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Abstract
Evaluating error that arises through the aggregation of data recorded by multiple observers is a key consideration in many 
metric and geometric morphometric analyses of stone tool shape. One of the most common approaches involves the conver-
gence of observers for repeat trails on the same set of artefacts: however, this is logistically and financially challenging when 
collaborating internationally and/or at a large scale. We present and evaluate a unique alternative for testing inter-observer 
error, involving the development of 3D printed copies of a lithic reference collection for distribution among observers. With 
the aim of reducing error, clear protocols were developed for photographing and measuring the replicas, and inter-observer 
variability was assessed on the replicas in comparison with a corresponding data set recorded by a single observer. Our 
results demonstrate that, when the photography procedure is standardized and dimensions are clearly defined, the resulting 
metric and geometric morphometric data are minimally affected by inter-observer error, supporting this method as an effec-
tive solution for assessing error under collaborative research frameworks. Collaboration is becoming increasingly important 
within archaeological and anthropological sciences in order to increase the accessibility of samples, encourage dual-project 
development between foreign and local researchers and reduce the carbon footprint of collection-based research. This study 
offers a promising validation of a collaborative research design whereby researchers remotely work together to produce 
comparable data capturing lithic shape variability.
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Introduction

Shape analyses are becoming an increasingly popular 
methodology for examining lithic variability in the archae-
ological record. As such, traditional linear metrics and 
geometric morphometrics (GMM) are often employed to 
capture morphological information on stone tools (Car-
dillo 2010; Lycett and von Cramon-Taubadel 2015; Matzig 
et al. 2021). Combining morphological data from multi-
ple observers is frequently necessary in studies of lithic 
assemblages, to increase sample size and/or to perform 
inter-site/inter-assemblage analyses, yet this can be prob-
lematic due to the possibility of introducing inter-observer 
error into the data (Lyman and VanPool 2009). Such 
error has multiple potential sources, can be introduced at 
various stages in the workflow, and can skew results by 
obscuring any “real” signals in the data (Fruciano 2016); 
examining the magnitude of inter-observer error is there-
fore imperative to validate whether meta-analyses are 
robust. International researchers are increasingly being 
encouraged to work collaboratively in order to remotely 
produce archaeological and anthropological datasets 
(Chang and Alfaro 2015; O’Leary and Kaufman 2011; 
Scerri et al. 2020; Timbrell 2020, 2022)—in some case 
even crowdsourcing morphometric data (Chang and Alfaro 
2015). However, it is frequently impossible for observers 
to converge on the same material to record repeat trials 
for an inter-observer repeatability assessment. Such con-
trol tests therefore need to be appropriate for the specific 
research design, and customized solutions for evaluating 
error under collaborative research frameworks should be 
developed (Fruciano 2016). Here, we present an innovative 
analysis of inter-observer error involving the compilation 
of standardized photographs and measurements of lith-
ics from multiple observers for metric and GMM analysis 
(Timbrell 2022).

Traditionally, lithic shape variation has been examined 
through qualitative descriptions (Inizan et al. 1999), typolog-
ical classification (Bordes 1961) and/or linear measurements 
(Roe 1964; McNabb 2017). Advancements in biological 
morphometrics and computing have meant that geomet-
ric morphometrics are now also routinely applied in the 
analysis of lithic morphologies (Bookstein 1991; Buchanan 
et  al. 2018; Cardillo 2010; Lycett 2009; Serwatka and 
Riede 2016). GMM approaches are split into methods that 
use landmarks and outlines, the former representing shape 
through homologous points (landmarks) superimposed on 
a two-dimensional (2D) or three-dimensional (3D) object 
and the latter applying geometric descriptions of homolo-
gous outlines or surfaces (Mitteroecker 2021). Landmark-
based methods allow for specific aspects of morphology 
to be captured without the inclusion of random noise (i.e. 

shape dimensions that are not pertinent to the research ques-
tion); however, their application to certain non-biological 
structures, such as lithics and other archaeological artefacts, 
is often more difficult as the identification of homologous 
landmarks can be subjective (Okumura and Araujo 2018). 
Outline-based GMM, on the other hand, avoids certain 
issues of homology through quantifying the gross shape of 
each specimen (Klingenberg 2008), making them ideal for 
describing shape variation of lithics in archaeological stud-
ies (e.g. Iovita 2009, 2011; Ivaonovaité et al. 2020; Matzig 
et al. 2021; Mesfin et al. 2020; Wang and Marwick 2020).

Assessment of the levels of inter- and intra-observer error 
under different methodological approaches to studying lithic 
shape is vital, and several studies have examined error in 
metric and GMM analyses at different phases of the work-
flow (Evin et al. 2020; Fagerton et al. 2014; Lyman and Van-
Pool 2009; Macdonald et al. 2020; Menedez 2017; Osis et al. 
2015; Perini et al. 2005; Robinson and Terhune 2017; von 
Cramon-Taubadel et al. 2007; Yezerinac et al. 1992). Prob-
lematic landmarks, i.e. those that are difficult to consistently 
locate, can be a source of error in landmark-based GMM 
analysis (Fagerton et al. 2014; Menedez 2017; Robinson 
and Terhune 2017; von Cramon-Taubadel et al. 2007), even 
for experienced observers (Chang and Alfaro et al. 2015). 
von Cramon-Taubadel et al. (2007) found that repeating the 
digitization procedure was the most suitable method for 
assessing the precision of landmarks, with adequate land-
mark definitions imperative for reducing error. Yezerinac 
et al. (1992) also found that ill-defined measurements were a 
factor increasing error in metric data; in addition to operator 
experience, the precision of the measuring device and the 
conditions under which the measurements are made, such as 
lighting. Combining metric measurements from more than 
one observer, therefore, is likely to be suitable only when the 
dimensions are standardized and easily measured, and the 
conditions, the precision and quality of the equipment and 
the technique of recording the data are comparable (Lyman 
and VanPool 2009).

Comparatively, fewer studies have examined the levels of 
inter-observer error in outline-based GMM methods. Evin 
et al. (2020), in an investigation of error between morpho-
metric approaches, found that although methods that employ 
landmarks were the most sensitive to error, outline data saw 
relatively lower levels of intra-observer error compared to 
inter-observer error, with photography being an influential 
source of variance between observers. Digital photography 
is widely used in 2D GMM as it is inexpensive, easy to 
perform and does not require extremely specialist knowl-
edge or equipment, with the digitization of landmarks and/or 
outlines on the resulting images providing a 2D representa-
tion of the 3D object. The focal length and specifications of 
the lens used can, however, cause parallax error; the optical 
distortion that occurs when the specimen is too close or not 
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directly centered beneath the lens (fisheye). Nonetheless, 
several studies employing both landmark and outline meth-
ods suggest that 2D GMM data are minimally affected by 
parallax error, especially when the camera set-up is stand-
ardized and calibrated, with deviations small and constant 
enough for accurate analyses (Caple et al. 2018; MacDonald 
et al. 2020; Mullin and Taylor 2002; Riano et al. 2009). 
Overall, outline-based methods are likely more suitable for 
collaborative research designs in studies of lithic shape; 
due to the objectivity of data capture, the fact that landmark 
methods have high rates of inter-observer error, though this 
is more pertinent during landmark digitization than object 
photography (Evin et al., 2020), and the potential to reduce 
inter-observer error through the standardization of the pho-
tography procedure.

Although the inter-observer error is a concern in any 
collaborative research design, collating data from multiple 
observers is often necessary in archaeological research, 
be it to increase sample sizes, facilitate interdisciplinary 
research and/or enable access to disparate data (Timbrell 
2020). The latter is especially important when considering 
issues of income-disparity, childcare and disability that can 
disproportionately disadvantage researchers who are unable 
to travel extensively to collect data. Global catastrophes, 
such as pandemics, climate change and conflict, can also 
temporarily delay international research through the con-
straints imposed on travel and safety, requiring researchers 
to develop scientifically sound remote models of data gen-
eration (Scerri et al. 2020). Timbrell (2022) presents such 
a framework, which involves the documentation of lithic 
shape by multiple collaborators. These types of approaches 
have additional benefits for decreasing the carbon footprint 
associated with accessing multiple international samples and 
fostering knowledge-sharing through dual project develop-
ment and the division of responsibilities so that both for-
eign and local researchers take on principal roles within a 
given project, which is particularly crucial across the Global 
North–South divide (Chirikure 2015; Douglass et al. 2020; 
Else, 2022). Indeed, collaborative approaches accord with 
the open science initiative in archaeology, which advocates 
that data stewardship should be centered around research-
ers collecting and sharing data on behalf of the scientific 
community, as opposed for the betterment of a single indi-
vidual’s career (Marwick et al. 2017).

While collaborative data collection offers a promising 
new framework for generating and sharing data internation-
ally, the analysis of inter-observer error is imperative to vali-
date such an approach. Here, we present a unique control 
test that involves the production of 3D printed replicas of a 
lithic reference collection, which can be distributed among 
observers and measured following the same protocols used 
to collect the actual data. We then examine the differences 
between the datasets, knowing that each collaborator has 

recorded the same data from identical copies of the artefacts. 
Using this approach, we evaluate whether the compilation of 
data from multiple observers is conducive to error, and thus 
could negatively bias the results of a collaborative study.

Materials

Six lithic points were knapped using fine-grained flint from 
Caistor Quarry, Caister St Edumunds, UK and scanned for 
3D printing at the University of Liverpool (Fig. 1). The ref-
erence tools varied in both size and shape, encapsulating a 
range of morphologies characteristic of the empirical sample 
to be studied in the main project (African Middle Stone Age 
assemblages). While flint is not a feature of African lithic 
assemblages, it could be considered representative of the 
finer-grained materials, such as obsidian, chert and heat-
treated silcrete, exploited during the Middle Stone Age (Key 
et al. 2021; Sahle et al. 2013). The tools were produced on 
flakes and retouched using: (1) direct freehand hard hammer 
percussion (quartzite hammerstones), (2) direct soft free-
hand hammer percussion using an antler hammer and (3) 
handheld pressure flaking using an antler tine supported in 
a tanned leather pad. Each tool was colored blue using craft 
enamel spray paint to aid scanning.

Next, each lithic was scanned with a freshly calibrated 
Einscan Pro 2X structured light scanner with a colour cam-
era, using the combined feature and texture mapping in the 

Fig. 1   The six 3D printed replica tools. Original lithics were knapped 
and scanned by CS in preparation for 3D printing. Example photos 
were taken by SH. Scale = 3 cm

Page 3 of 15    209



Archaeological and Anthropological Sciences (2022) 14:209

1 3

high-resolution setting. Initial scans were performed with 
the lithics placed vertically in a foam holder using fixed 
scan mode aligned with an automated turntable and coded 
targets (scans taken every 11.25 degrees, i.e. 32 scans). The 
models were then completed by switching to the “align by” 
feature using the turntable (32 scans), and the lithic was 
rescanned (2–3 times) until a complete model was achieved. 
All alignment was automatic to produce a watertight mesh; 
no holes were filled. Each model was sharpened using the 
Einscan high-setting and saved as.obj files without decima-
tion (see Supplementary Online Table 1 for further data on 
each model).

The 3D models were processed for printing using Chitu-
box v1.8.1. Medium-sized automated supports were applied 
using this software at 90% total coverage to provide a strong 
foundation for the 3D prints. We used an Elegoo Mars 2 

Resin printer, with a new printer film, using standard grey 
Elegoo LCD UV curing 405 Nm photopolymer resin with 
recommended Elegoo settings (Fig. 2). The prints were 
extracted from the print bed, and the supports were removed 
by hand prior to being rinsed in ethanol and cured in direct 
sunlight. Each tool was printed six times to create six copies 
of the assemblage, resulting in 36 prints in total.

Methods

Each tool was assigned a number (Tool 1–6; Fig. 1), and a 
replica copy of the assemblage was sent to researchers at 
six independent institutions (Table 1). Data collection pro-
tocols, outlined in detail by Timbrell (2022) and described 
in Supplementary Online Resource S1, were developed 

Fig. 2   Photographs from the 
3D printing process. A The 
3D model of the tool is sent 
to the machine for printing. B 
The resulting 3D prints once 
removed from the supports 
are cleaned using ethanol. 3D 
printing was carried out by LT 
and CS

Table 1   Summary of the observers and the photography equipment 
used. This equipment was sourced locally; in most cases, the institu-
tions already had access to the necessary apparatus; however, in some 

cases, it was rented and/or purchased and donated to the institution 
after the project, following guidelines provided by The Wenner Gren 
Foundation

Assem-
blage 
number

Institution Abbreviation Country Camera body Camera lens

1 Institut National des Sciences de 
l’Archéologie et du Patrimoine

INSAP Morocco Nikon D7100 Nikon AF-S Micro Nikkor 105 mm

2 Iziko Museums of South Africa IM South Africa Canon 6D II Canon 100 mm 2.8 Macro
3 Mossel Bay Archaeological Project MBAP South Africa Nikon D300s Nikon AF Micro Nikkor 60 mm 

1:2.8D
4 National Museum of Ethiopia NME Ethiopia Canon EOS DSLR 200D Canon Tamron 60 mm Macro Di II
5 National Museums of Kenya NMK Kenya Nikon D5300 Nikon AF-S Micro Nikkor 40 mm
6 Musée de l’Homme MH France Nikon D5200 Nikon AF-S Nikkor 24–70 mm
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to standardize the documentation of lithic shapes through 
photography and measurements. These procedures were fol-
lowed by all observers across the study to produce equiva-
lent data. Instructions for object position, camera position 
and settings and lighting were specified and tightly con-
trolled (Supplementary Online Resource S1). In addition, 
a scale (sourced in situ by the observers) was placed in 
each photograph to ensure a measure of size was recorded. 
Table 1 reports the camera and lenses used to capture each 
replica assemblage in the study; high-quality equipment was 
accessed by all observers either through their institution 
directly or through funding provided by the project. Three 
basic measurements on each tool were also taken to record 
morphological length, width and thickness (see Supplemen-
tary Online Fig. 1 for a schematic) at a resolution of 0.1 mm. 
We defined length as the maximum dimension of the point, 
width as the maximum measurement in the perpendicular 
dimension to length and thickness as the maximum measure-
ment in the third dimension, following Shea (2020).

Prior to distribution among institutions, all 36 replicas 
were also recorded by a single observer (LT) to produce a 
comparative dataset. Photography was performed using a 
Canon M50 camera with an EF-S 60 mm f/2.8 Macro USM 
lens and the three measurements were taken using digital 
calipers. This enabled us to determine the magnitude of 
intra-observer measurement error, for comparison with the 
magnitude of inter-observer error, had the project been car-
ried out by a single individual under a traditional research 
framework.

Data were uploaded onto a communal data sharing plat-
form (Google Drive) by each observer for processing and 
analysis by a single observer (LT). Analyses were performed 
in the R software environment (R Core Team 2020). Data 
and code can be found on the GitHub repository for the pro-
ject: https://​github.​com/​lucyt​imbre​ll/​error_​analy​sis_​lithi​cs/.

Metric analyses

We first computed the intra-class correlation coefficient 
( ICC ) using the “psych” R package (Revelle, 2022) to 
assess the agreement between the six observers in meas-
uring the six tools for length, width and thickness. The 
ICC compares the variability within repeat measurements 
whilst contrasting variability between groups of measure-
ments (Barlett and Frost 2008; Fruciano 2016; Koo and 
Li 2016; Shrout and Fleiss 1979). Specifically, we used 
a two-way mixed effects model to compute the ICC , with 
the set of observers considered a fixed effect. To assess 
the reliability of data collection, we next calculated and 
compared the mean, variance, technical error of measure-
ment ( TEM ) and percentage technical error of measure-
ment ( %TEM ). The mean and variance (expressed as the 

standard deviation) were calculated for each measurement 
on each tool, with the TEM and %TEM calculated to com-
pare pairs of observers across all measurements on all 
tools. The TEM reflects measurement precision between 
observers, and is calculated as:

where N is the number of subjects, K is the number of 
observers, and M is the measurement (modified from Uli-
jaszek and Kerr [1999]). The %TEM represents the magni-
tude of the error as a percentage of the mean of the measure-
ment/variable studied. It is calculated as:

where v is the average value of the raw measurements, taken 
across all measurements on all tools by multiple observers. 
The values obtained for these metrics must be subjectively 
assessed according to the research question, as there is no 
standard applied threshold of error deemed to be “accept-
able”. Following Lyman and VanPool (2009)’s analyses of 
projectile points, we propose that a %TEM of < 4 could be 
an acceptable level of error without negative consequences 
on the results. Lastly, we calculated the coefficient of reli-
ability (R) , which ranges from 0 to 1, with 1 indicating very 
high congruence between measures. We used the following 
formula outlined in Lyman and VanPool (2009):

where �2

v
 is the variance of all raw measurements on all tools 

taken by two observers and �2

d
 is the variance of the differ-

ence between those two sets of measurements. Similarly to 
the ICC , the coefficient of reliability distinguishes between 
the variability between the specimens and that which results 
from random measurement error. However, whilst R can only 
be calculated between pairs of observers, the ICC represents 
an overall metric for measurement error across all observers.
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Two‑dimensional geometric morphometric analysis

In preparation for GMM analysis, each image was processed 
using the “object select’ tool in Adobe Photoshop, which 
automatically determines the contour of the object. Once 
the contour was highlighted, the object was filled with solid 
black to help facilitate the extraction of outline data. All 
processed images were then synthesized into a single thin-
plate spline (.tps) file using tpsUtil, and the outline data 
were extracted using tpsDig2. The outline of each artefact 
was represented by an average of 2856 equidistant points, 
which were scaled through the specification of the pixel-to-
centimeter ratio for each image (see Supplementary Online 
Fig. 2 for a visualization of the data). The outline data were 
saved as (x, y) coordinates within the.tps file and imported 
into R.

Using the “Momocs” R package (Bonhomme et al. 2014), 
the outlines were standardized following Bonhomme et al. 
(2017) by normalizing to a common centroid, scaling to cen-
troid size and aligning along the long axis of the object. We 
then performed elliptic Fourier analysis (EFA) to convert the 
geometric data to frequency data, with the outline decom-
posed into a series of repeating trigonometric functions, 
referred to as harmonics (Caple et al. 2017; Fig. 3). The 
appropriate number of harmonics were identified to capture 
sufficient information on shape; this was deemed to be 8 har-
monics, achieving 99% harmonic power (Caple et al. 2017).

Next, we performed a principal components analysis 
(PCA) on the elliptic Fourier coefficients to reduce the 
dimensionality of the data. Principal components (PCs) are 
constructed to highlight the main axes of morphological 
variance (Zelditch et al. 2004). Like with the metric data, 
we calculated the ICC and R values to partition the variance 

from the inter-observer error for the PC scores of repeat cap-
tures (Daboul et al. 2018; Fruciano 2006). Due to the nature 
of PC scores, we were unable to obtain an informative rela-
tive measure of dispersion ( %TEM) and instead refer to the 
standard deviation (calculated as the square root of the vari-
ance) as absolute measures of dispersion. This is because, 
when the mean of a set of repeat captures falls close to the 
mean of a PC (~ 0) and has a low standard deviation (~ 0), 
the %TEM would be very high despite the tight clustering of 
the repeated measures along that PC. In addition, we applied 
linear discriminant analysis (LDA) to the PC scores, with 
the equal sample sizes used as the prior group probabilities 
(1/6) of a repeat belonging to a certain group based on their 
outline shape alone (Mitteroecker and Bookstein 2011). In 
this analysis, we tested firstly whether the tools could be dis-
tinguished based on their shape alone, and then whether the 
observers could be identified. One would expect high clas-
sification results when discriminating between tools and low 
classification results when discriminating between observers 
if inter-observer error is low.

Results

Linear metric analysis

We first explored whether the measurements were recorded 
consistently on the replicas between observers. Figure 4 
shows the distribution of the multiple observer data through 
boxplots; most of the measurements have very limited vari-
ance around the mean, and all tools were significantly differ-
ent to each other across all measurements when tested using 
Tukey’s honestly significant difference (HSD; p < 0.001). 

Fig. 3   A schematic of the Ellip-
tic Fourier fitting process that 
generates the raw shape data 
for geometric morphometrics. 
Coefficients of sine and cosine 
terms (harmonics) are computed 
to reconstruct the x (blue) and 
y (red) coordinates from an 
arbitrary starting point moving 
along the outline
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Thickness is the most variable dimension recorded, probably 
because it is more difficult to orient the tool for this measure-
ment than it is for length or width. Calculation of the coeffi-
cient of reliability between each pair of observers found that 
all values of R were > 0.999, suggesting that over 99% of the 
variance in each measurement is due to variability between 
the specimens as opposed to error. We calculated the TEM 
as 0.368 and the %TEM as 0.908, supporting that less than 
1% of the variance in the dataset is related to measurement 
error. Finally, the ICC score confirmed that there is a very 
high absolute agreement between the observers ( ICC = 1, 
p < 0.001).

We then compared the measurements taken by multiple 
observers with those taken by a single observer as a means 
of comparing intra- and inter-observer errors. We first cal-
culated the coefficient of reliability for the single observer 
for each pair of replica assemblages—we found that all 
values were > 0.999, indicating very high congruence 

between repeat captures by the single observer. Table 2 
reports the mean and standard deviation of length, width 
and thickness for the single observer compared to multiple 
observers; two-sample t-tests found that there were almost 
no statistically significant differences in means between 
the data sets (1/36 = p < 0.05; Table 3). However, F-tests 
found that half of the measurements show statistically sig-
nificance differences in variance, particularly along length 
and width (Table 3). This demonstrates that the single 
observer is generally less prone to error, which is likely 
due to a combination of the familiarity of this observer 
to both the metric definitions and the assemblage and the 
fact that the same equipment was used to measure all of 
the replicas. Nonetheless, the fact that these differences in 
variance only resulted in a single instance of significant 
difference in mean, plus the standard deviation does not 
exceeds 0.7 mm, suggests that the effects of inter-observer 
error are minimal on the results.

Fig. 4   Boxplots demonstrating 
the distribution of length, width 
and thickness (mm) collected 
by multiple observers for each 
tool (1–6)
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Table 2   Summary statistics 
reporting the mean (m) and 
standard deviation (sd) obtained 
for length, width and thickness, 
recorded by multiple observers 
versus a single observer for each 
tool (1–6). Standard deviation 
values have been rounded to 3 
decimal places

Tool Length (mm) Width (mm) Thickness (mm)

Multiple Single Multiple Single Multiple Single

m sd m sd m sd m sd m sd m sd

1 86.2 0.471 86.3 0.175 40.9 0.308 40.9 0.103 13.4 0.281 13.3 0.248
2 67.6 0.266 67.6 0.089 37.3 0.258 37.5 0.228 10.3 0.141 10.4 0.075
3 66.0 0.613 66.3 0.137 23.4 0.266 23.3 0.225 6.87 0.472 6.72 0.075
4 74.6 0.279 74.4 0.299 48.4 0.374 48.5 0.103 11.9 0.151 11.8 0.105
5 59.7 0.133 59.7 0.075 27.4 0.335 27.6 0.082 9.45 0.281 9.48 0.147
6 87.3 0.405 87.4 0.063 44.7 0.659 44.6 0.126 14.3 0.415 14.2 0.117

Table 3   P-values from t-tests 
(difference in mean) and 
F-tests (difference in variance) 
comparing the metrics (length, 
width and thickness) for each 
tool (1–6) measured by multiple 
observers versus a single 
observer. Statistical significance 
(p < 0.05) is marked by an 
asterisk (*). All values have 
been rounded to 3 decimal 
places

Tool Length (mm) Width (mm) Thickness (mm)

T F T F T F

1 0.815 0.049* 0.632 0.032* 0.673 0.792
2 0.678 0.032* 0.264 0.792 0.240 0.193
3 0.342 0.005* 0.498 0.724 0.475 0.001*
4 0.342 0.879 0.689 0.013* 0.037* 0.446
5 0.608 0.238 0.152 0.008* 0.804 0.182
6 0.575 0.001* 0.646 0.002* 0.653 0.015*

Fig. 5   Principal component (PC) contributions along the first 3 axes of variance within the multiple observer outline data
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Geometric morphometric analysis

PCA was used to highlight variance in the multiple observer 
data. The first 3 PCs represented > 90% of the variation 
between the replicas, and thus were explored in this study. 
Figure 5 demonstrates the shape differences highlighted by 
PC1-3. PC1 represents 59.7% of the total variance, whilst 
PC2 and PC3 account for 33.4% and 3%, respectively (see 
Supplementary Online Fig. 3 for scree plot of PC loadings 
and cumulative variance).

When the first 3 PCs are plotted against each other, clear 
clustering occurs, demonstrating that replicas of the same 
tool tend to share more similarities than that of different 
tools (Fig. 6). However, there is notable variation within 
tools along PC3, suggesting that inter-observer error deriv-
ing from photography equipment and set-up is prevalent in 
this dimension. PC3 is an axis of variation represented by 
slight asymmetries in convexity at the proximal end (Fig. 5), 
thus likely reflecting parallax error between observers. Addi-
tionally, we note some overlap between certain tool groups, 
although this is primarily because these tools share similar 
shapes once size is removed (Supplementary Online Fig. 2). 
For example, Tool 5 sometimes plots within the range of 
variation for Tool 1 and only shows statistically significant 

differences in mean from this tool along PC2 (p < 0.008; 
see Supplementary Online Table 2 for Tukey’s HSD results 
comparing differences in mean between tools). To tease 
apart the variation between the tools and that associated 
with the error, we calculated the coefficient of reliability 
between each pair of observers, which ranged between 0.960 
and 0.999 (Table 4), suggesting that < 4% of the variance is 
due to inter-observer error, which lies within our acceptable 
threshold. The ICC was computed using the first 3 PC scores 
to determine levels of similarity between the six observ-
ers, whilst taking into account the variability between the 
tools, and found an almost perfect agreement ( ICC = 0.99, 

Table 4   Coefficient of reliability ( R ) values for pair-wise combina-
tions of observers using the first 3 PC scores. For observer abbre-
viations and associated assemblage numbers, see Table 1. All values 
have been rounded to 3 decimal places

INSAP IM MBAP NME NMK

IM 0.988
MBAP 0.978 0.960
NME 0.984 0.975 0.995
NMK 0.969 0.969 0.985 0.992
MH 0.989 0.978 0.993 0.999 0.990

Fig. 6   Scatterplots (top row) and boxplots (bottom row) of repeat capture scores along principal components (PC) 1–3, demonstrating the clus-
tering within tools (1–6). PC1 represents 59.7% of the total variance, whilst PC2 and PC3 account for 33.4% and 3%, respectively
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p < 0.001). Finally, we found that an LDA could discriminate 
accurately between the replica groups (94% classification 
accuracy) and could not differentiate between observers (0% 
classification accuracy).

Next, we compared the levels of error obtained when col-
lating photographs from multiple observers and that which 
arises when all replicas are photographed by the same 
observer. We performed another PCA with data acquired 
from both sets of images (see Supplementary Online 

Figs. 4-5 for PC contributions and loadings) and produced 
scatterplots of PC1–3. Figure 7 demonstrates clear cluster-
ing between tools recorded in both sets of data along PC1 
and PC2. However, along PC3 there is clear variability 
within repeats when grouped by the observer (multiple vs 
single). F-tests found that the variance among certain tools 
was only significantly higher for the multiple observers in 
three cases, i.e. tool 4 and 1 along PC3 and tool 4 along PC1 
(Table 5). Two-sample t-tests found statistically significant 

Fig. 7   Scatterplots (top row) and boxplots (bottom row) of repeat 
capture scores along principal components (PC) 1–3, demonstrating 
the clustering within tools (symbols) and between data sets (colors). 

PC1 represents 60.4% of the total variance, whilst PC2 and PC3 
account for 33.5% and 3.3%, respectively

Table 5   P-values from t-tests (difference in mean) and F-tests (differ-
ence in variance) comparing the principal component (PC) scores of 
the repeats of each tool (1–6) captured by multiple observers verses 

a single observer. Statistical significance (p < 0.05) is marked by an 
asterisk (*). All values have been rounded to 3 decimal places

Tool PC1 PC2 PC3

T F T F T F

1 0.282 0.068 0.556 0.141 0.110 0.001*
2 0.091 0.463 0.114 0.162 0.188 0.671
3 0.006* 0.119 0.067 0.873 0.335 0.115
4 0.082 0.029* 0.009* 0.384 0.099 0.006*
5 0.004* 0.663 0.003* 0.257 0.000* 0.411
6 0.954 0.056 0.095 0.157 0.441 0.939
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differences in means between the data sets, but these are 
limited (5/36 = p < 0.05; Table 5). Table 6 and Fig. 7 dem-
onstrate that the data collected by a single observer returns 
lower variance, though this pattern is not strong, and, in a 
few cases, it is slightly higher under this strategy, though not 
significantly so. We finally calculated the coefficient of reli-
ability for the single observer between each of capture of the 
replica assemblages—Supplementary Online Table 3 shows 
that the R values ranged from 0.994 to 0.999, suggesting 
that < 1% of the variance in the single observer data is due 
to an intra-observer error.

Discussion

Here we present a control study that validates the use of the 
collaborative data collection protocol presented in Timbrell 
(2022), which can now be used more extensively by other 
researchers to reduce travel and carbon emissions, as well 
as to bring researchers from other geographical areas into 
the collaborative process more directly. Our results demon-
strate that the levels of inter-observer error permeating shape 
data collated under a collaborative research framework fall 
within the acceptable threshold, thanks to the establishment 
of clear research protocols followed by each collaborator. 
We found that, inevitably, increases in error occur as a con-
sequence of relying on multiple observers, who each have 
access to different equipment, yet we do not deem this to 
be significant enough to highly distort the results towards a 
different conclusion about the data. Therefore, our innova-
tive 3D printing approach and the results reported here have 
important implications for error assessments of linear metric 
and GMM data when recording lithic shape as well as the 
aggregation of data collected by multiple observers.

Outline-based GMM was found to be slightly more sensi-
tive to inter-observer error than metric methods. As Caple 
et al. (2018) point out, EFA involves global descriptors cap-
turing around 99% of the variance in the outline shape, and 
therefore, discrepancies between images lead to error in the 

coefficients dispersed throughout the full outline. Therefore, 
even if the error is not equally distributed, it is measured as 
such, and consequently, outline methods are often more sen-
sitive to error than linear methods that capture only certain 
dimensions of an object. 2D outline-based GMM provides 
comprehensive morphological information on the gross out-
line shape of an object, whereas linear metrics are able to 
capture aspects of the 3D shape but in much less detail; the 
increase in the morphological information captured, plus the 
added potential for automated data capture (e.g. Bonhomme 
et al. 2014; Matzig 2021) and impressive shape visualization 
(e.g. Figure 5), will be worth the potential increase in error 
with 2D GMM in many scenarios.

Our use of PCA to highlight axes of variance within lithic 
shape assemblages also demonstrates that inter-observer 
error does not affect all PCs equally. As outlined by Page 
(1976), subtle errors in each variable are combined in mul-
tivariate analyses and can be extracted by a single or small 
set of PCs, although they may also describe real aspects of 
covariance and so require careful consideration as to their 
source. When undertaking metric analyses, it is possible 
to assess error in each individual measurement; if the met-
rics are combined via dimension reduction methods such 
as PCA, the contributions of each individual measurement 
to each PC are readily identifiable through the PCA coef-
ficients. This is less feasible with GMM data, particularly 
when using outlines and semi-landmarks, and in such cases, 
it is preferable to assess error on each of the leading PCs, as 
demonstrated above, rather than on each set of coordinates, 
which can be very numerous. Overall, the error is impossible 
to avoid completely, and indeed, the imperfect fidelity of 
cultural transmission means that copying errors can natu-
rally occur during the knapping process and inflate variance 
between and within assemblages (Eerkens and Lipo 2005; 
Schillinger et al. 2014). In this sense, the error is certain to 
arise within a data set capturing lithic variability; however, 
steps can be taken to ensure it is minimized, such as stand-
ardization of data acquisition, processing, and analytical pro-
cedures, calibration, high-quality equipment and assessment 

Table 6   Summary statistics reporting mean (m) and standard deviation (sd) of principal component (PC) scores of the repeats of each tool (1–6), 
captured by multiple observers versus a single observer. All values have been rounded to 3 decimal places

Tool PC1 PC2 PC3

Multiple Single Multiple Single Multiple Single

  m   sd   m   sd   m   sd   m   sd   m  sd    m   sd

1  − 0.034 0.006  − 0.031 0.003 0.039 0.007 0.037 0.003  − 0.011 0.016  − 0.023 0.003
2 0.034 0.003 0.031 0.002 0.046 0.002 0.042 0.004 0.042 0.004 0.039 0.004
3  − 0.131 0.001  − 0.135 0.002  − 0.111 0.003  − 0.107 0.004 0.009 0.004 0.007 0.002
4 0.174 0.005 0.169 0.002  − 0.074 0.004  − 0.081 0.003  − 0.004 0.01  − 0.012 0.002
5  − 0.03 0.001  − 0.033 0.002 0.03 0.003 0.025 0.001  − 0.014 0.001  − 0.023 0.002
6  − 0.008 0.007  − 0.008 0.003 0.078 0.002 0.074 0.004  − 0.006 0.006  − 0.004 0.006
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of error through repeat measures (Evin et al. 2020; Lyman 
and VanPool 2009; Robinson and Terhune 2017; Yezerinac 
et al. 1992). In the case of the current study, we determine 
that inter-observer error is low enough for accurate analyses 
under both methods, especially as the high ICC and R values 
demonstrate acceptable levels of congruence between the 
six observers.

Through the development of clear research protocols, our 
results demonstrate that multiple observers can successfully 
work together to produce sets of comparable data for aggre-
gation. We believe that collaborative research designs, such 
as the one reported in Timbrell (2022), play an integral role 
in addressing the vulnerabilities of international research to 
disruption, revealed most recently in 2020 by the outbreak 
of coronavirus (COVID-19), which halted both domestic and 
international travel as well as social interaction. Our results 
suggest that, as well as single researchers visiting multiple 
collections to independently access lithic samples, interna-
tional colleagues are also able to work together in situ to 
generate data, thereby building resilience in archaeological 
practice (Douglass et al., 2020; Scerri et al., 2020). We stress 
though that collaborative research designs should involve 
an equitable partnership in relation to the data, following 
the imminent Cape Town statement (see Else, 2022), with 
all researchers being involved in all stages of the research, 
from planning and protocol development to publication and 
dissemination (Chirikure 2015; Douglass et al. 2020). In this 
way, dual project development can enable local researchers 
to benefit from international archaeological research, thereby 
avoiding some (but not all) of the neo-colonial “helicopter” 
practices that have been hugely criticized in archaeological 
and anthropological sciences, particularly in Africa (Ack-
ermann 2019; Athreya and Ackermann 2019; Sahle 2021). 
We have provided here an initial pilot test of collaborative 
data collection using a 3D printing approach. This approach 
is unique and, to our knowledge, has not yet been applied 
in the context of lithic variability nor inter-observer error 
assessments. We propose that future studies should aim to 
reproduce our approach with more expanded samples of rep-
lica artefacts and discuss three important aspects of potential 
future study design below.

The first aspect relates to the use of statistics and simple 
metrics for reporting the inter-observer error. Statistics such 
as the ICC and % TEM express the error variance relative to 
the overall variance of the sample; the variance is decom-
posed into that due to genuine variation among the artefacts 
and that due to variation among the observers (including 
that due to different individuals, their different cameras, 
lenses, etc.). Whilst this approach has many advantages, 
one immediate drawback is that these statistics are directly 
affected by the magnitude of genuine variation in both the 
sample of artefacts and in the dimensions measured. A 
given constant level of measurement error will appear large 

when the artefacts measured are highly standardized, but 
small when the artefacts measured are highly variable. Even 
if one were to measure the widths and lengths of a set of 
highly standardized artefacts, a given level of measurement 
error would appear smaller the further the ratio of width to 
length is from unity, as this would increase the magnitude 
of genuine variation in the measurements taken. For this 
reason, it is always valuable to present simple indices of 
absolute error (such as standard deviation or variance) for 
single measurements alongside the indices of relative error 
variance across all measurements provided by the ICC and 
%TEM . Such simple indices are valuable in assessing inter-
observer error even when the ultimate study involves more 
sophisticated morphological analyses, such as those based 
on GMM. In the current study, Table 2 presents such indices 
and demonstrates that levels of error are minimal (the largest 
standard deviation among multiple observers for a single 
measurement = 0.613 mm).

The second aspect relates to the exploration of the 
effects of the raw material used for the production of the 
reference collection on the results of comparative stud-
ies. In this study, we used flint because it was available 
and accessible at the University of Liverpool, where the 
materials were prepared. This fine-grained raw material 
tends to produce well-defined features and edges, and so it 
would be interesting to replicate the approach with a more 
coarse-grained material, such as quartzite, chert, calcrete 
or sandstone. This is especially pertinent in our case as 
the shapes obtained from these materials are likely to be 
more representative of the actual African stone tools that 
have been recorded in the main project. However, we note 
that heat-treated silcrete may achieve a grain as fine as 
flint (Key et al. 2021), and that obsidian can be even finer-
grained than flint; since both silcrete and obsidian are raw 
materials commonly found in African Middle Stone Age 
assemblages. We suggest that the flint used here acts as 
a suitable middle ground in terms of granularity and can 
therefore be considered as broadly comparable to those 
raw materials studied in the main project.

Finally, an aspect of variation between individual replicas 
that we did not explicitly measure is that which can arise 
through 3D printing. Zeng and Zou (2019) outline some 
of the factors that can affect the precision of 3D printing, 
which include slicing and support errors. However, we pro-
pose that, even if there are printing errors present in our 
replicas, these are likely minimal due to the highly compa-
rable data obtained across the project. Additionally, printing 
errors should not contribute to differences between the two 
data collection strategies as both the multiple observers and 
the single observer recorded measurements from the same 
set of replicas. Depending on the local accessibility of 3D 
printers, our approach to inter-observer testing could be fur-
ther streamlined through the direct sharing of the virtual 3D 
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models, with each collaborator printing their own copies to 
measure. This would alleviate potential logistical problems 
with global distribution, both via mail or directly, though 
further research is required to ascertain the variation in 
objects printed using different models of 3D printers.

Conclusion

Aggregating lithic shape data requires careful considera-
tion in to order reduce potential sources of inter-observer 
error that can result in detrimental consequences on the 
results and their interpretation. Our analysis of metric 
and outline-based 2D GMM data from multiple observers 
found that the former performed slightly better than the 
latter in our tests of inter- and intra-observer error, primar-
ily due to differences in the nature and detail of the mor-
phological information obtained, though both approaches 
returned levels of error deemed acceptable for accurate 
analyses. Standardization of the data collection procedure 
is vital for ensuring that congruence between observers is 
maintained, though we note that this alone cannot com-
pletely eradicate error as we find that variability between 
observers can still be detected within our data to a (some-
times) significant extent. Nonetheless, we believe that 
producing replica samples through 3D printing could 
have many useful applications within archaeological and 
anthropological sciences beyond the study of error in the 
analysis of lithic assemblages and should be adopted more 
widely in assessments of inter-observer error as an inte-
gral component of international collaborations between 
institutions.
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