pbonf=0.002; SCZ: t=-3.243, pbonf=0.009) but only patients with BPD differed 

significantly from participants with MDD (BPD: t=-3.036,p bonf =0.018; SCZ: t=-2.602, pbonf 

=0.063). Patients with MDD did not show any significant differences compared to controls (t=-

0.566, pbonf =1). There was a significant main effect of schedule (F(1,108)=8.191, p=0.005), 

showing that participants receiving the congruency-first schedule had higher u compared to 

participants receiving the incongruency-first schedule (t=-2.862, pbonf =0.005). There was no 

significant interaction between Group and Schedule (F(3,108)=0.820, p<0.485). 

 
Fig 4. Social weighting factor log(ζ). (A) Patients with BPD gave the social information significantly weight more 

compared to HC and patients with MDD. Patients with SCZ also had higher ζ compared to HC. Boxes mark 95%  

confidence intervals and vertical lines standard deviations. B, Simulation results show the impact of varying 

weighting factor log(ζ) on combined belief b(ú) (see methods Equation 1). The combined belief b(ú) was simulated 

for agents with same perceptual parameters but different ζ values (highest values (log(ζ)=5) coded in dark blue, 

lowest values (log(ζ)=-5) in green). (B) shows that the combined belief b(ú) of agents with high ζ values is aligned 

with the social input structure (blue dots) whereas these agents show a stochastic belief structure with regard to 

the non-social input structure (green dots) in Panel C. Conversely, agents with low ζ values show a belief structure 

closely aligned to the non-social input structure (C), and a stochastic belief structure with regard to the social input 

(Panel B). The grey lines represent the ground truth of the respective probability schedules. 
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Social Anhedonia 

 

There was a significant difference in the interpersonal pleasure (ACIPS) ratings between the 

groups (F(3,103)=5.719, p<.001) (S1 Table). Post hoc t tests revealed that HC showed 

significantly higher ACIPS scores compared to patients with MDD (t=3.088, pbonf=.016) and 

with BPD (t=3.802, pbonf =.001) but not with SCZ (t=1.833, pbonf =.418). No significant 

differences were observed between patients with MDD and SCZ (t=-1.322, pbonf =1), patients 

with MDD and BPD (t=0.596, pbonf =1), nor patients with SCZ and BPD (t=1.978, pbonf=0.304). 

The multivariate regression using log(u) and social learning rate pWSTUV	as predictors for 

ACIPS scores did not show any significant results (¢W=115, F(2,106)=0.699, p=0.499). 

 

Discussion 

 

This study aimed to improve our understanding of the mechanisms underlying the pervasive 

interpersonal difficulties in common psychiatric disorders. To achieve this, we used a 

probabilistic learning task in conjunction with hierarchical Bayesian modeling 

transdiagnostically in patients with MDD, SCZ, BPD, and healthy controls. The task required 

participants to perform association learning about non-social contingencies in the presence of 

a social cue. This allowed us to characterize and quantify the computational aspects of aberrant 

social inference and decision-making at an individual level. We found that patients with SCZ 

and BPD showed significantly poorer performance compared to HC and patients with MDD. 

Patients with MDD performed comparably well to HC. Patients with BPD showed increased 

precision weighting of prediction errors when learning about the volatility (i.e., the rate of 

change) in both non-social and social information and a tendency for even higher precision 

weights when learning about social compared to non-social volatility. 

Exaggerated volatility learning in BPD was accompanied by significantly reduced learning 

rates when simply learning social and non-social contingencies. This accords with a previous 

finding of blunted social and non-social learning in BPD [43], which was conjectured to result 

from higher baseline volatility beliefs, causing an impairment at detecting contingency changes 

needed for accurate inference. Because it was specifically designed to model beliefs about 

volatility, our modeling approach allowed us to test and nuance this conjecture. Our data 

indicate that impaired contingency learning in BPD is associated with exaggerated learning 

about environmental volatility instead of a higher baseline volatility belief. A similar pattern 

has been observed in autism spectrum disorder (ASD) [8]. This commonality may explain the 
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repeated finding of high autism quotient (AQ) values in BPD patients [8], which is confirmed 

in our sample (cf. S1 Table). Aberrant volatility beliefs in BPD have been suggested to result 

from unpredictable early relationships [17]. However, this is a less likely explanation in ASD, 

which points to a different origin of the mechanistic overlap between our findings and those of 

the aforementioned study [8]. Additionally, this is the second study demonstrating that aberrant 

learning in BPD not only concerns social, but also non-social information (cf. [43]), which 

could point to domain-independent learning impairments.  

Unlike previous studies on reward [44–46] or volatility [14] learning in SCZ, we did not find 

significant differences between SCZ and HC in that regard. However, we found that SCZ and 

BPD patients both weighted their social-domain predictions more strongly when making 

decisions than HC and MDD. One possible explanation for the lower performance of BPD and 

SCZ patients is that their stronger reliance on social cues compared to HC and MDD patients 

is detrimental during the volatile gaze phase, where the reliability of the gaze information is 

reduced compared to the non-social one. 

Our finding that learning in SCZ is not significantly different from learning in HC is in line 

with a previous study [47] showing intact reward learning but altered weighting of response 

options in SCZ patients. The computational commonality between SCZ and BPD of over-

weighting social-domain predictions, is intriguing because it suggests a possible explanation 

for shared symptoms. Among these are identity disturbance, feelings of emptiness, self-

referential psychotic ideation [48–50], the last of which may be related to excessive, yet often 

inaccurate, efforts to make sense of other peoples’ behavior [6,51–54], i.e. ‘over-mentalizing’.  

Impairments of social functioning in MDD and SCZ patients are often accompanied by reduced 

hedonic experience [2], which has been associated with blunted reward learning [55,56] and 

social learning [57,58].  In the present study, social learning parameters were not predicted by 

ACIPS, a social anhedonia measure.  

On the learning level, we observed that deviations in precision weighting (e.g. exagerrated 

volatility learning in BPD) occurred equally for both information types. As mentioned above, 

this suggests that aberrant learning occurs independent of domain, in line with previous findings 

that precision-weighted prediction errors are computed in similar brain regions, irrespective of 

domain [37,59]. 
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Limitations 

 

We did not use a non-social cue (such as an arrow pointing to a card) as a control condition and 

therefore cannot fully rule out the possibility that the increased weighting of our social cue 

observed in BPD and SCZ reflects a more general rather than specifically social peculiarity in 

information processing. However, eye gaze is a very salient cue and in the paradigm, we aimed 

to accentuate the social quality of our cue by a clear period of eye contact with the participant 

before providing the cue. 

A further limitation concerns the fact that most patients were in psychopharmacological 

treatment during data acquisition and had different degrees of disorder severity and chronicity. 

These variables could not be accounted for with sufficient statistical power in the current 

sample. Furthermore, different patient groups were assessed in different clinical centers, and 

there was a gender imbalance in the SCZ and BPD groups. 

By adopting a computational psychiatry approach [60–64] to data from an inference task with 

a social component, we show that BPD patients exhibit an aberrant pattern of learning rate 

adjustment when the environment becomes more volatile. Instead of quickly relearning 

changed contingencies, they show exaggerated volatility learning. While SCZ and MDD 

patients showed a tendency to the same pattern, they did not significantly differ from controls 

in this respect. We also show that BPD and SCZ patients rely more strongly than controls on 

social-domain beliefs relative to non-social-domain beliefs when making decisions. Taken 

together, this shows that there are computational commonalities as well as differences between 

patient groups, which suggests some underlying mechanisms that may be shared across 

diagnoses. Since this approach allows for individually quantifying severity of impairment at a 

mechanistic level, it has the potential to lead to diagnostic and prognostic advances. 

Furthermore, it points the way to possible targets for novel interventions which transcend 

traditional diagnostic boundaries. 
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Supporting information 

S1 Text. Supplementary material. The supplement containts contains psychometric and 

demographic data of our participants, prior configurations of the model parameters, mean 

posterior estimates of winning model, Full results for ANOVAs using q(üW) and üX. 

(DOCX) 

 

Supporting Information Legends 

 

S1 Table. Psychometric data of the participants. All quantities given as Mean ± SD. 

S2 Table. Demographic data of the participants. All quantities given as Mean ± SD.  

S3 Table. Prior configurations of perceptual and response model parameters. Means and 

variances of Gaussian priors are given in the space in which the parameter was estimated 

(native, log, or logit). 

S4 Table. Mean posterior estimates of learning model and decision model parameters 

estimated from winning model. 

S5 Table. Statistics for mixed ANOVA with averaged q(£§) during stable and volatile 

phases (Factor Phase) of social and non-social cue (Factor Cue Type) for all groups 

(Factor Group) and schedules (Factor Schedule). 

S6 Table. Statistics for mixed ANOVA with averaged £• during stable and volatile phases 

(Factor Phase) of social and non-social cue (Factor Cue Type) for all groups (Factor 

Group) and schedules (Factor Schedule). 

 

S1 Figure. Learning trajectories for one example participant. A, Precisions üXYTZ[	  (red) 

and  üXSTUV	  (blue) that modulate the weight on B, prediction errors 'WYTZ[		  (red) and 

'WSTUV		 	(blue). C, Precision weights üWYTZ[	  in red trajectory and q(üWYTZ[	 ) in red dotted 

trajectory. Precision weights üWSTUV	  in blue trajectory and q(üWSTUV	 ) in blue dotted trajectory.  

Precision weights modulate weight on D) prediction error ')YTZ[		  (red) and ')STUV		 	(blue) 

signals. E, Dark red dots mark the input structure of the non-social information (blue correct=1; 

green correct=0) and the dotted red line represents the ground truth of this input structure. Light 

red dots mark the choices (blue card=1; green card=0). The red trajectory is the participant 

specific belief trajectory about the blue card to be correct that was estimated on the basis of the 

choices. E, The same logic applies to the social input and response structure in blue. The 

posterior parameter estimates for this particular participant were pWYTZ[	= -1.458, pWSTUV	= -

3.963, pXYTZ[	= -6.056, pWSTUV	= -6.05, log(u)=-2.623, log(é)=1.477. 
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S2 Figure. Grouped individual data points showing precision weights for updating beliefs 

about social and non-social contingency and volatility. A, precision weights †(üW). B, 

precision weights üX. Overall, q(üW) and üX increase when transitioning from stable to volatile 

phase. 
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 SUPPLEMENTAL INFORMATION 

Aberrant computational mechanisms of social learning and decision-making in schizophrenia 

and borderline personality disorder 

Supplemental Tables  

S1 Table. Psychometric data of the participants. All quantities given as Mean ± SD. 

  HC Participants MDD 

Participants 

SCZ 

Participants 

BPD 

Participants 

Significance 

n 31 28 29 28   
 

Gender, 

(m/f) 

(15/16) (13/15) (23/6) (8/20)  c	
W(3)	= 15.25,  

P = 0.002 

(Chi-Square test) 

Age,  

mean (SD) 

35.65 (12.97) 38.43 (10.69) 33.59 (10.01) 31.32 (7.88) c	
W(3)	= 5.302,  

P = 0.151  

(Kruskal-Wallis’one way 

ANOVA) 

Years of school,  

mean (SD) 

12.06 (1.99) 12.32 (2.21) 10.87 (3.965) 10.74 (1.973) F(3,109)= 2.621,  

P = 0.054 (ANOVA)a 

AQ,  

mean (SD) 

16.66 (5.48) 22.24 (8.23) 21.61 (6.66) 24.72 (6.52) F(3,103)=7.262,  

P <.001 (ANOVA)b 

ACIPS, 

mean (SD) 

81.23 (11.75) 68.57 (16.45) 74.11 (15.1) 66 (16.6) F(3,103)=5.719, P <.001 

(ANOVA)b 

CDSS,  

mean (SD) 

-c - 4.11 (4.00) - - 

PANSS, 

Positive,  

mean (SD) 

- - 11.45 (3.43) - - 

PANSS, 

Negative,  

mean (SD) 

- - 13.86 (4.21) - - 

PANSS, 

General,  

- - 26.59 (5.82) - - 
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mean (SD) 

PANSS, Total, 

mean (SD) 

- - 52.24 (11.25) - - 

BSL-23 (sum), 

mean (SD) 

---i --- --- 45.4 (22.59) d 
 

a Three missing data points. b Nine missing data points. c One hyphen indicates that measure applies only to 
Participants with SCZ. d three missing data points. 

 

S2 Table. Demographic data of the participants. All quantities given as Mean ± SD.  

  HC 

Participants 

MDD 

Participants 

SCZ 

Participants 

BPD 

Participants 

Age at Diagnosis,  

mean (SD) 

-a 28.3(11.62)b 26.25 ± 9.82b 15.15(5.5)b 

Number of Hospitalizations,  

mean (SD) 

- 3.14(4.07) 5.88(5.9)c 6.14(6) 

Duration current Hospitalization 

(days), mean (SD) 

- 20.79(16.63) 65.19(49.74)d 13.75(10.71) 

Relationship Status 

No. (%) 

    

None 12(38.71) 11(39.29) 19(65.52) 14(50) 

In a relationship 16(51.61) 4(14.29) 7(24.14) 10(35.71) 

Married 2(6.45) 11(39.29) 3(10.35) 2 (7.14) 

Divorced 1(3.23) 0(0) 0(0) 2(7.14) 

Widowed 0(0) 0(0) 0(0) 0(0) 

No answer 0(0) 1(3.57) 0(0) 0(0) 

Employment Status 

No. (%) 

    

Regularly employed 19(61.3) 13(46.43) 3(10.35) 7(25) 

Unemployed 2(6.5) 7(25) 12(41.38) 14(50) 

Unable to work 0(0) 3(10.71) 4(13.8) 1(3.6) 

Supervised work 0(0) 1(3.571) 3(10.35) 0(0) 

Retired 0(0) 1(3.571) 2(6.9) 3(10.71) 

In school 10(32.26) 0(0) 3(10.35) 3(10.71) 
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No answer 0(0) 2(7.24) 2(6.9) 0(0) 

Immigration Status 

No. (%) 

    

Native 28(90.32) 18(64.29) 15(51.72) 18(64.29) 

Migrant 3(9.68) 8(28.571) 14(48.28) 9(32.14) 

Neuroactive Medications 

 No. (%)d 

    

Taking Psychiatric Medications 0(0) 27(96.43) 26(89.66) 26(92.86) 

Antidepressants only 0(0) 13(46.43) 0(0) 10(35.71) 

Antipsychotics only 0(0) 0(0) 17(58.62) 2(7.14) 

Antidepressants and Antipsychotics 

(Combination) 

0(0) 13(46.43) 9(31.03) 13(46.43) 

Mood Stabilizer 0(0) 6(21.43) 1(3.45) 1(3.57) 

Sedatives 0(0) 0(0) 1(3.45) 2(7.14) 

Other 0(0) 3(10.71) 6(20.69) 5(17.86) 

a One hyphen indicates that the measure only applies to patients. b One missing data point. c Four missing data 
points. d Thirteen participants with SCZ were not recruited during hospitalization. 
 

S3 Table. Prior configurations of perceptual and response model parameters. Means and variances of 
Gaussian priors are given in the space in which the parameter was estimated (native, log, or logit). 
 
HGF Level 1 Level 2 Level 3 

Parameter 

Estimation 

Space Prior Mean 

Prior 

Variance Prior Mean 

Prior 

Variance Prior Mean 

Prior 

Variance 

¶(ßì®) native - - 0 0 1 0 

©(ßì®) log - - log (0.4) 1 log (0.1) 1 

	™	 logit - - logit (0) 0 logit (0.1) 2 

		´			 native - - 0 0 1 0 

¨ log log(1) 0 log (1) 0 - - 

        ≠ native - - -4 4 -6 4 

ST-K1 

Estimation 

Space Prior Mean 

Prior 

Variance         

¶	 log log (1) 0.5         

Æt log log (1) 0 
    

Øl logit logit (0.5) 0 
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∞	 logit logit (0.005) 1         

RW 

Estimation 

Space Prior Mean 

Prior 

Variance         

±(ßì®) logit logit (0.5) 0 
    

≤ logit logit (0.5) 1 
    

Response 

Model 

Estimation 

Space Prior Mean 

Prior 

Variance         

≥ log log (1) 16 
    

        ¥ log log (16) 16         

 
S4 Table. Mean posterior estimates of learning model and decision model parameters estimated from 
winning model. 
 
Parameter   ≠§µ∂Æ∑	 ≠§∏∂π∫	 ≠•µ∂Æ∑	 ≠•∏∂π∫	 ªºΩ	(≥) ªºΩ	(¥) 

  

mean (SD) 

  

  

HC -2.760 

(1.805) 

-3.142 

(1.652) 

-5.873 

(0.303) 

 -6.122 

(0.376) 

 -1.324 

(2.021) 

 1.385 

(0.650) 

MDD -2.844 

(1.851) 

-3.658 

(1.513) 

-5.986 

(0.364) 

-6.042 

(0.202) 

-0.977 

(1.644) 

 0.906 

(0.706) 

SCZ -3.357 

(1.147) 

-3.802 

(2.184) 

-5.919 

(0.402) 

-5.979 

(0.177) 

0.358 (2.364)  0.620 

(1.045) 

BPD -3.960 

(1.491) 

-4.891 

(2.549) 

-5.970 

(0.119) 

-6.015  

(0.142) 

 0.688 

(2.254) 

 0.932 

(1.040) 

 
 
 
S5 Table. Statistics for mixed ANOVA with averaged q(£§) during stable and volatile phases (Factor 
Phase) of social and non-social cue (Factor Cue Type) for all groups (Factor Group) and schedules (Factor 
Schedule). 
 
Within Subjects Effects         

      df F p 

Phase 1 18.628 <.001 

Phase x Group   3 0.749 0.526 

Phase x Schedule 1 3.988 0.048 

Phase x Group x Schedule 3 0.536 0.658 

Residual     108     

Information type   1 1.290 0.259 
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Information type x Group   3 0.946 0.421 

Information type x Schedule   1 1.561 0.214 

Information type x Group x Schedule 3 0.232 0.874 

Residual     108     

Phase x Information type   1 1.654 0.201 

Phase x Information type x Group 3 1.644 0.184 

Phase x Information type x Schedule 1 1.153 0.285 

Phase x Information type x Group x Schedule 3 0.826 0.482 

Residual     108     

Between Subjects Effects         

Group     3 3.939 0.01 

Schedule     1 0.936 0.335 

Group x Schedule 3 0.661 0.578 

Residual     108     

Post Hoc Tests         

  t Cohens's d pbonf 

Phase stable volatile -4.419 -0.410 <.001 

Group HC MDD 1.023 0.095 1.000 

    SCZ 1.803 0.167 0.445 

    BPD 3.346 0.311 0.007 

  MDD SCZ 0.749 0.070 1.000 

    BPD 2.264 0.210 0.154 

  SCZ BPD 1.537 0.143 0.764 

 

 
 
 
S6 Table. Statistics for mixed ANOVA with averaged £• during stable and volatile phases (Factor Phase) 
of social and non-social cue (Factor Cue Type) for all groups (Factor Group) and schedules (Factor 
Schedule). 
 
Within Subjects Effects         

  df F p 

Phase     1 125.990 < .001 

Phase x Group     3 6.980 < .001 
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Phase x Schedule   1 3.340 0.070  

Phase x Group x Schedule   3 2.207 0.091 

Residual     108     

Information type   1 0.810 0.370 

Information type x Group   3 1.220 0.306 

Information type x Schedule   1 1.046 0.309 

Information type x Group x Schedule 3 0.380 0.768 

Residual     108     

Phase x Information type   1 2.188 0.142 

Phase x Information type x Group 3 2.625 0.054 

Phase x Information type x Schedule 1 1.907 0.170 

Phase x Information type x Group x Schedule 3 0.336 0.800 

Residual     108     

Between Subjects Effects           

Group     3 7.159 < .001 

Schedule     1 5.118 0.026 

Group x Schedule   3 2.530 0.061 

Residual     108     

Post Hoc Tests         

  

  

t Cohens's d pbonf 

Phase stable volatile -10.06 -0.934 <.001 

Group HC MDD -0.731 -0.068 1.000 

    SCZ -1.081 -0.100 1.000 

    BPD -4.332 -0.402 <.001 

  MDD SCZ -0.334 -0.031 1.000 

    BPD -3.510 -0.326 0.004 

  SCZ BPD -3.210 -0.298 0.010 
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Supplemental figures

 

S1 Figure. Learning trajectories for one example participant. A, Precisions üXYTZ[	  (red) and  üXSTUV	  (blue) 

that modulate the weight on B, prediction errors 'WYTZ[		  (red) and 'WSTUV		 	(blue). C, Precision weights üWYTZ[	  in 

red trajectory and q(üWYTZ[	 ) in red dotted trajectory. Precision weights üWSTUV	  in blue trajectory and q(üWSTUV	 ) in 

blue dotted trajectory. Precision weights modulate weight on D) prediction error ')YTZ[		  (red) and ')STUV		 	(blue) 

signals. E, Dark red dots mark the input structure of the non-social information (blue correct=1; green correct=0) 

and the dotted red line represents the ground truth of this input structure. Light red dots mark the choices (blue 

card=1; green card=0). The red trajectory is the participant specific belief trajectory about the blue card to be 

correct that was estimated on the basis of the choices. E, The same logic applies to the social input and response 

structure in blue. The posterior parameter estimates for this particular participant were pWYTZ[	= -1.458, pWSTUV	= 

-3.963, pXYTZ[	= -6.056, pWSTUV	= -6.05, log(u)=-2.623, log(é)=1.477. 

 

 
S2 Figure. Grouped individual data points showing precision weights for updating beliefs about social and 

non-social contingency and volatility. A, precision weights †(üW). B, precision weights üX . Overall, q(üW) and 

üX  increase when transitioning from stable to volatile phase. 
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4 Discussion  

 
This thesis adopted a Bayesian modelling approach to behaviour obtained from a previously 

established probabilistic reward learning task (Sevgi et al., 2020) that involved learning of 

social and non-social information. Using computational modelling of behaviour, we estimated 

individual learning and decision-making fingerprints that reflect individual cognitive variation 

when learning about social and non-social aspects of the environment.  

The first part of the discussion will present the results of the computational model comparison, 

model validity analyses and simulations to elucidate the computational mechanisms of the 

integration of social information in decision-making and the individual propensity to make use 

of social information during the learning task. 

I will then present findings from the first study (chapter 2) that used fMRI to uncover the neural 

activity associated with social and non-social predictions and the inter-individual variation in 

the propensity to weight social over non-social predictions. Following this, results of the second 

study (chapter 3) will be presented, in which these processes were investigated from behaviour 

in patients with BPD, SCZ and MDD. Relating these studies to each other, potential neural 

signatures of aberrant social weighting in patients with BPD and SCZ will be discussed in light 

of the previous literature. 

The third part looks at the neural activations associated with social and non-social outcome 

processing, i.e. prediction errors. Results of the behavioural psychiatric patient study will then 

be discussed in which I identified aberrant learning for both social and non-social information 

in BPD and will relate these to the fMRI results in order to generate hypotheses for potential 

underlying neural mechanisms.  

Finally, I discuss methodological and interpretational considerations for future studies. 

 

4.1 Bayesian modelling of learning and decision-making  
 
4.1.1 Model comparison in fMRI and behavioural patient study 
 
The work presented in this thesis fitted different reinforcement and Bayesian learning models 

to participants behaviour. Model comparison in both studies revealed that the three-level HGF 

best explained participants behaviour in the task, which is in line with previous studies on 

learning under uncertainty that indicate a clear superiority of the HGF over other, traditional 

reinforcement learning models such as the Rescorla Wagner learning model (Bernardoni et al., 

2018; DeBerker et al., 2016; Diaconescu et al., 2017; Iglesias et al., 2013). This suggests that 

participants inferred upon the volatility of the card and the gaze information in order to predict 
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the outcome of the task. In the patient study, I additionally ran posterior predictive analyses to 

further account for the robustness of the model. These analyses showed that responses 

simulated from posterior estimates produced the same group differences in performance, i.e. 

significantly lower performance in SCZ and BPD patients compared to controls.  

 

4.1.2 Validation analyses for weighting advice accuracy during decision-making 
 
A central question in both studies concerned the integration of social information during 

decision-making. To this end, I estimated the individual tendency to make use of social 

information, both computationally and by means of model-agnostic measures. In the fMRI 

study, we conducted proof-of-concept analyses that showed that the computational parameter 

u was positively correlated with answers of post-experimental questionnaire indicating how 

much participants used the gaze during the task. In addition, eye-tracking during scanning 

showed that the parameter was significantly correlated with fixations falling on the computer-

generated face during the decision-making period. Additionally, simulation analyses conducted 

in both studies showed that agents adopting high u show a greater sensitivity to the social input 

over the non-social input, while low u values indicate greater sensitivity with regard to the non-

social input. Thus, the model was capable of capturing an individual social learning and 

decision-making fingerprint.  

 

4.2 Tracking and weighting advice accuracy 
 
4.2.1 Neural correlates of tracking and weighting advice accuracy 
 
The fMRI study aimed to investigate the neural correlates of the predicted advice accuracy, i.e. 

probability of the gaze to give a correct advice (ê),STUV
(r) ), during decision-making and the inter-

individual variability of these. Tracking social accuracy ê),STUV
(r)  was associated with activity in 

the inferior temporal gyri, inferior and superior parietal lobule as well as parts of the striatum 

including the right putamen and pallidum. In addition, the results demonstrated that participants 

who indicated using the social cue more, showed greater activity in response to ê),STUV
(r)  in 

bilateral putamen and anterior insula. 

The involvement of the putamen in tracking the social-domain belief conjugates with previous 

studies investigating the neural correlates involved in learning about others (Báez-Mendoza & 

Schultz, 2013). For instance, Delgado, Frank, & Phelps (2005) showed that the putamen, insula 

as well as the vSTR showed stronger activity when participants decided to share rather than 
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keep their money during iterated trust games, i.e. when reciprocation is predicted. Similarly, 

King-Casas et al. (2005) found that the caudate activity was associated with trust decisions in 

a trust game.  

Yet, the striatum is not uniquely involved in the computations of social value but also plays a 

crucial role in other forms of (non-social) reward based-learning (O’Doherty, 2004). The 

generic role of the striatum in value learning has further been supported by a recent meta-

analysis (Gu et al., 2019) that compared the neural substrates of social and monetary reward 

anticipation. This analysis revealed that the striatum together with the insula, but also VTA and 

SMA play an important role in the valuation and anticipation of social and non-social reward. 

Interestingly however, a differential contrast looking at social compared to monetary reward 

anticipation revealed more consistent activation in the putamen and dorsal anterior insula, 

whereas the reverse contrast showed more consistent activation for the VS, dorsal anterior 

cingulate cortex (dACC) and ventral anterior insula for monetary rewards. In addition, 

increased co-activation of the insula and putamen in response to social compared to non-social 

stimuli has previously been shown in spatial-cueing tasks comparing gaze and arrow cues 

(Greene et al., 2011).  

Hence, although the putamen and insula are involved in non-social processing, these findings 

suggest that social stimuli can engage these to a greater extent. The finding that the putamen 

and insula were correlated with increased weighting of social-domain predictions during 

decision-making is especially intriguing given the results of our transdiagnostic patients study.  

 

4.2.2 Weighting advice accuracy in BPD and SCZ  
 
The second behavioural study demonstrated that patients with SCZ and BPD weighted the 

predicted advice accuracy (ê),STUV
(r) ) significantly more compared to HC and patients with MDD. 

Increased weighting of social information is in line with findings showing that patients with 

SCZ and BPD both show a hyper-sensitivity to social cues, such as faces and gaze (Berchio et 

al., 2017; Langdon et al., 2017). For instance, studies investigating the automatic processing of 

and orienting to social gaze have shown that patients with SCZ show stronger gaze cueing 

effects and an impaired disengagement from a location cued by gaze (Langdon et al., 2017). In 

addition, social hyper-sensitivity in SCZ has been associated with the exaggerated need to make 

sense of other people’s minds and inferring intentionality (Frith, 2004; cf. next section). 

Alternatively, a large body of evidence suggests a general mechanism of salience over-

attribution to neutral cues (Maia & Frank, 2017), which could be an alternative explanation for 

increased cue using. Although the hyper-mentalization and aberrant salience accounts are not 
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mutually exclusive, future studies should employ designs using social and non-social cues to 

fully delineate whether the present findings can be attributed to social decision-making alone. 

The hyper-sensitivity account of BPD is mostly related to heightened expectation of negative 

social events and general mistrust in social partners (Gunderson et al., 2018; Herpertz & 

Bertsch, 2015). Since our study did not involve emotional but neutral gaze cues, enhanced 

social weighting in BPD may suggest that the mere presence of a neutral social cue can induce 

the sensitivity bias that has previously been observed for emotional stimuli. In fact, fear of 

abandonment and rejection in BPD may induce a general excessive need to predict others 

thoughts and actions, i.e. engage in excessive mentalization. Thus, the common mechanism of 

increased social cue weighting in BPD and SCZ may be subserved by a joint disposition of 

increased mental state attribution. 

 

4.2.3 Potential neural fingerprints of weighting advice accuracy in BPD and SCZ  
 

The fMRI study (chapter 2) demonstrated that HC who tracked the social cue more, showed 

increased activity in the insula and putamen. Considering our behavioural results of enhanced 

social weighting in BPD and SCZ, I would consequently predict that this would be reflected in 

enhanced insula and putamen activity. 

Moreover, considering previous evidence on hyper-mentalization in BPD and SCZ, I would 

also predict that the neural correlates of tracking the social cue in these disorders would 

additionally involve mentalization areas such as TPJ, STS and dmPFC, which were not 

significantly active in our study with HC. Thus, a significant group difference between patients 

with BPD and SCZ and HC in ‘mentalization areas’ can be predicted due to a hyper-

intentionality attributed to the computer-generated face. Previously, studies have demonstrated 

that BOLD activity in reward-processing and mentalization areas were significantly modulated 

by the amount of intentionality attributed to a confederate (Rilling et al., 2002; Singer, Kiebel, 

Winston, Dolan, & Frith, 2004). For instance, activity in the STS was significantly stronger in 

participants that were told to be playing with intentional compared to unintentional agents in 

the prisoners dilemma game (Singer et al., 2004). Thus, it is possible that patients with BPD 

and SCZ automatically infer intentionality activating those brain regions involved in inferential 

processing, without explicit instructions to do so.  

Mounting evidence supports this presumption as SCZ patients are known to attribute 

intentionality to neutral cues (Frith, 2004). For example, (Okruszek et al., 2015) showed that 

participants with SCZ tend to misattribute non-communicative actions and gestures as 

communicative. In a similar vein, Walter et al. (2009) conducted a study in which healthy and 



 102 

SCZ participants were asked to choose the appropriate ending to stories containing intentional 

or physical causation. During intentional inference, HC as well as SCZ patients showed 

increased activity in the medial PFC and STS, which have previously been involved in 

mentalization. During physical causation, activity in these regions decreased significantly in 

HC but not in SCZ patients. The finding that regions associated with mentalization were equally 

engaged in the non-intentional inference in patients with SCZ has been replicated (Ciaramidaro 

et al., 2015) and further converges with the notion of over-mentalizing in SCZ (Corcoran, 

Cahill, & Frith, 1997; Frith, 2004; Okruszek et al., 2015).  

Similarly, patients with BPD have been found to show increased activity in mentalization areas 

in fMRI studies. Recently, it was demonstrated that compared to HC, patients with BPD showed 

greater activity to social anticipatory cues in the form of emotional faces, which was associated 

with more pronounced activity in the STS (Doell et al., 2019). This is in line with the elevated 

need to predict other people’s behaviour. 

 

4.3 Social and non-social belief-updating 
 

4.3.1 Neural correlates of social and non-social prediction errors  
 
The fMRI analysis showed that negative social prediction errors (')STUV

(r) < 0, i.e., gaze 

misleading) activated the right insula, rolandic operculum and left posterior medial frontal 

gyrus during wrong outcomes but not during correct choices. This suggests that in our task, 

wrong advice was especially salient, when the outcome was wrong (i.e. the participant followed 

the gaze but shouldn’t) and can be understood as a warning signal. The bilateral insula was 

equally implicated in non-social prediction errors ')YTZ[
(r) 	(i.e. surprise about winning card 

colour), supporting its generic role in monitoring error and risk (Bossaerts, 2010; d’Acremont, 

Lu, Li, Van der Linden, & Bechara, 2009; Diaconescu et al., 2017). The insula is functionally 

coupled with the anterior cingulate cortex and constitute the primary components of the salience 

network that is involved in the evaluation and selection of highly salient stimuli relevant for 

goal directed behaviour.  

 

4.3.2 Social and non-social learning in BPD  
 
The behavioural patient study showed that patients with BPD differed significantly from HC in 

how they learned from social and non-social outcomes. Given the pivotal role of social 

impairments in BPD, it is surprising that non-social learning was equally affected in this 
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disorder. However, our finding is in line with a previous study of Fineberg et al. (2018) that 

showed reduced learning from social and non-social cues in a probabilistic task. In predictive 

coding terms, this learning impairment would refer to relatively precise priors at lower levels 

of the processing hierarchy and that the errors pertaining those priors are not used to update the 

predictions accordingly. In contrast to blunted probability learning, we found that patients with 

BPD showed excessive learning for social and non-social volatility, which means decreased 

high-level precision of prior beliefs about the stability of the environment.  

 

4.3.3 Potential neural fingerprints of aberrant learning in BPD 
 

In neural terms, I would predict that impaired probability learning in BPD would be associated 

with blunted activity in the insula, that signalled both social and non-social prediction errors in 

our fMRI task.  

While some evidence indicates increased activation or impaired deactivation in the insula and 

amygdala, associated with a negativity bias in emotion processing (Ducasse, Courtet, & Olié, 

2014; Herpertz & Bertsch, 2015), social interaction tasks have painted a more nuanced picture: 

In the seminal work of King-Casas et al. (2008), HC and patients with BPD acted as trustees in 

a trust game. When HC received small offers, they showed a tendency to repay generous 

amounts back to the investor as an attempt to repair and maintain the cooperation. By contrast, 

patients with BPD repaid smaller amounts causing a rupture in the cooperation. Moreover, 

using fMRI, the study demonstrated that HC showed significantly greater activity in the anterior 

insula in response to low vs. high investments, which was not found in patients with BPD. 

However, during the repayment phase, both HC and BPD showed increased insula activity. 

Thus, the absent insular activation in response to small investments was interpreted as an 

impaired ability to register social norm violations due to default prior expectations of negative 

social experience. Accordingly, negative social outcomes are less surprising than positive 

outcomes to patients with BPD. This is in line with another study adopting a virtual ball tossing 

game in which participants are either socially excluded, included or neither (control) (Domsalla 

et al., 2014). Interestingly, while patients felt just as excluded as HC in the exclusion condition, 

they felt significantly more excluded in the inclusion and control condition. In addition, while 

HC showed insula activity modulated by exclusion, this was not shown in patients with BPD, 

which converges with the findings of King-Casas et al. (2008).  

Thus, according to these results, we may predict blunted insular activation for  ')STUV
(r)  in BPD 

compared to controls. However, the previous results explained the absence of insula activity in 
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social norm violation by a match between outcome and prediction. Thus, modelling the 

prediction error as I did in the current project, may yield different findings since the surprise 

signal is computed under consideration of the prediction. 

With regard to possible neural correlates of excessive volatility learning in BPD, previous 

studies demonstrated an involvement in volatility learning in the ACC, the septum, which is 

part of the cholinergic midbrain, and the dlPFC (Behrens et al., 2008; Deserno et al., 2020; 

Diaconescu et al., 2017; Iglesias et al., 2013). Interestingly, Domsalla et al. (2014) found that 

across all conditions in the ball tossing game, patients with BPD showed an unspecific 

hyperactivity of the dACC and dlPFC and dmPFC, suggesting that these error-monitoring areas 

fail to be regulated in positive situations. Speculatively, one could suggest that the rather diffuse 

hyperactivity of the dACC reflects heightened volatility in the environment which causes an 

inability to learn from social situations and differentiate positive from negative situations. This 

would be reminiscent of our findings of increased volatility learning at the expense of 

compromised contingency learning.  

 

4.3.4  Social and non-social learning in SCZ and MDD 
 
In our behavioural study, we did not find significant impairments in learning about the 

probabilistic contingencies of social or non-social cues in patients with SCZ. This is in contrast 

to previous studies showing impaired probability learning (Culbreth et al., 2016; Schlagenhauf 

et al., 2014) and suggests that in our tasks, patients with SCZ did not show significantly altered 

priors as previously suggested (Adams, Stephan, Brown, Frith, & Friston, 2013; Diaconescu et 

al., 2019; Schmack, Rothkirch, Priller, & Sterzer, 2017; Sterzer, Voss, et al., 2018). For 

instance, Powers, Mathys, & Corlett (2017) demonstrated that decision-making in individuals 

with auditory hallucinations was characterized by increased weighting of the prior belief over 

sensory data. However, there is also evidence suggesting reduced prior precision in patients 

with SCZ (Jardri, Duverne, Litvinova, & Dene, 2017; Schmack et al., 2017; Stuke, 

Weilnhammer, Sterzer, & Schmack, 2019). To accommodate these ostensibly equivocal 

findings, previous suggestions have pointed to an imbalance of prior precision across different 

levels of the processing hierarchy (Diaconescu et al., 2019; Sterzer, Adams, et al., 2018). 

Adopting a hierarchical model in the behavioural study, we did find a tendency of increased 

high-level volatility learning in patients with SCZ, however it did not significantly differ from 

controls. Previously,  Deserno et al. (2020) found that patients with SCZ demonstrated aberrant 

initial beliefs pertaining the volatility of the environment, rather than an impaired evolution of 

this belief in time Deserno et al. (2020). Future studies shall disentangle the role of aberrant 
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high-order initial beliefs and its propagation in SCZ and also investigate the impact of model 

choice and prior settings on these seemingly divergent findings. 

One reason for not finding aberrant learning in SCZ in chapter 3 may be that precision weights 

were analysed during stable and volatile phases. Instead, it is possible that patients with SCZ 

rather show an imbalance in precision weights between positive and negative (social) prediction 

errors. For instance, in social interactions it is possible that negative advice is weighted more 

strongly due to negatively biased predictions about the intention of others (Diaconescu et al., 

2019). 

Similarly, there is well-established evidence that demonstrates a negativity bias in MDD, which 

is characterised by preferential processing and heightened sensitivity to negative (social) 

experiences (Kupferberg et al., 2016). Thus, it is possible that patients with MDD grant more 

precision to negative outcomes than positive outcomes during learning (Pulcu & Browning, 

2019). In fact, a previous computational study showed that precision of positive and negative 

outcomes are tracked independently and could, in the case of MDD, be biasedly processed 

(Pulcu & Browning, 2017). In line with this notion, a recent study, which compared 

performance of patients with MDD in nine different decision-making tasks (Mukherjee, Lee, 

Kazinka, D Satterthwaite, & Kable, 2020), demonstrated that the tasks which require learning 

to avoid punishment, revealed the most profound impairments in decision-making in patients 

with MDD.  

The paradigm used in this thesis, in contrast to previous studies showing aberrant reward 

learning (cf. Rothkirch, Tonn, Köhler, & Sterzer, 2017), did not include punishment for wrong 

choices (points were scored for correct choices but not deducted for incorrect choices). This 

may at least partially explain our negative findings with regard to MDD and SCZ. One further 

explanation concerns the heterogeneity of our MDD sample. In our study, we did not 

distinguish between subtypes, such as melancholic or atypical MDD, the latter of which exhibits 

intact mood reactivity to positive events. In fact, some evidence suggests that aberrant reward 

learning and its associated neural fingerprint of reduced activity in the vSTR is only observed 

in patients with impaired mood reactivity (Foti, Carlson, Sauder, & Proudfit, 2014). 

 

4.4 Future directions  
 
4.4.1 Methodological considerations 
 
Using the present approach of uninstructed social inference, we were able to probe inter-

individual differences in automatic and spontaneous social inference. To this end, we adopted 
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a computer-generated face giving implicit advice by means of gaze cues. Gaze cues are 

important sources for mental state attribution and have been found to be differentially processed 

compared to non-social cues (e.g. Greene et al., 2011). Especially brain structures involved in 

mentalization, such as the TPJ and STS respond to direct gaze cues (Senju & Johnson, 2009). 

Similarly, we found that BOLD activity in the superior temporal gyrus significantly correlated 

with the number of fixations on the face during decision-making. This supports the finding that 

the mere presence of direct gaze triggers mentalization processes.   

Although the extent to which participants weighted the social cue, as indicated by the 

computational parameter, was significantly associated with face fixations during decision-

making, the computational parameters did not significantly correlate with activity in 

mentalization areas, which is in contrast to previous studies probing instructed mental state 

attribution (Behrens et al., 2008; Diaconescu et al., 2017). Previous studies have demonstrated 

that BOLD activity in mentalization areas were significantly stronger when participants were 

explicitly told to engage with an intentional agent (Rilling et al., 2002; Singer et al., 2004). 

Therefore, the absence of information about the computer-generated face could have affected 

the degree to which participants engaged in mentalization.  

A further methodological consideration regards the lack of a non-social cue as a control 

condition, which is why we cannot fully delineate whether the present findings pertain to more 

general as opposed to specifically ‘social’ cueing effects. However, there are various 

methodological difficulties associated with using a non-social control cue. Within-subject 

designs would give rise to a number of challenges: A repeated exposure to the same 

probabilistic schedule would yield improved performance and different parameter estimations 

due to rather unspecific learning effects. On the other hand, employing two different schedules 

for two conditions would also have an impact on parameter estimation. This could only be 

solved in a counter-balanced presentation of both schedules, requiring a much larger pool of 

participants. Alternatively, one could implement a between-subjects design, that would 

however introduce uncontrolled individual differences. Another issue regarding the present and 

previous paradigms (Behrens et al., 2008; Diaconescu et al., 2017) is that the valence of the 

social advice has always been defined with respect to the monetary outcome, whereby helpful 

advice leads to monetary rewards and misleading advice to monetary losses. Thus, the social 

processes might be considered confounded by other reward related processes (Bellucci, Molter, 

& Park, 2019). One possibility would be to include social feedback in the form of positive face 

expressions for correct choices or and negative face expressions for negative choices. 
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4.4.2 Outlook 
 
While we interpreted the commonality of over-weighting social-domain predictions in BPD 

and SCZ patients in light of a common disposition to hyper-mentalize, it should be noted that 

the current data cannot rule out alternative explanations. Future studies should address this by 

combining our paradigm with other, established paradigms of mentalization such as the Strange 

Stories and Strange Cartoons Task. Moreover, conducting fMRI studies in patients 

investigating the hypotheses outlined in 2.5, will further investigate whether this commonality 

is also subserved by the activation of mentalization areas.  

In addition, hyper-mentalization in SCZ has been associated with self-referential thinking and 

psychotic ideation (Frith, 2004). Since a significant proportion of patients with BPD experience 

psychotic symptoms (Debbané et al., 2016; Schroeder, Fisher, & Schäfer, 2013; Zandersen & 

Parnas, 2019), it seems plausible that hyper-mentalization in our task as indicated by over-

weighting of social information could be attributed to psychotic ideation.  

Moreover, to further establish the relationship between the computational estimates and the 

ability to mentalize, we are currently assessing behaviour of patients with autistic spectrum 

disorder (ASD) obtained from our inference task. In contrast to SCZ and BPD patients, ASD 

patients show a reduced tendency to engage in mentalization, especially in tasks that probe 

spontaneous and automatic mental inference (Senju et al., 2009). The differences in the 

computational parameters between these patient groups could help shed light on the 

mechanistic foundations of these opposing social symptoms as well as the disorders themselves. 

Specifically, I hypothesise that hypo-mentalization will be reflected in a reduced tendency to 

weight social-domain predictions and we will assess the role of the oxytocin release system on 

social inference in patients with ASD and HC. Oxytocin is a neuropeptide that has been shown 

to modulate mentalizing abilities (Domes, Heinrichs, Michel, Berger, & Herpertz, 2007) and 

may therefore be an interesting candidate to investigate the neuroendocrinological mechanisms 

involved in the computations of underlying (aberrant) spontaneous mental state inference. Thus, 

the modelling approach presented in this thesis in combination with physiological and 

neuroendocrine measures may help to develop computationally informed biomarkers that may 

be useful for understanding the impairments in social interaction in psychiatric patients and 

may offer objective and mechanistic progress indicators for therapeutic interventions.  
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5 Conclusions 
 

The present thesis used computational modelling to identify the underlying mechanisms 

involved in social and non-social learning and decision-making. More specifically, this thesis 

aimed to improve our understanding of the neural correlates of uninstructed social inference 

and inter-individual differences in the spontaneous integration of social information during 

decision-making. In addition, the thesis adopted a transdiagnostic computational psychiatry 

approach to investigate these processes in psychiatric patients who show fundamental 

impairments in social cognition. The findings demonstrated computational commonalities that 

cut across diagnostic boundaries and may relate to transdiagnostic impairments in 

mentalization, as well as computational features that distinguished between patient groups. 

Thus, the projects computational phenotyping approach allows for an objective estimation of 

individual social learning and decision-making signatures, which could be highly relevant for 

diagnostic, prognostic and therapeutic advances in clinical psychiatry.  
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