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We study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between two classical mag-
netic impurities in one-dimensional lattice models with flat bands. As two representative examples,
we pick the stub lattice and the diamond lattice at half filling. We first calculate the exact RKKY
interaction numerically and then compare our data to results obtained via different analytical tech-
niques. In both our examples, we find that the RKKY interaction exhibits peculiar features that can
directly be traced back to the presence of a flat band. Importantly, these features are not captured
by the conventional RKKY approximation based on non-degenerate perturbation theory. Instead,
we find that degenerate perturbation theory correctly reproduces our exact results if there is an
energy gap between the flat and the dispersive bands, while a non-perturbative approach becomes
necessary in the absence of a gap.

Introduction. Magnetic impurities embedded in a host
material can interact indirectly by coupling to the elec-
tron spin density of the host. This so-called Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [1–3] can re-
sult in a magnetic ordering of the impurity spins, leading
to a wide range of interesting phenomena with potential
applications in the fields of spintronics [4, 5], spin-based
quantum computation [6–10], or engineered topological
superconductivity [13–23]. The exact form of the RKKY
interaction depends on the properties—in particular, the
band structure—of the underlying host material and has
been extensively studied for various types of systems [24–
55].

Conventionally, the RKKY interaction is calculated
in second-order perturbation theory assuming that the
exchange coupling between the impurity spins and the
itinerant electrons is small compared to the typical en-
ergy scale of the latter. Recently, however, systems
with so-called flat bands have attracted significant at-
tention [56, 57]. The energy of these bands is completely
independent of momentum or, in a weaker sense, at least
approximately constant over a large range of allowed mo-
menta. While the recent interest in flat-band systems has
mainly been fueled by significant theoretical and exper-
imental progress on Moiré materials such as twisted bi-
layer graphene [58–63], flat bands can also emerge as Lan-
dau levels in two-dimensional electron gases subjected to
a strong magnetic field or in a variety of artificial lattice
models [64, 65], some of which have successfully been re-
alized in experiments using photonic lattices or cold-atom
setups [66–71].

In this case, the vanishing band width and the large
degeneracy of the flat band make it questionable whether
the conventional perturbative approach to the RKKY in-
teraction is still applicable. This issue was first touched
upon in the context of zigzag graphene nanoribbons,

FIG. 1. (a) Stub lattice. The unit cell (dashed rectangle) con-
sist of three sites (orange dots) labeled A, B, and C. Nearest-
neighbor sites are connected by a hopping term of strength
t (black lines). The flat band is spanned by a set of CLSs
that has support on only three lattice sites each (red and
blue dots). The amplitudes of the unnormalized CLSs are
+1 (−1) for the red (blue) sites. (b) Bulk spectrum of the
stub lattice. The dispersive bands are separated from the flat
band by an energy gap. (c) Diamond lattice. The graphical
elements have the same meaning as in panel (a). Here, the
CLSs spanning the flat band have support on only two lattice
sites each. (d) Bulk spectrum of the diamond lattice. The dis-
persive bands touch the flat band in a linear band touching
point.

where exact numerical studies of edge impurities revealed
unconventional features of the RKKY interaction that
had not been captured by preceding analytical stud-
ies [35, 72]. Later, Ref. [73] studied the RKKY inter-
action in partially filled graphene Landau levels using
degererate perturbation theory. On the other hand, a
few more recent studies calculate the RKKY interaction
in flat-band lattice models via standard non-degenerate

ar
X

iv
:2

21
0.

10
02

5v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
8 

O
ct

 2
02

2



2

perturbation theory [74, 75]. As such, it becomes evi-
dent that a general understanding of RKKY effects in
flat-band systems—including, in particular, insights re-
garding the applicability and limitations of perturbation
theory—is still lacking. With this motivation, we care-
fully study the RKKY interaction in two simple one-
dimensional (1D) flat-band systems at half filling, see
Fig. 1. We first calculate the exact RKKY interaction
numerically and then compare our data to results ob-
tained via different analytical techniques. In both our
examples, we find that the RKKY interaction exhibits
peculiar features that are not captured by the conven-
tional RKKY approximation based on non-degenerate
perturbation theory. Instead, we find that degenerate
perturbation theory correctly reproduces our exact re-
sults if there is an energy gap between the flat and the
dispersive bands, while a non-perturbative approach be-
comes necessary in the absence of a gap.

Models. Let us start by introducing the stub lattice,
see Fig. 1(a). A unit cell consists of three sites labeled A,
B, and C. Neighboring sites are coupled by a hopping
element of strength t, such that

Hstub = t
∑

n

(
c†n,Acn,B + c†n,Ccn,B + c†n+1,Bcn,A

)
+ H.c.

(1)

Here, c†n,l (cn,l) creates (destroys) a spinless electron on

sublattice l ∈ {A,B,C} in the nth unit cell. Imposing
periodic boundary conditions on a chain with a finite
number of unit cells N , the Hamiltonian can be rewrit-

ten in momentum space as Hstub =
∑
k Ψ†kH(k)Ψk with

Ψk = (ck,A, ck,B , ck,C)
T

and

H(k) = t




0 1 + eika 1
1 + e−ika 0 0

1 0 0


 , (2)

where a denotes the lattice spacing. The corresponding
bulk spectrum consists of two dispersive bands E±(k) =

±t
√

3 + 2 cos (ak) as well as one completely flat band
E0(k) = 0 that is separated from the dispersive bands
by an energy gap, see Fig. 1(b). The flat band is
macroscopically degenerate and is spanned by a set of
N linearly independent states. These can be chosen to
have support on only three lattice sites each: |vn〉 =

(|n,C〉 − |n,B〉+ |n+ 1, C〉) /
√

3 for n ∈ {1, ..., N}. One
of these so-called compact localized states (CLSs) [57] is
visualized in Fig. 1(a). While the CLSs are chosen such
that they are strictly localized, they are not mutually
orthogonal. In order to construct a set of mutually or-
thogonal basis states for the flat band, the strict localiza-
tion has to be traded in for exponential localization, e.g.,
by changing to a basis of maximally localized Wannier
states.

As a second example, we introduce the diamond lattice
depicted in Fig. 1(c). Again, the unit cell consists of three
atoms labeled A, B, and C, and neighboring lattice sites
are coupled by a hopping element of strength t. The

Hamiltonian then reads

Hdia = t
∑

n

(c†n,Acn,B + c†n,Acn,C

+ c†n+1,Acn,B + c†n+1,Acn,C) + H.c. (3)

In momentum space, this leads to Hdia =
∑
k Ψ†kH(k)Ψk

with

H(k) = t




0 1 + eika 1 + eika

1 + e−ika 0 0
1 + e−ika 0 0


 . (4)

Again, the bulk spectrum consists of two dispersive bands
E±(k) = ±2

√
2t cos (ka/2) and a flat band E0(k) = 0,

see Fig. 1(d). Importantly, however, there is now no en-
ergy gap separating the flat band from the dispersive
bands. Rather, the two dispersive bands intersect the
flat band in a linear band touching point. Nevertheless,
the flat band can again be described in terms of a set
of CLSs having support on two lattice sites each, see
Fig. 1(c). Explicitly, their wave functions are given by

|vn〉 = (|n,C〉 − |n,B〉) /
√

2.
RKKY interaction. We now calculate the RKKY inter-

action between two classical magnetic impurities on the
stub and diamond lattice. For this, we consider a system
of spinful electrons with both spin species independently
described by Hstub or Hdia, respectively. Additionally,
two magnetic impurities are placed in the unit cells n1
and n2 at the sublattice positions α and β, respectively.
The local exchange coupling to the impurities can then

be described as H
(1)
imp +H

(2)
imp with

H
(i)
imp =

Ji
2

∑

σ,σ′

c†ni,li,σ
[Si · σ]σσ

′
cni,li,σ′ , (5)

where we have defined l1 = α and l2 = β. Compared
to Eqs. (1) and (3), the electronic creation (annihilation)

operators c†n,l,σ (cn,l,σ) now carry an additional spin label

σ ∈ {↑, ↓}. Furthermore, σ is the vector of Pauli matri-
ces, Si are classical impurity spins with Si = |Si| � 1,
and Ji denotes the exchange coupling between the im-
purity spin and the electron spin density. We assume
Si = (0, 0,±Si) without loss of generality.

The standard expression for the RKKY interaction in
second-order perturbation theory is then

JαβRKKY = −J1J2
2π

∫ 0

−∞
dE Im[G

(0)
αβ(R,E)G

(0)
βα(−R,E)],

(6)

where G
(0)
αβ is the retarded single-particle Green function

of the unperturbed system andR = r2−r1 = (n2−n1)a >
0. However, in our case, we would like to avoid the usual
perturbative approach as its validity for flat-band sys-

tems is not clear a priori. Instead, we calculate JαβRKKY
exactly by numerically computing the exact ground state

energies EαβFM and EαβAFM for the ferromagnetic (FM) and
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FIG. 2. Absolute value of the RKKY coupling |JαβRKKY | in the
stub lattice in dependence on the inter-impurity distance R,
calculated via ED and displayed in a logarithmic scale. For
all sublattice configurations, |JαβRKKY | decays exponentially
exponentially with R. Here, we set J1 = J2 = 0.2t.

the antiferromagnetic (AFM) configuration of the impu-
rities, respectively. This gives us

JαβRKKY = (EαβFM − EαβAFM )/2. (7)

The energies EαβFM and EαβAFM can be computed via ex-
act diagonalization (ED) [35]. Alternatively, we can also
calculate the ground state energies in terms of the ex-
act lattice Green functions using the optimized algorithm
presented in the SM [76]. This allows us to study signifi-
cantly larger system sizes while at the same time improv-
ing the numerical accuracy of our results.

We start by discussing the stub lattice. First, we look

at the dependence of JαβRKKY on the inter-impurity dis-

tance R. By ED, we find that JαβRKKY decays exponen-
tially with R for all sublattice configurations, see Fig. 2.
For the AA configuration, this is obvious since the eigen-
states spanning the flat band do not have support on
the A sublattice. As such, JAARKKY is exponentially sup-
pressed with the energy gap between the two dispersive
bands like for a conventional insulator [77]. For the other
sublattice configurations, the flat band participates in
mediating the RKKY interaction. However, the flat-
band states are spatially localized (e.g., they can be con-
structed as exponentially localized Wannier states), such
that their contribution is exponentially suppressed with
R as well. Furthermore, in accordance with the general
result for bipartite lattices at half filling [29], we find
that the ground state is FM (AFM) if the two impurities
are located on the same (on different) sublattices of the
bipartition [78].

Next, in order to gain further insight into the nature

of the RKKY interaction, we study JαβRKKY in depen-
dence on one of the exchange coupling constants—say,
J1—for J1,2/t� 1. For the AA configuration [Fig. 3(a)]
we find that JAARKKY ∝ J1 as expected from Eq. (6).
Indeed, since the flat-band states do not have support
on the A sublattice, the standard RKKY approximation
can be applied without any caveats. For the BB config-
uration [Fig. 3(b)], however, we find a more complicated
dependence that cannot be described by Eq. (6). This

FIG. 3. RKKY coupling JαβRKKY in the stub lattice in depen-
dence on the exchange coupling J1 calculated via ED (dots)
and perturbation theory (lines). (a) AA configuration. Here,
JAARKKY ∝ J1 as expected from Eq. (6) (red line). (b) BB con-
figuration. Here, JBBRKKY shows an unconventional behavior
due to a first-order contribution (blue line) originating from
the degenerate flat band. The red line additionally includes
the second-order contribution. (c) AB configuration. Here,
JABRKKY ∝ J1 with a slope that is well approximated by Eq. (6)
(red line). (d) BA configuration. Here, JBARKKY ∝ J1 to low-
est order (red line). As J1 increases, an unconventional third-
order term ∝ J2

1J2 originating from the flat band becomes
important. In all panels, we set J2/t = 0.05 and R/a = 5.

is because Eq. (6) does not take into account the large
degeneracy of the flat band. Instead, degenerate pertur-
bation theory—controlled by the ratio between J1,2 and
the energy gap that separates the flat from the dispersive
band—should be used to accurately capture the effect of
the flat band. This gives a non-vanishing first-order con-

tribution to JαβRKKY that is responsible for the unusual
J1-dependence shown in Fig. 3(b). To calculate this con-
tribution, we construct a set of flat-band basis states by
applying the Gram-Schmidt orthogonalization method to
the set of CLSs illustrated in Fig. 1(a). It is straightfor-
ward to see that we can always construct N − 2 basis
states that do not have support on the impurity sites,
such that the entire first-order contribution is contained
in an effective 2 × 2 Hamiltonian that results from pro-

jecting H
(1)
imp+H

(2)
imp onto the remaining two basis states.

Assuming J1,2 ≥ 0, we then find that the RKKY coupling
is, to first order, given by

JRKKY = aJ1 + bJ2 −
√
a2J2

1 + b2J2
2 + cJ1J2 (8)

for real coefficients a, b, c that correspond to overlap in-
tegrals of the participating flat-band basis states. We
calculate these coefficients numerically and display the
result in Fig. 3(b). We see that for small enough J1, we
get a good agreement with the exact result. As J1 gets
larger also the second-order contribution can be taken
into account to get a better match. Lastly, we study the
AB [BA] configuration, see Fig. 3(c) [Fig. 3(d)]. Here,
Eq. (6) gives the correct lowest-order approximation. As
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FIG. 4. Absolute value of the RKKY coupling |JαβRKKY | in
the diamond lattice in dependence on the inter-impurity dis-
tance R displayed in a log-log scale. The dots correspond to
numerically calculated data using the algorithm described in
the SM [76], while the solid lines are the asymptotic analytical
expressions given in Eqs. (11)–(13). For the AA configuration,
we find the usual 1/R decay that is expected in 1D metals.
For the other sublattice configurations, the flat band leads to
an unusual asymptotic 1/R3 (1/R5) decay for the AB (BB)
case. Here, we set J1 = J2 = 0.2t.

J1 gets larger, an unconventional third-order contribu-
tion ∝ J1J2

2 [∝ J2
1J2] originating from the flat band gets

important.

Next, we turn to the diamond lattice. Our numeri-
cal results for the RKKY interaction in dependence on
the inter-impurity distance R are shown in Fig. 4. We
display only the AA, BB, AB, and BC configurations
since, by symmetry, the CC (AC) configuration is equiv-
alent to the BB (AB) configuration. Again, we find that
the ground state is FM (AFM) if the two impurities are
located on the same (on different) sublattices of the bi-

partition. Furthermore, JαβRKKY decays as a power law
in R with a leading exponent that depends on the sub-
lattice configuration. For the AA configuration, we find
that JAARKKY decays as 1/R. Again, this is not surprising
since the flat-band states do not have support on the A
sublattice. As such, we expect to find the same qualita-
tive behavior as in a conventional 1D metal. However,
when one (both) impurities are placed on the B or C sub-
lattices, the flat band leads to an unusual 1/R3 (1/R5)
decay. We will show later that this unusual behavior is
non-perturbative in origin.

Next, we can again study the dependence on J1 for
small J1,2/t. For the AA configuration [Fig. 5(a)], we
again find that JAARKKY ∝ J1 as expected from Eq. (6).
For the AB configuration [Fig. 5(c)], we find JABRKKY ∝
J1 as well, but Eq. (6) cannot reasonably approximate
the corresponding slope. The BB and BA configurations
[Figs. 5(b) and (d)] show an even more peculiar behavior:
Here, the RKKY interaction first grows rapidly for very
small J1 but then decreases. This observation makes it
highly questionable whether perturbation theory is ap-
plicable at all, and the following paragraphs will show
that it is indeed not. To see this, we use the T -matrix
formalism to obtain an exact expression for the impurity-

FIG. 5. RKKY coupling JαβRKKY in the diamond lattice
in dependence on J1 calculated via ED (black dots) and
via Eq. (10) (orange crosses). (a) AA configuration. Here,
JAARKKY ∝ J1 as expected from Eq. (6) (green line). (b) BB
configuration. Here we find that JBBRKKY increases only for
very small J1/t before it starts to decrease. (c) AB config-
uration. Here, we again have JABRKKY ∝ J1. (d) BA con-
figuration. Here, JBARKKY shows an unconventional behavior
that is qualitatively similar to panel (b). In all panels, we set
J2/t = 0.05 and R/a = 100.

induced shift to the ground state energy in the FM/AFM
configuration. Since spin is conserved, we focus on the
two spin sectors individually in the following. In the
SM [76], we show that the impurity-induced change in
the density of states in a given spin sector and for a given
impurity configuration can be written as

∆ρ(E) = − 1

π
Im tr

∑

i,j

∫
dk

2π
[G(0)(k,E)]2eik(rj−ri)Tij(E),

(9)
where G(0)(k,E) is the momentum-space Green function
of the unperturbed system and Tij(E) for i, j ∈ {1, 2}
are the components of the standard two-impurity T -

matrix [79]. This can be used to express JαβRKKY as

JαβRKKY =
1

2

∑

σ

∫ 0

−∞
dE E [∆ρFM,σ(E)−∆ρAFM,σ(E)].

(10)

In Fig. 5, we present our results for JαβRKKY obtained
from numerically performing the integration over energy
in Eq. (10) and find that this reproduces the results from
ED very well. Even more interestingly, Eq. (10) can be
approximated analytically in the limit of large R and
small J1,2/t. Following the steps outlined in the SM [76],
this leads us to

JAARKKY ≈ −
J1J2

16
√

2tπ(R/a)
, (11)

JABRKKY ≈
J1t

2
√

2πJ2(R/a)3
, (12)

JBBRKKY ≈ −
12
√

2 t3

πJ1J2(R/a)5
. (13)



5

We plot these approximations in Fig. 4 and find that they
nicely approach the numerical curves for large enough R,
thereby confirming the power laws we previously read off
from our numerical data. Importantly, for sufficiently
large R, Eqs. (11)-(13) hold down to arbitrarily small
but finite J1,2. As such, the results for the AB and BB
configuration show a highly non-perturbative behavior.
The above relations further confirm our findings from
Fig. 5, where we observed qualitatively that the RKKY
interaction grows linearly with J1 if the first impurity
is on the A sublattice, while it decreases with J1 if the
impurity is on the B sublattice. However, in this case,
the asymptotic 1/J1 behavior was not yet clearly visible
since the impurity separation was not large enough.

Conclusions. We have studied the RKKY interaction
in two 1D flat-band models at half filling. In our first
example—the stub lattice—we have found an unconven-
tional first-order contribution to the RKKY interaction
due to the degeneracy of the isolated flat band. In our
second example—the diamond lattice—the absence of an
energy gap between the flat and the dispersive bands
leads to a breakdown of perturbation theory altogether,
and non-perturbative contributions cause the RKKY in-
teraction to decay more rapidly with the inter-impurity
distance than näıvely expected. Our results illustrate
that the RKKY interaction in flat-band systems can ex-
hibit unexpected features and has to be treated with care.
We expect this to be relevant in particular for Moiré ma-
terials such as, e.g., twisted bilayer or trilayer graphene,
which can host isolated flat bands [58–63] or intersecting

flat and Dirac-like bands [80–85], respectively.
Of course, it is now interesting to ask how our results

are modified by, e.g., electron-electron interactions or dis-
order. We leave these questions to future work. Further-
more, we have focused on the case of a perfectly flat band
at half-filling, where we expect flat-band effects to be the
most pronounced. Nevertheless, it would also be inter-
esting to study more general fillings and small deviations
from perfect flatness. In general, as long as the exchange
coupling constants are larger than any additional energy
scale resulting, e.g., from a small but finite bandwidth,
we expect the unconventional effects reported here to per-
sist.
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In this Supplemental Material, we give the real-space Matsubara Green functions for the diamond lattice, derive
Eq. (9) in the main text, and provide details on how to approximate Eq. (10) in the main text for large R and small
J1,2. Furthermore, we present an optimized algorithm that computes the RKKY coupling numerically using the full
lattice Green functions of the perturbed system.

To simplify the notation, we set a = t = 1 throughout this Supplemental Material.

S1. MATSUBARA GREEN FUNCTIONS FOR THE DIAMOND LATTICE

In this Appendix, we list the Matsubara Green functions for the diamond lattice. For r ≥ 0 and ω 6= 0, we find:

G
(0)
AA(r, iω) =

−i
[
−1 + ω

4 (−ω + γ)
]r

γ
, (S1)

G
(0)
AB(r, iω) =

4−1−r(ω − γ) [−4 + ω (−ω + γ)]
r

γ
, (S2)

G
(0)
BB(r, iω) = −i

([
−1 + ω

4 (−ω + γ)
]r

2γ
+
δr,0
2ω

)
, (S3)

G
(0)
BC(r, iω) = −i

([
−1 + ω

4 (−ω + γ)
]r

2γ
− δr,0

2ω

)
, (S4)

G
(0)
BA(r, iω) =

4−1−r(ω + γ) [−4 + ω (−ω + γ)]
r

γ
− δr,0

2
, (S5)

where we have defined γ = sgn(ω)
√

8 + ω2. The other components can be obtained from the above as G
(0)
AC = G

(0)
AB ,

G
(0)
CA = G

(0)
BA, G

(0)
CB = G

(0)
BC , and G

(0)
CC = G

(0)
BB , where we omitted the frequency argument for brevity. The Green

functions for r < 0 can be found from the relation G
(0)
αβ(r, iω) = [G

(0)
βα(−r,−iω)]∗.

S2. IMPURITY-INDUCED CHANGE IN THE DENSITY OF STATES

In this Appendix, we derive Eq. (9) in the main text. Using the two-impurity T -matrix, the full Green function of
the perturbed system can be expressed as

G(r, r′, E) = G(0)(r − r′, E) +
∑

i,j

G(0)(r − ri, E)Tij(E)G(0)(rj − r′, E), (S6)

where i, j ∈ {1, 2}. The four components of the two-impurity T -matrix are given by [1]:

T11(E) =
[
1− V1G(0)(0, E)− V1G(0)(−R,E)T

(0)
2 (E)G(0)(R,E)

]−1
V1, (S7)

T12(E) = T
(0)
1 (E)G(0)(−R,E)T22(E), (S8)

T21(E) = T
(0)
2 (E)G(0)(R,E)T11(E), (S9)

T22(E) =
[
1− V2G(0)(0, E)− V2G(0)(R,E)T

(0)
1 (E)G(0)(−R,E)

]−1
V2, (S10)
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where we have defined V1 = ±J12 |α〉〈α| and V2 = ±J22 |β〉〈β|, where each of the four different sign combinations
corresponds to a choice of spin sector and relative orientation (FM/AFM) of the two impurities. Moreover, we have
defined the single-impurity T -matrices as

T
(0)
i =

[
1− ViG(0)(0, E)

]−1
Vi. (S11)

The unperturbed Green functions for the diamond lattice that enter the above expressions are given in Sec. S1.
The exact Green function can then be used to obtain the impurity-induced change in the local density of states

(DoS) of the system:

∆ρ(r, E) = − 1

π
Im tr[G(r, r, E)−G(0)(0, E)] (S12)

= − 1

π
Im tr

[∑

ij

G(0)(r − ri, E)Tij(E)G(0)(rj − r, E)
]
. (S13)

From this, we obtain the total change of the DoS due to a given impurity configuration as

∆ρ(E) =

∫
dr∆ρ(r, E)

= − 1

π
Im tr

∑

ij

∫
dr G(0)(r − ri, E)Tij(E)G(0)(rj − r, E)

= − 1

π
Im tr

∑

ij

∫
dk

2π

∫
dk′

2π

∫
dr ei(k

′−k)rG(0)(k,E)G(0)(k′, E)eikrje−ik
′riTij(E)

= − 1

π
Im tr

∑

ij

∫
dk

2π
[G(0)(k,E)]2eik(rj−ri)Tij(E). (S14)

This is Eq. (9) of the main text.

S3. ASYMPTOTIC EXPRESSIONS FOR THE RKKY COUPLING

In this Appendix, we extract the asymptotic behavior of Eq. (10) in the main text in the limit of large R. For

convenience, we write JαβRKKY =
∑
i,j J

αβ,ij
RKKY with

Jαβ,ijRKKY =
1

2

∑

σ

∫ 0

−∞
dE E [∆ρijFM,σ(E)−∆ρijAFM,σ(E)], (S15)

∆ρij(E) = − 1

π
Im tr

∫
dk

2π
[G(0)(k,E)]2eik(rj−ri)Tij(E). (S16)

We start by discussing the AA configuration. In this case, the flat band is not affected by the impurities and we
can safely expand the full T -matrix in orders of J1,2. Since the unperturbed system is time-reversal symmetric,
first-order contributions to the RKKY coupling cancel when the two spin sectors are added up. As such, to lowest
order, the RKKY coupling is given by second-order terms ∝ J1J2. These terms are contained within the off-diagonal
contributions to the RKKY coupling:

JAA,12RKKY = JAA,21RKKY = −J1J2
π

∫ ∞

0

dω (−iω)G
(0)
AA(R, iω)P

(0)
AA(−R, iω), (S17)

where we have introduced the short-hand notation P (0)(r, iω) =
∫
dk
2π [G(0)(k, iω)]2eikr and where we have already

used that G
(0)
AA (P

(0)
AA) is purely imaginary (real). Note that we find it convenient to evaluate the above integral in the

Matsubara representation. Plugging in the Green functions given in Sec. S1, we find that Eq. (S17) gives us

JAARKKY = −J1J2
π

∫ ∞

0

dω ω

[
16−R(4 + ω2 − ωγ)2R(ω + 2γR)

γ4

]
(S18)
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with γ =
√

8 + ω2. The integral converges on a scale ∝ 1/R, which is why we can change the integration variable to
ω′ = ωR and then cut the upper integration limit at some finite constant C that does not depend on R. This allows
us to expand the integrand for small ω′/R in order to obtain the asymptotic behavior at large R. In particular, we
can approximate

16−R


4 +

(
ω′

R

)2

− ω′

R

√
8 +

(
ω′

R

)2


2R

≈ 16−R
(

4−
√

8ω′

R

)2R

=

(
1− ω′√

2R

)2R

≈ e−
√
2ω′
. (S19)

Keeping only the leading contributions also in the rest of the integral, we obtain

JAARKKY ≈ −
J1J2

8
√

2πR

∫ ∞

0

dω′ ω′e−
√
2ω′

= − J1J2

16
√

2πR
. (S20)

After reinstating a and t, this leads us to Eq. (11) in the main text.
In a similar fashion, we can also obtain an asymptotic expression for the AB configuration. Since the second

impurity is now sitting on the B sublattice, this impurity will also affect the flat band. In this case, the vanishing
band width of the flat band makes it questionable whether we can expand our expression for the RKKY coupling in
orders of J2. We therefore keep the full T -matrix for the second impurity while still expanding in orders of J1. To
lowest order in J1, we then find two different non-vanishing contributions to the RKKY coupling:

JAB,12RKKY = JAB,21RKKY = −4J1J2
π

∫ ∞

0

dω (−iω)
G

(0)
BA(R, iω)P

(0)
AB(−R, iω)

4− J2
2 [G

(0)
BB(0, iω)]2

, (S21)

JAB,22RKKY = −4J1J
3
2

π

∫ ∞

0

dω (−iω)
G

(0)
BA(R, iω)G

(0)
AB(−R, iω)G

(0)
BB(0, iω)P

(0)
BB(0, iω)

(
4− J2

2 [G
(0)
BB(0, iω)]2

)2 . (S22)

Plugging in the Green functions, we get

JAB,12RKKY = −8J1J2
π

∫ ∞

0

dω ω

[
16−Rω2(ω − γ)(4 + ω2 − ωγ)2R−2[4 + (ω2 − ωγ)(1−R)− 8R]

γ2[8ω2γ2 + (4 + ω2)J2
2 + ωγJ2

2 ]

]
, (S23)

JAB,22RKKY = −4J1J
3
2

π

∫ ∞

0

dω ω

[
16−Rω(4 + ω2 − ωγ)2R[−8γ + ω(8 + ω2 − 2ωγ)]

γ5[ω2γ2(4 + ω2 − ωγ) + 2J2
2 ]2

]
. (S24)

These integrals can be approximated following the same steps as above, and, in particular, using again Eq. (S19). We
obtain

JABRKKY = 2JAB,12RKKY + JAB,22RKKY ≈
J1

πJ2R3

∫ ∞

0

dω′
(
ω′3√

2
− ω′2

)
e−
√
2ω′

=
J1

2
√

2πJ2R3
, (S25)

which leads us to Eq. (12) in the main text. Finally, for the BB configuration, we now keep the full T -matrices for
both impurities. We now get three different non-vanishing contributions to the RKKY coupling:

JAB,12RKKY = JAB,21RKKY

= −8J1J2
π

∫ ∞

0

dω (−iω)
G

(0)
BB(R, iω)P

(0)
BB(−R, iω){16− 4G

(0)
BB(0, iω)2(J2

1 + J2
2 ) + [G

(0)
BB(0, iω)4 −G(0)

BB(R, iω)4]J2
1J

2
2}

F1(R, iω)F2(R, iω)
,

(S26)

JAB,11RKKY =
16J3

1J2
π

∫ ∞

0

dω (iω)
G

(0)
BB(0, iω)P

(0)
BB(0, iω)G

(0)
BB(R, iω)2{4− [G

(0)
BB(0, iω)2 −G(0)

BB(R, iω)2]J2
2}

F1(R, iω)F2(R, iω)
, (S27)

JAB,22RKKY =
16J1J

3
2

π

∫ ∞

0

dω (iω)
G

(0)
BB(0, iω)P

(0)
BB(0, iω)G

(0)
BB(R, iω)2{4− [G

(0)
BB(0, iω)2 −G(0)

BB(R, iω)2]J2
1}

F1(R, iω)F2(R, iω)
, (S28)

with F1,2(R, iω) = 16− 4G
(0)
BB(0, iω)2(J2

1 + J2
2 )± 8G

(0)
BB(R, iω)2J1J2 − [G

(0)
BB(R, iω)2 −G(0)

BB(0, iω)2]2J2
1J

2
2 and where

we have used that G
(0)
BB(R, iω) = [G

(0)
BB(R,−iω)]∗ = G

(0)
BB(−R, iω). After plugging in the Green functions, the full

expressions become too involved to be displayed here. Nevertheless, the integrals can be approximated in the same
way as before, which leads us to Eq. (13) in the main text:

JBBRKKY = 2JAB,12RKKY + JAB,11RKKY + JAB,22RKKY ≈
1

J1J2πR5

∫ ∞

0

dω′
(
−4
√

2ω′5 + 16ω′4
)
e−
√
2ω′

= − 12
√

2

J1J2πR5
. (S29)
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S4. EXACT RESULTS USING GREEN FUNCTIONS

In this Appendix, we present an efficient algorithm that computes the RKKY coupling numerically using the exact
lattice Green functions of the full system. For this, we start by noting that the Hamiltonians studied in the main
text have a block-tridiagonal structure. The calculation of Green functions for such Hamiltonians, or in general the
calculation of inverse matrices of this kind, has been vastly optimized using several methods [2–8]. In this work,
we use an algorithm that can efficiently invert block-tridiagonal matrices as described in Ref. [2]. This algorithm is
especially efficient if only a few diagonals, rows, or columns of the matrix are needed since it scales linearly with the
system size in these cases. In contrast to Ref. [2] we do not study translationally invariant systems due to the presence
of impurities. Therefore, we modify the algorithm of Ref. [2] by adding the needed position dependency as shown in
Ref. [9] for tridiagonal matrices. For convenience we recapitulate the algorithm here and present its modified version.

Since the Hamiltonian is Hermitian, the matrix that needs to be inverted has the following structure:

A =




a1 b1
b†1 a2 b2

b†2 a3 b3

b†3 a4
. . .

. . .
. . . bN−1
b†N−1 aN




. (S30)

Here, the an and bn are the blocks that the matrix consists of and N is the number of diagonal blocks. Using a
UDL-decomposition this matrix can be decomposed into A = UDL with matrices of the form

U =




1 U1

1 U2

. . .
. . .

. . . UN−1
1



, L =




1
L1 1

L2
. . .

. . .
. . .

LN−1 1



, (S31)

and a block-diagonal matrix D with blocks Dn for n ∈ {1, . . . , N}. The matrix elements can be calculated using the
recursion relations

DL = aL, (S32)

Un = bnD
−1
n+1, (S33)

Ln = D−1n+1b
†
n, (S34)

Dn = an − Unb†n
= an − bnD−1n+1b

†
n . (S35)

The inverse of the matrix A can then be decomposed as well and we find B = A−1 = L−1D−1U−1 with

D−1 =




D−11

D−12

. . .

D−1N


 , U−1 =




1 −U1 U1U2 · · · (−1)N−1U1 · · ·UN−1
1 −U2

. . .
...

. . .
. . . UN−2UN−1
. . . −UN−1

1



,

L−1 =




1

−L1
. . .

L2L1
. . .

. . .
...

. . . −LN−2 1
(−1)N−1LN−1 · · ·L1 · · · LN−1LN−2 −LN−1 1



. (S36)
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The diagonal elements of B can be calculated recursively by exploiting the relations

B1,1 = D−11 , (S37)

Bn+1,n+1 = D−1n+1 + LnBn,nUn

= D−1n+1 +D−1n+1b
†
nBn,nbnD

−1
n+1 . (S38)

The off-diagonal matrix elements can then be computed as well. With m ≥ n, we find the recursive formulas

Bn,m+1 = −Bn,mUm, (S39)

Bm+1,n = −LmBm,n, (S40)

such that we are able to calculate all matrix elements. We want to stress that the Bi,j are blocks of the inverse matrix
B concerning the different unit cells with elements Bα,βm,n that can be identified with the Green function Gα,β(m,n).

With these recursion relations we are able to calculate the energy difference, and therefore also the RKKY coupling,
by rewriting it as

∆E = 〈HFM 〉 − 〈HAFM 〉 (S41)

=
∑

n,m,α,β

HFM
nα,mβ 〈c†n,αcm,β〉FM −

∑

n,m,α,β

HAFM
nα,mβ 〈c†n,αcm,β〉AFM (S42)

=
1

2π

∫
dωeiω0

+

[(∑

n,m

HFM
nα,mβG

FM
βα (m,n; iω)

)
−
(∑

n,m

HAFM
nα,mβG

AFM
βα (m,n; iω)

)]
(S43)

Thereby we used that the needed expectation values are given by

〈c†n,αcm,β〉 =
1

i
G<βα(m,n; t = 0, t′ = 0) (S44)

=
1

2π

∫
dωG<βα(m,n;ω) (S45)

= −
∫
dω nF (ω)

(
1

ω −H + iη
− 1

ω −H − iη

)

mβ,nα

(S46)

= lim
T→0

1

β

∑

iωn

Gβα(m,n; iωn) eiωn0
+

(S47)

=
1

2π

∫
dωGβα(m,n; iω) eiω0

+

. (S48)

For each spin sector this calculation can be done separately. The total energy difference is then given by

∆Etot = ∆E↑ + ∆E↓ = 2 ∆E↑ − J . (S49)

Since we only need the first few diagonals of the Green functions to evaluate the formula, the inversion scales only
linear with the number of unit cells [O(N)]. Therefore, the usage of this method allowed us to simulate much larger
systems (with up to 8·105 unit cells). Additionally, it was possible to calculate the RKKY coupling for larger distances
with smaller JRKKY since the numerical error could be reduced. In Fig. S1 we compare the results obtained with this
algorithm with those calculated with ED. We can see that the results for moderate distances perfectly agree. For very
large distances we find that the Green functions approach shows even better results than the ED since the numerical
error of the ED starts influencing the results.
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FIG. S1. Comparison of the results obtained by exact diagonalization (ED) and the described Green function approach (GF).
We show the absolute value of the RKKY coupling |JBB

RKKY | in dependence of the distance R with J1 = J2 = 0.2t. The results
are calculated with a system size of 4000 unit cells but they are converged up to numerical errors. For moderate R we find
perfect agreement between the two methods. For very large R we start to see some differences due to the numerical error of
the ED. The GF algorithm therefore enables us to calculate the RKKY interaction for larger distances.


