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Abstract. We study the accessory parameter problem for four-punctured spheres from the
point of view of modular forms. The value of the accessory parameter giving the uniformiza-
tion is characterized as the unique zero of a system of equations. This gives an effective
method to compute the uniformizing differential equation. As an application, we compute
numerically and study the local expansion of the real-analytic function associating to a four-
punctured sphere the value of its uniformizing parameter, and make some observations on
its coefficients.
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1 Introduction

Classically, the uniformization of a genus g Riemann surface X with n punctures, 2g−2+n > 0,
was related to second-order linear differential equations depending on 3g − 3 + n parameters
called accessory parameters. Poincaré [17] conjectured the existence of a unique choice of the ac-
cessory parameters with the following property: the ratio of linearly independent solutions of the
associated differential equation lifts to a biholomorphism between the universal covering X̃ of X
and the upper half-plane H. This identification would give an explicit universal covering map
for X. Despite many efforts, nobody could determine in general this choice of parameters, and
the uniformization theorem was eventually proved with different techniques. The determination
of the special choice of parameters is known as the accessory parameter problem.

Even if other approaches have proved to be better suited for the classical problem of uni-
formization, the accessory parameter problem is still of interest both in mathematics and physics.
J. Thompson [21] discussed the algebraicity of accessory parameters of spheres with algebraic
punctures in relation with Belyi’s theorem; D. Chudnovsky and G. Chudnovsky [7] computed
numerically the accessory parameter for genus one curves with one puncture in their numerical
investigations on the Grothendiek–Katz’s p-curvature conjecture; L. Takhtajan and P. Zograf [23]
related the accessory parameters to the Weil–Petersson metric on the Teichmüller space of n-
punctured spheres, their discoveries being stimulated by a conjecture of Polyakov’s in string
theory [18]. Because of the relation with Liouville theory, the computation of the accessory
parameters is an active field of research in mathematical physics (see [20] for a general intro-
duction). Finally, a relation between local deformations and extensions of symmetric tensor
representations, via accessory parameters, has been investigated in [4].

In this paper we are concerned with the simplest case of the accessory parameter problem,
that of a four-punctured sphere Xα := P1∖

{
∞, 1, 0, α−1

}
where α ∈ C∖{0, 1}. The associated

family of differential equations is of the form

P (t)
d2y(t)

dt2
+ P ′(t)

dy(t)

dt
+ (t− ρ)y(t) = 0, P (t) := t(t− 1)

(
t− α−1

)
, (1.1)
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where ρ ∈ C is the accessory parameter. We call the unique choice ρF of the accessory parameter
inducing the identification X̃α → H the Fuchsian value.

Apart from very special cases, e.g., when the differential equation (1.1) is a Picard–Fuchs
differential equation [5, 22], it is still not known how to determine the Fuchsian parameter even
in this simplest case. Several papers in the literature deal with the numerical computation of the
Fuchsian parameter for four-punctured spheres or, equivalently, elliptic curves with one puncture.
Other to the above mentioned work of Chudnovsky and Chudnovsky, one should mention the
work of L. Keen, H. Rauch, and A. Vasquez [13], and J. Hoffman’s Ph.D. Thesis [12]. These
works are based on the observation that the monodromy group of the uniformizing differential
equation, which is the Deck group of the universal covering H → X, is a discrete subgroup
of SL2(R). To require the monodromy of (1.1) to have real coefficients imposes constraints on
the choice of the accessory parameters that can be used to numerically compute them. However,
since (1.1) can have a monodromy group with real coefficients without being the uniformizing
differential equation (in fact, this happens for a discrete set of accessory parameters), a further
analysis to determine the Fuchsian one is needed. A new idea, based on the theory of Painlevé VI
equation and isomonodromy deformations, leading to the numerical computation of the Fuchsian
parameter has recently appeared in [1].

In this note a different approach, based on the modularity of the solution of the uniformizing
differential equation, is described. As an application, we get an efficient way to compute numer-
ically the value of the Fuchsian parameter of a given four-punctured sphere Xα in terms of α.
The main result can be stated as follows

Theorem (Theorem 4.4). The Fuchsian value for the punctured sphere Xα is the unique zero
of a system of infinitely many equations constructed from the differential equation (1.1).

What makes the accessory parameter problem hard is that the dependence of the uniformiza-
tion data (monodromy, covering map) on the location of the punctures is quite obscure. Theo-
rem 4.4 shows that in the case of four-punctured spheres Xα it is possible to construct a system
of equations solved by the Fuchsian parameter using only basic properties of Xα, namely the
existence of non-trivial automorphisms. Nehari [16], using different ideas, also characterized
the Fuchsian parameter as a zero of a system of infinitely many equations in the case all the
punctures lie on the real line.

We describe the main ideas of the proof of Theorem 4.4.

1. For every choice of α ∈ C∖ {0, 1}, the punctured sphere Xα ≃ H/Γα has a Klein group of
automorphisms permuting the punctures. The fixed points of these automorphisms are in
correspondence with cusp representatives of the uniformizing group Γα. It turns out that
a set of generators of Γα can be described purely in terms of these cusp representatives and
then, via the covering map, in terms of fixed points of Xα. This is discussed in Section 3.
From the point of view of the differential equation (1.1) we have the following description.
If ρ = ρF is the Fuchsian parameter, the ratio ηρF of independent solutions is an inverse
of the covering map; the images of the fixed points of Xα via ηρF can be used to construct
the cusp representatives of Γα and finally the uniformizing group itself. It follows that the
group constructed in this way is the monodromy group of (1.1) for ρ = ρF.

2. For a generic choice of the accessory parameter ρ, the ratio ηρ of independent solutions
of (1.1) is not an injective map. However, there is an open set B of parameters such that ηρ
is injective if ρ ∈ B (such ηρ gives a quasi-Fuchsian uniformization of Xα). Of course
ρF ∈ B. The idea is to mimic the construction of the previous paragraph for the accessory
parameters in B. More precisely, we attach a Fuchsian group Γ(ρ) to every ρ in an open
subset of B by defining real numbers c1(ρ), c2(ρ) (“potential” cusp representatives) from
the images of the fixed points of Xα via ηρ. The group Γ(ρ) is constructed from c1(ρ), c2(ρ)
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by using Poincaré’s theorem. This is discussed in Section 4. We remark that contrary to
the case ρ = ρF, the group Γ(ρ) is not the monodromy group of (1.1) which, for ρF ̸= ρ ∈ B
is not a Fuchsian group.

3. When ρ = ρF, a holomorphic solution of (1.1) lifts to a holomorphic modular form f(τ) for
the uniformizing group Γα; its q-expansion is easily computed from the solutions of (1.1).
Similarly, for any ρ we can construct a Q-expansion fρ(Q) whose coefficients depend on ρ.
For ρ in a subset of B we can test the modularity of fρ(Q) with respect to the Fuchsian
group Γ(ρ) constructed in the previous step. It turns out that fρ(Q) is modular for Γ(ρ)
if and only if ρ = ρF (Section 4.3). The equations describing the modular transformations
of fρ(Q) with respect to the generators of Γ(ρ) give the system in Theorem 4.4.

As mentioned above, this construction gives an efficient method to compute numerically the
Fuchsian parameter by approximating a solution of the system of equations in Theorem 4.4.
Section 5 presents an application of this method to the study of the analytic properties of the
Fuchsian accessory parameter function. This map associates to the four-punctured sphere Xα

its Fuchsian value ρF(Xα); we can see this as a map ρF : C ∖ {0, 1} → C. It is known that this
map is real-analytic and not holomorphic. By using the method presented above we computed
the coefficients of its local expansion for different values of α. An interesting phenomenon we
can observe from the numerical data (tables at page 15) concerns the size of the coefficients of
this expansion. It appears that the holomorphic part of the Fuchsian parameter function ρF is
much larger than the rest. This suggests that the function ρF may have nice analytic properties,
for instance be a quasiregular map.

2 Uniformization, modular forms, and differential equations

2.1 Uniformization and differential equations

We recall the classical theory in the case of hyperbolic Riemann surfaces of genus zero. A good
reference for the general theory is the book [8]. Let X := P1∖{α1, α2, . . . , αn−2, αn−1 = 0, αn =
∞}, where αi ∈ C∖{0} and αi ̸= αj if i ̸= j, be an n-punctured sphere. Consider a second-order
linear differential equation on X with holomorphic coefficients:

d2y(t)

dt2
+ p(t)

dy(t)

dt
+ q(t)y(t) = 0.

Let y1(t) and y2(t) be linearly independent solutions. The ratio η(t) := y2(t)/y1(t) can be analyt-
ically continued to the Riemann surface X and induces a non-constant function η̃(t) : X̃ → C on
the universal covering X̃ of X. It is easy to verify that η̃ is a local biholomorphism. Conversely,
every local biholomorphism X̃ → C arises in this way. In particular, every global biholomor-
phism between X̃ and a subdomain of C, if any, arises from the ratio of linearly independent
solutions of differential equations of the form [8, 9]

d2y(t)

dt2
+

1

4

n−1∑
j=1

1

(t− αj)2
+

1

2

n−1∑
j=1

mj

(t− αj)

 y(t) = 0, (2.1)

where m0, . . . ,mn−1 are complex parameters, called accessory parameters, subject to the follow-
ing relations1

n−1∑
j=1

mj = 0,
n−1∑
j=1

αjmj = 1− n

2
. (2.2)

1In the literature often appears another parameter mn associated to the puncture at ∞; it is defined from the
asymptotic expansion of the rational function in (2.1) as t → ∞. It turns out that mn can be expressed in terms
of m1, . . . ,mn−1 and of the punctures α1, . . . , αn−1 as mn =

∑n−1
j=1 αj(1 +mjαj).
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More precisely, for certain choices of the accessory parameters m1, . . . ,mn−1, the ratio of linearly
independent solutions induce a biholomorphic map η̃ : X̃ → η̃

(
X̃
)
⊂ C.

The name “accessory parameters” is due to the fact that the choice of m1, . . . ,mn−1 does not
affect the local behaviour of solutions of (2.1) near the singular points (but of course influences
the global behaviour of the solutions).

Nowadays it is well known that the space of accessory parameters inducing a biholomorphism
is a non-empty open connected set B in Cn−3 called the Bers slice [3]. The image of the
map η̃ : X̃ → C is in general a quasidisk, i.e., the image of a disk under a quasiconformal
transformation, with a nowhere-smooth boundary of Hausdorff dimension > 1. However, for
a special choice of the accessory parameters the universal covering X̃ is identified, via η̃, with
the upper half-plane H. It is known since Poincaré [17] that this choice is unique; we call the
unique value of the accessory parameters giving the above identification the Fuchsian value, and
the corresponding differential equation the uniformizing differential equation. The monodromy
group of the uniformizing differential equation is the Deck group of transformations of the
covering; it follows that it is conjugated to a discrete subgroup of SL2(R) (but the converse is not
true: there exists infinitely many choices of the accessory parameters such that the monodromy
group is discrete in SL2(R), but the ratio of solutions does not induce a biholomorphic map on
the universal covering [10].)

The accessory parameter problem consists in finding the Fuchsian value for a given punctured
sphere X. This problem turned out to be very hard and only partial or numerical solutions for
spheres with a low number of punctures (in fact, only four punctures) have been found. It is
worth noting that even the existence of the Fuchsian value has never been proved directly, i.e.,
without referring to the uniformization theorem; the only exception is the case of four-punctured
spheres with real punctures, which was solved by V. Smirnov [19].

2.2 Modular forms and differential equations

Let Γ ⊂ SL2(R) be a cofinite discrete group, let t : H/Γ → C be a modular function, and
let f ∈ Mk(Γ) be a modular form of weight k on Γ. If we express locally f as a function of t,
i.e., ϕ(t(τ)) = f(τ), then the function ϕ(t) satisfies a linear differential equation of order k + 1
with algebraic coefficients. Similarly, a k-th root of f , if expressed as a function of t, satisfies
a linear differential equation of order 2 with algebraic coefficients; a local basis of solutions is
given by

{
ϕ(t), ϕ̂(t)

}
where ϕ(t(τ)) = f1/k(τ), ϕ̂(t(τ)) = τf1/k(τ) (see Chapter 5 of the first

part of [6] for details).

Now let Γ be of genus zero and torsion free, and let t be a Hauptmodul, i.e., a modular function
that extends to an isomorphism between the compactification of H/Γ and P1(C). In this setting
the linear differential equation satisfied by f1/k is defined on the punctured sphere t(H/Γ) and
its coefficients are rational functions of t. Since the ratio of the independent solutions ϕ(t), ϕ̂(t)
lifts to the coordinate τ ∈ H, we see that the differential equation satisfied by a k-th root of
(every) f ∈ Mk(Γ) with respect to t is the uniformizing differential equation of t(H/Γ) in the
sense of the previous section. We can then reformulate the accessory parameter problem as
follows.

Proposition 2.1. The Fuchsian value is the unique choice of accessory parameters such that
the holomorphic solution of the associated differential equation lifts to a k-th root of a modular
form f ∈ Mk(Γ) with respect to the monodromy group Γ ⊂ SL2(R).

If the Hauptmodul t is fixed, different choices of f ∈ M∗(Γ) yield different differential equa-
tions; however, the ratio of independent solutions always lift to τ ∈ H, that is, differential
equations associated to different choices of f are projectively equivalent. In particular, the
equation in (2.1) correspond to the choice of the meromorphic modular form f = dt/dτ . A way
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to see this is to describe the coefficients of the differential equation in terms of Rankin–Cohen
brackets: if f ∈ Mk(Γ) and g ∈ Ml(Γ) these are defined as follows

[f, g]1 := kfg′ − lgf ′, [f, g]2 :=
k(k + 1)

2
fg′′ − 2(k + 1)(l + 1)f ′g′ +

l(l + 1)

2
gf ′′,

where ′ = (2πi)−1d/dτ . The brackets [f, g]1 and [f, g]2 are modular forms of weight k + l + 2
and k + l + 4 respectively. If we set g = t′, which is a meromorphic modular form of weight 2,
the quotients

A(t) :=
[f, t′]

kft′2
, B(t) := − [f, f ]2

k2(k + 1)f2t′2

are modular forms of weight zero, so in particular they are rational functions of the Haupt-
modul t. It is easy to verify that the differential equation satisfied by ϕ(t) = f1/k(τ) is given
by d2ϕ(t)/dt2 + A(t)dϕ(t)/dt + B(t)ϕ(t) = 0. In the case also f = t′ a simple computation
reveals that A(t) = 0 and B(t) is the Schwarzian derivative B(t) = {τ, t}/2, where τ ∈ H. We
can then recall the classical identity (see for example the first section of [23])

{τ, t} =
1

2

n−1∑
j=1

1

(t− αj)2
+

n−1∑
j=1

mj

(t− αj)

to conclude that the differential equation satisfied by ϕ(t) =
√
t′ is precisely (2.1).

In Appendix A we compute the differential equation associated to (the square root of) a spe-
cial choice of f ∈ M2(Γ). In the case n = 4 this reduces to the well-known Heun equation.

3 Four-punctured spheres

In this section we show how the generators of a torsion-free Fuchsian group with four cusps and
the automorphisms of the corresponding punctured sphere are related.

Let α ̸= 0, 1 be a complex number and consider the four-punctured sphere Xα := P1 ∖{
∞, 1, 0, α−1

}
. We are going to choose a uniformizing group Γα and a Hauptmodul t for Xα.

A priori they are not uniquely defined: the uniformizing group is determined only up to con-
jugacy in SL2(R), and the composition of a given Hauptmodul with any automorphism of X
still yields a Hauptmodul. In any case, the group Γα is torsion free and has four non-equivalent
cusps; we denote the equivalence classes of cusps by [c1], [c2], [c3], [c4] (later we will fix [c3] = [∞]
an c4 = [0]). The cusps are in bijection, via t, with the punctures of Xα. A picture of a funda-
mental domain for the action of Γα on H in the special case Γ is the congruence subgroup Γ1(5)
is given in Figure 1. The next lemma describes the normalization of Γα and t we choose.

Lemma 3.1. Let Xα = P1 ∖
{
∞, 1, 0, α−1

}
, α ∈ C ∖ {0, 1}. There exists a pair (Γα, t)

with t : H/Γα
∼→ Xα = P1(C) and such that

1) the group Γα has inequivalent cusps [∞], [0] and the stabilizer Γα∞ of ∞ in Γα is generated
by

T =

(
1 1
0 1

)
∈ Γα;

2) the values of t at the inequivalent cusps ∞, 0 are t(∞) = 0 and t(0) = α−1.

These choices uniquely determine Γ and t.
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Figure 1. Fundamental domain of Γ1(5). The cusp representatives are 0, 1/3, 2/5 and ∞.

Proof. Let Γ̂ and t̂ be such that Xα = t̂
(
H/Γ̂

)
. If Γ̂ and t̂ are as in the statement we are done.

If not, compose t̂ with an automorphism ϕ of Xα in such a way that t̂1 := ϕ◦ t̂ maps the cusp ∞
to the puncture 0 (such automorphism of Xα always exists, see the next section). For nonzero
real numbers a, b consider the matrix σ :=

(
a b
0 1/a

)
and define

Γ(a, b) := σΓ̂σ−1, t(τ) := t̂1
(
σ−1τ

)
.

The map t is by construction a Hauptmodul for Γ(a, b); since σ∞ = ∞ and t̂1(∞) = 0 we also
have t(∞) = 0. The conjugation of Γ̂ by σ amounts to determine the coordinate τ on H given
by the uniformizing differential equation up to a linear map τ 7→ aτ + b, where a, b ∈ R. To
fix it uniquely we only need to choose a and b. A simple computation shows that the generator
of Γ(a, b)∞, the stabilizer of ∞ in Γ(a, b), only depends on the choice of a; we can choose a = ā
such that Γ(ā, b)∞ = ⟨T ⟩. Finally, we see that t(0) = t̂1

(
σ−10

)
= t̂1(b), and we can pick any

b̄ ∈ R such that t̂1(b̄) = α−1. Then
(
Γα := Γ(ā, b̄), t

)
is the desired pair. ■

In the following, Γα and t will always be normalized as in the above lemma. In this case, the
Fourier expansion of t at ∞ starts

t = rq + · · · , q = e2πiτ , τ ∈ H, (3.1)

for some r ∈ C∖ {0}.

3.1 Generators of the uniformizing group

The goal of this section is to write a set of parabolic generators of a torsion-free genus zero
Fuchsian group Γ with four cusps only in terms of cusp representatives. By a set of parabolic
generators we mean a set of matrices {M1, . . . ,M4} with Tr2(Mi) = 4 that generate Γ with the
relation

∏4
i=1Mi = Id.

It follows from the existence of non-trivial automorphisms of H/Γ that the cusps of Γ are all
regular or irregular. In the next lemma (and in the rest of the paper) we assume that the cusps
are regular; the case of irregular cusps can be handled analogously.

Lemma 3.2. Let Γ be a torsion free Fuchsian group of genus zero with four cusps. Assume
that T =

(
1 1
0 1

)
∈ Γ, and let 0 < c1 < c2 be representatives of the non-equivalent finite cusps.

Then Γ =
〈
T, S0, Sc1 , Sc2 |Sc2Sc1S0T

−1 = Id
〉
where

S0 =

(
1 0
D0 1

)
, Sc1 =

(
1 + c1Dc1 −c21Dc1

Dc1 1− c1Dc1

)
, Sc2 =

(
1 + c2Dc2 −c22Dc2

Dc2 1− c2Dc2

)
,



Accessory Parameters for Four-Punctured Spheres 7

and the constants D0, Dc1, Dc2 are given by

D0 =
1

c1(1− c2)
, Dc1 =

1

c1(c2 − c1)
, Dc2 =

1

(c2 − c1)(1− c2)
. (3.2)

Proof. It is well known that Γ is generated by the stabilizers of its cusps, and that the stabilizer
of the finite (regular) cusp ci is of the form

Sci =

(
1 + ciDci −c2iDci

Dci 1− ciDci

)
(3.3)

for some positive Dci ∈ R. The only thing to prove are the formulae in (3.2).
The choice of cusp representatives in the statement fixes a fundamental domain F for the ac-

tion of Γ. It is well known that a free generating set for Γ is given by the Möbius transformations
which pairs the boundary geodesics of F . Among these transformations there is one that fixes
one of the finite cusp representatives (see for instance Figure 1, where this cusp representative
is 2/5). In our case, the fixed cusp representative is c2, since we have set 0 < c1 < c2. Call Sc2

the transformation that fixes c2 and pairs the relative boundary geodesics.
The transformation Sc2 also exchanges c1 with its equivalent c′1 > c2. There is a transforma-

tion that exchanges c1 with c′1, and sends 0 to 1; call it P0,c1 . It follows that

Sc1 := S−1
c2 P0,c1

fixes c1. In the same way S0 := P−1
0,c1

T fixes 0. The matrices S∗, ∗ = 0, c1, c2 generate the

stabilizer of the cusp ∗ and satisfy the parabolic relation Sc2Sc1S0T
−1 = Id. It follows that

every S∗, is of the form (3.3) and then one can compute the real numbers D∗, ∗ = 0, c1, c2, by
solving the system given by the parabolic relation(

1 + c2Dc2 −c22Dc2

Dc2 1− c2Dc2

)(
1 + c1Dc1 −c21Dc1

Dc1 1− c1Dc1

)(
1 0
D0 1

)
=

(
1 1
0 1

)
.

The formulae in (3.2) follow after an easy computation. ■

3.2 Automorphisms of four-punctured spheres and cusp representatives

For every choice of α ̸= 0, 1, the surface Xα admits a Klein four-group of automorphisms
Aut0(Xα) generated by any two of the involutions

ϕ0 : t 7→ 1− αt

α(1− t)
, ϕ1 : t 7→ t− 1

αt− 1
, ϕ2 : t 7→ 1

αt
, (3.4)

where ϕ0 = ϕ1 ◦ ϕ2. In general Aut(Xα) = Aut0(Xα), but for exceptional choices of α, the
automorphism group of Xα is larger. If α = −1, 1/2, 2 then Aut(Xα) has order 8; if α =
1/2± i

√
3/2 then Aut(Xα) has order 12. In these exceptional cases, the Fuchsian parameter and

the uniformization of Xα can be easily computed (see [11]).
Let t : H/Γ → Xα be normalized as in Lemma 3.1. Every automorphism ϕ ∈ Aut(Xα)

lifts to an automorphism ϕ̃ of the universal covering H. Every such automorphism ϕ̃ can be
represented by a matrix Wϕ ∈ SL2(R) and belongs to the normalizer N(Γ) of Γ. This, together
with Lemma 3.1, implies that WϕTW

−1
ϕ ∈ Γ. In particular, if ϕ ∈ Aut0(Xα) and Wϕ sends the

cusp [c] to the cusp ∞, the element Sc := WϕTW
−1
ϕ sends the cusp [c] to itself, so it belongs to

the stabilizer Γc. Actually, more is true.

Lemma 3.3. Let Wϕ be an involution of H obtained by lifting ϕ ∈ Aut0(Xα) and such that
Wϕ(c) = ∞ for [c] a finite cusp of Γ. Then the transformation Sc = WϕTW

−1
ϕ generates the

stabilizer Γc of [c] in Γ.
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From Lemma 3.3 and (3.3) it follows that Wϕ is of the form

Wϕ =
√
Dc

c
−1− c2Dc

Dc
1 −c


for some representative c of [c] and some positive constant Dc. In other words, we can describe
every lift Wϕ of ϕ ∈ Aut0(Xα) in terms of the cusp representatives c1, c2 and the positive real
constants D0, Dc1 , Dc2 in (3.2). The transformation Wϕ has a unique fixed point in H given by

τϕ = c+ i/
√

Dc; (3.5)

its image via t is a fixed point of the involution ϕ ∈ Aut0(Xα). The next lemma establish which
fixed points of the automorphisms ϕj ∈ Aut0(Xα), j = 0, 1, 2, are images of the fixed points τj
of Wϕj

. In the next lemma, and in the rest of the paper, we assume that α satisfies∣∣α−1
∣∣≤ 1 and Re

(
α−1

)
, Im

(
α−1

)
≥ 0. (3.6)

One can always reduce to this case via conformal transformations and complex conjugation. The
behavior of the accessory parameters with respect to these transformations is known (see [11]).

Lemma 3.4. Let α−1 be as in (3.6) and let t : H/Γ → Xα be as in Lemma 3.1. Let Wϕj
be

the lifting of ϕj ∈ Aut0(Xα), j = 0, 1, 2. Then the image zj ∈ Xα of the unique fixed point τj
of Wϕj

on H is given, in terms of α, by

z0 =
α−

√
α(α− 1)

α
, z1 =

1 +
√
1− α

α
, z2 =

1√
α
.

Proof. The fixed points of ϕ0 are the solutions of

αt2 − 2αt+ 1 = 0. (3.7)

Since ϕ0(0) = α−1 and t(∞) = 0, t(0) = α−1, the lift Wϕ0 sends the cusp ∞ to 0. It follows
that the fixed point of Wϕ0 on H is τ0 = i/

√
D0. As τ0 lies on the imaginary axis, its image

on Xα belongs to the geodesic (determined by t) joining the punctures t(∞) = 0 and t(0) = α−1.
Looking at the two roots of (3.7) and considering the constraints (3.6) on α−1 it follows that

t(τ0) = z0 = 1−
√

α(α− 1)

α
.

Now consider the involution ϕ1 ∈ Aut0(Xα) defined in (3.4). The fixed points of ϕ1 are α
−1±(√

1− α
)
/α. Since |α| > 1, none of these roots is real; one lies above the real axis and the other

below. The fundamental domain for Γ that we fixed in Lemma 3.2 lies at the left of the boundary
geodesic going from τ = i∞ to τ = 0. This implies that the image, via t, of the fundamental
domain lies above the curve on Xα that joins the punctures 0, α−1. This implies that the root
we have to choose is the one with positive imaginary part. If τ1 = ĉϕ1 + 1/

√
D1 is the fixed

point on H of the lift of ϕ1, we have

t(τ1) = z1 =
1

α
+

√
1− α

α
.

Similar considerations apply to the choice of the fixed points z2 of the third non-trivial
involution of Xα. ■
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4 Finding the Fuchsian value

4.1 “Potential” modular forms

The family of differential equations associated to Xα, determined from the general one in (2.1)
by using the relations (2.2), is given by

d2y(t)

dt2
+

(
P (t)′2 − P (t)P (t)′′

4P (t)2
− t−m0α

−1

2P (t)

)
y(t) = 0, P (t) := t(t− 1)

(
t− α1

)
.

In the following, we will not consider the above differential equation, but the projectively equiv-
alent one

d2y(t)

dt2
+

P ′(t)

P (t)

dy(t)

dt
+

(t− ρ)

P (t)
y(t) = 0, (4.1)

which is known as the Heun equation. The new accessory parameter ρ is related to m0 by m0 =
1+α−2ρ. As it will be clear, our results do not depend on the choice of the differential equation.
We work with the Heun equation because its solutions are better behaved from the modular
point of view; this will be relevant in numerical applications of our main result. It can be shown
in fact that when ρ = ρF is the Fuchsian value, the holomorphic solution lifts to (the square
root of) a weight two modular form with a double zero in the cusp where the Hauptmodul t has
its unique pole (see Appendix A for the details).

The differential equation (4.1) has at every finite singularity a holomorphic solution and
a solution with a logarithmic singularity. In particular, near the regular singular point t = 0
a basis of solutions is given by

yα,ρ(t) =
∑
n≥0

an(α, ρ)t
n = 1 + αρt+

α2

4

(
ρ2 − 2ρ(α+ 1)− α

)
t2 + · · · ,

ŷα,ρ(t) = log(t)yα,ρ(t) +
∑
n≥0

bn(α, ρ)t
n = log(t)yα,ρ(t) + α(−2ρ+ α+ 1)t+ · · · ,

where the coefficients an(α, ρ), bn(α, ρ) are polynomials in ρ of degree n and satisfy the following
linear recursions (Frobenius method)

αn2an−1(ρ)−
(
(α+ 1)

(
n2 + n

)
+ ρ
)
an(ρ) + (n+ 1)2an+1(ρ) = 0,

αn2bn−1(ρ)−
(
(α+ 1)

(
n2 + n

)
+ ρ
)
bn(ρ) + (n+ 1)2bn+1(ρ)

+ 2αnan−1(ρ)− (2n+ 1)(α+ 1)an(ρ) + 2(n+ 1)an+1(ρ) = 0,

with initial data an = 0 if n < 0, a0 = 1 and bn = 0 if n ≤ 0.

The relevant function for the uniformization of Xα is the ratio of the two solutions yρ, ŷρ.
However, due to the logarithmic term, using power series it is more appropriate to work with
the exponential of this ratio

Qα,ρ(t) := exp(ŷα,ρ(t)/yα,ρ(t)) =
∑
n≥1

Qn(α, ρ)t
n = t+ α(−2ρ+ α+ 1)t2 + · · · . (4.2)

The function Qα,ρ(t) is a local biholomorphism as a function of t; inverting the series (4.2) we
find the Q-expansion of its local inverse tα,ρ(Q) around Q = 0:

tα,ρ(Q) =
∑
n≥1

tn(α, ρ)Q
n = Q− α(−2ρ+ α+ 1)Q2 + · · · . (4.3)
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Finally, substituting the above series tα,ρ(Q) into the holomorphic solution yα,ρ(t), we get a new
power series in Q:

fα,ρ(Q) := yα,ρ(tα,ρ(Q)) =
∑
n≥0

fn(α, ρ)Q
n

= 1 + αρQ+
α2

4

(
9ρ2 − 2ρ(α+ 1)− α

)
Q2 + · · · . (4.4)

When the accessory parameter specializes to the Fuchsian value ρF the ratio ŷα,ρF(t)/yα,ρF(t)
gives a coordinate on the universal covering H of Xα. It follows from (4.2) that Qα,ρF(t) is a local
parameter at the cusp ∞ and that tα,ρF(Q) is the local expansion of the Hauptmodul t : H → Xα

in the parameter Q. A comparison between the expressions (4.3) and (3.1) gives

Q = rq, where q = e2πiτ , τ ∈ H, (4.5)

for some non-zero r ∈ C. It follows that the Q-expansions (4.3), (4.4) of tρF(Q) and fρF(Q) can
be turned into q-expansions, which eventually make them holomorphic functions on H:

t(τ) := tα,ρF(rq) =
∑
n≥1

t̂nq
n, t̂n = tn(α, ρF)r

n,

f(τ) := fα,ρF(rq) =
∑
n≥0

f̂nq
n, f̂n = fn(α, ρF)r

n.

From the discussion following (4.1) we conclude that f2 is a weight two modular form with
respect to the uniformizing group of Xα. On the contrary, the expansions tα,ρ(Q) and fα,ρ(Q)
are “potential” modular forms in the sense that they extends to holomorphic functions on H
with modular properties only for the correct value ρF of ρ. In the following we see them as
functions depending on the parameter ρ.

4.2 “Potential” cusp representatives

Consider a four-punctured sphere Xα where α−1 is as in (3.6) and let zj , j = 0, 1, 2 be the fixed
points of the automorphisms of Xα specified in Lemma 3.4. We are going to consider a subset P
of the set of accessory parameters with a special property.

Definition 4.1. For every ρ consider the power series tα,ρ(Q) defined in (4.3) and let Dρ denote
its disk of convergence centered in Q = 0. We say that ρ ∈ P if, for every j = 0, 1, 2, there
exist Qj ∈ Dρ such that tα,ρ(Qj) = zj .

This condition is not satisfied by most accessory parameters ρ, but it is certainly satisfied
by the Fuchsian parameter ρF and, consequently, by an open subset of the set B of parameters
realizing a quasifuchsian uniformization of Xα. For ρ ∈ P and for j = 0, 1, 2 the function

1

tα,ρ(Q)− zj
=
∑
n≥0

Tj,n(ρ)Q
n, j = 0, 1, 2,

has a simple pole in Qj and is holomorphic in a punctured domain containing Qj . It follows
that the limits

Qj(ρ) := lim
n→∞

Tj,n(ρ)

Tj,n+1(ρ)
, j = 0, 1, 2,

exist for every fixed value of ρ ∈ P and in fact define complex-valued functions of ρ. Finally,
define the following real-valued functions of ρ ∈ P

cj(ρ) := Re

(
1

2πi
log

(
Qj(ρ)

Q0(ρ)

))
, j = 0, 1, 2,
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where log(z) := log |z|+iArg(z) and Arg(z) ∈ (−π, π]. The basic properties of the functions cj(ρ)
are given in the following lemma.

Lemma 4.2.

1. c0(ρ) = 0, and cj(ρ) ∈ (−1/2, 1/2] for every ρ ∈ P.

2. For every ρ ∈ P ci(ρ) ̸= cj(ρ) if i ̸= j.

In the next fundamental proposition we attach a Fuchsian group to every differential equa-
tion (4.1) with ρ ∈ P. We remark that the Fuchsian group Γ(ρ) attached to ρ ∈ P is in general
not the monodromy group of the associated differential equation, which is a Kleinian non Fuch-
sian group, but a group constructed by considering the automorphisms of the four-punctured
sphere. The group Γ(ρ) is the monodromy group only when ρ = ρF is the Fuchsian parameter
(point 3 of the proposition).

Proposition 4.3.

1. For every ρ ∈ P there exist a unique torsion-free Fuchsian group Γ(ρ) of genus zero with
four cusps and nonequivalent cusp representatives 0, c1(ρ), c2(ρ), ∞.

2. For every fixed ρ ∈ P let x0, x1, x2 be real numbers such that

{x0, x1, x2} = {0, c1(ρ), c2(ρ)} and x0 < x1 < x2.

Define, for j = 0, 1, 2,

Sj = Sj(ρ) :=

(
1 + xjAj −x2jAj

Aj 1− xjAj

)
,

where Aj = Aj(ρ) := (xj − xj−1)
−1(xj+1 − xj)

−1, and x−1 := x2 − 1, x3 := x0 + 1. Then

Γ(ρ) = ⟨T, S0(ρ), S1(ρ), S2(ρ)⟩ and S2S1S0T
−1 = 1.

3. When ρ = ρF is the Fuchsian value, the group Γ(ρF) is the uniformizing group of Xα.

Proof. Consider three real numbers x0, x1, x2 ∈ (−1/2, 1/2] such that x0 < x1 < x2. We
shall associate to the triple (x0, x1, x2) a torsion-free Fuchsian group with four cusps whose
representatives are x0, x1, x2 and ∞ by using Poincaré’s theorem.

Let x′1 := x2+x1(x2−1)−x0x1

x2−x0
. Using the properties −1/2 < xj ≤ 1/2 and x0 < x1 < x2, it

is easy to verify that x2 < x′1 < x0 + 1. Consider H as a model of the hyperbolic plane, and
let F ⊂ H be the hyperbolic geodesic polygon with vertices {x0, x1, x2, x′1, x0 +1,∞}. A simple
calculation shows that the set of transformations G :=

{
T, S2, S2S

−1
1

}
is a side-pairing for the

geodesic boundary of F and S2S1S0T
−1 = 1. We can conclude by Poincaré’s theorem (see [2])

that the group generated by the transformations in G is a Fuchsian group of genus zero with no
torsion and four cusps and with fundamental domain F . The first two points of the proposition
follow by choosing xj = xj(ρ) as in the statement. We denote by Γ(ρ) the Fuchsian group
obtained in this way.

We prove point 3. When ρ = ρF we know by (4.5) that Q = re2πiτ for some non-zero r ∈ C.
It follows that Qj = re2πiτj , j = 0, 1, 2, where τj is the fixed point in H of the lifting of the
automorphism ϕj of Xα (see Section 3.2). Using the description of τj in (3.5) we see that

log(Qj/Q0)/(2πi) = τj − τ0 = cj + i
(
1/
√

Dj − 1/
√
D0

)
, j = 1, 2,

where c1, c2 are inequivalent cusps of the uniformizing group of Xα. Since c0(ρF) = 0 and
cj(ρF) = cj , j = 1, 2, we conclude that the group Γ(ρF) constructed in point 2 is the uniformizing
group of Xα. ■
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Similarly to the “potential” modular forms of Section 4.1, the functions cj(ρ) are cusps of
the uniformizing group of Xα for the value ρF of the accessory parameter. For this reason,
we call the cj(ρ) “potential” cusp representatives, even though they are actually cusps for the
group Γ(ρ) for every ρ ∈ P.

4.3 Finding the Fuchsian value

In the previous section we constructed a Fuchsian group Γ(ρ) from the differential equation (4.1)
attached to the four-punctured sphere Xα if ρ ∈ P. When ρ = ρF the group Γ(ρF) is the
uniformizing group of Xα and the function tα,ρF(rq) obtained by inverting the exponential of
the ratio of independent solutions of (4.1) is a modular function with respect to Γ(ρF).

The idea is to mimic this situation in the case ρ ∈ P in order to check whether ρ = ρF by
checking the modularity of tα,ρ(Q) with respect to Γ(ρ). To do this, we need to make tα,ρ(Q)
a function on H for every ρ ∈ P. We do it as follows.

In the proof of Proposition 4.3 we showed that when ρ = ρF we have Q0 = re2πiτ0 for some
non-zero r ∈ C. Moreover τ0 = i/

√
D0 = i(c1(1− c2))

1/2 as follows from (3.5) and (3.2). We can
then easily determine r = log(Q0)/ exp

(
−2π/

√
D0

)
. For a generic ρ ∈ P then it makes sense to

define

r(ρ) :=
Q0(ρ)

exp
(
−2π/

√
D0(ρ)

) , D0(ρ) =
1

c1(ρ)(1− c2(ρ))
,

and make tα,ρ(Q) into a holomorphic function on H by setting

tα,ρ(τ) := tα,ρ
(
r(ρ)e2πiτ

)
, τ ∈ H.

The function tα,ρ(τ) is modular with respect to the group Γ(ρ) if the following functions

Eα,j(ρ, τ) := tα,ρ
(
r(ρ)e2πiSj(ρ)τ

)
− tα,ρ

(
r(ρ)e2πiτ

)
, j = 0, 1, 2, (4.6)

where Sj(ρ) are the generators of Γ(ρ), are zero for every τ in a fundamental domain for Γ(ρ).

Theorem 4.4. Let Xα be a four-punctured sphere and let Eα,j(ρ, τ), j = 0, 1, 2 be as in (4.6).
The Fuchsian value ρF for the uniformization of Xα is the unique zero of the system of equations

Eα,j(ρ, τ) = 0, j = 0, 1, 2,

for every τ in a fundamental domain of Γ(ρ).

Proof. It is clear that ρF is a zero of Eα,j(ρ, τ) for j = 0, 1, 2 and every τ ∈ H.

Let ρ1 ∈ P be such that the identity in the statement holds for every j = 0, 1, 2. Since the
function tα,ρ1(Q) is univalent in Q and tα,ρ1(0) = 0 it follows that tα,ρ1(τ) is never zero on H
and then, being holomorphic, it is a Hauptmodul for the group Γ(ρ1). The only thing to check
is that Γ(ρ1) = Γ(ρF) and that tα,ρ1(τ) is a covering map for Xα.

Since tα,ρ1(τ) has a simple pole at one cusp it maps the Riemann surface H/Γ(ρ1) to the
punctured sphere P1 ∖

{
∞, 0, a, b−1

}
for some a, b ∈ C ∖ {0}, a ̸= b−1. We can assume

that tα,ρ1(τ) maps the cusp 0 to b−1. It follows that a−1tα,ρ1(τ) is a Hauptmodul for the punc-
tured sphere Xab = P1 ∖

{
∞, 0, 1, a−1b−1

}
and that a−1tα,ρ1(τ) is normalized as in Lemma 3.1.

We can then obtain the expansion at ∞ of a−1tα,ρ1(τ) from a basis of solutions {yab,ρ̂(t), ŷab,ρ̂(t)}
of the uniformizing differential equation of Xab as in Section 4.1, i.e.,

a−1tα,ρ1(τ) = tab,ρ̂(τ) =
∑
n≥0

tn(ab, ρ̂)r(ρ̂)
nqn,
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where ρ̂ is the Fuchsian parameter associated to the uniformizing differential equation of Xab.
On the other hand, we can describe tα,ρ1(τ) at ∞ with a power series constructed from a ba-
sis {yα,ρ1(t), ŷα,ρ1(t)} of solutions of the differential equation on Xα with accessory parameter ρ1

tα,ρ1(τ) =
∑
n≥0

tn(α, ρ1)r(ρ1)
nqn.

Finally, since {yab,ρ̂(t), ŷab,ρ̂(t)} is a basis of solutions of the uniformizing equation for Xab, and
by comparing the power series representations of tα,ρ1 we get

a exp

(
ŷab,ρ̂
yab,ρ̂

)
=

(
a

∞∑
n=1

tn(ab, ρ̂)r(ρ̂)
nqn

)−1

=

( ∞∑
n=1

tn(α, ρ1)
r(ρ1)

n

r(ρ̂)n
r(ρ̂)nqn

)−1

=
r(ρ1)

r(ρ̂)
exp

(
ŷα,ρ1
yα,ρ1

)
,

where −1 denotes the compositional inverse. It follows that the ratio of solutions of the differential
equation for Xα with accessory parameter ρ1 and of the uniformizing one of Xab differ only by
a constant factor. This implies that the ratio ŷα,ρ1/yα,ρ1 induces a biholomorphism X̃α → H,
i.e., that ρ1 is the Fuchsian parameter. By the uniqueness of the Fuchsian parameter we can
conclude that ρ1 = ρF. ■

5 Example: local expansion of the Fuchsian value function

5.1 Numerical computation of the Fuchsian value

We first explain how to use Theorem 4.4 to approximate numerically the Fuchsian value for
a given four-punctured sphere Xα = P1 ∖

{
∞, 1, 0, α−1

}
. The behavior of the Fuchsian value

under the action of the anharmonic group (the group of order six generated by z → z−1 and z →
1−z) and the action of complex conjugation is known [13]; we need then to consider only the case

α−1 ∈ {z ∈ C : 0 ≤ Re(z) ≤ 1/2, |z| ≤ 1}∖ {0}.

It follows from Theorem 4.4 that to compute the Fuchsian value for Xα is equivalent to compute
the common zero of the equations Eα,j(ρ, τ) = 0 in (4.6). Notice that all the quantities involved
in the definition of Eα,j(ρ, τ) are computable, as functions of ρ, from the Frobenius solutions
of the differential equation (4.1). We proceed as follows. Fix τ0 ∈ H and consider, for j = 0,
the equation Eα,0(ρ, τ0) = 0. We use Newton’s method to find the zero of this equation that
is the Fuchsian value. As it is well known, the Newton method works if we are able to give an
initial guess for the zero that it is close enough to it. In other words, to start the iteration we
should choose a value of ρ that is close to the Fuchsian value. Since the function associating
to a four-punctured sphere its Fuchsian value is continuous, a good choice for the initial value
is the Fuchsian value of a four-punctured sphere Xβ with β−1 close to α−1. There are four
exceptional choices of β−1 for which is possible to determine exactly the value of the Fuchsian
parameter via symmetries (see [11, Section 7] and [22]; the uniformizing groups in these cases
are conjugated to congruence subgroups of SL2(Z)). These choices and their Fuchsian value are
displayed in the following table

β−1 1
2

1
9

25−11
√
5

50
1+i

√
3

2

ρF 1 3 35+15
√
5

2
3−i

√
3

6
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Assume for now that the value of α−1 is close enough to one of the special values β−1. In this
case we start the Newton’s method with the Fuchsian value ρF

(
β−1

)
. The iteration gives the

approximation of a zero of Eα,0(ρ, τ0) that is close to the Fuchsian parameter. To verify if it
really is the Fuchsian parameter, we check whether it is a zero of other equations Eα,j(ρ, τ) = 0
for different choices of j and τ ∈ H.

In the case α−1 is not close enough to one of the special values, one can gradually approach
the computation of the Fuchsian value of Xα by computing the Fuchsian value of some points
between one of the special values β−1 and α−1.

5.2 Application: local expansion of the Fuchsian value function

As an application, we compute numerically the local expansion of the function that associates
to a four-punctured sphere Xα the Fuchsian value ρF(Xα). We can define this function in full
generality for an n-punctured sphere X. Let Wn = {(w1, . . . , wn−3) |wi ̸= wj if i ̸= j, wi ̸= 0, 1}
and consider the function

ρF : Wn → Cn−3, w = (w1, . . . , wn−3) 7→ ρF(w) = (ρ1, . . . , ρn−3),

where ρF = (ρ1, . . . , ρn−3) is the Fuchsian value for the n-punctured sphere

X = P1 ∖ {w1, w2, . . . , wn−3, 0, 1,∞}.

Kra [14] proved that the function ρF is real-analytic, but non complex-analytic; in particular,
if z is a local parameter on Wn, the function ρF has a local expansion near the point z0 ∈ Wn

of the form

ρF(z0 + z) =
∑
j,k≥0

aj,kz
j z̄k, aj,k ∈ C. (5.1)

In the following we concentrate on the case n = 4 and study the expansion of the function

ρF : C \ {0, 1} → C, α−1 7→ ρF(Xα),

around the points α−1 = 1/2, 1/3, and 2/5 + 3i/10.

The computation of the coefficients of (5.1) goes as follows. Fix α−1 ∈ C∖{0, 1} and consider
for every m ∈ N the line Lm: Im(z) = Re(z)/m−α−1/m. The expansion of ρF on each line Lm

depends only on one real variable x, since z ∈ Lm if z = α−1 + x(1 + i/m) and then

ρF
(
α−1 + z

)
=
∑
j,k≥0

aj,k(1 + i/m)j(1− i/m)kxk+j =

∞∑
s=0

bs(m)xm, bs(m) ∈ C. (5.2)

The coefficients bs(m) are easily computed once we know enough values of the function ρF on
the line Lm near α−1. These can be computed by using the method illustrated in Section 5.1
and the computer algebra system PARI. The coefficients aj,k in the expansion of (5.1) are then
obtained by computing the expansion of ρF along the lines Lm for different values of m ∈ N (the
number of those depends on the number of aj,k one wants to compute) and exploiting the relation
between aj,k and bs(m) in (5.2). The result of the computations for α−1 = 1/2, 1/3, 2/5 + 3i/10
are given in Tables 1, 2, and 3 respectively (the numbers in the tables are approximations of the
actual values).

A first interesting observation we can make from the numerical data is about the size of the
coefficients aj,k. For every s = 1, . . . , 5 we have that |as,0| > |aj,k| with j+k = s. In other words,
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Table 1. α−1 = 1/2, ρF = 1.

a1,0 = −1.2311296972 a0,1 = 0.0638754899

a2,0 = 2.4622593944 a1,1 = −0.1277509798
a0,2 = 0

a3,0 = −4.8236918585 a2,1 = 0.1890620793
a1,2 = 0.0117490877 a0,3 = 0.0630206931

a4,0 = 9.6473837171 a3,1 = −0.3781241587
a2,2 = −0.0234981755 a1,3 = −0.1260413862
a0,4 = 0

a5,0 = −19.094665845 a4,1 = 0.6673769276
a3,2 = 0.0466379026 a2,3 = 0.1888625099
a1,4 = 0.0233189513 a0,5 = 0.1334753855

Table 2. α−1 = 1/3, ρF = 1.29101.

a1,0 = −2.711485382 a0,1 = 0.1025201219

a2,0 = 8.0641055547 a1,1 = −0.2750330946
a0,2 = −0.0606264558

a3,0 = −23.9531822161 a2,1 = 0.6879078089
a1,2 = 0.1854950416 a0,3 = 0.1686761471

a4,0 = 71.4914941489 a3,1 = −1.9281043695
a2,2 = −0.4821058340 a1,3 = 0.4798627522
a0,4 = 0.2922654268

a5,0 = −213.5180837271 a4,1 = 5.4375565883
a3,2 = 1.3699401215 a2,3 = 1.2274288636
a1,4 = 0.8681638848 a0,5 = 0.7367927177

Table 3. α−1 = 4+3i
10 , ρF = 0.86175− 0.38528i

a1,0 = −0.3328603817 + 1.2004121803i a0,1 = 0.0512782931− 0.0256391465i

a2,0 = −0.8635602303− 2.2690958807i a1,1 = −0.0638839260 + 0.0719692197i
a0,2 = −0.0223137191− 0.03022272424i

a3,0 = 4.0817033346 + 2.5852542694i a2,1 = −0.0024129061− 0.1684860963i
a1,2 = 0.0599341643 + 0.0300072676i a0,3 = 0.01118030554 + 0.0173932256i

a4,0 = −9.5604869979 + 0.7791704955i a3,1 = 0.1800042196 + 0.2360936333i
a2,2 = −0.1150333973 + 0.0337939365i a1,3 = −0.0337943677− 0.0275496197i
a0,4 = −0.0003411753− 0.0596118160i

a5,0 = 14.2865112529− 12.6279958566i a4,1 = −0.5419356177− 0.1625218437i
a3,2 = 0.1261663672− 0.1720412035i a2,3 = 0.0798727692− 0.0023875661i
a1,4 = 0.0384447463 + 0.0991919592i a0,5 = −0.0711856680 + 0.0428083431i

the holomorphic part of the expansion of ρ
(
α−1

)
seems to be larger than the rest. This suggests

that the Fuchsian parameter function may be quasiregular, i.e., it may satisfy the inequality

∂ρF
∂z̄

≤ k
∂ρF
∂z

for some k < 1. This would in particular imply that the Fuchsian parameter map is open.
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We further notice the following relations among the coefficients in Table 1:

a2,0 = −2a1,0, a1,1 = −2a0,1, (5.3)

a0,2 = 0 = a0,4, a2,1 = 3a0,3, (5.4)

a3,2 = 2a1,4, a4,1 = 5a0,5. (5.5)

These numerical identities can be proven by using the symmetry of ρF near 1/2, and a result of
Takhtajan and Zograf [23]. Analogous identities in Table 2 or Table 3 can be proved similarly.
The point z0 = 1/2 is the fixed point of the involution z 7→ 1− z. It is known (see [13]) that the
following identity holds

ρF(1− z) =
zρF(z)− 1

z − 1
.

It follows that, near the point z0 = 1/2, one has

(z − 1/2)ρF(1/2− z) = (1/2 + z)ρF(1/2 + z)− 1,

which gives∑
j,k≥0

aj,k
[
1 + (−1)j+k

]
zjzk + 2

∑
j,k≥0

aj,k
[
1− (−1)j+k

]
zj+1zk − 2 = 0. (5.6)

The above relation implies that

a0,2k = 0 if k ≥ 1,

aj+1,k = −2aj,k if k + j is odd.

This explains why a0,2 = a0,4 = 0. The result of Takhtajan and Zograf [23, formula (4.1)]
reduces to the following identity in the case of four-punctured spheres2

(1− 2z)

(
∂ρF
∂z

)
= (1− 2z)

∂ρF
∂z

. (5.7)

The differential equation (5.7) implies the following relations between the coefficients of the local
expansion of ρF:

(k + 1)aj,k+1 − 2kaj,k = (j + 1)ak,j+1 − 2jak,j , j, k ≥ 0.

It is easy to check that the relations (5.3)–(5.5) come from this one and from (5.6). For instance,
by choosing (j, k) = (0, 1) in the identity above we get

2a0,2 − 2a0,1 = a1,1.

This, together with a0,2 = 0, gives the first identity in (5.3).

A Modular derivation of the uniformizing differential equation

Denote by Γ ⊂ SL2(R) a genus zero Fuchsian group with no torsion and with n ≥ 3 inequivalent
cusps. Normalize it by assuming that one of its cusps is at ∞, and that this cusp has width
one. Let t be a Hauptmodul and, without loss of generality, assume that its unique pole is at

2this equation is formulated in [23] in terms of the accessory parameters mi appearing in the Schwarzian
differential equation (2.1); here we express it in terms of the accessory parameter of the Heun equation (4.1).
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a cusp c0 and its unique zero is at ∞. Finally, let XΓ be the n-punctured sphere isomorphic
to H/Γ via t

t : H/Γ
∼→ XΓ = P1 ∖ {α1, α2, . . . , αn−1 = 0, αn = ∞},

where αi ∈ C∖ {0, 1}, i = 1, . . . , n− 2, and αi ̸= αj if i ̸= j.
In the following we compute the differential equation satisfied by a certain modular form f

with respect to t. This differential equation is projectively equivalent to the differential equa-
tion (2.1) associated to the uniformization of XΓ, and in the case n = 4 reduces to the Heun
equation (4.1) considered in Section 4. In particular, this gives a purely modular definition of
the accessory parameters, as it will be clear from the proof of Proposition A.3.

Since the differential equation in (2.1) has order two it would be natural, according to Sec-
tion 2.2, to consider a weight one modular form on Γ, which satisfies a second order differential
equation. It is known however that not every group Γ admits weight one modular forms (for now
we are only assuming that Γ is of genus zero and torsion free). It makes sense then to consider
a square root of a modular form of weight two, since dimM2(Γ) = n − 1 for every torsion-free
genus zero group Γ with n cusps. We choose to work with a weight two modular form whose
zeros are concentrated in a certain cusp; as the next lemma shows, this choice is always possible.

Lemma A.1. Let Γ be torsion free and of genus zero, let t be an Hauptmodul, and denote by c0
the cusp of Γ where t has its unique pole. There exists a modular form f ∈ M2(Γ), unique up
to scalar multiplication, with all its zeros in c0. In particular, f has no zeros in H.

Proof. Let g ∈ M2(Γ) and let σ ∈ SL(2,R) be such that σc0 = ∞. Let(
g
∣∣
2
σ−1

)
(τ) =

∑
m≥0

gmqm

denote the Fourier expansion of g at c0, where q = e2πiτ/h, τ ∈ H, is a local parameter. It is
known that the degree of the divisor associated to any g ∈ M2(Γ) is d = n − 2. Let ϕ be the
map

ϕ : M2(Γ) → Cd, g 7→ (g0, g1, . . . , gd−1).

that sends a modular form of weight 2 to the vector defined by its first d Fourier coefficients at
the cusp c0. This map is linear.

The dimension ofM2(Γ) is n−1 = d+1, so the map ϕ has a non-trivial kernel of dimension≥ 1.
Let f ∈ Ker(ϕ). Such f can have at most d zeros in H ∪ {cusps}, and they are all in c0 by
construction. Finally, let f, g ∈ Ker(ϕ) be linearly independent. The ratio f/g is a weight zero
modular form holomorphic in H and in all the cusps, since f and g have all their zeros at the
same cusp c0. This implies that f/g is a constant, i.e., dimKer(ϕ) = 1. ■

Given f and t as in Lemma A.1 we can construct all the modular forms of even weight on Γ.

Lemma A.2. Let k ≥ 0 be an integer, and let f and t be as in Lemma A.1. The functions

fkti, i = 0, . . . , k(n− 2),

form a basis of the space M2k(Γ).

Proof. By construction, the weight 2k modular form fk has k(n−2) zeros at the cusp c0 where t
has a simple pole, and these are the only zeros of fk. It follows that fkti is a holomorphic modular
form for every i = 0, . . . , k(n − 2), and meromorphic for every other value of i. By looking at
the location of the zeros, we can prove that the holomorphic functions in the statement are
linearly independent. From the dimension formula for M2k(Γ) (see for example [15, Chapter 2])
we conclude that they form a basis. ■
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The second order linear differential operator associated to a square root of the modular
form f ∈ M2(Γ) in Lemma A.1 and to the Hauptmodul t is given in the next proposition.

Proposition A.3. Let Γ be a genus zero torsion-free Fuchsian group with n ≥ 3 cusps, and let t
be a Hauptmodul such that t : H/Γ

∼→ XΓ = P1 ∖ {α1, . . . , αn−2, αn−1 = 0, αn = ∞}. Denote
by c0 the cusp of Γ where t has its unique pole, and let f ∈ M2(Γ) be such that all its zeros are at
the cusp c0. Then the differential operator L associated to a square root of f and to t is given by

L =
d

dt

(
P (t)

d

dt

)
+

n−3∑
i=0

ρit
i, (A.1)

where P (t) =
∏n−1

j=1 (t− αj), ρn−3 = (n/2 − 1)2, and ρ0, . . . , ρn−4 ∈ C are uniquely determined
by f , t.

Proof. Recall from Section 2.2 that L can be computed in terms of Rankin–Cohen brackets
of f and t by

L =
d2

dt2
+

[f, t′]1
2ft′2

d

dt
− [f, f ]2

12f2t′2
. (A.2)

We have to write the coefficients of L as rational functions of t. First we prove that

(−1)n

n−2∏
j=1

αj

 t′ = fP (t).

The ratio t′/f is a meromorphic modular function, so it is a rational function of t. From the
assumption on the zeros of f it follows that the modular function t′/f has a simple zero at every
cusp different from c0, i.e., n−1 simple zeros (since these are the zeros of t′). It has also a unique
pole of order n−1 at c0, since f has n−2 zeros there and t′ a simple pole. The rational functions
of t with these zeros and poles are given by the polynomials κ−1P (t), κ ∈ C∗, where P (t) is as
in the statement. Looking at the first coefficient of the q-expansion of t′/f at ∞, we find the
correct factor κ = (−1)n

∏n−2
j=1 αj .

Next, we compute the brackets [f, t′], and [f, f ]2. The first one is very easy

[f, t′] = 2ft′′ − 2f ′t′ = f(fP (t)κ−1)′ − 2f ′t′

= 2f ′t′ + 2κ−1f2P ′(t)t′ − 2f ′t′ = 2κ−1f2t′P ′(t).

Dividing [f, t′] by 2ft′2 = 2κf2P (t)t′ we see that the coefficient of d/dt in (A.2) is given by the
rational function P ′(t)/P (t), as in the statement (A.1).

The computation of the bracket [f, f ]2 needs a little more work. From the definition of RC
brackets, we see that [f, f ]2 is a cusp form of weight eight. Moreover, it has a zero of order 2n−4
where f is zero, so it is necessarly divisible by f2. There exists then an element h4 ∈ M4(Γ)
such that [f, f ]2 = f2h4. By Lemma A.2 we know that h4 is of the form

h4 = f2Q(t),

where Q(t) is a polynomial in t of degree dimM4(Γ) = 2n − 3. Since [f, f ]2 is a cusp form,
[f, f ]2/f

2 has a zero in every cusp different from c0, and these zeros are simple. This means
that the polynomial Q(t) is divisible by P (t). We have then

h4 = f2P (t)
(
ρ̂n−3t

n−3 + ρ̂n−2t
n−2 + · · ·+ ρ̂0

)
,
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for some ρ̂0, . . . , ρ̂n−3 ∈ C. We can determine ρ̂n−3 by considering the expansion of f at the
cusp c0. If q0 denotes a local parameter at c0, the expansions of f and t are given by

f = cqn−2
0 + · · · , t = sq−1

0 + · · · ,

for some non-zero c, s ∈ C. In c0 the bracket [f, f ]2 has expansion

[f, f ]2 = 6ff ′′ − 9f ′2 = −3c2(n− 2)2q2n−4
0 + · · · ,

while h4 is given by

h4 =
(
cqn−2

0 + · · ·
)2(

ρ̂n−3s
n−3q3−n

0 + · · ·
)(
sn−1q1−n

0 + · · ·
)
= ρ̂n−3c

2s2n−4q00 + · · · .

The above expansions and the equality [f, f ]2 = f2h4 imply that

ρ̂n−3c
2s2n−4 = −(n− 2)2.

From the relation t′ = κ−1P (t)f we can compute the constant κ in terms of the coefficients
appearing in the expansions at c0, obtaining κ = −csn−2. This implies that

ρ̂n−3 = −3κ−2(n− 2)2.

It finally follows that

− [f, f ]2
12f2t′2

=
−f4P (t)

(
−3κ−2(n− 2)2tn−3 + ρ̂4t

n−4 + · · ·+ ρ̂0
)

12κ−2f4P (t)2

=
(n/2− 1)2tn−3 + ρn−4t

n−4 + · · ·+ ρ0
P (t)

,

where ρi = −ρ̂iκ
2/12. ■
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