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Abstract

In this thesis we combine femtosecond electron diffuse scattering experiments and ab
intio calculations to study the non-equilibrium lattice dynamics in a thin film of photo-
excited MoS2. By simultaneously analyzing the elastic and diffuse scattering signals, we
reveal the non-thermal character of lattice dynamics and obtain a detailed momentum-
resolved view on the electron-phonon and phonon-phonon coupling over a wide range
of the Brillouin zone. We also explore the extent to which branch-resolution can be
extracted from the data. We show that our ability to retrieve energy resolution is in-
herently limited by multicollinearity of the branch-resolved structure factors and multi-
phonon scattering. These effects, observed in MoS2, are expected to play significant
roles in most materials of similar complexity. We find that partial energy-resolution
can nevertheless be achieved by reducing the number of phonon branches by grouping
them into effective branches. Overall, this work contributes to a deeper understanding
of the recently developed time-resolved diffuse scattering methods. This understanding
is necessary in view of reaching the ultimate goal of a phonon mode-resolved view of
lattice dynamics in materials.
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1 Abbreviations

BZ Brillouin zone

BVLS Bounded variable least squares

CB Conduction band

CBM Conduction band minimum

DFT Density functional theory

DFPT Density functional perturbation theory

DWF Debye-Waller factor

EPC Electron-phonon coupling

FED Femtosecond electron diffraction

FEDS Femtosecond electron diffuse scattering

HPC High performance computation

MSD Mean squared displacement

NNLM Non-negative least squares

NLM Non-thermal lattice model

OPSF One phonon structure factor

OPC One phonon contribution

PPC Phonon-phonon coupling

SNR Signal-to-noise ratio

TEM Transmission electron microscopy

TTM Two-temperature model

UXDS Ultrafast x-ray diffuse scattering

VB Valence band

VBM Valence band maximum
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2 Introduction

The complex and diverse interaction mechanisms between electrons and lattice (phonons)
form the basis of our fundamental understanding of condensed matter phenomena. In-
teractions after the collective excitation of the electrons and/or phonons are known
to play an important role for physical phenomena such as superconductivity, charge-
density waves (CDW), multiferroicity, and soft-mode phase transitions [1, 2]. These
interactions can be divided into two groups, electron-phonon and phonon-phonon inter-
actions 1. Electron–phonon interactions are central to our understanding of electrical
transport [3], optical response [4], and energy-conversion processes [5]. Phonon-phonon
interactions are essential for a microscopic understanding of thermal conductivity and
of the interactions between thermal phonons and defects [6]. The design of practical
applications such as optoelectronic devices or field-effect transistors, which mainly op-
erate in non-equilibrium conditions, strongly relies on the knowledge of the interaction
mechanisms between the excited electron and phonon systems.
Pump-probe experiments are powerful methods to probe such excited states. In the
pump-probe approach, an ultrashort laser (pump) pulse photoexcites the material and
a probe pulse (e.g. laser light, electrons) probes the coupling between the subsystems of
the material (e.g. electrons, lattice, spin). In particular, the technique of femtosecond
electron diffraction (FED) [7–9] is used to study electron-phonon coupling (EPC) and
phonon-phonon coupling (PPC) in materials by measuring directly the lattice dynam-
ics after photo excitation. Early FED experiments mostly focused on the analysis of
elastic scattering signals (via the Debye-Waller effect) [10–12], which provide a stable
but momentum-integrated view on the lattice dynamics. At that stage, most tech-
niques were not able to extract the time-resolved diffuse scattering signals contained in
the data, because of insufficient signal-to-noise ratios. This has changed over the last
few years, and current FED experiments have reached sufficient stability to enable a
time- and momentum-resolved analysis of phonon dynamics. Such analysis is the focus
of this thesis. In particular, we wish to explore the extent to which a branch-resolved
view of phonon dynamics can be additionally extracted from FED data.

To place our work in context, we briefly discuss the various ways in which phonons
dynamics can be probed. Optical spectroscopy techniques e.g. time-resolved Raman
and Brillouin spectroscopies, provide an energy-resolved view on the phonon dynamics,
however they are restricted to zero-momentum phonons [13, 14]. The recent develop-
ments of ultrafast x-ray diffuse scattering (UXDS) provided a first method to probe
the momentum-resolved lattice dynamics over a wide range within the Brilouin zone
(BZ) [15, 16]. Due to the low intensity of diffuse signals compared to elastic signals,
UXDS experiments rely on the high brightness of the beam source. A clear advantage
of UXDS is the excellent reciprocal space resolution. However, UXDS experiments
suffer from the weak interaction of photons with the lattice. They also are bound to
having access to large x-ray facilities.
Similar developments in FED opened the field of femtosecond electron diffuse scattering
(FEDS) [17–21]. While the coherence of the electron beam is low compared to x-rays,
FEDS experiments have a number of advantages. Besides their laboratory scale setups,
they benefit form the strong interaction of beam electrons with the sample atoms. High

1Interactions with the spin system are not discussed, since they are not relevant for this thesis.
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electron energies allow measurements over many BZs due to their flat Ewald sphere.
The simultaneous extraction of elastic and diffuse scattering signals additionally helps
the interpretation of the delicate diffuse signals on the basis of the stable elastic signals.

In this thesis we combine FEDS and ab initio simulations to study the momentum-
and partially branch-resolved lattice dynamics in photo-excited MoS2, following an
approach presented for graphene Ref. [20]. Section 3 gives a detailed description of
the diffraction theory necessary to describe the elastic and diffuse scattering signals
observed in the FEDS experiments. Additionally, the branch-resolved approach, that
combines simulations and FEDS signals in an equation system, is introduced and we
discuss the central approximations of this approach and their implications. The combi-
nation of the simulations and FEDS signals uses the least squares method. An algebraic
description of the regression theory for the specific case of the least-squares method
is given in Section 4. We focus on the discussion of multicollinearity in the equation
system and its detection, as it plays a central role for the applicability of the branch-
resolved approach. In Section 5 we present an overview of the material properties of
MoS2 that are necessary to describe the lattice dynamics after photoexcitation. Addi-
tionally we provide the simulated branch-resolved diffuse scattering patterns and their
calculation parameters. In Section 6 we extent the original approach of Ref. [20] by in-
troducing a self-consistency test that is used to verify the quality and trustworthiness of
results. We apply the self-consistency test on graphene and introduce a phonon branch
binning method to reduce the negative effects of multicollinearity. Section 7 provides
an overview of the experimental methods used to study the momentum-resolved lattice
dynamics in MoS2, with a focus on the extraction and processing steps of FEDS data
developed as part of this thesis. In particular, we present an approach to account for
the diffraction pattern distortions in reciprocal space for an exact extraction of diffuse
scattering signals. In Sec. 8, we study the momentum integrated phonon dynamics in
MoS2 by analyzing the elastic scattering signals of the Bragg peaks. We also discuss
the additionally observed layer-breathing modes in a sub section. We use the results
of the elastic scattering signals to extend our analysis to the more delicate diffuse scat-
tering signals as presented in Sec. 9. Finally, in Sec. 10, we apply the branch-resolved
approach with the self-consistency test on MoS2. We discuss a binning of phonon
branches into effective branches and the effects of multi-phonon scattering for MoS2.

This thesis is composed of a computational work with the focus on the implemen-
tation of a diffuse scattering analysis pipeline that combines experimental results with
first principle calculations. The FED experiments on MoS2 were conducted by Dr.
Hélène Seiler in May 2019 2. The first-principle calculations on MoS2 were conducted
by Dr. Marios Zacharias 3.

2Currently affiliated at the Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195
Berlin, Germany

3Currently affiliated at the Cyprus University of Technology, previously a postdoctoral researcher
at the Fritz-Haber Institut der Max-Planck Gesellschaft
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3 Electron diffraction theory

This section presents an overview of the elastic and inelastic scattering theory with a
focus on electron scattering from thin crystals. Most parts are based on the scattering
theory chapters of Refs. [22–26].

3.1 Diffraction from crystals

In general, the incoming electron beam interacts with crystal atoms via Coulomb forces.
To describe the electron beam interaction with the crystal, we start with the discussion
of a single electron-atom scattering event. Using the particle-wave duality, electrons
can be treated as a wave with a wave function describing the probability of scattering
events. The incoming electron is described as a plane wave impinging on a single atom
at the scattering center. Similar to Huygens principle, the scattered wave is described
by a wavelet with its origin at the scattering center.
Going back to the electron beam crystal interaction, each scattering from the crystal
atoms can be described by a wavelet. The resulting diffraction pattern is then the su-
perposition of all wavelets. Here, only coherent scattering is considered, which means
that the phase between the different wavelets is preserved. As a result, wavelets can
interfere constructively or destructively, leading to the characteristic shape of a diffrac-
tion pattern. The diffraction pattern itself reflects the intensity of the beam being
proportional to its wave function I ∝ Ψ∗Ψ.
In order to describe the wave function, we use the first Born approximation. The
approximation assumes weak scattering of the incoming wave, i.e. we assume no atten-
uation of the incoming wave and only single scattering by the material. In the context
of electron diffraction theory, this assumption is often referred as kinematical diffrac-
tion theory. In the first Born approximation, the scattered wave function is written as
the Fourier transform of the scattering potential V (~r):

Ψscatt(~r) =
−me

2π~
ei
~k~r′

|~r′|

∫
V (~r) · e−i~q~rd~r. (1)

In this expression, me is the electron mass, ~ the Planck constant, ~r the cartesian
coordinates and ~q = ~k′−~k is the scattering vector, given by the difference of incoming
and scattered wave vector ~k and ~k’, respectively. From now on, prefactors in Eq. 1
are ignored for the sake of simplicity. Since scattering from a crystal is considered, the
scattering potential is equivalent to the crystal potential. The crystal potential can be
separated in atomic Vatoms(~r) and bond Vbond(~r) potentials as follows:

V (~r) = Vatoms(~r) + Vbond(~r). (2)

Contributions from bonds are ignored, since they constitute typically < 1% of V (~r) [25].
In a first step, we can use the crystal structure to write the atomic crystal potential
as a product of the crystal basis potential with every unit cell. Thus we can write the
atomic potential as the autocorrelation of basis potential Vbasis(~r) with their unit cell
positions:

Vatoms(~r) =

∫ ∞
−∞

Vbasis(~r)
∑
m

δ(~r − ~Rm)d~r = Vbasis(~r)⊗
∑
m

δ(~r − ~Rm), (3)
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with ~Rm being the translation vector of the mth unit cell. Eq. 3 is plugged in Eq. 1,
giving:

Ψscatt ∝
∫

[Vbasis(~r)⊗
∑
m

δ(~r − ~Rm)] e−i~q~r d~r = FT[Vbasis(~r)⊗
∑
m

δ(~r − ~Rm)]. (4)

Using the convolution theorem, FT(A ⊗ B) = FT(A) · FT(B) with FT() being the
Fourier transform. Hence we can rewrite Eq. 4 as:

Ψscatt ∝ FT[Vbasis(~r)] · FT[
∑
m

δ(~r − ~Rm)]. (5)

The right term is simplified by applying the Fourier integral to the delta function, that
is know as the shape factor[22]:

FT[
∑
m

δ(~r − ~Rm)] =
∑
m

e−i~q
~Rm . (6)

Plugging this expression into Eq. 5 gives:

Ψscatt ∝ FT[Vbasis(~r)] ·
∑
m

e−i~q
~Rm . (7)

As the basis potential is the sum of all atoms in the basis, we can write the basis
potential as an autocorrelation of the atomic potential and the atom positions of the
basis (all atoms within the unit cell), analogous to what we did in Eq. 3:

Vbasis(~r) =
∑
ν

Vν(~r)⊗ δ(~r − ~τν), (8)

where ~τν is the position of atom ν in the basis and Vν a potential from a single atom.
We can substitute this expression in Eq. 7 and apply the convolution theorem once
more. After simplifying the delta function in the Fourier integral we get:

Ψscatt ∝
∑
m

∑
ν

FT[Vν(~r)] · e−i~q(
~Rm+~τν). (9)

The Fourier transforms of the atomic potentials are equivalent to the atomic form
factors FT(Vν(~r)) = fν(~q) and are not discussed in detail, since they are well know.
Thermal atomic motions are taken into account by transforming ~τν → ~τν + ∆~τν,m(t),
where ∆~τν,m(t) is the atomic displacement of the νth atom in the mth unit cell at a given
time t. The index m accounts for the fact that atomic displacements are different in
every unit cell. Since diffraction experiments usually record a time integrated signal,
we perform an additional time averaging of ∆~τν,m(t). The time-averaged scattering
potential is given by:

〈Ψscatt〉t ∝
∑
m

∑
ν

fν(~q) · e−i~q(
~Rm+~τν)〈e−i~q∆~τν,m〉t. (10)

The exponential term containing the atomic displacement can be simplified using the
Bloch theorem:

〈e−i~q∆~τν,m〉t = e−
1
2
〈(~q∆~τν,m)2〉t . (11)
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In some literature the dependence of atomic displacements on the unit cells m and
basis atoms ν is simplified by using an atomic mean displacement ∆~τν [25] (only m) or
∆~τ [23] (both). From the resulting wave function we can determine the total scattering
intensity via I ∝ Ψ∗scattΨscatt:

I(~q) ∝
∑
m,m′

∑
ν,ν′

fν(~q)fν′(~q)e
−i~q(~Rm−~Rm′+~τν−~τν′ )

× e
− 1

2
〈(~q2[∆~τ2ν,m−∆~τ2

ν′,m′ ])〉t .

(12)

Equation 12 represents the elastic scattering and inelastic phonon scattering intensity
in momentum space. Using the atomic mean displacement, the last exponential term
can be written as:

I(~q) ∝
∑
m,m′

∑
ν,ν′

fν(~q)fν′(~q)e
−i~q(~Rm−~Rm′+~τν−~τν′ )

× e−~q
2〈∆~τ2〉t ,

(13)

where 〈∆~τ 2〉t is referred as the time-average atomic mean square displacement
(MSD). This formulation is only useful if atomic motions should be calculated directly
and not further used.

3.1.1 Scattering intensity and phonons

In order to combine DFPT calculations and experimental FED data, we have to bring
Eq. 12 into a form that depends on the parameters accessible with DFPT. These
parameters are the phonon frequencies ω~k,j and complex phonon polarization vectors

~ej,ν,~k of the jth phonon branch and νth atom at the reduced scattering vector ~k.
In the limit of the harmonic approximation, the thermal atomic displacements ∆τm,ν
can be written as a superposition of all phonon modes [27]:

∆~τm,ν = Re
1
√
µν

∑
~k,j

{a~k,j ẽ~k,j,ν × exp[i~k(~Rm + ~τν)− iω~k,jt− iφ~k,j]}. (14)

Where µν is the atomic mass, aj,~k the phonon mode amplitude, wj~k the mode frequency
and φj,~k a random phase factor, which accounts for the fact that there are no phase
relations between the modes.
Inserting equation 14 in the exponential term of equation 12 gives:

−1

2
〈(~q[∆~τm,ν −∆~τm′,ν′ ])

2〉t =Mν +Mν′ −
∑
~k,j

∣∣∣a~k,j∣∣∣2
2
√
µνµν′

{(
~q · ~e~k,j,ν

)∗ (
~q · ~e~k,j,ν′

)
× exp

[
i~k ·

(
~Rm − ~Rm′ + ~τν − ~τν′

)]}
.

(15)

Here we used that summing over all random phases φ~k,j time averages to zero. Mν is
defined as the Debye-Waller factor (DWF):

Mν =
1

4µν

∑
~k,j

∣∣∣a~k,j∣∣∣2 ∣∣∣~q · ~e~k,j,ν∣∣∣2 . (16)
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The phonon mode amplitudes can be directly related to the phonon mode populations
by evaluating the kinetic energy of the phonon system in the picture of the harmonic
oscillator system. Plugging the atomic displacement (Eq. 14) into the kinetic energy
term gives:

〈KE〉 =
1

2

∑
m,ν

µν

〈
~̇τ 2
ν,m

〉
=
N

4

∑
~k,j

∣∣∣a~k,j∣∣∣2 ω2
~k,j
,

(17)

where N is the number of unit cells. The total mean energy of the phonon system is
equal to the sum over all phonon mode energies:

〈E〉 = 2〈KE〉 =
∑
~k,j

~ω~k,j

(
nj~k +

1

2

)
. (18)

Comparing equations 17 and 18 gives:∣∣∣a~k,j∣∣∣2 =
2~

Nω~k,j

(
nj~k +

1

2

)
. (19)

Combining equation 15 with equation 19, we can write the scattering intensity in Eq.
12 as a function of lattice parameters, phonon frequencies, polarization vectors and
phonon populations, giving:

I(~q) ∝N
∑
m

∑
ν,ν′

{fνfν′ exp (−Mν −Mν′)

× exp
[
−i~q ·

(
~Rm + τν,ν′

)]
exp [Pm,ν,ν′(~q)]

}
,

(20)

with the phononic factor:

Pm,ν,ν′(~q) =
~

N
√
µνµν′

∑
~k,j

(n~k,j + 1
2
)

ω~k,j

(
~q · ~e~k,j,ν

)∗ (
~q · ~e~k,j,ν′

)
× exp

[
i~k ·

(
~Rm + τν,ν′

)]
.

(21)

The phononic factor accounts for all phonon contributions to the diffraction pattern.
For a further simplification of the intensity, the phononic factor can be expressed in a
Taylor series:

exp(x) = 1 + x+ x2/2 + . . . , (22)

I(~q) = I0 + I1 + I2 + . . . . (23)

The first term of the series, I0, reflects the intensity from no interaction with phonons.
The second term, I1, reflects the intensity from one-phonon scattering. All higher
order terms a treated as multi-phonon scattering terms. Plugging the Taylor series in
equation 20 gives:

I0 ∝N
∑
m,ν,ν′

{fνfν′ exp (−Mν −Mν′)× exp
[
−iq ·

(
~Rm + ~τν,ν′

)]
}, (24)
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I1 ∝N
∑
m,ν,ν′

{fνfν′ exp (−Mν −Mν′)

exp
[
−i~q ·

(
~Rm + τν,ν′

)]
Pm,ν,ν′(~q)},

(25)

I2 ∝
N

2

∑
m,ν,ν′

{fνfν′ exp (−Mν −Mν′)

× exp
[
−i~q ·

(
~Rm + ~τν,ν′

)]
[Pm,ν,ν′(~q)]

2}.
(26)

Figure 1: Calculated a) zero+one-phonon (I0(~q) + I1(~q))), b) all-phonon (I(~q)) and c) multi-
phonon contribution (Iall(~q) = I(~q) − I0(~q)) of bulk MoS2 for T = 300 K. Black hexagon
indicates the first BZ with high symmetry points and Miller indices of Bragg reflections.
Figure from [28].

The expressions of I0 and I1 are essential to understand the experimental signals
presented in this thesis, and they are described in more detail in the next sub-sections.
Figure 1 shows exemplary patterns of the calculated zero plus one-phonon contribution
(a), all-phonon contribution (b) and multi-phonon contribution (c) of MoS2.

3.1.2 Elastic scattering

The shape factor (first term) of equation 6, I0, can be simplified using the sum rule:

S(~q) =
∑
m

exp
(
i~q · ~Rm

)
= Nδ~q, ~G, (27)

where ~G is a reciprocal lattice vector. The sum rule is only valid for very large crystals
due to peak narrowing [22]. A discussion of the shape factor for finite crystal dimensions
can be found in Sec. 3.1.4. We find the elastic scattering intensity:

I0(~q) ∝N2
∑
ν,ν′

{fνfν′ × exp (−Mν −Mν′) exp [−i~q · (~τν − ~τν′)] δ~q, ~Ghkl}. (28)

The elastic scattering term consists of the structure factor:

F (~q) =
∑
ν

fν exp(−i~q · ~τν), (29)
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Figure 2: Ewald’s sphere for
an incoming and scattered
electron beam with wave
vector k and k’ respectively,
illustrating the Laue condi-
tion. Whenever the scat-
tering vector q = G (black
dots) both beams interfere
constructively and generate
a Bragg reflection. Figure
edited from [22].

and exponential terms
∑

ν exp(−Mν) containing the DWF. The δ~q, ~Ghkl term implies the

Laue condition (Fig. 2), only producing non-zero intensities if ~q = ~Ghkl. The resulting
peaks are know as Bragg peaks.
Using these expressions, we can also determine the more general and widely used
expression of the elastic scattering intensity as a function of atomic MSD. Starting
from Eq. 13 we can proceed with analog steps (for more details see [23]) giving the
following expression:

I0(~q) ∝N2 · F (~q)F (~q)∗ × e−~q
2〈∆~τ2〉tδ~q, ~Ghkl . (30)

The Bragg peak intensities depend on the phonon populations via the DWF. Due
to the sum over all phonon modes in the phonon amplitudes, the DWF reflects the
momentum and branch integrated phonon populations. An increase in temperature
leads to an increase of phonon populations, which results in an increase of the DWF
and thus in a decrease of Bragg peak intensities. The intensity loss of Bragg peaks
is redistributed in a diffuse background between the peaks, described by the one- and
multi-phonon contributions introduced in equations 25 and 26 . The next sub-section
focuses on I1 as it is used in the branch- and momentum-resolved approach.

3.1.3 Inelastic scattering

In this thesis, we analyse the inelastic scattering signals assuming that they are well-
described by the one-phonon contribution I1. Hence we neglect all higher-order multi-
phonon processes. The intensity of multi-phonon interactions can be retrieved by
calculating Imulti = I(~q) − I0 − I1 [26], but this goes beyond the scope of this thesis.
Similar to the elastic scattering term, we can simplify the expression of I1. Evaluating
Eq. 25 with the phononic factor gives:

I1 ∝~
∑
m,ν,ν′

fνfν′√
µνµν′

exp (−Mν −Mν′) exp
[
i(~k − ~q) ·

(
~Rm + ~τν,ν′

)]
×
∑
~k,j

(n~k,j + 1
2
)

ω~k,j

(
~q · ~e~k,j,ν

)∗ (
~q · ~e~k,j,ν′

)
.

(31)
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The expression is further simplified using the sum rule in Eq. 27 and

~e~k+ ~G,j,ν = ~e~k,j,ν exp
(
−i ~G · ~τν

)
. Additionally we write the time dependency of the

phonon populations and phonon frequencies so that nj,~k → nj,~k(t) and ωj,~k → ωj,~k(t).
Generally phonon frequencies are time-dependent as they can change after photoex-
citation due to anharmonic effects. Thus we can write the final compact form of the
one-phonon contribution (OPC) to inelastic scattering with its temporal depen-
dency:

I1(~q, t) ∝ N
∑
j

nj,~k(t) + 1/2

ωj,~k(t)
|F1j(~q, t)|2 , (32)

where |F1j(~q, t)|2 is the one-phonon structure factor (OPSF) for phonon branch
j:

|F1j(~q, t)|2 =

∣∣∣∣∣∑
ν

e−Mν(~q,t)fν(~q)√
µν

(
~q · ~ej,ν,~k

)∣∣∣∣∣
2

. (33)

The sum over all branches j allows us to separate the individual branch contributions
of the OPC. Phonon population changes are directly reflected in the individual sums
and the DWFs of the OPSFs. Because phonon frequencies appear in the denominator
of the OPC expression, low energy phonons generate more intensity for equal popu-
lation changes than high energy phonons. The product between the scattering vector
and phonon polarization vectors in the OPSF is the leading term in the OPC and
generates most of the features in the inelastic diffraction pattern. The DWF produces
an attenuation of the OPC for larger scattering vectors.

3.1.4 Thin film effect

In this section we rewrite the simplified shape factor S(~q) in Eq. 27 to account for finite
crystal dimensions in the scattering intensity. So far we assumed very large crystal
dimensions, which lead to sharp intensity maximas whenever the Laue condition is
fulfilled. The scattering intensity introduced in Eq. 28 features a factor of N2 =
(N2

x ·N2
y ·N2

z ), where N is the number of unit cells and Ni=x,y,z the number of unit cells
along axis i. In order to treat the electron scattering in the framework of kinematical
scattering theory, the crystal thickness has to be reduced to a thickness smaller than
the mean free path of the electrons [24]. This results in a drastic reduction of the
number of unit cells along the electron beam axis.
In a lengthy derivation [22] it could be shown that the shape factor product S(~q)∗S(~q)
and the diffraction intensity can be written as:

I(~q) ∝ S(~q)∗S(~q) =
∏

i=x,y,z

sin2(πqiaiNi)

sin2(πqiai)
, (34)

where qi is a scattering vector component and ai the lattice constant of direction i.
In the experimental setup we use samples that have large numbers of unit cells in the
in-plane directions (x,y) and only a few unit cells in the beam direction (z). For large
numbers of unit cells, the single in-plane terms converge to the know prefactors N2

x ·N2
y ,
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giving the shape factor product:

I(~q) ∝ S(~q)∗S(~q) = N2
x ·N2

y ·
sin2(πqzazNz)

sin2(πqzaz)
. (35)

The modification of the shape factor due to finite crystal dimensions is know as the

Figure 3: Ewald’s sphere with the thin film effect. Blue scattering vectors indicate the case
of a perfectly fulfilled Laue condition (~q = ~G) in the first order Laue zone (FOLZ). Red
scattering vectors show the case of the Ewalds’s sphere cutting the relrod (~q = ~G + ~s) in
the zero order Laue zone (ZOLZ). The inset shows the intensity profile of a relrod (grey)
as a function of deviation vector ~s. The dashed line indicates an Ewald’s sphere for higher
electron energies ~k2 > ~k. Figure edited from [29]

thin film effect. Its effect on the Ewald’s sphere is shown in Fig. 3. The finite crystal
dimensions lead to a softening of the Laue condition, allowing beams with ~q = ~G+ ~s,
where ~s is the deviation vector, to generate intensity. For thin films this leads to a
strong softening of the Laue condition in one direction, which are often mentioned as
’relrods’ in reciprocal space. The Ewald’s sphere of high energy beams with electron
energies in the keV-regime can thus cut many relrods and generate more Bragg peaks
than a lower energy beam in the eV-regime. The experimental setup used in this work
operates at electron energies of 80 - 100 keV. Thus the wave vector of the beam is much
larger than the reciprocal lattice vectors, ~G� ~k.

3.2 The time-, momentum- and branch-resolved approach

The goal of this thesis is to study the time-, momentum- and branch- resolved phonon
dynamics of MoS2 with the approach first presented in Ref. [20]. For this, we combine
the extracted time- and momentum-resolved inelastic scattering intensities from the
experiment with the results of ab initio calculations. In this sub-section, we provide
an overview of the approach, and its application to MoS2 will be described in detail in
Sec. 10.
Starting with Eq. 32, we replace the time dependence with the pump-probe delay
t → ∆t. Additionally we make two approximations: i) we neglect the temperature
dependence of the phonon frequencies. Such modulations arise from anharmonicities,
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which are not expected for the temperatures changes in the experiment [30, 31]. Hence
we can write ωj,~k(∆t) ≈ ωj,~k. ii) We neglect temperature changes in the OPSF due

to changes in the DWF’s, giving |F1j(~q,∆t)|2 ≈ |F1j(~q)|2. A further discussion of this
approximation is presented in Sec. 3.2.1. Thus the OPC can be written as:

I1(~q,∆t) ∝ N
∑
j

nj,~k(∆t) + 1/2

ωj,~k
|F1j(~q)|2 . (36)

Phonon dynamics are observed by considering the phonon population changes ∆nj,~k
in the one-phonon intensity differences ∆I1(~q,∆t):

∆I1(~q,∆t) = λ ·
∑
j

∆nj,~k(∆t)
|F1j(~q)|2

ωj,~k
, (37)

where λ summarizes all prefactors.
The idea of this approach is that the left side of Eq. 37 is available from the experiment
and |F1j(~q)|2 /ωj,~k is calculated by ab initio calculations. In such case, λ is equivalent
to a scaling factor that merges the magnitudes of experimental and calculated intensity
differences. We will describe this merging procedure in detail for the case of MoS2 in
Sec. 10.4.
As the ∆nj,~k’s are redundant in every Brillouin zone (BZ), we can group the scat-

tering vectors ~q in groups with the same reduced reduced scattering vector ~k. This
gives a set i ∈ [1, ..,M ] of scattering vectors ~qi = ~k + ~Gi, where ~Gi is the reciprocal
lattice vector from the nearest Bragg peak reflection. The positions of an exemplary
scattering vector set ~qi are shown in Fig. 4. The number of BZ’s M is limited by the
experimental conditions (for instance the size of the detector or magnetic lens settings).

Figure 4: Positions of a
scattering vector set ~qi with
similar reduced scattering
vectors ~k for the MoS2 data
set. BZ’s are indicated by
black hexagons.

For every reduced scattering vector ~k we can then write a linear equation system
with every row consisting of Eq. 37 at the scattering vectors ~qi:

~I~k(∆t) = ¯̄F~k~n~k(∆t), (38)

where:
~I~k(∆t) =

1

λ

[
∆I
(
~k + ~G1,∆t

)
, . . . ,∆I

(
~k + ~GM ,∆t

)]T
, (39)
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~n~k(t) =
[
∆n1,~k(t), . . . ,∆nN,~k(t)

]T
, (40)

¯̄F~k =


∣∣∣F11

(
~k + ~G1/

)∣∣∣2 /ω1,~k . . .
∣∣∣F1N

(
~k + ~G1

)∣∣∣2 /ωN,~k
...

. . .
...∣∣∣F11

(
~k + ~GM

)∣∣∣2 /ω1,~k . . .
∣∣∣F1N

(
~k + ~GM

)∣∣∣2 /ωN,~k


M×N

. (41)

The matrix ¯̄F~k has the size M ×N , where N is the number of phonon branches. As a
solution, we get the phonon population change ∆n1,~k(∆t) for every phonon branch j,

reduced scattering vector ~k and pump-probe delay ∆t (branch-, momentum- and time-
resolution respectively).
From linear Algebra we know that a solution can only exist if M > N . Hence we have
to consider more BZs than the material has phonon branches. In our case, N = 18 since
MoS2 has 6 atoms in the primitive unit cell. Solving the equation system is similar to
finding a best phonon population change ∆nj,~k(t) for every branch, such that the sum

of all one-phonon branch contributions matches the observed signal ∆I1(~k,∆t) best.
This approach uses the ~q-dependence of |F1j (~q)|2 and assumes that the magnitudes of
branch contributions can be well separated in momentum space. Usually the more BZs
are considered the more different are the branch contributions and the more different
are the columns. A problem arises if the OPSFs of different phonon branches have
similar magnitude ratios for the scattering vector set ~qi. Then we cannot distinguish the
branch contributions at that reduced scattering vector ~k. The effect of similar branch
contributions, or columns in the equation system, is formally described by the effects
of multicollinearity and are further discussed extensively in Sec. 4.2 and 6. We will see
throughout this thesis that multicollinearity is a major limitation of the banch-resolved
approach. In the context of the experiments, this implies that if only a few non- or less-
multicollinear branches show strong phonon population changes. We can thus better
assign the populations changes to the branches, as they can be better distinguished.
This situation is in general more likely in highly non-equilibrium situations than in
near-thermal equilibrium, where all branches show population changes.

3.2.1 Approximations

The central approximation of the method in Ref. [20] is to treat the OPSF as a time
independent function, F1,j(~q, t) ≈ F1,j(~q, t = t0). This allows to transform the intensity
changes of the one-phonon contribution ∆I1(~q,∆t) into the equation system of Eq.
38. The general assumption is that the relative changes in phonon populations due to
the laser pulse excitation, ∆nj,~k(∆t), are much larger than the changes in the OPSF,
∆F1,j(~q,∆t). The time dependence of the OPSF is equivalent to a lattice temperature
dependence. As can be seen in Eq. 33, the OPSF depends directly on the lattice
temperature via the DWF and decreases if the lattice temperature increases. Since we
observe that the total inelastic signal increases in the experiments, ∆nj,~k has to be the
dominating term that drives the net increase in inelastic intensity. This observation
underpins the validity of the approximation.
Due to the known 1/wj,~k dependence, changes of the DWF are larger if the populations
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of acoustic modes change compared to when the populations of optical modes change.
As a consequence, the approximation is more valid in non-equilibrium states, where
most population changes appear in the optical branches [12], and gets less valid towards
thermal equilibrium.
The validity of the approximation can be controlled by the absorbed fluence. A higher
absorbed fluence results in a higher temperature difference between the equilibrium
states and thus the approximation is less valid. At the same time, decreasing the
fluence also decreases the SNR in the experiments. Hence a trade-off has to be found
between absorbed fluence and SNR, which could be interesting to explore in future
experiments.
The question remains whether the approach in Ref. [20] under- or overestimates the
phonon populations. Here we express the OPC differences (Eq. 37) as a function of
temperature T , which is equivalent to the pump-probe delay dependence, ∆I1(~q,∆t)→
∆I1(~q,∆T ). The OPC difference without the constant OPSF approximation can be
written as:

∆I1(~q,∆T ) = I1(~q, T2)− I1(~q, T1)

= λ
∑
j

nj,~k(T2)|F1,j(~q, T2)|2 − nj,~k(T1)|F1,j(~q, T1)|2

wj,~k
,

(42)

with T2 > T1 and thus:
|F1,j(~q, T2)|2 < |F1,j(~q, T1)|2. (43)

For now on we neglect the ~q (~k) dependence for the sake of simplicity. Using Eq. 43
and the relation nj(T1) < nj(T2) the comparison between the exact denominator of Eq.
42 and the denominator simplified with the constant OPSF approximation gives:

nj(T2)|F1,j(T2)|2 − nj(T1)|F1,j(T1)|2 < ∆nj(∆T )|F1,j(T2)|2

< ∆nj(∆T )|F1,j(T1)|2.
(44)

This shows that the approximation of a constant OPSF, whether set to the initial or
elevated temperature, always overestimates the one-phonon contribution, thus leads to
an underestimation of the phonon population changes ∆n(~q,∆t). Furthermore, since
∆n(∆T )|F1,j(T2)|2 < ∆n(∆T )|F1,j(T1)|2, using the OPSF at the elevated temperature
gives the best approximation.
In the context of the experiment, we can interpret the data in a simplifying two-
temperature model (TTM) [12] as a set of intensity differences:

D = {∆I(∆T eff
1 ), ...,∆I(∆T eff

m )} (45)

at different elevated effective lattice temperatures, where m is the number of pump-
probe delay points. Each temperature difference is the difference between the initial
temperature (300 K) and the elevated temperature corresponding to a pump-probe de-
lay ∆t. Using the TTM results, a best approximation for each pump-probe delay could
be obtained by setting the OPSF temperature to the corresponding elevated tempera-
ture. Here we simply use a single temperature for the entire set of intensity differences.
Since the focus lies on the observation of highly non-equilibrium states, the best con-
stant OPSF approximation is given by the OPSF |F1,j(T1)|2 at the initial temperature
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of D. The underestimation of phonon population changes is then increasing for in-
creasing lattice temperature (pump-probe delays). Setting it to the final temperature
of D would result in an overestimation for early pump-probe delays which later evolves
to an underestimation for nearly equilibrium states.
In fact, to generalize the approach to both non-equilibrium and equilibrium states,
it could be useful to ramp up the OPSF temperature with a biexponential function
based on the time constants retrieved from Bragg peak analysis commonly performed
in FED experiments and by us in Sec. 8 [32, 33]. At the current stage, this dynamic
approximation is not implemented and the calculations presented in this work are all
based on the constant OPSF approximation set to the initial temperature.
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4 Regression theory

In order to achieve a branch resolution, we have to solve the equation system Eq. 38.
Since the system has more rows than columns, it is overdetermined. Such overdeter-
mined problems are usually solved with optimization procedures as no unique solution
exists. This chapter presents the mathematical background used in this thesis to solve
and understand linear regression problems [34–36].

4.1 Linear overdetermined regression problems

A linear regression problem is defined as a system of n linear equations:

p∑
j=1

xijαj = yi with i = 1...n. (46)

Where xij are the predictors and yi is the response of the ith observation, with the
coefficients αj being unknown with j = 1...p. This can be written in matrix form:

X~α = ~y, (47)

with X being a real n× p-matrix, ~α a p× 1-vector and ~y a n× 1-vector.
In this work, we consider only cases with n > p. In that case the equation system is
overdetermined and has infinite solutions. Additionally the equations mostly contra-
dict each other and subsequently an exact solution can not be determined. It is then
only possible to find a best solution, which minimizes the residuals.

4.2 Least squares method

A suitable approach to solve n > p problems is the least squares optimization method.
Using the matrix formulation of equation 47, the residuals can be written as:

~r = ~y −X~α. (48)

The principle of the least square method is to minimize the sum of the squared residuals
S:

S =
∑
i

r2
i = ~rT~r = ~yT~y − 2~αTXT~y + ~αTXTX~α, (49)

in relation to the coefficients αi. The necessary condition for S( ~α) to be a minimum
is that the Gradient of S disappears, ∇S(~α) = 0. This leads to the so called normal
equation:

(XTX)~α = XT~y. (50)

A detailed derivation can be found in [35, 36]. With A = XTX being a symmetric

p× p-matrix and ~b = XT~y being a p-vector, the equation can be written as:

A~α = ~b. (51)
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This gives a quadratic equation system, which can be solved with the standard algo-
rithms of linear algebra. The solution can be written as:

~α = A−1~b, (52)

presuming that the inverse of A exists. The previous step relies on the calculation of
the inverse A−1 and fails if an inverse does not exist.
If A is singular matrix and subsequently has no inverse, the least square method cannot
be applied. The biggest problem in least square problems comes from the more common
case of nearly singular matrices, which are called ill-posed problems. Ill-posed problems
lead to unstable solutions with very high variance and often have non unique solutions.
This behaviour can be understood by considering the diagonalized form of A. Since A
is a real symmetric matrix, it can be decomposed as the following matrix product [35]:

A = U ×D × UT , (53)

where U is a orthonormal matrix fulfilling UUT = UTU = 1 and D is a diagonal matrix
with the eigenvalues λi as the diagonal elements Dii.
The inverse is then given by:

A−1 = U ×D−1 × UT , (54)

with D−1 being the inverse diagonal matrix. The diagonal elements of D−1 are simply
given by D−1

ii = 1/λi. In the case of λi = 0, D−1
ii gets infinite and the inverse A−1

cannot be determined. If λi gets very small the diagonal elements become very large.
Thus small deviations in the calculation λi will introduce a high uncertainty in the
calculation of the inverse. In conclusion, A is invertable if all eigenvalues λi’s are
greater than zero, in which case A becomes positive definite. A matrix A is positive
definite if a vector ~x /∈ 0 exists, which fulfills:

~xTA~x > 0. (55)

If one or more eigenvalues are zero, A is positive semi definite, which is the case if
xTAx = 0.
With the definiteness condition we can now show, that a multicollinear matrix is also
singular. A matrix X is considered multicollinear if more than two columns of X are
linearly related to each other. Multicollinearity is given if a vector ~α /∈ 0 exists such
that X~α = 0. If this is plugged in the definiteness condition, equation 55 can be
rewritten as:

~αTA~α = ~αTXTX~α = (X~α)TX~α = 0, (56)

showing that the more X becomes multicollinear, the more A becomes semi positive
definite and subsequently becomes singular.

4.3 Detection of multicollinearity

As near multicollinearity is a major problem for the least squares methods, how can it
be detected? There are several methods for detecting multicollinearity in a linear equa-
tion system, such as the variance inflation factor (VIF) [34] or looking at the elements
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of the variance-covariance matrix [34], that are strongly affected by multicollinearity.
In this work the variance inflation factor is used, which returns a value for every column
of an equation system. The value indicates the presence of multicollinearity in relation
to all other columns, but does not give the information of which linear combinations
of columns of X are causing it.
Correcting multicollinearity goes always hand in hand with eliminating the columns
in the matrix X which are causing it. In our specific application, since the columns
are given by the OPSF, an elimination or merging of columns is only possible if the
physics of the OPSF is preserved. Therefore the reduction of multicollinearity relies
on simplification of the physical model and not on a detection of linear combinations.
The knowledge of the strength of multicollinearity and thus the use of the VIF is then
sufficient, since it tells that a simplification of the physical model is required.
The fundament of the VIF is the coefficient of determination R2, which is defined by:

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳi)2

∈ [0, 1], (57)

where yi is the observed data of the regression problem ~y = X~α + ~ε and ŷi are the
estimated solutions of ~̂y = X~a with ~a being the estimate of ~α. R2 is used as a general
goodness of how much the model fits the solution. The upper sum represents the
summed squared residuals and vanishes if the model totally fits the data. The weakness
of the R2 coefficient is that nearly constant values of yi make the lower sum disappear
and R2 not defined. The VIF of the j-th column is then defined as:

VIFj =
1

1−R2
j

∈ [0,∞], (58)

where R2
j is the coefficient of determination of the jth column regressed against all other

variables. In terms of the original regression problem ~y = X~α, R2
j is the coefficient of

determination of the problem:

~xj = [~x1 . . . ~xj−1~xj+1 . . . ~xp]~α
′, (59)

where ~xj are the columns of X and ~α′ is the reduced coefficient vector. This is equal
to the multicollinearity condition of the previous section. If the column j gets multi-
collinear to all other columns, R2

j becomes one and thus VIFj becomes large. In the
case of no multicollinearity R2

j = 0 and thus VIFj = 1.

4.4 Least square algorithms

This sub-section gives a short overview of the least square algorithm used in this
project. All of the used algorithms were already implemented in the Python-packages
SciPy or Scikit-learn.
Non-negative least square (NNLS) problems are categorized as least square problems
with inequality constraints. The problem is defined as:

min
α
||~y −X~α|| ~α ≥ 0. (60)

The equation system is solved by minimizing the residuals with the constraint ~α ≥ 0.
The non-negative least squares algorithm used in this project is based on the pseu-
docode from [37], which is included in the SciPy-package.
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5 Molybdenum disulfide

Molybdenum disulfide (MoS2) belongs to the group of transition-metal dichalcogenides
(TMDCs). TMDCs gained enormous interest due to their interesting properties, which
make them possible candidates for various applications in the fields of electronics and
opto-electronics such as photodiodes, photovoltaic cells and light-emitting devices [38–
40]. In particular, their strong light-matter interaction [41] makes them suitable can-
didates for light-controlled devices. Such devices can indeed be realized and controlled
via coupling to femtosecond light pulses, including transient band-structure modula-
tion [42] and band gap renormalization [43]. Device applications strongly rely on the
knowledge of complex and diverse interaction mechanisms between electrons and lat-
tice and their out-of-equilibrium dynamics. To gain insights into these interactions, we
study the phonon dynamics in a photo-excited thin film of MoS2 by employing FEDS.

5.1 Crystal structure

Bulk MoS2 is a layered material, like graphite, and belongs to the family of 2D-
materials. The primitive unit cell contains 2 layers, where each layer consists of three-
atom-thick sulfur-molybdenum-sulfur (S-Mo-S) atom stacks, as shown in Fig. 5. The
layers are bonded by weak van der Waals interactions, whereas the intralayer bonds
are dominated by ionic and covalent interactions. Each single layer forms a honeycomb
structure described by a hexagonal lattice. Lattice vectors are:

~a1 = a · ~̂ex, ~a2 = −a
2
· ~̂ex +

√
3a

2
· ~̂ey, ~a3 = c · ~̂ez, (61)

where a is the in-plane, c the out-of-plane lattice constant and ~̂ei the Euclidean vectors.
Depending on the stacking order, there are three polytypes 1T, 2H and 3R [44]. In
this work we study the most common polytype 2H-MoS2, which is characterized by a
slide shift between two layers giving the stacking order AbA BaB AbA. For 2H-MoS2

the lattice constants are a = 3.15 Å and c = 12.30 Å [44].
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Figure 5: a) Top view (shaded atoms indicate lower layer) and b) Side view of the MoS2

crystal structure with primitive unit cell. Mo and S atoms are indicated by purple and yellow
balls respectively. The crystal structures were generated using the VESTA suite [45]. c) First
Brillouin zone of MoS2 with high-symmetry points labeled (Fig. from [46]).
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5.2 Electronic band structure

MoS2 offers a diverse electronic structure. Besides its indirect band gap and multiple
valleys in the conduction band, MoS2 transforms to a direct band gap semiconductor
for monolayer crystals [47], unlike graphene. The electronic band structure of bulk
MoS2 over a high-symmetry path is shown in figure 6. Bulk MoS2 is a semiconductor
with an experimentally measured indirect band gap of 1.3 eV [41, 48] between Γ and
its conduction band minimum (CBM) at Λmin. A direct band gap transition at K is
possible if excitation energies are greater than 1.95 eV [49]. Λmin is located at half the
distance between Γ and K. The conduction band offers additional valleys at K and
between Γ and M. Especially the K-valley is very close to the CBM, showing an energy
difference of only a few meV [50]. For decreasing number of layers, an increasing of
the CBM and the highest valence band at K has been observed [50, 51], building out
a direct band gap at K for monolayer crystals [52]. The measured energy difference of
the valence band maximum (VBM) at Γ and the highest valence band at K is 0.6 eV
[53].

Figure 6: Electronic band structure of bulk MoS2 (graphics used and modified from [50])
obtained by DFT calculations using the hybrid functional of Heyd, Scuseria, and Ernzerhof
(HSE06) and semiempirical D2 method. The dashed lines indicate the electronic excitation
windows achieved by our experimental pump photon energy of 2.14 eV. The green and black
arrows indicate possible indirect and direct transitions, respectively. The blue bands show
the lowest conduction bands and the red bands show the highest valence bands.

With a pump photon energy of 2.14 eV, we are able to drive multiple indirect and
direct electronic transitions between the valence and conduction bands, shown as the
green and black arrows in Fig. 6, respectively. Note that the calculated electronic
band structure shown in this figure overestimates the direct and indirect band gap,
compared to the experimental values. Especially the direct K-K transition is 0.19 eV
smaller than the experimental gap, indicating that the transition has more available
phase space than shown in the figure. Indirect phonon assisted transitions are possible
from Γ to most parts of the lowest conduction bands, starting form the Γ-M-valley
along the M-K-Λmin high symmetry line.
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5.3 Phonon dispersion

The phonon dispersion of MoS2 retrieved by density functional perturbation theory
(DFPT) calculations along the high-symmetry point line Γ−K −M − Γ is shown in
figure 7. The phonon frequencies and polarization vectors were determined by DFPT
as implemented in the Quantum Espresso package [54]. All calculations used in this
work were performed by Dr. Marios Zacharias 4. For calculations on MoS2, we used
a fully relaxed primitive unit cell and Hartwigsen-Goedeker-Hutter pseudopotentials
[55]. The electronic wave function was determined on a 10x10x3 ~k-grid by using the
plane wave self consistency field module of Quantum Espresso. A high accuracy of
the wave function was achieved by using an energy cut-off of Ecut = 120 Ry and a
convergence threshold of 1× 10−9 Ry/Bohr. The dynamical matrices were calculated
on a 8x8x2 ~q-grid using a consistency threshold of 1× 10−14.

MoS2 has p = 6 atoms in the primitive unit cell and subsequently r = 3 · p = 18

Figure 7: Phonon dispersion of MoS2 along the Γ−K−M −Γ path with normalized density
of states. The bottom table shows the phonon mode energies at Γ with corresponding branch
names and polarization.

phonon branches, 3 acoustic and 15 optical branches. The most remarkable feature of
its phonon dispersion is the energy gap between the 6th and 7th branch, separating the
branches in 6 low-energy and 12 high-energy branches.
The low-energy section consists of three acoustic and three optical branches, divided
in three two-times degenerate pairs. In the high-energy section, all 12 optical branches
are two-times degenerate, resulting in 6 overlaid branches. For the determination of the

4Currently affiliated at the Cyprus university of technology, previously a postdoctoral researcher
at the Fritz-Haber Institut der Max-Planck Gesellschaft
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phonon polarization at Γ and the OPSF calculations, phonon polarization vectors are
required. The mean polarization of all atoms in the unit cell is shown in the appendix
Fig. 43.
The general agreement of all phonon branches with the experimental and theoretical
studies carried out by Ref. [46] is very good.

5.4 One-phonon contribution calculations

The branch-resolved approach introduced in Sec. 3.2 (Eq. 38) requires the knowl-
edge of phonon frequencies wj,~k, the OPSFs of every branch |F1j(~q)|2, as well as the
OPC differences ∆I(~q,∆t) (see Sec. 10.4). As can be seen in Eq. 33, calculations of
|F1j(~q)|2 at thermal equilibrium require the atomic scattering factors fν(~q), the phonon
frequencies wj,~k, phonon polarization vectors êj,ν,~k and the DWF Mν(~q, t). For calcu-
lating the DWF at thermal equilibrium, phonon modes were populated according to
Bose-Einstein statistics at a given temperature. Phonon frequencies and polarization
vectors were provided by the DFPT calculations, whereas atomic scattering factors
were used from the NIST database for atomic form factors. A dense ~k-grid for the
DFPT calculations, which is additionally extrapolated, is required due to the following
reasons. Merging DFPT and experimental data requires a similar resolution of both
data sets. A typical resolution of our experiment is in the range of 0.01Å (see Sec.
7.4.1). Additionally, the DWF depends on a sum over all phonon frequencies and po-
larization vectors. Due to the high computational effort to carry out such calculations,
they had to be performed on a HCP cluster.

With the phonon frequencies and the branch-resolved OPSFs we are able to calcu-
late the OPC maps I1,j(~q) (Eq. 32) in thermal equilibrium, as shown in Fig. 8. To
account for the finite coherence of the electron beam we apply an additional smearing of
the OPSF and OPC by convolving them with a 2D-Gaussian kernel. The width of the
kernel is adapted to the width of the Bragg peaks accessible by the experiment. Each
map in Fig. 8 represents the OPC of the one of the 18 branches of MoS2 to the diffuse
scattering signal. OPC maps are strongly dominated by the shape of the OPSFs, that
reflect the n-fold symmetry of the crystal across the entire diffraction pattern,whereas
phonon frequencies are redundant in every BZ. Branches 7,8,9 and 10 are completely
inactive and do not contribute to the inelastic scattering signal. The 1/ω-dependence
of the OPCs is strongly reflected in the intensity, showing that low-energy branches
have higher intensities than high-energy branches.
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Figure 8: Branch-resolved one-phonon contribution maps of MoS2 at T = 300 K, I1,j(~q, t), in
the diffraction plane probed by the experiment. White hexagons mark the Brillouin zones
available in the experiment. Bragg peaks are intense spots in the middle of every BZ. All
maps are normalized to the same factor.
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6 Self-consistency and the role of multicollinearity

Before applying the optimization approach introduced in Chapter 3.2 to the experimen-
tal data, this Chapter describes how multicollinearity can be detected in our specific
application. In particular, we describe a self-consistency scheme that we have devel-
oped to test the stability of the optimization procedure. For this test, the inelastic
intensity difference ∆Iexp(~q,∆t) on the left side of the equation system (Eq. 38) is
replaced by the calculated OPC difference, ∆I1,model(~q, T1, T2). This gives the following
equation:

∆I1,model(~q, T1, T2) = λ ·
∑
j

∆nj,~k
wj,~k

|F1,j(~q, T )|2, (62)

where ∆I1,model(~q, T1, T2) = I1(~q, T2)−I1(~q, T1) is the difference of the one-phonon con-
tributions in thermal equilibrium with temperatures T1 and T2. As a constant OPSF
is only an approximation and would depend on temperature changes as well, we have
to choose an OPSF temperature T which gives the best approximation. In Chapter
3.2.1 it is shown that setting the OPSF temperature to T = T2 is the best choice.
Now both sides of the equation system depend only on the DFT calculations. Since
∆I1,model(~q, T1, T2) is calculated in thermal equilibrium, the resulting phonon popu-
lation changes are expected to be ∆nj,~k ≤ ∆nBE

j,~k
(T1, T2), where ∆nBE

j,~k
(T1, T2) is the

difference of the BE-statistics at T1 and T2. Indeed, as shown in Chapter 3.2.1, the re-
sults should underestimate the true population changes. Hence, we expect the retrieved
elevated temperatures from ∆nj,~k , T̃2, to be lower than T2. Thanks to this procedure,
the areas of the BZ where the least squares solver is not working properly can be identi-
fied. They correspond to areas with strong deviations from the expected temperature.
These areas should be equivalent to those with high multicollinearity received by the
VIF test (see Chapter 4.3). Additionally, the self-consistency test provides a measure
of how much the constant-OPSF-approximation for a given ∆T underestimates the
true phonon population changes and the resulting elevated temperature.

6.1 Determination of phonon temperatures

From phonon population changes we can invert the Bose-Einstein statistics to calculate
the elevated temperature T2. With the initial temperature T1 we get the following
equation for the phonon population change ∆nj,~k(∆t) at wave vector ~k, pump probe
delay ∆t and branch index j:

∆nj,~k(∆t) = nj,~k(T2)− nj,~k(T1)

=
1

exp
[ ~ω

j,~k

kBT2

]
− 1
− nj,~k(T1). (63)

In this case the initial temperature T1 = 300 K is know and we can rewrite Eq. 63 to
get T2 as a function of ∆nj,~k(∆t):

T2 =
~ωj,~k
kB

 1

log
(

1
∆n

j,~k
+n

j,~k
(T1)

+ 1
)
 . (64)
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6.2 Self-consistency test on graphene

Before testing the implementation of the least squares solver on MoS2, we do a first
test on graphene. Graphene, with its 6 phonon branches, is a much simpler system
than MoS2 and we expect it to be less susceptible to multicollinearity. It is also very
close to graphite, the only material which has been examined by this approach at
the current stage [20]. Ab intio calculations on graphene (space group P6/mmm)
were performed 5 using the PBE generalized gradient approximation [56] to density
functional theory, as implemented in the Quantum Espresso software package [54].
For the self-consistent field calculations we used a plane-wave basis set on a 10x10x1-
~K-grid with a cutoff energy of Ecut = 80 Ry and projector-augmented wave (PAW)
pseudopotentials. Interatomic force constants are determined by applying DFPT [57]
using a 8x8x1-~q-grid in the BZ. Eigenfrequencies and eigenvectors, necessary for the
calculation of the one-phonon contribution I1(~q, T ), were obtained by using standard
Fourier-interpolation on a 50x50x1-~q-grid.

Figure 9: Branch-resolved one-phonon contribution maps with Bragg peaks, I0(~q, T ) +
I1,j(~q, T ), at a temperature of T = 300 K. The BZs are indicated by white hexagons. Branches
are sorted according to their energy at Γ, starting with the lowest energy.

Figure 9 shows the calculated branch-resolved OPC-maps I1,j(~q, T ) with Bragg peak

5Calculations were performed by Dr. Marios Zacharias, currently affiliated at the Cyprus University
of Technology
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intensities I0(~q, T ). Bragg peak intensities are limited to Γ with their width determined
by a smearing parameter. The first LA-branch is completely inactive and does not con-
tribute to inelastic one-phonon scattering. Hence the system can be reduced to five
in-plane active branches. Before carrying out the self-consistency test, we probed the
multicollinearity of the resulting OPSF-matrix ¯̄F~k (Eq. 41), to see how regions with

high multicollinearity affect the least-square solver. The columns of ¯̄F~k are probed
for multicollinearity by calculating the variance inflation factor (VIF), as described in
Chapter 4.3.

The resulting VIF maps VIFj(~k) for all branches of graphene are shown in figure 10.
Every map represents the VIF of one column of the OPSF-matrix for all available re-
duced scattering vectors ~k (Sec. 4.3). One column of the OPSF-matrix is given by the
OPSF contribution of one branch. The column length is determined by the number of
BZs analyzed. This means, that every column is only related to a single OPSF branch
contribution. In fact, the most direct form of multicollinearity, multiple collinearity,
occurs if different branch contributions have the same features in the OPC maps at
a reduced scattering vector ~k. Such similarities emerge when phonon branches have
similar energies and polarization vectors.

Figure 10: Variance inflation factor VIFj(~k) of the OPSF-matrix ¯̄F~k for all branches of
graphene. Brillouin zones are indicated by black hexagons. Collinear Bragg peak contribu-

tions (~k < 0.45 Å
−1

) are cut out, such that the VIF shown is only affected by the OPC.
VIF(~k) > 5 values are treated as highly multicollinear. Empty fields indicate areas were the
VIF is not defined. [58]

In the context of our experiment, effects of multicollinearity can be explained in a
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non-mathematical way. The branch-resolved approach separates the branch contribu-
tions in diffuse intensity by their |F1,j(~q, T )|2/wj,~k-patterns. A separation of contribu-
tions is only possible when the different branch contributions are sufficient different in
all considered BZs. Similarities in the OPSF contributions or, in other words, indis-
tinguishable diffuse signals, generate multicollinearity in ¯̄F~k.

Figure 10 shows that three out of the six phonon branches of graphene exhibit high
multicollinearity. We cannot define a VIF in most parts of branch 1 since it has no
OPC in most areas. Furthermore, the shape of high-VIF points (VIF > 5) in branch 3
is equal to the sum of high-VIF points of branches 2 and 4. Since these branches are the
only branches with high multicollinearity, it follows that branches 2 and 3 are mostly
collinear in the outer regions of the BZ and branches 3 and 4 are mostly collinear in
the regions close to Γ. The effect of multicollinearity on the solution of Eq. 62 gets
visible by applying the self-consistency test on the non-binned system solved with the
NNLS algorithm. The mode-resolved elevated temperatures T2,j(~k) retrieved from the
phonon population changes are shown in Fig. 11.

Figure 11: Mode-resolved phonon temperatures T2,j(~k), calculated from the phonon popula-
tion changes obtained by the self-consistency test on graphene with an initial temperature
T1 = 300 K and an elevated temperature T2 = 500 K. The equation system was solved with
a standard NNLS algorithm as implemented in the SciPy-package [37]. The first BZ is indi-
cated by black hexagons. Maximum temperature and average branch temperature are shown
in the insets.

If there was no multicollinearity, all active phonon branch areas should have an
elevated temperature a few Kelvin lower than T2 = 500 K. The temperature should be
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constant over the entire first BZ and all branches, as shown in the previous section.
In practice, we observe deviations from a constant temperature, which we attribute
to multicollinearity and additional unknown instabilities from the least squares solver.
The hotspots in the first branch, which are found close to Γ, are attributed to multi-
collinearity induced by the Bragg peaks, which haven’t been cut out perfectly. Branches
2,3 and 4 show extreme temperature fluctuations in the areas of the first BZ that are
most affected by multicollinearity, underpinning its devastating effect on the solution.
Areas with mostly no multicollinearity show roughly constant temperatures in a range
between 420 K and 520 K. The best solutions are retrieved for branches 5 and 6, which
have the lowest VIF values. The elevated temperatures at the edges of the BZ of
branch 6 are attributed to the fluctuations of branches 2 and 3, since instabilities in
some branches can be transferred in the same areas of different branches, due to the
equation system itself. In conclusion, the self-consistency test shows that even for a
very simple system like graphene, multicollinearity has an tremendous effect on the
solutions of Eq. 62 and makes a physical interpretation impossible. Testing the equa-
tion system for multicollinearity should always be one of the first steps in applying this
approach to different materials.
A consequence of these findings is that the more branches contribute to the inelastic
scattering signal, the more multicollinearity is imported to the equation system. Given
that most materials are more complex than graphene, these findings can be expected
to hold for a wide range of materials. In general, the method is most suitable for ma-
terials which have a clear separation in branch properties. But how can it be applied
to materials with many atoms in the unit cell and thus many phonon branches? A
standard approach in case of strong multicollinearity is to redefine the model. As mul-
ticollinearity indicates a redundant model, it can be reduced by reducing the amount
of columns in the model (in our case ¯̄F~k). In the next sub-section, we describe how
equations 62 are simplified, by binning branches together.
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6.3 Branch binning

The only possibility to reduce multicollinearity in the equation system is to reduce the
number of columns in the matrix ¯̄F~k. For the physical system, this is equivalent to
reducing the number of branches. In this work, the number of branches is reduced by
binning highly collinear and multicollinear branches into what we refer to as effective
branches. If [j, .., k] is a set of highly multicollinear branch indices, we can write their
OPC changes as:

∆I1,m(~q, T ) =
∑

l∈[j,...,k]

∆I1,l(~q, T ) =
∑

l∈[j,...,k]

∆nl,~k(T )

ωl,~k
|F1,l(T, ~q)|2. (65)

Replacing ∆nl,~k(T ) with an effective phonon population change ∆neff
m,~k

(T ) and ωl,~k by

an effective frequency ωeff
l,~k

, we can rewrite equation 65 as:

∆Ieff
1,m(~q, T ) =

∆neff
m,~k

(T )

ωeff
m,~k

∑
l∈[j,...,k]

|F1,l(T, ~q)|2. (66)

This reduces the phonon population changes of the individual branches to a single
effective branch population, which is modulated by the sum of their OPSFs. To derive
a temperature change from ∆neff

m,~k
(T ), we use the effective frequency ωeff

m,~k
. In this

work, ωeff
m,~k

is defined as the arithmetic mean of branch frequencies:

ωeff
m,~k

=
1

n

∑
l∈[j,...,k]

ωl,~k, (67)

where n is the number of binned branches. Since equation 65 is not equivalent to
equation 66, it creates a deviation from the original problem and has to be used with
caution. Replacing branch frequencies with their mean value increases the influence of
branches with frequencies higher than the mean value, and decreases it for branches
with lower frequencies, due to the 1/ω-dependence in equation 65. In the ideal case, the
frequencies of the binned branches should be almost identical to each other in order to
minimize the deviations as described. Indeed in the case of almost identical frequencies,
Equation 66 converges towards equation 65. Such considerations are also important for
the physical interpretation of the resulting phonon dynamics, since phonon frequencies
are the driving terms in electron-phonon coupling models [12, 52, 59].

6.4 Self-consistency test with binned phonon system

In this section, branch binning was applied as described in section 6.3 to graphene. We
tested different variations of binning the highly multicollinear branches 2 (ZA), 3 (TA)

and 4 (ZO), shown in figure 10. The ~k-grid, Γ-cutoff and integration window size used
were identical with those in the previous sections.
It turned out that a binning of branches 2 (ZA) and 3 (TA) gave the best result, in
terms of the deviation from phonon population changes calculated with Bose-Einstein
statistics. The comparison of the Bose-Einstein statistics and the calculated phonon
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populations is shown in Fig. 12. Binning all three branches to one branch resulted in
a very uneven distribution of phonon populations and temperature changes, which is
attributed to the different frequencies of these three branches.

Figure 12: Comparison be-
tween Bose-Einstein statis-
tics at T2 = 500 K (blue
line) and phonon popula-
tions retrieved from the self-
consistency test for every ef-
fective branch (dots). The
phonon frequency range is
reduced due to the cut Γ-
area.

The phonon populations retrieved by the self-consistency test show a good agree-
ment with the Bose-Einstein-statistics. From this plot, we can also conclude that the
systematic underestimation of phonon populations, discussed in Chapter 3.2.1, does
not lead to drastic departure from the exact populations. A complete interpretation
of the results is only possible if also the resulting temperatures are considered. The
temperatures of the binned phonon system obtained by the self-consistency test are
shown in figure 13. The overall branch-averaged temperature is T̄ = 452 K, which is
25 % lower than the elevated temperature T2, which is consistent with the phonon
populations. In addition to the effect of the constant-OPSF-approximation, discussed
in Chapter 3.2.1, an underestimated temperature might also be a result of the branch
binning. The effective branches could also lead to a shift of optical phonon populations
to acoustic populations, which would result in a smaller temperature change.
A comparison with the VIF shows that the remaining highly collinear regions of
branches 3 (TA) and 4 (ZO) close to Γ still induce temperature fluctuations in that
area. In general, we observe that the collinearity between two branches in a given
region of the BZ also affects the same area in other branches. Aside from the region
close to Γ, most of the other branch areas look well equilibrated in a temperature range
between 400 K and 500 K, especially branches 4 (ZO) and 5 (TO). Effective branch
[2,3] and 6 still display some small temperature fluctuations around M and K. In addi-
tion, a comparison of branch area temperatures with phonon populations shows that
the higher the phonon frequencies are, the more unstable the temperatures get. Due
to the exponential decaying behaviour of the Bose-Einstein-statistics, small deviations
of phonon populations lead to much larger changes in temperature for optical branches
than for acoustic branches.

In conclusion, we see that even with a simplification of the phonon system down
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Figure 13: Effective-branch
resolved temperatures
Tj(~k) obtained by the
self-consistency test on
graphene with an initial
temperature T1 = 300 K
and T2 = 500 K. The
equation system was solved
with a standard NNLS
algorithm as implemented
in the SciPy-package [37].
The first BZ is indicated
by black hexagons. The
maximum temperature and
average branch tempera-
ture are shown in the insets.
The binned branches are
indicated by the labels.

to four effective branches, it is not possible get reliable results over the entire first BZ.
As long as multicollinearity exists, it will always create regions in the first BZ that
cannot be trusted. In Ref. [20], which initially presented this approach, it is not clear
whether the authors were aware of the effects of multicollinearity. The authors present
the phonon population changes retrieved by the NNLS for non-equilibrium as well as
equilibrium timescales and only for 3 out of 5 active branches. A temperature is only
calculated for the A′1 mode of the TO2 branch. Hence it is not possible to see if all
branches are fully equilibrated at 100 ps pump-probe delay. Moreover, as seen in this
section, strong deviations in one branch could significantly affect population changes
in the same ~k-area in a different branch. Due to the limited amount of branches
shown in the paper, that aspect remains also unclear. Regarding the equilibrium
temperature reached by the A′1 mode, which decays to the effective lattice temperature,
it is not mentioned whether the effective temperature is consistent with the temperature
obtained by analyzing the Bragg peaks.
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7 Experimental methods

7.1 Experimental setup

To investigate the lattice dynamics of MoS2, we use an electron diffractometer based on
the pump-probe technique. This technique is known as femtosecond electron diffraction
(FED) [7, 11, 60]. A schematic illustration of a FED experiment is shown in Fig. 14.
The optical pump pulse photoexcites electrons in the crystal, before an electron pulse
probes the crystal structure. The temporal distance between the two pulses is given
by the pump-probe delay ∆t, that can be set by tuning the optical path length of the
pump or probe pulse. By recording a set of diffraction patterns for different pump-
probe delays, we are able to investigate the lattice dynamics of non-equilibrium states
after photoexcitation.

A detailed schematic of the experimental setup at FHI is shown in Fig. 15. The

Figure 14: Schematic illus-
tration of a FED experi-
ment. Optical pump pulse
and electron probe pulse ar-
rive at the crystal sample
with a pump-probe delay
∆t. Scattered electrons are
recorded with an electron
camera. Modified graphics
from [21].

Titan:Saphir-Laser generates ultrashort laser pulses with a pulse width of 50 fs and a
repetition rate of f = 4 kHz, that are split by a beam splitter into pump and probe
pulses. The path of the optical pump pulses is indicated by the red and spectrally
colored line and is first coupled into a commercial optical parametric amplifier (OPA)
that allows a modulation of the pump pulses central wavelength within a range of
250− 2500 nm. The pump pulses pass through various optical elements to modify the
beam size and intensity and are finally fed in the vacuum system. In this experiment,
we only used the ”pump” path and not the ”side pump” path. As shown in Fig. 16,
the pump pulses hit the sample from the backside with a slight tilt of the beam relative
to the probe axis. This induces a slight broadening of the absorbed beam, as the wave
fronts hit the sample at different times. Additionally the spatial beam width is enlarged
to ensure a constant illumination.

The probe pulses pass through a home-built nonlinear optical parametric amplifier
(NOPA) and are modulated to a central wavelength of 500− 520 nm. This wavelength
is needed to emit photoelectrons in a two-photon absorption process from the gold
cathode of the electron gun, shown in Fig. 16. After compression of the pulses with a
prism compressor setup, the probe pulses pass a delay stage, that allows an adjustment
of the optical path down to to a few micrometers. The resulting smallest possible time
delay increment is in the range of a few femtoseconds and thus smaller than the pulse
widths.
Finally, the optical probe pulses are fed in the ultra high vacuum (UHV) chamber ('

10−8 mbar) and hit the gold cathode. The emitted electrons are accelerated towards the
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Figure 15: Detailed schematic illustration of the optical setup of the FED instrument at FHI.
Used with friendly permission from Daniela Zahn [61].

Figure 16: Schematic illus-
tration of the FED vacuum
chamber at FHI with beam
paths. The optical pump
beam, probe and electron
probe beams are indicated
by the red, green and blue
lines, respectively. The elec-
tron probe beam is a modi-
fied graphics from [21].
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anode by a high voltage electrostatic field, allowing electron energies up to 100 keV. The
anode consists of a Si wafer with a small hole in its center to let the electrons go through.
The electron probe pulses leave the anode and hit the sample shortly afterwards, to
reduce pulse broadening of the electron pulse due to Coulomb interactions [62]. The
probe pulses are than focused by a magnetic lens on the electron camera (TVIPS
TemCam F416). The width of the electron pulses is estimated to be 150 fs [7] and
determines our time resolution.

7.2 Sample preparation

A thin film MoS2 was produced by mechanical exfoliation from a bulk crystal (HQ-
Graphene using the viscoelastic stamping [63] and floating techniques [8]. The stamp
was built by putting a piece of PDMS (Sylgard 184 Silicone Elastomer from Dow Corn-
ing) on a small glass plate, mounting it with scotch tape. A small crystal piece was
then placed on the upwards pointing sticky side of the scotch tape. This gives a stamp
in the following material order from bottom to top: glass, PDMS, tape and the crystal
flake. The elasticity of the PDMS ensures that the crystal does not break, if light force
is applied and should be chosen thick enough.
In the next step a piece of water soluble glue (Crystalbond 555 ) is melted on a second
glass plate, building the stamp pad. After the glue has melted, the stamp is placed
on top of the stamp pad with the crystal side brought into contact with the glue. The
crystal flake should be covered entirely by the glue, without touching the glass bottom.
When the glue has cooled and turned solid, stamp and stamp pad are ripped apart. In
the ideal case, a part of the crystal flake remains partially in the glue. The remaining
crystal is then exfoliated down until the crystal appears transparent under white light
conditions.
If the crystal flake has reached its final thickness, it is cut out and transferred into a
water bath. In the transfer process, it is very important that the flake floats at the
water surface and does not sink, otherwise it is lost. After a few minutes the glue
has completely dissolved and the flake is fished out with a standard TEM copper grid.
The crystal flake used in the experiment is shown in figure 17 a). The area used for
diffraction was chosen due to its homogeneity.
The knowledge of the crystal thickness is important for calculating the absorbed flu-

ence. The fluence is later used in the merging process of model and experimental data.
To ensure that the kinematical approximation is still valid, the sample thickness also
should be smaller than the mean free path of the electrons, which is usually in the
order of a few tens of nanometers.
The thickness was estimated by comparing the white light microscope images with two
crystal flakes of the same crystal with a known thickness 17. Based on the crystal area
color in a), which is a little lighter than the flake in c), the crystal thickness is expected
to be between 40 nm and 50 nm.



7.3 Pump parameters 42

Figure 17: Light microscope images of the MoS2 crystal flakes under white light conditions. a)
Crystal flake used in the experiment. The green square marks the area probed by the electron
pulse with a width of 100µm. b) Another MoS2 flake with a thickness of (26.5± 0.5) nm.
The flake shown in c) has a thickness of (49± 2) nm.

7.3 Pump parameters

As seen in Chapter 5, bulk MoS2 is an indirect band gap semiconductor with a gap
of 1.29 eV [41, 64] between Γ and the CBM, which is located between Γ and K. Addi-
tional valleys are at K with a few meV difference and between Γ and M. The central
wavelength of the pump pulse was set to 580 nm, which is equal to a photon energy of
∼ 2.14 eV. This photon energy is large enough to excite electrons to all three valleys,
but is small enough to suppress electron multiplication [65], which occurs mainly if
the energy difference of excited electrons and the CBM is larger than the band gap.
The relaxation of excited electrons is then expected to mainly take place via electron
phonon scattering.
The pump pulse power was set to P = (20± 1) mW, measured outside the UHV cham-
ber, with a repetition rate of frep = 4 kHz. Inside the UHV chamber the pump pulse is
reflected by a prism silver mirror from Thorlabs Inc 6. The resulting loss is estimated
from the reflectance to be L = 1−R(@580 nm) = 2.5 %. Pump and probe pulse widths
are calculated by fitting the averaged intensity profiles with a Gaussian function, re-
sulting in FWHMpump = 300µm and FWHMprobe = (100± 10)µm.
A good estimation of the absorbed fluence is necessary due to the following reasons.
First if the absorbed fluence and specific heat capacity are know, the temperature
change due to the laser excitation can be estimated, which allows additional consis-
tency checks with the elevated phonon branch equilibrium temperatures. Second the
absorbed fluence should be small enough to neglect nonlinear effects, to verify that
the energy transfer between the lattice and electron system occurs mainly via electron-
phonon coupling.
The absorbed fluence Fabs = A · Fin is calculated by the approach presented in [66],
where A is the absorptance and Fin the incident fluence at the sample. In this approach
the incident fluence is given by the pump-probe overlap profile multiplied with the laser

6https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=905&pn=MRA10-P01

https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=905&pn=MRA10-P01
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pulse energy Epulse = P
frep

and the setup loss. The absorbed fluence is then given by:

Fabs = A · Fin = A · (1− L)
Epulse

π(w2
pump + w2

probe)
, (68)

with wi = FWHMi/
√

2 log 2. The absorptance A is calculated with the transfer-matrix
method and IMD software [67], which is based on the Fresnel equations. The refractive
index and extinction coefficient for MoS2 at 580 nm were used from Ref. [68]. Both
methods lead to identical results. Fluence calculations were performed assuming the
sample thicknesses estimated in the previous section. The results are displayed in table
1.
With the energy density u = Fabs/d, where d is the sample thickness, and the specific
heat capacity CV,p [69–71] under constant volume or pressure, the temperature change
of the lattice can be estimated via:

∆T =
u

ρCV,p
. (69)

With ρ being the material density. The thickness d, heat capacity CV,p and material
density are assumed as perfect without uncertainty. The resulting temperature changes
are displayed in table 1.

Thickness d [nm] 25 40 50
Absorbed fluence Fab [mJ/cm2] 0.96± 0.07 1.29± 0.09 2.04± 0.14

Temperature change ∆T [K] 226± 10 190± 13 240± 17

Table 1: Absorbed fluence Fab and resulting temperature change in thermal equilibrium for
fixed thicknesses d for MoS2.

For the thickness interval d = [40, 50] nm, a temperature change of ∆T = [190, 240]
K is expected and used as a reference for the elevated phonon area temperatures in
thermal equilibrium. The temperature change is first decreasing and then increasing,
due to the ratio between absorbed fluence and thickness. That is related to the change
in the increase of absorptance, due to multilayer effects.
The absorbed fluence is similar or lower compared to other FED experiments measuring
monolayer MoS2 (4.4 mJ/cm2 @400 nm [72], 1.46 mJ/cm2 @ 515 nm [73]), or few-layer
TMDCs TiSe2 (up to 5.7 mJ/cm2) and is expected to be well in the linear regime.

7.4 Data processing

Diffuse scattering signals are 103 to 105 orders of magnitude smaller than elastic scat-
tering signals. Due to their higher susceptibility to noise, the successful extraction of
such small signals requires a more complex averaging of signals as well as noise and
distortion corrections. In this section, we describe the computational aspects related
to data processing. As the code is the first implementation of a streamlined inelastic
analysis for the work group, this section is also intended to be used as a guide. All
scripts for the analysis of elastic and inelastic scattering data were implemented in a
streamlined fashion using the Python environment Jupyter. In our case ”streamlined”
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means, that every script relies only on the outputs of the previous scripts, except for
some calculation parameters loaded from a configuration file. The first script needs
the crystallographic information file (CIF-file) [74] of the material to be analysed, as
well as the Bragg peak positions on the detector with corresponding Miller indices.
These positions are determined manually, thanks to a GUI software also programmed
as part of this project. A Windows executable of the GUI can be found in the software
archive. The benefit of using Python is its large library, allowing an easy integration of
e.g. Matlab or C++ functionality. The main packages used in the calculations are the
numpy, scipy and scikit-ued package [75]. A download link for all software programmed
as part of the project can be found here 7.

An overview of all applied corrections and averaging steps is shown in Fig. 18. Some
of these steps will be discussed in detail in subsections 7.4.1 and 7.4.2. Starting with
the electron diffraction data in form of a set of diffraction pattern images, we apply
two corrections. First, the background (BG) correction, where a previously recorded
image with laser-background is subtracted, accounting for leaking laser light on the
detector and thermal noise. The image is taken with switched on pump arm, but
switched off probe arm (electrons). Second, every image is weighted with a flat field
image accounting for the different sensitivity of the detector areas. After applying both
corrections, the Bragg peak positions with corresponding Miller indices are marked on
an exemplary diffraction pattern. The peak positions on every image are redefined by
applying a center-of-mass method to the areas around the Bragg peak positions.
Using the peak positions on the detector and the calculated positions based on the
CIF-file, we have developed a distortion correction procedure, which we apply to every
pattern in the data set. This procedure is described in detail in Sec. 7.4.1. The resulting
fit parameters precisely map the entire diffraction pattern on the detector to reciprocal
space, allowing an exact extraction of diffuse scattering intensities. Next, each Brillouin
zone is sampled by a grid, as described in Sec. 7.4.2. Scattering intensities are extracted
by integrating over circular areas with a defined radius and are later normalized to the
estimated total number of electrons in every diffraction pattern. That normalization
is necessary, since the total number of emitted electrons at the cathode varies through
the measurement and thus affects the scattering intensities. Additionally, intensities
of different scans with identical pump-probe delays are averaged. We also use the
rotational symmetry of the diffraction pattern relative to the zero order to apply a
rotational averaging of scattering intensities. That step enhances the SNR by a factor
of
√
n, where n is the n-fold symmetry of the pattern.

So far all the data processing steps were applied on the entire image. As can be
seen in Figure 18, the analysis procedure is then split into the elastic part, which uses
the intensities at Γ, and the inelastic part which uses all parts of the BZ except the
cut Γ-area.
In the elastic scattering analysis (dark orange in Figure 18), the temporal evolution of
relative Bragg peak intensities Ihkl0,r are fitted, giving a set of parameters that describes
the evolution of the entire phonon system. For more details see Chapter 8. The inelas-
tic analysis is split into a momentum-resolved (green) and a branch- and momentum-
resolved analysis (blue). In the momentum-resolved analysis, we import the concept

7https://cloud.fhi-berlin.mpg.de:8443/getlink/fiH6PfwcSVmMM9oQxNgzBpri/

https://cloud.fhi-berlin.mpg.de:8443/getlink/fiH6PfwcSVmMM9oQxNgzBpri/


7.4 Data processing 45

Figure 18: Schematic illustration of the data processing. Squared boxes indicate data and
circles indicate methods. Colors mark individual analysis lines.
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of the elastic analysis by fitting the temporal evolution of the inelastic intensity differ-
ences. Before fitting, the amount of data is reduced by averaging over all BZ’s. That
step reduces the inelastic signal of many BZ’s ∆I1,r(~q,∆t) to the inelastic signal within

a single BZ, ∆I1,r(~k,∆t). This will be described in detail in Chapter 9.2.
The branch- and momentum- resolved analysis requires the OPSF and OPC difference
maps from the DFPT calculations (purple), for details see Chapter 5.3). The OPC
difference maps require an initial and a final temperature (see Sec. 10.4), where the
initial temperature is given by the experimental conditions and the final temperature
has to be estimated from the absorbed fluence (grey), see Chapter 7.3. In the first
step of the branch- and momentum- resolved analysis, calculated (OPC difference) and
experimental intensity differences are matched by calculating a scaling factor. After-
wards, the equation system of the branch-resolved approach (Eq. 38) is solved handing
out the phonon population changes, which can be reformulated as effective phonon
mode temperatures. In the next subsections, we provide details about the distortion
correction procedure and the sampling of the BZs.



7.4 Data processing 47

7.4.1 Reciprocal space mapping of diffraction patterns

A key requirement for analyzing time- and momentum-resolved phonon population
dynamics is to match the calculated one-phonon structure factors and experimental
intensities in reciprocal space. A first step is to map the raw diffraction pattern, in
pixels, to reciprocal space units, accounting for experimental distortions. This aim
of this section is to describe the procedure for this mapping. From the experiment,
we have access to sampling points of the continuous diffraction signal, as recorded
by the electron camera. The entire data set consists in a series of diffraction pattern
images. Each sampling point is represented by a pixel with a certain intensity value
and scattering vector ~q. Due to fluctuations in the electron pulses and magnetic field of
the lens, nearly every pixel of every image corresponds to a slightly different scattering
vector ~q.
A link between pixels and ~q-space is established by combining pixel positions and
reciprocal space positions of Bragg peaks ~Ghkl. The reciprocal positions of Bragg
peaks with respect to the center of the zero order are nothing less than the scattering
vectors:

~Ghkl = h ·~b1 + k ·~b2 + l ·~b3, (70)

determined by reciprocal lattice vectors ~bi and Miller indices (hkl).
To map reciprocal space on the diffraction patterns, we first determine the position of
the zero order beam, by calculating the mean position of the lowest order Bragg peaks
surrounding the zero order, e.g. (100). These pixels are least influenced by the squeez-
ing of the magnetic lens and are most suited for calculating the center position. Using
the mean value presumes Bragg peak pairs, hence none of the closest peaks should be
covered by the beam block.
Next we find the peak positions of every Bragg peak. Peak positions can be calcu-
lated in two different ways. One option is to fit the surrounding areas of every peak
with a 2D-Pseudo-Voigt function, which is commonly used to fit X-ray and electron
diffraction peaks [32, 75]. This method is expensive in terms of computation time and
has the tendency to deform strongly non-symmetric peaks. The second option is to
use a center of mass method, which uses intensities as weights. We implemented both
options, and deviations between both methods were around 0 px to 2 px.
If only Bragg peaks of the zero-order Laue zone (ZOLZ) are considered, scattering
vectors ~q consist of two components, qx(x, y) and qy(x, y). These components are func-
tions of the pixel coordinates (x, y). In the ideal case of no magnetic lens distortions,
both functions are tilted planes cutting the origin, with a constant increase. Their
tilt is dependent on the orientation of the diffraction pattern with respect to pixel
coordinate system of the camera. In practice, however, the presence of the magnetic
field results in an unequal squeezing of Bragg peaks to the field center. This effect
is referred as a combination of barrel and elliptical distortions[76]. With a centered
electron beam,higher order Bragg peaks are squeezed more to the center than lower
order Bragg peaks. This results in a tilt of the plane edges.
To perform the reciprocal space mapping, the goal is to find a function for qx(x, y) and
qy(x, y), that gives the distortion-corrected scattering vector ~q for every pixel position
and subsequently allows a partitioning of the diffraction pattern in Brillouin zone ar-
eas (e.g. Γ), necessary to carry out our time- and momentum-resolved approach. Peak
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position errors are assumed to be insignificantly small.

Figure 19: Conversion factorN(x, y) of an examplary MoS2 diffraction pattern as a function of
pixel coordinates. The colormap gives the N(x, y) values and dots represent the experimental
data (Bragg peak positions) with values indicated by the colormap. The black dot indicates
the position of the transmitted beam (zero order).

Before determining qx(x, y) and qy(x, y) we study the diffraction pattern distortion.
For this we define rhkl as the distance between the center of the diffraction pattern and
Bragg peak with Miller indices (hkl) in pixels. We can then determine the conversion

factor N(x, y) = |~Ghkl|/rhkl, which translates between pixel and reciprocal coordinates.
This allows us to characterize the image resolution in reciprocal coordinates at every
pixel position. We note that N(x, y) = const. would correspond to the case of an ideal,
unsqueezed, diffraction pattern.
Figures 19 and 20 show the resolution N(x, y) as a function of pixel position for an ex-

emplary MoS2 diffraction pattern. For this data, N ≈ 0.010→ 0.015 Å
−1
/px, yielding

a momentum resolution of ≈ 0.01 Å
−1

for the area of interest (this does not take into
account electron beam coherence effects, which further limit the effective momentum
resolution of the experiment). We found the experimental data to be well-fitted with
the function N(x, y) = a(x2 + y2) + b + cx + dy + exy, represented by the surfaces in
Figs. 19 and 20.
The first term, a(x2 + y2), is rotationally symmetric and depends on r2

hkl. The param-
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Figure 20: Top view of the conversion factor N(x, y) shown in Fig. 19.
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eter b is a constant offset. The terms cx and dy are tilted planes, resulting in a shift
of the lens center relative to the zero order. The last term, exy, introduces a 2-fold
symmetry to the model to account for elliptical shapes. Figure 20 reveals a clear shift
of the center of best resolution from the zero order indicated by the black dot. We ac-
count this to a shift of the beam axis relative to the magnetic lens center. Equipotential
surfaces have an elliptical shape, which is probably a result of the not perfectly circular
pieces of the magnetic lens, resulting in a deviation from the rotational symmetry. In
conclusion, elliptical and barrel distortion are governing the diffraction pattern. Both
distortions are accounted to effects of spherical aberration [76].
Finally, the scattering vector components qx(x, y) and qy(x, y) are determined by fitting
them separately to the Bragg peak positions Gx,hkl and Gy,hkl. The following empirical
fit function was used:

qi(x́, ý) = ai · sign(x́)x́2 + bix́+ ci(x́
2 + ý2) + diýx́ (71)

where x́ = x cos(θi)− y sin(θi) and ý = x sin(θi) + y cos(θi) are the rotated image coor-
dinates and i ∈ [x, y]. The first term a · sign(x́)x́2 induces a tilt of the plane edges in
respect to their sign. The last terms are similar to those of the conversion factor.

The fitting is performed for every diffraction pattern (≈ 2500 images for MoS2) for

Figure 21: Evolution of qx(x, y) for an exemplary pattern of MoS2, showing a slightly curved
plane.

both scattering vector components i, giving two sets of parameters {ai, bi, ci, di, θi} for
every diffraction pattern. An exemplary fit of ~qx(x, y) with residuals is shown in Fig.
21 and 22 respectively.
A good agreement of the fit model through the data set is indicated by the coefficient
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Figure 22: Residuals of the fit indicating stronger deviations for high order Bragg peaks. The

mean residual of 0.024 Å
−1

corresponds to a mean deviation of ∼2 px in image coordinates.

of determination of R2 > 0.99 and a total mean residual of 3 px. We now have deter-
mined the reciprocal space of all diffraction patterns within the data set, allowing a
distortion corrected extraction of scattering intensities over a wide range of scattering
vectors as required for the momentum- and branch-resolved approach (Chapter 3.2).
Note that the distortion correction does not account for effects introduced by the elec-
tron coherence, which result in a smearing of the diffraction pattern and thus in an
overlap of electrons with different scattering vectors at ~q.
Instead of compressing and stretching the images to a uniform reciprocal space, in-
tensities are integrated over certain windows. The original information of an image
is then conserved. Using the same window size for every peak position introduces an
integration error. As the resolution varies over the whole diffraction pattern, every
position must be integrated with a different window size to ensure that all windows
cover the same reciprocal area. For small window sizes those changes are < 1 px and
can be ignored.
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7.4.2 Sampling of the first Brillouin zone

After converting the raw diffraction pattern to reciprocal space units, as discussed in
the previous section, a crucial step is to merge the calculated OPSF F1,j(t0, ~q) and
experimental diffraction patterns, which are defined on different ~q-grids. In this work,
calculations of F1,j(t0, ~q) are performed on a linear grid to construct OPSF maps as
shown in Chapter 5.4. As a consequence, the sampling of the experimental diffraction
pattern must be adapted to the sampling of F1,j(t0, ~q). Ideally, both experimental and
theoretical intensities should be calculated on the same grid.
One option is to use the same linear grid for the experiment as used for calculating
F1,j(t0, ~q). This gives the best match between both grids, but leads to different sam-
pling point distributions in every BZ. Thus the number of scattering vectors ~q inside the
selected BZs with the same reduced scattering vector ~k = ~q− ~G is drastically reduced.
A rotational averaging of intensities is then only possible under certain approximations
and binning of grid positions.
Instead, in this work, the intensity of the first BZ is sampled based on a Monkhorst-
Pack grid [77] as shown in Figure 23. The advantage of a Monkhorst-Pack grid is a
uniform sampling of the entire first BZ and supercells, which allows the construction of
diffraction maps and additionally conserves rotational symmetry for rotational averag-
ing. The disadvantage of this sampling method is that it creates a mismatch between
the linear OPSF grid and intensity grid. As a consequence, the linear grid of the OPSF
is chosen with a finer spacing than the intensity grid to minimize the deviation.
Intensities are collected by integrating over windows. The intensity integration window
is controlled by the size of Monkhorst-Pack grid and is always chosen small enough to
reduce overlap between two windows.

Figure 23: Brillouin zone (black line) sampling of the hexagonal in-plane lattice of MoS2

based on a 7x7-Monkhorst-Pack grid. Intensities are integrated at positions indicated by
markers. a) Single BZ with the corresponding Monkhorst-Pack lattice vectors given by arrows.
Monkhorst-Pack vectors are reciprocal lattice vectors divided by n = k − 1 with k being
the number of sampling points in the corresponding direction. b) Three neighbouring BZs
showing the overlap and uniformity of the sampling.
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8 Elastic scattering analysis

In this section, the relaxation of the phonon system is studied by analyzing the time
dependence of Bragg peak intensities, i.e. the elastic scattering signals. As described in
section 3.1.2, Bragg peak intensities depend on the atomic displacement via the Debye-
Waller factor, which involves a sum over all phonon modes at reduced scattering vector
~k. Due to the sum, it is not possible to retrieve a momentum- or branch-resolved view
from analyzing Bragg peak dynamics, in contrast to inelastic intensity measurements.
The benefit of analyzing Bragg peak dynamics clearly lies in the high SNR and the
consequent stability of intensities, due to large elastic cross sections. Because of the
lower SNR of the inelastic scattering intensities, elastic scattering should be always
used as a fundament for interpreting the inelastic scattering results and checking their
consistency.

8.1 Results

In total, 48 in-plane Bragg peaks were analyzed and grouped into 8 peak families as
shown in figure 24 a). The intensities were extracted by summing counts in circular
areas around the Bragg peak centers, which have been determined by a center-of-mass
method using the peak intensity distributions. Relative Bragg peak family intensities
were calculated by averaging over all individual peak contributions and normalizing
them to their negative pump-probe delay intensities.

Figures 24 b) and c) show the relative intensity evolution of the Bragg peak families
up to 300 ps. The temporal evolution can be divided in three different phases. In the
first phase, all peak intensities at negative pump-probe delays start at a constant level.
In the second phase, the peak intensities drop exponentially for a few picoseconds after
the pump pulse excited the material. After 15 ps every Bragg peak reached a new
constant level at a reduced intensity, that holds up to 300 ps pump-probe delay. In
good agreement with the DWF theory (Sec. 3.1.2), the loss of intensity increases with
increasing Bragg scattering vector ~ghkl.
In terms of Debye-Waller theory, we interpret the three phases as follows. The first
phase represents the phonon system in thermal equilibrium at the initial temperature
T1. The atomic displacement given by the sum over all phonon modes (Eq. 14) stays
constant and thus also the temporal evolution of the Bragg peaks. The exponential
decrease of peak intensities of the second phase is explained by the increase of the
atomic displacement, due to electron-phonon coupling and the subsequent relaxation
of the phonon system.
Within the first few femtoseconds after photo-excitation of the electron system, electron
thermalization occurs, creating a hot Fermi-Dirac distribution. The electron thermal-
ization for few-layer MoS2 occurs within ≈ 20 fs [78] and is treated as instantaneous
as our temporal resolution is > 150 fs. The subsequent cooling of the hot Fermi-Dirac
distribution occurs via electron-phonon scattering. The energy transfer from photo-
excited electrons (holes) with excess energy compared to the conduction (valence) band
minimum (maxima) to the phonon system occurs through electron-phonon coupling
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Figure 24: Bragg peak dynamics of MoS2 at a pump wavelength of λ = 580 nm and an
absorbed fluence of Fab = (1.29± 0.09) mJ/cm2. a) An exemplary diffraction pattern with
the analyzed Bragg peaks indicated by squares with the electron pulse set along the [001]
zone axis. Bragg peaks of the same family {hkl} have the same color. b) Average relative

intensities I
{hkl}
r (∆t) of the different Bragg peak families as a function of pump-probe delay

∆t. Shaded area around the lines indicates the standard deviation over different scans. Bragg
peaks are sorted according to their scattering vector length. c) Same Bragg peak intensities
but with extended pump-probe delay range.
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(EPC). Electronic transitions with phonon emission are determined by the e-ph matrix
elements. These elements can be very heterogeneous and certain phonon modes get
coupled more strongly to the electrons. In addition to variations in the strength of
e-ph matrix elements, there are phase space constraints for e-ph scattering processes,
dictated by the excitation conditions and the shape of the electronic band structure. As
shown in previous works [12, 52], electrons couple most strongly to optical branches.
The generation of hot phonons creates a non-equilibrium phonon distribution, that
thermalizes via phonon-phonon (ph-ph) scattering. We refer this process as phonon-
phonon coupling (PPC), where the energy transfer from hot to cold phonons is deter-
mined by the PPC constants.
Due to the increase of phonon populations by EPC, the atomic displacement is in-
creased (see Eqs. 16 and 19). The 1/ωj,~k-dependence of phonon amplitudes implies
that optical phonons increase the atomic displacement less than acoustic phonons. The
subsequent relaxation of non-equilibrium phonon populations into acoustic branches,
thus typically leads to stronger changes in atomic displacement than the electron-
phonon coupling.
The third phase of the intensity evolution is attributed to the restoration of the Bose-
Einstein distribution of the phonon system at an elevated temperature T2 > T1 due to
ph-ph coupling. Based on the DW-theory, the drop of intensity increases with increas-
ing scattering vector. This shows a perfect agreement with intensities shown in 24.
Figure 24 c) verifies that Bragg peak intensities stay constant for large pump-probe
delays and no interesting lattice dynamics happen on that timescale. A cooling of the
lattice would result in an increase of the Bragg peak intensities, which is not visible on
the timescale probed in the experiment.
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8.2 Quantification of lattice dynamics

The lattice dynamics are quantified by fitting the relative intensity averaged over all
Bragg peak families. Using Eq. 30 gives:

Īr(∆t) =
1

n

∑
~q={ ~Ghkl}

e−~q
2[〈∆~τ2(∆t)〉t−〈∆~τ2(∆t<0)〉t]δ~q, ~Ghkl (72)

with ~q running over all reciprocal lattice vectors ~Ghkl of the corresponding Bragg peaks,
n the number of peaks and 〈∆~τ 2(∆t)〉t − 〈∆~τ 2(∆t < 0)〉t the changes in atomic MSD.
For increasing phonon populations the MSD is increasing and thus intensities are de-
creasing. The average relative intensities are then fitted with a biexponential function
convolved with a Gaussian kernel to account for the finite pulse width of the electron
pulse. The Gaussian kernel is set to a fixed FWHM of s = 150 fs, corresponding to the
estimated electron pulse duration. We used the parameterization of the fit function as
follows:

f(∆t) = Θ(∆t− t0)

[
A1

(
1− exp

[
−(∆t− t0)

τ1

])

+ A2

(
1− exp

[
−(∆t− t0)

τ2

])]
+ c,

(73)

where Θ(∆t − t0) is the step function, Ai, i ∈ [1, 2] the amplitudes and τi the time
constants. t0 addresses a slight shift of the excitation and c is an offset.

Figure 25: a) Time evolution of the averaged relative intensities Īr(∆t) as a function of
pump-probe delay for multilayer MoS2. The shaded area shows the error propagated from
standard deviations. The red line indicates the biexponential fit with parameters shown in
the inset and the dashed lines represent the single exponential terms. Parameter s is fixed.
b) Transient decrease of Bragg peak intensities at ∆t = 20 ps as a function of the square of
the reciprocal lattice vector ~Ghkl. The solid line represents a linear fit with equal weights.

The fit results are shown in Fig. 25 a), revealing one fast decrease of Īr with
τ1 = (470± 20) fs and a larger amplitude A1 = −0.043 ± 0.001 and slow increase
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τ2 = (2.8± 0.2) ps with a smaller amplitude A2 = −0.011± 0.001. Later pump-probe
delays have not been included in the fit, because of the slight increase of relative inten-
sity, which is accounted to the onset of cooling of the crystal back to the pre-excitation
conditions. The coefficient of determination R2 = 0.9997 shows a very good agreement
of model and data.
Based on the time constants we assign the first term to EPC and the second term to
PPC, as used in previous works [21, 32, 33]. The time constant of EPC shows a good
agreement with the time constant of 0.6 ps extracted from ultrafast optical experiments
and ab initio molecular dynamics simulations [78] for multilayer MoS2. At the time of
writing, PPC time constants have only been reported for (supported) monolayer MoS2

and were measured to be in the range of a few picoseconds (∼ 3.5 ps [73]). Studies
without explicit calculation of time constants report phonon equilibration within ∼ 2 ps
[72] and ∼ 5 ps [52]. These studies are in good agreement with our measurements de-
spite their different excitation conditions.
A very interesting feature of the fit result is the amplitude difference of both processes.
The fast process, related to EPC, generates more atomic displacement than the slower
process related to PPC. This is in contradiction with the picture of electrons coupling
mainly to optical phonons and then decaying into acoustic phonons via PPC. This also
differs from recent studies of other materials, where the amplitude of the fast process
was found to be smaller than that of the slow process [32, 79]. Due to the 1/ωj,~k-
dependence of phonon amplitudes, we tentatively explain the observed amplitudes by
electrons coupling also strongly to acoustic modes with larger amplitudes in addition
to optical modes. This behaviour will be analyzed in more detail by looking at the
diffuse scattering intensities (Chapter 9).
Figure 25 b) shows the validation of the kinematical scattering approximation. In case
of a perfectly fulfilled kinematical approximation, the negative logarithm of the relative
peak intensities Ihklr at hot but near-thermal equilibrium (long pump-probe delays) is
expected to depend linearly on the squared reciprocal lattice vectors G2

hkl and to cut
the origin [80] (see Eq. 72). Deviations in the offset are accounted to multiple scatter-
ing of electrons, due to the finite thickness of the sample, which mainly results in an
intensity redistribution from intense Bragg peaks to surrounding Bragg peaks [22].
The linear fit shown in 25 b) gives a small offset with a magnitude lower than the signal,
indicating that the sample is thin enough to be treated in the context of kinematical
approximation.
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8.3 Breathing modes in MoS2

Additionally to the DW-effect, peak dynamics exhibit an oscillation with a magnitude
lower than the total intensity loss, which is not explained by the error margins. Os-
cillations are only visible in some Bragg peak dynamics, in particular in peaks with
parallel lattice planes of peak families {030}, {120} and {-240}. The analysis of these
oscillations focused on the four peaks with the highest SNR, to ensure fit stability, as
shown in Fig. 26. All observed oscillations are in phase. The pump-probe delay range
for the fit has been cut to the time range where oscillations were visible (5 ps to 20 ps).
A best fit was achieved by fitting the peak dynamics with a single exponential func-
tion convolved with a Gaussian kernel and subsequently fitting the residuals with a
oscillating function. The parameterization for the exponential fit is:

f(∆t) = Θ(∆t− t0) · A
(

1− exp

[
−(∆t− t0)

τ

])
, (74)

similar to the biexponential fit parameterization (see Eq. 73). Residuals were fitted
with:

r(∆t) = Θ(∆t− t0) · fgauss(µ, σ) · Aosc sin

(
2π(∆t− φ)

T

)
+ c, (75)

where Aosc is the oscillation amplitude, T the oscillation period and φ a phase shift.
The Gaussian kernel is defined by the center µ and standard deviation σ.

The exponential fits show a very good agreement with the data, indicated by
R2 > 0.979. The pump-probe overlap t0 was set to the value retrieved by analyzing
the mean intensity from the previous section. Time constants τ obtained by the expo-
nential fit are τ[300] = (0.59± 0.30) ps, τ[030] = (0.57± 0.30) ps, τ[120] = (0.38± 0.40) ps
and τ[−240] = (0.54± 0.30) ps respectively.
The residuals of the [300] and [030] peaks show a wave packet shape, whereas the
[120] and [-240] residuals show a damped oscillation, as presented in previous works
studying coherent lattice dynamics in FED experiments [81, 82]. The damped os-
cillation shape is reached by shifting the center of the Gaussian kernel to smaller
pump-probe delays. Peak [030] reveals a small phase shift of the oscillation at 3
ps, which could not be explained by the fit model. Despite the low signal compared
to the Debye-Waller dynamics, fits show a good agreement with the model. All fit
parameters are shown in the appendix B. Here we focus on the extracted oscillation
periods, which are T[300] = (8.4± 0.5) ps, T[030] = (8.8± 0.3) ps, T[120] = (7.6± 0.2) ps
and T[030] = (7.6± 0.1) ps, respectively. A position shift of Bragg peaks relative to the
center of the diffraction pattern, that could possibly explain the oscillation, has not
been observed.
The oscillations are best described through the strong excitation of lowest order lon-
gitudinal acoustic phonons. Those phonons are coherent breathing modes, which lead
to an oscillation of the c-axis lattice constant [82–84]. The coherence of the phonons
is underpinned by the in-phase oscillation and similar period of all Bragg peak signals.
Furthermore, this effect modulates the crystal thickness with the period of the breath-
ing mode, leading to an anisotropic oscillation of the crystal lattice. On a microscopic
level, the effect on the Bragg peak intensities is best described in the context of diffrac-
tion theory by a change in the shape factor (Eq. 35) similar to Ref. [81]. The shape
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Figure 26: Bragg peak dynamics Ihklr (∆t) of peaks [300], [030], [120] and [-240] respectively
with residuals and their equal weighted fit. Shaded area around data points indicates the
error based on the standard deviation. A deviation of zero indicates fixed parameters.

factor directly links Bragg peak intensities and lattice constants. Within the thin film
effect (Eq. 35), Bragg peak intensities are only sensitive to the out-of plane direction.
An oscillation of the out-of plane lattice constant az = c → c(∆t) thus introduces an
oscillation in the relrods:

Ir(~q,∆t) =
I(~q,∆t)

I(~q,∆t < 0 ps)
∝ S(~q, c(∆t))∗S(~q, c(∆t))

S(~q, c)∗S(~q, c)
, (76)

which modulates the intensity of Bragg peaks. Calculations of Eq. 76 for the [-240]-
peak showed that we get similar intensity oscillations for lattice constant oscillation
amplitudes in the order of 0.5 to 0.01 mÅ.

We show that the occurrence of coherent lattice oscillations may relate to the macro-
scopically large occupation of a single phonon mode close to Γ [86]. The weighted
mean of the obtained periods is T̄ = (7.7± 0.8) ps, corresponding to a breathing mode
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Figure 27: Illustration of the lowest order breathing
mode B2

2g in MoS2 from first principle calculations.
Along the [001]-axis, longitudinal breathing mode shifts
the layers such that, the c-axis lattice constant decreases
and increases periodically. Black arrows indicate an in-
creasing c-axis lattice constant. Image used from [85].

frequency of 0.13 ± 0.20 THz [(4.3± 0.5) cm−1], is in good agreement with the B2
2g

breathing mode from previous studies [85]. From the Gaussian envelope we can calcu-
late a dephasing time, describing the decay of the coherent phonon population (e−t/τde)
via τde =

√
2σ, giving a weighted mean of τde = (6.5± 0.6) ps. A recent study showed

phonon dephasing times for different modes in bulk MoS2 between 5.7 and 8.6 ps [87],
but for different modes. The real space displacement of the crystal planes is shown in
figure 27. Higher order breathing modes can be excluded, because they do not modu-
late the c-axis lattice constant by the same magnitude for every unit cell.
Assuming a freestanding crystal along the c-axis with open boundary conditions, we
can calculate the sample thickness from the oscillation parameters, to see if it is con-
sistent with our estimated thickness. Using the properties of the lowest order phonon
mode, we can write its wavelength as λ = 2d, where d is the crystal thickness along
the c-axis. For low energy phonons, the dispersion relation is linear and the velocity
of sound is given by [22]:

v =
w

k
=
λ

T
. (77)

Replacing the wavelength, we can write the thickness as function of breathing mode
period and velocity of sound:

d =
vT

2
. (78)

Using the measured cross-plane longitudinal sound velocity of MoS2 from previous
studies [88], v = 7.11 km/s, we find a thickness of d = (27.3± 0.3) nm. This shows a
disagreement with the thickness of 40 to 50 nm estimated by light transmission, but
the value is still in the overall expected thickness range.
The question remains of how the coherent phonon population influences the observed
peak dynamics. Despite their influence on the relrods, coherent breathing modes should
not directly influence the MSD and thus Debye-Waller dynamics. Only their decay into
incoherent phonons should create a change in MSD, based on the decay channel. Since
the observed breathing mode has a very low energy and momentum, decay channels
are expected to be heavily constrained by energy and momentum conservation. A com-
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parison of the timescales of DW-dynamics and damping of the oscillation shows, that
the decay of coherent phonons is almost a magnitude slower than the DW-dynamics.
In conclusion, we treat the effects of decaying coherent phonon modes on the DW-
dynamics as insignificantly small.
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9 Inelastic scattering analysis

The analysis is continued by extracting the inelastic scattering signals from diffraction
patterns. This method is often mentioned as femtosecond electron diffuse scatter-
ing (FEDS) [17, 18, 20, 79] and provides momentum resolution additionally to time
resolution. The momentum resolution is restricted to the 2D-BZ, determined by the
reciprocal lattice vectors spanning the diffraction pattern. A detailed view of the inelas-
tic scattering theory was given in Sec. 3.1.3. Diffuse scattering intensities Idiff(~q,∆t)

of MoS2 are extracted by integrating intensities at every sampling point ~k of each BZ.
In the following text we neglect multi-phonon scattering and treat the intensities as
one-phonon scattering intensities I1(~q,∆t). The key challenge in extracting inelastic
diffraction intensities is to deal with their low SNR and the spatial distortions of the
diffraction patterns. A detailed description of all corrections applied was discussed in
Sec. 7.4.

9.1 Overview of inelastic signals

Diffuse scattering intensities sit on the large background arising from the tail of the
transmitted electron beam. Thus an analysis of relative intensities, as used for Bragg
peak intensities, would not work for the inelastic intensities. In this section, we fo-
cus on the extraction of intensity differences, which are mostly free from transmitted
beam and Bragg peak tails. The resulting intensity difference maps ∆I1(~q,∆t) =
I1(~q,∆t)− I1(~q,∆t < 0) are shown in Fig. 28 for selected pump-probe delays.
On these maps, blue areas indicate decreasing intensities at the Bragg peak positions,

which were analyzed in the previous section. We now focus on the areas with increasing
intensity, indicated by the red signal. These areas contain the diffuse scattering signals
and correspond to Eq. 37. Intensity difference maps reveal rising intensities at the
BZ edges (K-M) for 600 fs pump-probe delay, which become stronger at 1 ps delay,
outlining the hexagon shape of every BZ. At 2 ps and 5 ps delay, the signal intensity
rises further, but also dissipates to the BZ centers. After 20 ps, no obvious changes are
observed in the diffuse scattering signals.
The results shown in Fig. 28 directly demonstrate the non-thermal character of lattice
thermalization in MoS2. Based on the OPSF and OPC calculations in Sec. 5.4, we
attribute the characteristic shape of strong intensity rises, which are best visible at 20
ps, to the shape of the OPSF contributions. A direct comparison of calculated inten-
sity differences for the thermal equilibrium case is presented in Fig. 36. The OPSF
features are reflecting the six-fold crystal symmetry of MoS2 through the entire diffrac-
tion pattern, similar to the observed diffuse scattering signals. At larger pump-probe
delays, characteristic features of the OPSF in the intensity difference start loosing their
strength, but are not completely disappearing.
The difference maps at 0.6, 1, 2 and 5 ps thus reflect the transient non-equilibrium
states of the phonon system after photo-excitation. The strong rise of intensity differ-
ences at the BZ edges at 0.6 ps and 1 ps pump-probe delays reflects the non-equilibrium
phonon populations generated by EPC. The dissipation of these diffuse scattering sig-
natures into OPSF features is best explained by the relaxation of the phonon system
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Figure 28: Overview of the evolution of the intensity differences ∆I1(~q,∆t) of MoS2 for
selected BZs. The raw difference patterns were rotationally averaged (6-fold) for visualization
purposes. Every BZ shown on the patterns will be sampled with a rotationally symmetric
~k-grid based on a 18x18 Monkhorst-Pack grid (Fig. 23) with an integration window width
of 6 pixels. Diffraction patterns are taken along the [001]-zone axis. Black hexagons mark
exemplary first BZ.
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into an equilibrium state with an elevated temperature via PPC. Since the OPSF fea-
tures are best visible at 20 ps, we assign this state to a new thermal equilibrium of the
phonon system, consistent with the observed elastic timescales. The slight decrease of
the OPSF features for longer pump-probe delays is explained by the subsequent cooling
of the lattice.
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9.2 Quantification of inelastic signals

Due to the product of phonon population changes and OPSF in the individual branch
contributions (see Eq. 37), it is not possible to obtain a detailed view of the phonon
dynamics occurring from their population changes. A quantification of phonon dynam-
ics across the available parts of the BZ is achieved by analyzing the relative intensity
differences:

∆Ir(~q,∆t) =
∆I(~q,∆t)

∆I(~q,∆t = 20 ps)
, (79)

and fit their individual evolution with a biexponential function, as used in the elastic
scattering analysis (Eq. 73). Intensity differences are relative to their equilibrium
intensity at 20 ps. Neglecting higher order phonon scattering and changes in the
transmitted beam, we can rewrite the relative intensity differences as a function of
OPC differences:

∆Ir(~q,∆t) ≈
∆I1,~q(∆t)

∆I1,~q(∆t = 20 ps)
=
∑
j

∆nj,~k(∆t)
|F1,j(~q, T )|2

ωj,~k · I1,~k(∆t = 20 ps)
. (80)

In this expression, we neglected temperature-dependent changes in the OPSF |F1,j(~q, T )|2
and changes in the phonon frequencies ωj,~k. The observed signal at a reduced scattering

vector ~k is then the sum over all branches j of phonon population changes weighted
with their OPSF and frequencies (|F1,j|2/ωj,~k), determining the sensitivity of the indi-
vidual branches. Similar to the elastic signals, we get a better sensitivity for acoustic
modes than for optical modes.
In theory, the changes in intensities ∆I(~q,∆t) are driven by the changes in phonon
populations ∆nj,~k(∆t). Since all properties of phonons can be described inside the
1.BZ [23, 89], it is also possible to describe all phonon population changes within the
1.BZ. Hence every BZ around every Bragg peak should reflect redundant population
changes, fully described by the reduced scattering vector ~k. Furthermore, population
changes inside every BZ should reflect the crystal’s n-fold symmetry, 6-fold symmetry
for MoS2.
In practice, however, we do not observe fully sixfold symmetric relative intensity differ-
ences ∆Ir(~q,∆t) in most BZs. We explain this by the different SNR within the different
parts of the BZ. The strength of our signal is defined by the weights |F1,j(T, ~q)|2/ωj,~k
of the individual branches j, with ωj,~k being also redundant for every BZ similar to

∆nj,~k(∆t). In contrast, the OPSF |F1,j(T, ~q)|2/ωj,~k introduces a dependence on the
scattering vector ~q, conserving the n-fold symmetry of the entire diffraction pattern,
but not the n-fold symmetry of the individual BZs. In principle this should not be
relevant for relative intensity difference evolutions. But if the signal drops below the
noise level in some areas due to low OPSF magnitudes in most branches, this leads to
a low SNR in these areas. Hence some parts of the BZ are more sensitive to the same
phonon population changes than others.
In the recent literature, analysis of the time-resolved diffuse scattering intensities fo-
cused on individual BZs with strong diffuse scattering signals along a chosen ~k-path
[18, 19, 21]. In this work, a different approach is used. It is assumed that inelastic
signals of most k-points within a given BZ, provided they are far enough from the zone
center, are strong enough to exhibit an undistorted diffuse signal. Additionally we
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assume that this condition is valid for most of the analyzed BZs. These assumptions
are supported by the strong OPSF-features observed in Fig. 28, indicating that we are
able to extract useful diffuse scattering signals in most parts of the diffraction pattern
and not only along specific ~k-paths.
Based on that, an additional 6-fold rotational averaging of the individual BZ signals
is applied, owing to the 6-fold symmetry observed in the relative intensity differences,
see Fig. 26. Furthermore, it is possible to average over all BZs and reduce the relative
intensity difference evolution to the evolution of a single BZ. This step is similar to
rotationally average the weights of the branch contributions.
Let {~km} be a set of n-fold rotationally symmetric reduced scattering vectors. Then

we can write the n-times rotationally averaged intensity difference ∆Īp(~k,∆t) within
the BZ p as:

∆Īp(~k,∆t) =
1

n

n∑
m=1

∆Ip( ~km,∆t)

=
1

n

n∑
m=1

∑
j

∆nj,~k(∆t)
|F1,j,p(~km)|2

ωj,~k

=
∑
j

∆nj,~k(∆t)

ωj,~k

1

n

n∑
m=1

|F1,j,p(~km)|2.

(81)

This method has the disadvantage, that low-signal areas are averaged with high-signal
areas. But it provides a more robust extraction of the inelastic signals, due to the shear
amount of available BZs. Additionally, a complete view of diffuse scattering signals
across the entire BZ is achieved. A more sophisticated analysis could be developed in
the future by only averaging BZ areas which have signals higher than a defined limit.
In total, 30 BZs were used, excluding 4 of the outermost available BZs (e.g. [4-40]) due
to their low signal, to calculate the relative intensity difference evolution. The time-
resolved inelastic signal at each k-point on the grid was fitted with a biexponential
function (Eq. 73), using a fixed electron pulse with of s = 150 fs and a global pump-
probe overlap t0 = 0.517 ps, obtained by first fitting all time traces with a variable
overlap and taking the average. The resulting amplitudes and time constants across
the BZ are shown in Fig. 29.

9.2.1 Phonon dynamics around the Brillouin zone edges

To analyze the momentum-resolved phonon dynamics, we proceed to a partitioning of
the BZ into two zones, indicated by the dashed hexagon on Fig. 29. The first zone
includes areas around the BZ edges, that have a positive amplitude A1 corresponding
to the fast time constant τ1 and a negative amplitude A2 corresponding to the slow
time constant τ2. That zone includes the high-symmetry points K and M and spans
from the BZ edges to roughly half the Γ-M distance. The CBM at Λmin is not included.
Inside the first zone, the fit amplitudes shown in Fig. 29 a) and b) display a quali-
tatively similar behaviour, with slightly higher amplitudes around the K point and
lower magnitudes below M. Both fit amplitudes decrease to the edge of the first zone
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Figure 29: a), b) Amplitudes and d), e) time constants of biexponential fitted relative inelastic
intensity differences ∆I1,r(~k,∆t) for sampling points based on a 18x18 Monkhorst-Pack grid.
c) and f) show the ratios of amplitudes and time constants respectively. The dashed hexagon
shows the separation between the outer first zone and the second inner zone. Redundant
values inside the BZ are displayed, due to the 6-fold symmetry of MoS2.
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(going towards the zone center). The fast time constant τ1 shows decreased magni-
tudes around M and rather constant magnitudes in the rest of the first zone. The slow
time constant τ2 shows the inverted behaviour compared to τ1, with higher magnitudes
below M and lower magnitudes around K. Both areas exhibit an increase to the edge
of the first zone towards Γ.
Exemplary fits of sampling points inside the first zone are shown in Fig. 30 a), b) and
c). The fits of the high-symmetry points K and M are shown in a) and b), respectively.

Both fits reveal a strong rise of ∆Ir(∆t,~k) in the first few picoseconds after photoex-
citation, modeled by a positive amplitude A1 and a fast time constant τ1 in the order
of a few hundred femtoseconds. The subsequent decay of ∆Ir(∆t,~k) is modeled by
the second exponential term with a negative amplitude A2 and a slower time constant
τ2 in the order of a few picoseconds. A comparison of the fit amplitudes A1 and A2

reveals that A1 > A2 for K and M. A constant elevated level of ∆Ir(∆t,~k) is reached
after ∼ 40 ps. This is qualitatively consistent with the raw diffuse scattering signals
observed in Fig. 28.
Since all areas in the first zone show a positive A1 and a negative A2, variations in
the evolution can be modeled by the ratios of amplitudes and time constants, shown
in Fig. 27 c) and f) respectively. The A1/A2 ratio decreases from the BZ edges to the

edge of the first zone, indicating that the drop of ∆Ir(∆t,~k) after the first fast increase
gets smaller for areas closer to Γ.
Additionally, the ratio τ2/τ1 increases in the same areas, showing that lower ampli-
tude ratios result in slower dynamics of the second exponential term. Variations are
mainly caused by τ2, since τ1 shows only little variations in the first zone, covering
values from 0.4 ps to 0.6 ps. Larger values are observed around K being almost con-
stant around the K-Γ line inside the first zone. Lower values are observed around M,
which are increasing with increasing distance to M. In contrast to τ1, the slow time
constant τ2 covers a spectrum from 11 ps to values greater than 100 ps, which is the fit
boundary. These large values can be observed visually by looking at the exemplary fits.

An exemplary fit for regions with small A2 and large τ2 is shown in Fig. 30 c). The
inset shows that the sampling point is close to the inner edge of the first zone, where A2

is almost zero. After the initial increase of ∆Ir(∆t,~k) follows a small decrease, reach-
ing a constant level for pump-probe delays > 100 ps. Compared to the high-symmetry
points K and M, the second exponential time constant τ2 = (36± 8) ps is significant
slower. Whereas τ1 shows only a small increase of 100 fs. Very large values of τ2 at the
inner edge of the first zone are accounted to the almost mono-exponential evolution of
∆Ir(∆t,~k). If A2 is negative but very close to zero, the decay appears to be almost
constant and is thus modeled with a very large time constant with high variance.
A link between momentum-resolved lattice dynamics and relative intensity differences
∆Ir(∆t,~k) is established by the dependence on phonon population changes. The
weights of individual branch contributions |F1,j|2/ωj,~k can be used to set boundaries

in the interpretation, since non-active branches (|F1,j|2 ≈ 0) do not contribute to the
observed signal and acoustic contributions are better visible.
The two time constants in the exponential fits are assigned to two different processes
leading to a rise and decay of phonon populations in the first zone. Based on the elastic
analysis, we assign the fast rise to EPC and the second slower decaying term to PPC.
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Figure 30: Exemplary non-weighted fits of selected sampling points inside the 1.BZ for MoS2

with standard deviation given by shaded areas. The sampling point position inside the 1.BZ
is indicated by the red dot in the first inset. The second inset shows the fit parameters.
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The increase of phonon populations modeled by the EPC-term accounts for phonons
emitted by electronic transitions in the VB and CB, generating a non-equilibrium
phonon distribution. The subsequent equilibration of the lattice by phonon-phonon
scattering is modeled by the PPC-term.
Electronic transitions can be divided into two types, intravalley and intervalley tran-
sitions [52]. Intravalley transitions are transitions connecting two electronic states in
the same momentum space area, mostly high-symmetry points, which result in the
emission of low-momentum phonons close to Γ. Due to the high Bragg peak intensities
at Γ we are not able to observe inelastic diffraction signals of those processes. Phonon
dynamics at the Γ point are best observed by complementary methods such as time-
resolved Raman spectroscopy, but this goes beyond the scope of this thesis.
Intervalley transitions are defined as transitions connecting two electronic states of dif-
ferent valleys or hills in the CB or VB, resulting in the emission of large-momentum
phonons. Transitions across the gap are forbidden due to energy conservation. In the
experiments presented here, the tail of Bragg peaks limits the observable momentum
range to processes with phonon momentum ranging from 0.45 Å−1 up to the BZ edges.
Characteristic for the first zone is, that all sampling points exhibit a positive amplitude
of the EPC-term and a negative amplitude of the PPC-term, which has the smaller
magnitude. This behaviour is best explained by the phonon population at ~k being
driven out of equilibrium by EPC and relaxing to its equilibrium level at an elevated
temperature by PPC. Hence the first zone could be renamed as strong electron-phonon
coupling zone.
To what extent the phonon population at ~k is driven out of equilibrium is reflected in
the slow amplitude and time constant. Small negative amplitudes with large time con-
stants indicate that the phonon population already had reached its elevated equilibrium
population by EPC. Whereas large negative amplitudes and small time constants of the
PPC-term indicate that these areas are strongly driven out of equilibrium, overshooting
the elevated equilibrium population. These areas are interpreted as strongly-coupled
areas, in terms of EPC.
We can distinguish the coupling strength best by looking at the amplitude and time
constant ratios. Low values of these ratios indicate strong coupling. The strongest
coupling is observed at regions around K, whereas regions around M exhibit weaker
coupling. As shown in Fig. 30 a) and b), sampling points covering the high-symmetry
points K and M exhibit mostly identical dynamics. The coupling strength is decreasing
as regions come closer to the edge of the first zone.
A comparison of the strongly-coupled areas with the momentum-integrated elastic
diffraction signals (Chapter 8) shows that the EPC time constants, 420 - 560 fs and
(470± 20) fs respectively, are consistent, indicating that the strongly-coupled areas
dominate the momentum integrated EPC-signal observed in the Bragg peak dynamics.

9.2.2 Phonon dynamics around the Brillouin zone center

The second zone includes ~k-points between half Γ-K (or half Γ-M) and the cut Γ-area.
It is defined by the interior of the dashed hexagon shown in Fig. 27. The CBM Λmin

is included in the second zone at its border to the first zone.
The observed signals are completely different from those observed in the first zone.
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The fit amplitudes A1 and A2, shown in Fig. 29 a) and b) respectively, are positive
in most parts of the second zone. The magnitude of A1 decreases as the distance to Γ
decreases, and vice versa for A2. In regions near the cut Γ-area, the second amplitudes
are dominating with A1 < A2, as indicated in the amplitude ratios shown in panel c).
The negative amplitudes of A1 around the cut Γ-area are attributed to an overlap with
the Bragg peak intensities and we do not discuss them further.
The features observed in the fast time constant τ1, seen in Fig. 29 d), have to be inter-
preted with care. The variations of τ1 are much greater than those observed in the first
zone, covering magnitudes from ∼450 fs to 1.1 ps. Especially areas around the CBM
Λmin show higher magnitudes than areas between Γ and half Γ-M. These variations
could be artificial, since the signal rises can also be captured by a single exponential
term which accounts for all processes. In this second zone, EPC signals are so weak
that they cannot be well separated from the PPC signals. A further separation between
single and biexponential fitting should be implemented in the software.
The slower time constant τ2 (e) shows magnitudes of ∼2 ps at all border points except
one point at half the Γ-M distance, which has a magnitude of 30 ps. All other sam-
pling points between the border and Γ do not show a characteristic pattern and range
between ∼4 ps and 6 ps. The time constant ratios, shown in panel (f), mainly reflect
the pattern of τ1, since the τ2 values are relatively constant.
Two exemplary fits inside the second zone are shown in figures 30 d) and e). Panel d)
shows the fitted relative intensity difference evolution of the sampling point closest to
Λmin. This signal is characteristic for most points of the outer second zone edge. The
EPC term is the dominating term due to A1 > A2. Instead of decreasing the ampli-
tude, the PPC term is also contributing to the intensity rise indicated by its positive
amplitude A2. The fast EPC term time constant τ1 = (600± 50) fs is ∼ 100 fs slower
than the momentum integrated elastic EPC signal (Sec. 8), indicating that most of
the EPC processes observed at Λmin do not dominate the momentum integrated EPC
processes. A comparison of the PPC time constant τ2 = (3.1± 0.5) ps with the mo-
mentum integrated PPC time constant τ2,el = (2.8± 0.2) ps shows that the phonon
equilibration in the CBM is quite similar to the momentum integrated phonon equili-
bration.
Figure 30 e) shows the relative intensity difference evolution of phonons close to the cut
Γ-area and close to the Γ-K line. The most characteristic features of these areas are the
amplitude ratios A1 < A2, showing that the PPC term is now dominating the phonon
equilibration. The EPC time constant τ1 = (1.1± 0.2) ps is relatively slow compared
to other areas in the first zone as previously described. The slow time constant is
an indicator that the EPC generating phonons at those areas is much less likely to
happen. The same holds for the second time constant τ2 = (5.9± 0.3) ps, which is a
few picoseconds slower than the momentum integrated PPC signal.
Summarizing all this information, we can say that the EPC in the second zone is gener-
ally slower and weaker than the coupling in the first zone. The relaxation of the phonon
system at low-momenta is driven by the EPC and PPC terms, that are both leading to
an increase in phonon population. The double increase is best explained by phonons
being first generated through EPC, generating a phonon population below its elevated
equilibrium population (given by the BE-statistics). The subsequent second rise is best
explained through the decay of high-energy modes into low-energy and low-momentum
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phonons, restoring the equilibrium population. Additionally, we observe a transition
from EPC dominated phonon generation to PPC dominated phonon generation for
decreasing momentum, as indicated by the amplitude ratios.
Most interesting features are observed in the EPC time constant, which are significantly
increased at areas around the CBM Λmin, building a light star-like shape of increased
time constants. It remains the question of the origin of the sharp feature.
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10 Towards branch-resolved inelastic scattering

analysis

In this section, we extend the analysis of diffuse scattering intensities presented in Sec.
9 by implementing the branch-resolved approach introduced in a recent FEDS work
on graphite by De Cotret et al. [20] and introduced in Sec. 3.2. We discuss the in-
fluence of the approximations made in this approach, the sensitivity of the experiment
to signals generated by individual branches and the merging of calculated and exper-
imental intensity difference maps. Additionally, the influence of diffuse multi-phonon
scattering is discussed and compared to recent studies. Finally, the results of the time-,
momentum- and branch- resolved approach are discussed and compared to the more
established elastic and inelastic scattering dynamics presented in Sec. 8 and 9.

10.1 Self-consistency test on MoS2

Before applying the branch-resolved approach to MoS2, we carry out the self-consistency
test to detect multicollinearity in the equation system of Eq. 38, as presented in Sec.
6. In this section, we first apply the method of the variance inflation factor (VIF)
to determine where multicollinearity occurs in the case of MoS2. Next, we perform a
binning of the phonon branches into effective branches, and we check again the VIF.
The OPSF contributions used in the self-consistency test are based on the ab initio
calculations presented in Sec. 5.3 and 5.4.
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10.1.1 Multicollinearity of one-phonon structure factor contributions

Similar to section 6.2, the multicollinearity of the OPSF branch contributions are es-
timated by calculating their variance inflation factor maps VIFj(~k). Figure 31 shows

the VIFj(~k) for all branches of MoS2. In the literature, a VIF value of 5 to 15 indicates
high multicollinearity [58]. Our calculations show that all active branch contributions
of the OPSF contain highly multicollinear areas, indicated by VIF-values far above 15.
As presented in the self-consistency tests on graphene (section 6.4), these areas cause
instabilities of the solution, resulting in extremely high or low phonon temperatures.
The solutions retrieved using all phonon branches are shown in the appendix D and
are not further discussed due to their unreliability.
If VIF patterns of one branch are also visible in neighbouring branch contributions, it
is an indicator that those branches are collinear or multicollinear to each other, e.g.
branch contributions 1, 2 and 3. All of them have high VIF values around M. The
observed similarities of VIF patterns are later used in the phonon branch binning pro-
cesses to reduce multicollinearity. In addition to the similar patterns around M for
branches 1, 2 and 3, the VIF pattern observed in branch 3 also shows similarities with
those of branches 4, 5 and 6. All of them show a similar pattern of high VIF areas
around K and on the Γ-M line. Branches 7 and 8 are completely inactive and are not
relevant for reducing multicollinearity. Branches 9 and 10 show high VIF values at K.
These values result from small OPSF contributions in the K-area. The VIF patterns
of the optical branches 11 and 12 show high similarities, indicated by a high VIF area
around Γ and along the Γ-M line. Branch 13 shows high VIF values in almost every
available area of the BZ, thus a clear assignment to another branch is not possible.
Branch 14 is assigned to branch 12, due to the dotted line of high VIF values along the
Γ-K line. The last four branches can be assigned very easily due to their very similar
patterns. Branches 15 and 16 as well as 17 and 18 show almost pairwise identical VIF
patterns. Furthermore, both pairs of branches show high similarities due to their high
VIF areas around Γ, on the Γ-M line and around K. Given these results, it is clear that
phonon branch binning is required for MoS2.
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Figure 31: Branch-resolved variance inflation factor maps VIFj(~k) for MoS2. Empty spaces
indicate non-contributing areas, where no VIF can be defined. VIF maps of branches are
sorted according to the phonon energy at Γ, starting with the lowest energy branch.
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10.2 Phonon branch binning on MoS2

In this section, the phonon branches of MoS2 are binned to effective branches in order
to reduce the multicollinearity of the equation system (Eq. 38). The best binning
of branches is discussed on the basis of the VIF and checked by the results of the
self-consistency test. The phonon branches of MoS2 are binned in such a way that the
multicollinearity of the equation system is most effectively reduced, while also minimiz-
ing the frequency differences of the binned branches. The goal is to achieve low VIFs
in most areas of the BZ and in all effective branches, while also keeping the number
of effective branches as high as possible, since every binning decreases the branch-
resolution. As for graphene, an effective binning is achieved by binning branches which
show high similarities in their VIF patterns.
Before starting the binning process, we exclude branches 7 and 8 which are inactive.
Branches 9 and 10 are also excluded due to their very low contribution to diffuse scat-
tering. Starting with the lowest energy branches, a best reduction of multicollinearity
is achieved by binning the three acoustic branches 1, 2 and 3, due to their very similar
VIF patterns. Since branches 1 and 2 are degenerated and branch 3 has similar fre-
quencies, deviations in the effective electron-phonon coupling are expected to be small.
The remaining branches 4, 5 and 6 of the low energy phonon band are binned, due to
the same reasons. Branches 5 and 6 are also degenerated.
The remaining high-energy phonon branches consist of 4 pairs of degenerated branches,
[11,12], [13,14], [15,16] and [17,18]. Based on the similarities of their VIF-patterns, we
binned the first two pairs into an effective branch, and the last two pairs into another.
Since frequency spreads between the pairs are larger, we expect stronger deviations
from their true coupling to electrons. A pairwise binning of degenerated branches did
not show sufficient good results in the self-consistency test. The VIF maps of the four
effective branches are shown in figure 32.

Figure 32: Variance infla-
tion factor maps VIFj̃(

~k)

for every effective branch j̃
of MoS2.
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The four effective branches can be distinguished in two low energy branches and
two high energy branches. All of them show VIFs < 4 in all available regions of the
BZ, except a small region around K, where most distortions due to multicollinearity
are expected. Unluckily, strongest electron-phonon coupling is expected in that region,
see Sec. 9.2 and Ref. [52]. Inactive regions inside the BZ have been eliminated due
to the branch binning. Finally, the self-consistency test (see Sec. 6) is conducted by
using the set of effective phonon branches. The experimental intensity difference in the
equation system of Eq. 38 is replaced with the calculated OPC differences in thermal
equilibrium with a temperature difference of ∆T = 190 K and the initial temperature
is set to T1 = 300 K. The equation system is solved with a standard implementation
of the NNLS algorithm as implemented in the scipy-package [37]. The calculated tem-
peratures from the phonon population differences are shown in Fig. 33.

Figure 33: Final equilibrium temperatures T2 obtained by the self-consistency test for MoS2.
Average, minimum and maximum temperature of effective branches are shown in their inset.
Grey areas correspond to T2 = 490 K.

The temperatures obtained by the self-consistency tests for the effective branches
show a much better agreement with the ideal final temperature T2 = 490 K, than with
the complete set of branches. As discussed in Sec. 3.2.1, we see a general underesti-
mation of temperatures in most areas. The first effective branch, consisting of acoustic
branches [1,2,3], exhibits strongest deviations at the K-point, most likely a result of
remaining multicollinearity. All other points show a good agreement with the ideal
temperature, with values ranging from T2 = 420 − 509 K. Similar temperatures are
observed in the second effective low energy branch, consisting of branches [4,5,6]. The
strongest deviations are located in a small area around K.
The results of the first effective high energy branch, consisting of branches [11,12,13,14],
show more deviations than the effective low energy branches. Regions around Γ and
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K overestimate the true temperature, while other areas underestimate them. Here
also, the strongest deviations occur in an area around K. The shape of the area is
identical to the overlaid shape of negative temperature deviations of the effective low
energy branches. In conclusion, it is likely that the least squares solver transferred
the phonon populations from the effective low energy branches to the first effective
high energy branch, due to multicollinearity in these areas. The second effective high
energy branch, consisting of branches [15,16,17,18], shows no temperature changes in
most areas, indicated by the initial temperature of 300 K. This effect is attributed to
the almost inactive areas of those branches, which are not populated by the NNLS
solver. Only active areas around M exhibit underestimated temperatures.
In conclusion, the results of the self-consistency test on MoS2 highlight the general
problem of the time-, momentum- and branch-resolved approach in the presence of
multicollinearity and calls into question its applicability for non-equilibrium and equi-
librium states. Nevertheless, we were able to reduce the multicollinearity of the opti-
mization problem to a satisfactory level by binning the phonon branches of MoS2 into
effective branches, based on their frequencies and VIFs.

10.3 Sensitivity of the experiment to effective phonon branches

In this section, we discuss the sensitivity of the experiment to changes in phonon
populations in the effective phonon system. Since phonon frequencies and OPSFs are
accessible by ab initio calculations, it is possible to determine the sensitivity of the
experiment to changes in phonon populations. From Eq. 37 the sensitivity of a branch
j at scattering vector ~q on the diffraction pattern can be defined by:

Sj(~q, T ) =
|F1,j(~q, T )|2

ωj,~k
, (82)

with |F1,j(~q, T )|2 the OPSF of branch j and ωj,~k its frequency. The sensitivity deter-
mines how much inelastic scattering signal each branch generates at ~q, if its phonon
population changes by one.
As inelastic scattering signals are averaged over every BZ and additionally rotationally
averaged (see Sec. 9.2), we apply the same procedure to the sensitivity mapping. Thus
the sensitivity of the whole diffraction pattern of a branch is reduced to the sensitivity
of this branch within the 1.BZ, |S1,j(~q, T )|2 → |S̄1,j(~k, T )|2 . When phonon branches
are binned into effective branches, this is taken into account by summing the individual
sensitivities to an effective branch sensitivity. The sensitivity of an effective branch l
can be written as:

Sl(~q, T ) =
∑

m∈[j...l]

|F1,m(~k, T )|2

ωm,~k
, (83)

with [j...l] being a set of binned branches. The calculated sensitivity for all 4 effective
phonon branches of MoS2 at T = 300 K is shown in Fig. 34.

The first three effective low energy branches show a good sensitivity in all parts of
the available BZ, ranging from 30 to 100 % of the maximum sensitivity. Each branch
exhibits small variations in sensitivity that are generated by the OPSF patterns. The
last effective branch, consisting of the four highest energy optical branches, shows a
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Figure 34: Sensitivity to phonon population changes of effective branches within the 1 BZ
for MoS2 normalized to the maximum value of all branches. Binned phonon branches are
given above the figures. Effective branches are sorted, starting with lowest energy. Dashed
line indicates separation of first and second zone as used in the inelastic analysis (see 9.2)

significant sensitivity only around the K point. All other parts of the BZ exhibit
almost no sensitivity to phonon population changes. That pattern is a result of the
very localized OPSF contributions that are almost inactive except for the area around
K, see Fig. 8.
In conclusion, we see that the branch resolution of the approach is additionally reduced
to 3 effective branches in most parts of the available BZ. Only a small area around
K exhibits a good sensitivity to all effective branches, however we also saw that the
K-region exhibits high multicollinearity.

10.4 Merging model and experimental intensities

Having performed the self-consistency test and branch binning, the next step is to
merge the model and experimental data by matching their intensity magnitudes. A
first approach could be to scale the intensities by the intensity of a single scattering
event, i.e. by dividing I1(~q) with the sample and setup parameters. For this, the
model intensity would have to be divided by the number of unit cells N that diffract
the electron beam. This number is given by the supercell size used in the calculations.
However, the main problem with this approach arises from transforming the experi-
mental intensities. In the experiments, N depends strongly on the crystal thickness
and spatial width of the probe pulse. Both parameters are unknown and can only be
estimated. Furthermore, we would need an exact knowledge of how many electrons are
in each pulse and of the intensity generated by one electron on the detector. These
parameters are calculated in the normalization procedure to account for fluctuations
in the electron pulse intensities. They are sufficient for determining the dynamics,
but still have deviations in their magnitude due to the non perfect quantum efficiency
and non-linear behaviour of the detector for high intensities, as they occur in the zero
order and Bragg peaks. To account for all these parameters quantitatively is currently
impossible.
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A better approach is to adapt the model intensity I1,model(~q, T ) at the initial tempera-
ture to the experimental intensity in thermal equilibrium I1,exp(~q,∆t < 0 ps), by fitting
I1,model(~q, T ) = λ · I1,exp(~q,∆t < 0 ps). Instead of determining the experimental pa-
rameters, only one scaling parameter λ has to be calculated. The experimental and
simulated intensity maps for the initial states are shown in Fig. 35. Panel a) shows the
simulated OPC of MoS2. In panel b), displaying the experimental pattern, the inelastic
signals are overlaid with a large radially symmetric intensity, which originates from the
tail of the transmitted electron beam (0th order beam). To apply this approach, the
one-phonon contribution would thus have to be extracted by subtracting the tail of
the transmitted beam. This is challenging, since the 0th order tail and the one-phonon
contributions cannot be distinguished easily. Indeed both contributions decrease with
increasing scattering vector. Hence a fitting of the rotationally averaged intensities,
as is commonly used in the baseline removal of powder diffraction experiments [90], is
here not possible.

In the limit of kinematical theory, the loss of the transmitted beam is equal to the

Figure 35: Comparison between model and experimental intensities I(~q, T ) in thermal equi-
librium. White hexagons incate 1 BZs accessible by the experiment. a) Calculated intensity
of the zero-phonon and one-phonon contributions Imodel(~q, T ) = I0(~q, T ) + I1(~q, T ) for the
initial temperature T = 300K. The characteristic features between the Bragg peaks gener-
ated by the one-phonon contribution are clearly visible. b) Initial intensity Iexp(~q,∆t < 0) for
negative pump probe delays with cut Bragg peaks. The one-phonon contribution is hidden
by the large background from the 0th order tail.

increase of Bragg peak intensities [22]. This loss mainly depends on the crystal size,
electron energy and atomic form factors, but does not depend on the crystal temper-
ature. A temperature change results in an intensity transfer from Bragg peaks into
diffuse intensity between the Bragg peaks, covered by the one- and multi-phonon con-
tributions in the model. The transmitted beam is considered to be constant for every
pump probe delay ∆t and thus can be subtracted by using intensity difference maps,
which only represent the changes in the Bragg peaks and diffuse intensity.
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Based on these considerations, we employed intensity differences in the fitting approach,
giving the following fit equation:

∆Imodel(~q,∆T ) = λ ·∆Iexp(~q,∆t = 20 ps), (84)

with the scaling factor λ. The problem of determining the transmitted beam tail is
then shifted to determining the resulting temperature change ∆T in thermal equilib-
rium. If the pump parameters and heat capacity are known, ∆T can be estimated,
as presented in Sec. 7.3. The one-phonon distribution is then calculated at the initial
temperatures and elevated temperature to simulate the difference.
In this work, the OPCs were calculated for five temperatures in the range given by the
boundaries estimated in section 7.3. The limited coherence of electrons in the experi-
ment was accounted by a smearing parameter as described in Sec. 5.4. A temperature
change of ∆ = 190 K (T2 = 490 K) gave the best match between model and experiment
and was used for all calculations presented below. The final temperature is at the
lower boundary, indicating either a model mismatch or that the true elevated temper-
ature is below the estimated range. Furthermore the matching process leaves space
for improvement. A more general procedure could be an algorithm that calculates a
best match by tuning the smearing parameter and temperature in an iterative scheme.
This procedure needs many simulated difference maps to converge, hence substantial
computing power.
The resulting experimental and simulated intensity difference maps are shown in Fig.
36. With the subtracted tail of the transmitted beam, a clear qualitative match of
model and experiment is visible. Most characteristic features in the simulated OPC
are now visible in the experimental difference map.

The resulting scaling parameter is displayed in the inset of figure 37. Tests with
different selections of BZs did not give significant differences in the scaling parameter.
A good stability of the fit is also indicated by its standard deviation of only 0.44 % of
λ. The coefficient of determination R2 = 0.67 indicates a good, but not perfect agree-
ment of model and experimental intensity differences. Deviations of the model from
the experimental values in ~q-space are analyzed by looking at the residuals relative to
their experimental values:

Rrel(~q,∆T,∆teq, λ) =
r(~q,∆T,∆teq, λ)

λ ·∆Iexp(~q,∆teq)
(85)

with residuals simply given by:

r(~q,∆T,∆teq, λ) = ∆Imodel(~q,∆T )− λ ·∆Iexp(~q,∆teq). (86)

The temperature difference of the calculated intensity difference maps is ∆T = 190 K
and the equilibrium pump-probe delay ∆teq = 20 ps, based on the results from section
8. The resulting Rrel(~q,∆T, λ) are shown in figure 37.

Discrepancies between the model and experimental intensity differences could arise
from three effects. First, there could be deviations of the calculated phonon properties
compared to the phonons probed by the experiment. Such deviations are expected
to mainly affect the shape of the OPSF features. Second, there could be deviations
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Figure 36: Comparison between model and experimental intensity changes ∆I(~q, T ) in
thermal equilibrium. Both images are plotted with the same color scale. a) Calcu-
lated intensity change of the zero-phonon and one-phonon contributions ∆Imodel(~q,∆T ) =
∆I0(~q,∆T )+∆I1(~q,∆T ) for a temperature change of ∆T = 190K. White hexagons indicate 1
BZs accessible by the experiment. Only positive changes are covered by the colormap. Bragg
peaks in the center have a negative change. Sixfold symmetric features of the one-phonon
contribution also appear in the changes. b) Adjusted intensity change λ ·∆Iexp(~q,∆t = 20 ps)
at thermal equilibrium with cut Bragg peaks.

Figure 37: Relative residual map
Rrel(~q,∆T,∆teq, λ) for ∆T =
190 K and ∆teq = 20 ps. Scal-
ing parameter λ is shown in the
inset. Positive or negative resid-
uals are indicated by blue and
red dots. Miller indices of Bragg
peaks are given above the cut
Brillouin zone centers.



10.4 Merging model and experimental intensities 83

in the expected temperature change ∆T . This would mainly affect the magnitude of
the OPSF features in ∆Imodel(~q,∆T ). A third source of discrepancies is attributed to
effects that are neglected in the calculations, such as multi-phonon scattering, defects,
inelastic plasmon and secondary scattering [28, 91], as well as 0th order beam dynamics
and dynamical laser noise.
As can be seen in Fig. 37, positive Rrel(~q, λ)-values are mainly located at characteristic
OPC features with higher intensity near the Bragg peaks, resulting in a light OPSF
feature shape of positive values in Rrel(~q, λ) (compared with Fig. 36). These areas
indicate an overestimation of the modeled intensity difference (shown as red features
in figure 37). Since the OPSF-shape agrees very well with the observed shape in the
experiment, we can exclude strong deviations of calculated phonon properties from
their experimental values. A more plausible source of overestimation in the observed
red areas on Fig. 37 might be a slightly mismatched temperature change ∆T . With
∆Imod(~q,∆T ) = Imod(~q, T2) − Imod(~q, T1), an overestimated T2 would result in higher
phonon populations of Imod(~q, T2), increasing Imod(~q,∆T ). Owing to the product of
phonon populations and OPSF (see Eq. 32), especially intense features of the OPSF
would be increased most. In the next subsection we evaluate to what extent the dis-
crepancies could result from multi-phonon scattering.

10.4.1 Multi-phonon scattering effects

Blue areas on Fig. 37 indicate negative residuals, where the calculated intensity dif-
ferences are underestimated. These areas appear as diffuse background between the
Bragg peaks, showing no characteristic shape. The magnitude of deviations increases
with increasing distance to the zero order. Based on the results of a recent study [28],
such deviations can arise from multi-phonon scattering. In this study, the percentage
contribution of multi-phonon interactions to diffuse scattering was calculated, given
by:

P (~q, T ) =
Imulti(~q, T )

I1(~q, T ) + Imulti(~q, T )
, (87)

with I1 being the one-phonon contribution (OPC) and Imulti the contribution of multi-
phonon interactions. The calculated P for bulk MoS2 at T = 300 K is shown in figure
38. The most remarkable feature of the multi-phonon contribution is its increase with
increasing distance to the zero order, whereas zero- and one-phonon contribution show
a decreasing behaviour. Areas accessible by the experiment show values from ∼ 5% to
40 %, indicating that multi-phonon scattering is non-negligible for most accessible BZs.

In conclusion, the true contribution of most effects to the diffuse background in in-
tensity differences remains unknown. We observe a good agreement of intense features
of the intensity difference patterns, and the remaining deviations are attributed to a
mismatch of equilibrium temperatures. Based on the good phenomenological agree-
ment with calculated multi-phonon contributions, it is assumed that multi-phonon
contributions dominate the diffuse residuals observed in the experiment. Since diffuse
noise mostly affects areas with low one-phonon contributions, it is recommended to
extract inelastic data in areas witch high OPC signal. The extraction of inelastic data,
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Figure 38: Calculated per-
centage contribution P (~q, T ) of
multi-phonon interactions to dif-
fuse scattering of bulk MoS2 at
T = 300 K. Graphic used from
[28].

as described in section 9.2, rigorously averages over all points inside the BZ, to obtain
a almost full BZ view on inelastic data. Such averaging step is only possible because
intense OPC features are 1-2 magnitudes larger than the diffuse background.
Additionally multi-phonon scattering sets an upper boundary to the BZs that could
be analyzed, since BZs with high scattering vectors ~q do show significantly large multi-
phonon contributions. The inner boundary is set by the tail of the zero order beam,
restricting BZs with best SNR to an area of 2-3 BZs far away from the zero order BZ.
The findings of our study together with the results of Ref. [28] point to the necessity of
including multi-phonon contribution calculations even in the qualitative interpretation
of inelastic scattering data. A comparison to other diffuse FED studies [17, 18, 20, 21,
92] shows that multi-phonon scattering effects have been more or less neglected.

10.5 Results

The equation system (Eq. 38) is solved with the intensity differences scaled to calcu-
lated OPC maps with a temperature change of 190 K, as determined from the previous
section (Sec. 10.4). In order to reduce multicollinearity, the phonon system has been
binned into four effective branches, described in section 10.2. For solving the equation
system, the implementation of the NNLS algorithm as included in the scipy-package
[37] has been used, to ensure that phonon population changes are positive. The re-
trieved phonon population changes are directly converted into an effective temperature
by inverting the Bose-Einstein statistics and using the initial phonon population at
300 K (Sec. 6.1). Describing the out-of-equilibrium dynamics of the phonon system
with BE statistics, only defined at thermal equilibrium, is a widely used approach [52].
Considering temperatures is equivalent to phonon populations, but is better suited
since temperatures should become constant in thermal equilibrium within the BZ,
whereas populations show variations. The effective branch-resolved out-of-equilibrium
dynamics throughout all available parts of the BZ are shown in Fig. 39.

Our analysis of the out-of-equilibrium dynamics focuses on the first few picosec-
onds due to the following reasons: i) Multicollinearity is reduced in the early out-of-
equilibrium dynamics, since only strongly coupled branches are contributing to the
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Figure 39: Temperature evolution of effective phonon branches within the first BZ. Binned
branch indices are given on the left. Average, minimum and maximum temperature of every
snapshot are given in the inset. The dashed line indicates the first (outer) and second (inner)
zone as used in Sec. 9.2. Colour codes are different for every effective branch to gain a more
detailed perspective.
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diffuse signal. Thus signals of individual branch contributions can be better distin-
guished, in contrast to the equilibrium state where all active branches generate diffuse
scattering signals. ii) The constant OPSF approximation, that uses the OPSF at the
initial temperature of the measurement (T1 = 300 K) for all pump-probe delays, is
more valid if the lattice temperature is closer to the initial temperature.
Before starting the discussion of branch-resolved results, we have to keep in mind two
things. First, a small region around K showed the highest multicollinearity with the
peak at the direct K point (see Sec. 10.2). The diffuse scattering signals around K gen-
erated by the branches cannot be distinguished well. As a consequence, solutions show
a strong shift of population changes to one branch, mainly indicated by singularities in
phonon temperatures. Second, high energy branch temperatures are more sensitive to
deviations due to their logarithmic dependence on phonon population changes. Thus,
the strength of temperature changes is expected to show more deviations for the two
effective high energy branches than for the effective low energy branches.
The interpretation of the fundamental processes observed is analogous to those in the
elastic (Sec. 8) and inelastic analyses (Sec. 9.2). The areas around Γ are excluded
due to the strong overlap with Bragg peak intensities. Hot electrons relax back to the
Fermi level through the emission of phonons (electron-phonon coupling), leading to an
increase in phonon populations and thus an increase of effective lattice temperature.
As the first out-of-equilibrium phonon populations are generated, phonon relaxation
starts in parallel restoring the BE-distribution via phonon-phonon scattering (phonon-
phonon coupling). EPC is expected to be the dominating process generating phonons
in the first few picoseconds. PPC is expected to generate phonons on longer timescales
up to 20 ps, until the lattice reaches an elevated thermal equilibrium at an elevated
temperature.
For the sake of clarity, we discuss the temperature evolution of each effective branch
separately.
(I): We start with the first effective branch, consisting of all three acoustic branches.
The hotspots at the K-point, visible in all snapshots, are attributed to multicollinearity.
In comparison to other branches, it appears that the least squares solver shifted the
K-phonon populations of the other effective branches to the first effective branch. In
the following discussion, the K-point is interpreted as if it would have the temperature
of its surrounding areas.
The overall dynamics of the first effective branch can be described as continuously
rising with pump-probe delay, as indicated by the average temperatures. Most areas
reached their maximum temperature at 20 ps and do not show a strong overshooting as
expected for strong EPC. Thus temperature changes of this effective branch are mainly
attributed to PPC. This interpretation is also underpinned by the relatively even heat-
ing of the first and second zones in the BZ. As non-equilibrium phonon scattering to
acoustic branches is less restricted by energy and momentum conservation rules, they
have more free phase space, resulting in an even distribution of phonons in ~k-space.
The first zone shows a good agreement with the expected temperature change of 490 K.
The strongest deviations are observed in the highly multicollinear areas around K. The
second zone around Γ underestimates the temperature changes by up to 100 K, as a
possible result of an overlap of diffuse intensity with Bragg peak tails.
In conclusion, the phonon dynamics of the first effective branch indicates that the
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phonon dynamics of the three acoustic branches are driven by PPC in the available
parts of the BZ. Strong heating of very localized areas, as expected for strong EPC,
was not observed. The continuously rising temperatures are in a good agreement with
recent ab initio studies of the lattice dynamics of monolayer MoS2 [52].

(II): The second effective branch, consisting of the three lowest optical branches,
shows a strong rise of temperatures in the first outer zone within the first 2 ps. The
maximum temperatures at the K-M line reach 850 K, far above the elevated equilibrium
temperature. Strongest coupling is retrieved around K and a slightly weaker coupling
around M. Those areas are much larger than those affected by multicollinearity, indi-
cating that the temperatures arise from the diffuse signal. The rise is followed by a
decay of temperatures in the first zone, reaching ≈ 500 K at 20 ps. The strong rise of
temperatures in the first outer zone indicates strong EPC, followed by a thermalization
through PPC for larger pump-probe delays. The EPC is strongest at the K-M line and
gets weaker for areas closer to Γ. The temperature within the second inner zone shows
a continuously rising evolution, reaching its maximum at 20 ps. The temperatures ob-
tained in both zones at 20 ps show rather constant values around 480 K, indicating that
a new thermal equilibrium is reached. The largest deviations are found at the highly
multicollinear areas around K.
As the second effective branch consists of the lowest energy optical branches, it is quite
interesting that such low-energy branches couple strongly to the electrons. A coupling
to the high energy optical branches is more efficient and likely, since these phonons
carry more energy. [12, 93, 94]. Due to the binning, it is not possible to distinguish
which of the branches (4,5, or 6) contributes most. A comparison to the phonon dy-
namics obtained by first-principle calculations for monolayer MoS2 [52] shows a good
agreement with our results. The strong coupling of the two highest energy branches
(5 and 6) in the low energy phonon band at K-M could explain the signals in the
experiments. Both branches 5 and 6 are degenerated. The results of the elastic scat-
tering analysis (Sec. 8) predicted a strongly coupled low-energy branch, due to the
larger amplitude of the EPC signal (fast process) compared to the PPC signal (slow
process). A possible explanation of that effect could be found in the large occupation
of branches 5 and 6 in the non-equilibrium state of the lattice, since elastic scattering
signal amplitudes depend on the phonon frequencies via 1

w
. In comparison, first prin-

ciple calculations [52] predicted large non-equilibrium occupations around K, M and Γ
for monolayers in the same branches, that would have a similar effect on elastic signals.

(III): We continue the analysis with the third effective branch, consisting of the
four middle branches of the high energy phonon band. Branches 7-10 are excluded due
to the inactivity of their OPC in the plane probed by the experiment, as seen in Fig.
8. The first outer zone exhibits an unusual behaviour in its temperature evolution.
Within the first 2 ps, rising temperatures around M are observed, indicating strong
EPC in those areas. Instead of a subsequent decay, however, temperatures continue to
rise, covering most of the first zone except K, before they decay at 20 ps. Areas around
K remain almost at the initial temperature for all snapshots. These extreme values are
attributed to multicollinearity, as the shape of highly multicollinear areas are identical
to those at K (Fig. 32).
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The temperatures of the second zone continuously rise, until they reach their highest
values at 20 ps. Temperatures of both zones are quite constant, but do not match the
expected elevated temperature. With ≈ 700 K they are also clearly higher than the
other effective branches.
A clear and consistent description of the phonon dynamics of the third effective branch
failed. The results also show no agreement with the previous theory study on mono-
layer MoS2 [52]. There are two possible effects causing strong temperature deviations.
Temperatures of high energy branches are much more sensitive to deviations of phonon
populations. Thus, shifts of phonon populations induced by multicollinearity can result
in larger temperature shifts. The first two effective branches are slightly underestimat-
ing the temperature changes. It is possible that the populations of these branches have
been shifted to the high energy branches. Multi-phonon scattering (see Sec. 10.4.1)
results in an additional increase of diffuse scattering intensity with no specific shape,
in contrast to the OPCs. In a good approximation multi-phonon scattering generates
a diffuse background covering all parts of the BZ. It is possible that the additional
intensity changes generated by multi-phonon scattering are attributed to the branches
which match their pattern best. As a result, these branches would be hotter in equi-
librium than the rest.

(IV): The last effective branch, consisting of the four highest energy branches, shows
the highest temperatures observed in the system. Effects of multicollinearity, sensitiv-
ity and multi-phonon scattering are expected to have a large impact on the absolute
temperatures. The overall dynamics observed are consistent with the elastic timetraces
(Fig. 24) and dynamics observed for the effective branches I and II. The first and sec-
ond zones both exhibit a rise of temperatures within the first few picoseconds, followed
by a decay, reaching their lowest values at 20 ps.
The rise of temperatures at 2 ps indicates a strong coupling in most parts of the avail-
able BZ, reaching values up to 2500 K. A weaker EPC at the BZ edges compared
to other regions is indicated by the few hundred degrees colder temperatures. It is
obvious that the shape of colder temperatures is equivalent to the strongly-coupled
areas in the second effective branch. This is very likely the result of multicollinearity
between the branches. The lines at the M-Γ line are a result of double counting in the
DFT calculations, due to rotational averaging, and only play a role in areas with low
sensitivity.
The retrieved temperatures at 20 ps underpin the instability of the results. Regions at
K show temperatures of ≈ 1000 K, whereas all other regions show 300 K, indicating no
changes. These areas are equivalent to areas with very low sensitivity (Sec. 10.3). As
such high temperatures cannot be explained by population shifts due to multicollinear-
ity, they are tentatively attributed to multi-phonon effects covered by the branch. A
quick comparison of phonon populations around K shows, that the population changes
of the low energy branches would only result in ≈ 250 K temperature changes in the
high energy branches, if all their population was transferred to them.

In conclusion, the phonon population dynamics of the four effective branches have
been extracted using the branch-resolved approach first described in Ref. [20]. The
phonon population dynamics were analyzed in the equivalent picture of effective tem-
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peratures within a wide range of the BZ. The dynamics extracted for the effective low
energy branches I and II showed consistent results with our own analysis and a good
agreement of EPC and PPC with recent studies [52]. The results for the effective
high energy branches III and IV exhibit overestimated temperatures and partially in-
consistent dynamics. The observed deviations are mainly attributed to multi-phonon
scattering, neglected here, as well as to the low sensitivity of our measurement to high
energy phonon branches.

10.6 Residuals

The residuals ∆I −F ·∆n obtained by the non-negative least square optimization are
used as the main parameters to determine the accuracy of the solution ∆nj(~k, t). From
solving the equation system (Eq. 38) we obtain residuals for every scattering vector
~q, branch j and pump probe delay ∆t. A more condensed view on the residuals is
achieved by averaging over branches and pump-probe delays, which is shown in figure
40.
The total mean magnitude of residuals is −3× 10−11 indicating a good match between
the model and data. The maximum value of −5× 10−9 is located in the hot spot visible
in all BZs, which are closest to the transmitted electron beam. The averaged mean
residual is 0.02 % of the resulting population changes, indicating a high accuracy of
the NNLS algorithm. Deviation in the physics are thus accounted to the equation
system itself and not to the solving procedure. Most deviations between the model
and experimental data are visible in BZs close or very distant from the transmitted
beam. Lines visible in the BZ are accounted to an overlap in the OPC calculations by
the theoretician.



10.6 Residuals 90

Figure 40: Delays and branch averaged residuals ∆I− F ·∆n of every Brillouin zone accessible
by the experiment. Miller indices of the corresponding Bragg peaks and BZ indices are shown
in the excluded center of every BZ.
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11 Conclusion

In this thesis we investigated the structural dynamics of bulk MoS2 after photoexcita-
tion with momentum and partial branch resolution by combining femtosecond electron
diffraction (FED) with first principle calculations.

As a first step, we implemented a streamlined analysis for the elastic and diffuse
scattering data of FED experiments. Elastic scattering signals provide the momen-
tum integrated transient phonon dynamics after photoexcitation via the Debye-Waller
effect, whereas diffuse scattering signals provide a momentum-resolved view of the
transient phonon dynamics within the first Brillouin zone. The elastic and compara-
bly delicate diffuse scattering signals of MoS2 were successfully extracted by applying
various corrections and averaging steps. As a central correction step, we applied a
distortion correction on the diffraction patterns to account for the strong distortions as
they occur in FED experiments, compared to those of standard TEMs. The correction
allows an exact extraction of elastic and diffuse scattering signals in reciprocal space.

As a second step, we implemented an approach first presented in Ref. [20] that
combines ab-initio calculations with femtosecond electron diffuse scattering signals to
achieve branch resolution in addition to time and momentum resolution. For this,
experimental and simulated diffuse diffraction patterns were combined in an equation
system. By testing the approach on graphene and MoS2, we found that multicollinear-
ity of the equation system and multi-phonon scattering are major factors which limit
the quality and trustworthiness of results. We showed that by binning the phonon
branches into 4 effective branches of similar energies, i.e. by simplifying the physical
model, multicollinearity could be significantly reduced. With the binned branches, the
results of MoS2 showed a good agreement between the two low-energy branch dynam-
ics and a recent ab initio study, but inconsistencies remained for the two high-energy
branches. We tentatively attribute these inconsistencies to the low sensitivity of the
experiment to the high-energy branches.
Multicollinearity of the equation system is less important if only a few branches exhibit
strong inelastic signals. This is typically the case in highly non-equilibrium conditions
and, for certain materials, this can be achieved by carefully chosing the pumping condi-
tions. For instance, in the case of MoS2, the possible electron-phonon scattering path-
ways could be reduced by setting the excitation wavelength right above the indirect or
direct band gap transitions. Therefore, the approach of Ref. [20] could be well suited
for describing the non-equilibrium states of a material with carefully selected excitation
conditions. Nevertheless, our findings indicate that a complete branch-resolution (en-
ergy) over the entire structural dynamics timescales and for similar or more complex
materials than MoS2 remains elusive. In the future, it could be interesting to explore
machine-learning approaches to retrieve branch-resolution. However, it is likely that
algorithms based on the recognition of OPC patterns might similarly struggle to dis-
tinguish contributions from branches featuring similar OPC signatures.
Beyond its methodological developments, this thesis also provided physical insights
into the lattice dynamics of MoS2. We extracted the elastic scattering signals at non-
equilibrium and equilibrium timescales. In particular, the experiments have revealed
the non-thermal character of the lattice following photo-excitation. We found that the
lattice dynamics can be described by a fast time constant of ∼ 0.5 ps, attributed to
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electron-phonon coupling (EPC), and a slow time constant of ∼ 3 ps, attributed to
phonon-phonon coupling (PPC). Interestingly, the comparison of the EPC and PPC
signals indicates a strong EPC to low-frequency modes. We attribute this to the shape
of the electronic band structure of MoS2 (Fig. 5). Each populated valley provides
many decay pathes for intravalley transitions in the conduction and valence bands.
Such transitions generate low-wavevector phonons around Γ, as shown in Fig. 41 for
the case of monolayer MoS2. Moreover, we could partially confirm the results of the
recent first principle calculations presented in Ref. [52], which predicted a strong cou-
pling to all modes around Γ (see Fig. 42) with similar excitation conditions.

Figure 41: a) Brillouin zone of monolayer MoS2 with high-symmetry points labeled. b) and
c) Illustration of phonon- assisted electronic transitions (marked by arrows) in the valence
and conduction bands, after excitation of the Q- and K-valley of monolayer MoS2. The color
coding indicates the valence and conduction band energies. Figure reproduced from Ref. [52].

Our analysis of the diffuse scattering signals within the available parts of the BZ
revealed a momentum-resolved view on the phonon dynamics in MoS2. We observed
strong EPC around the BZ edges given by an area within the K/2-K-M-M/2 line, as
qualitatively indicated by the shaded areas in Fig. 42 (b). The phonons generated in
this area arise from intervalley transitions within the valence and conduction bands.
Such processes emit phonons within a large variety of wavevectors (e.g. K-, M- and
Q-phonons) as illustrated in Figure 41. The free decay pathes for these transitions are
further enhanced due to the degenerated valleys introduced by the six-fold symmetry of
MoS2. The generation of smaller wavevector phonons (e.g. K/2-phonons) is attributed
to our excitation conditions, which enable broadband intervalley transitions between
the valley (hill) slopes in the conduction band (valence band). These results are also
in very good agreement with the recent first principle study (Ref. [52], Fig. 42 a)) and
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Figure 42: a) Transient effective phonon temperatures along the Γ-K-M-Γ line for monolayer
MoS2, 0.5 ps after photoexcitation, obtained by first principle calculations. b) Illustration
of the momentum-resolved view on the EPC strength. Shaded red areas qualitatively (color
scales and dimensions are not matched with the data) indicate EPC strength from the inelastic
analysis. Black areas mark inaccessible parts. Dotted and dashed ovals indicate the strong
EPC areas obtained by the elastic and branch-resolved inelastic analysis, respectively. Fig.
a) used from Ref. [52].
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underpin the capabilities of FEDS to determine momentum-dependent signals which
reflect the EPC and PPC across the BZ. On the outlook, it would be interesting to
compare first principle calculations and experiments with similar excitation conditions,
to achieve a similar picture as shown in figure 41.
Finally, we applied the branch-resolved approach on bulk MoS2 to achieve an additional
energy- or branch-resolution of the phonon dynamics. We showed that due to the
previously described reasons, the analysis is quite delicate and heavily depends on
the material structure. For MoS2 we extracted consistent results for the low-energy
branches of the phonon system described by two effective branches. On the outlook,
we could extend the analysis to explicitly retrieve the coupling constants by using
the non-thermal lattice model [12]. The results suggest dominating PPC in the three
acoustic branches and strong EPC signals around the BZ zone edges (indicated by the
dashed oval in Fig. 42). These findings also partially confirm the results of the recent
first-principle calculations in Ref. [52], showing that DFPT can be used together with
FEDS to gain a more detailed view on EPC and PPC.
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A Phonon branch polarization and energy of MoS2

Figure 43: Mean polarization of all phonon branches of MoS2 along the x,y and z-axis
respectively.
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Figure 44: Phonon energies of MoS2 of every branch in the first Brillouin zone.
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B Results of the residual fit

Figure 45: Complete parameter set of the fitted residuals of MoS2 from section 8.3 with
coefficient of determination. An error of zero indicates fixed parameters.
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C Standard deviation of inelastic scattering fit pa-

rameters

Figure 46: Complete parameter set of the fitted residuals of MoS2 from section 8.3 with
coefficient of determination. An error of zero indicates fixed parameters.
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D Complete phonon temperatures of every branch

Figure 47: Final temperature T2 of every phonon branch of MoS2 obtained by the self-
consistency test, using all phonon branches.
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