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1. Motivation

Traversing graphs is a fundamental question in Graph Theory and an im-
portant consideration when dealing with complex networks. The traditional
complex network approach considers only the shortest paths from one node
to another [I], and does not take into account several other possible paths.
This limitation is significant, for example, in urban mobility studies [2, 3],
where it important to consider alternative routes between locations.

As mentioned by |Lima et al| (2016), in urban mobility settings users
choose multiple routes over origin-destination pairs, and those choices often
deviate from the shortest time path. |Galbrun et al| (2016) highlight that
chosen routes may be associated with diverse factors, for instance public
safety. Tomas et al. (2022) further support these claims by showing that
exceptional events, such as urban floods, may lead users to deviate from
routes previously defined to risk-less (and potentially longer) ones.

Estrada and Hatano| (2008)) proposed the Communicability Index, a num-
ber (scalar) that takes into account not only the shortest paths but also all
the walks from one node to another. Their approach was based on walks. In
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contrast, here we are interested in paths due to the urban mobility motivation
context.

On one hand, the number of walks between each pair of nodes in a simple
graph is known analytically [6]. On the other hand, the analogous problem
for paths is NP-hard [7]. [Roberts and Kroese| (2007) presented an stochas-
tic algorithm to estimate the solution of that problem using a sequential
importance sampling.

In this short report, as the first steps, we present an exhaustive approach
to address the problem of finding all paths between two nodes. We show one
can go beyond the shortest path but we do not need to go so far: we present
an interactive procedure and an early stop possibility. We apply our ideas
to the well-known Zachary’s karate club graph [8]. We do not collapse the
distribution of path lengths between a pair of nodes into a scalar number;
instead we look at the distribution itself - taking all paths up to a pre-defined
path length (considering a truncated distribution), and show the impact of
that approach on the most straightforward distance-based graph index: the
walk /path length.

2. Preliminaries: definitions and notation

In this section, we give a few definitions and results from elementary graph
theory to facilitate the understanding of the new results presented herein.
Most of the following discussion is standard and can be found in [1] [6].

We start by defining a graph (Definition and then a simple graph
(Definition , which will be the main objects of interest in this paper.

Definition 2.1 (Graph). A graph G = (V, E) is a set of nodes and edges,
where V' is the set of |V| = N nodes and E is the set of |E| = M edges.

An edge (also called link or connection) (i, j),7,j € V connects two nodes
i and j. A self-connection or a loop is a link (7,7) that connects node i to
itself. Multiple edges are two or more edges that connect the same two
vertices.

A link can be undirected or directed. In an undirected graph, all edges
(7,7) connect 7 to j and vice-versa. A directed graph has directed edges (also
called arcs) (i, ), that connect i to j, but not j to i, i.e., (i,7) # (j,i1). A
link can also have an associated weight, which is a numeric value.



Definition 2.2 (Simple Graph). A graph G = (V, E) is a simple graph if,
and only if, it is undirected, there are no self-connections in G, no multiple
edges or weights.

A helpful object for characterizing a graph is its adjacency matrix, whose
definition is given in Definition [2.3]

Definition 2.3 (Adjacency matrix). The adjacency matriz A of a graph
G = (V, E) is the N x N matriz whose entries A;; are given by

{1, if 1,7 €V share an edge;
ij =

0, otherwise.

In this paper, we are concerned with traversing the graph, i.e., starting
from a source node ¢ € V', visiting a collection of nodes, and arrive a target
node 7 € V, where i = j is a possibility. Here we distinguish between
trajectories that allow multiple visits to the same node (and associated)
edges, called walks (Definition [2.4)); and trajectories where each node and
vertex can only be visited once, called paths, presented in Definition

We start our discussion with trajectories that can visit the same node
multiple times, called walks:

Definition 2.4 (Walk). Consider a simple graph G = (V, E) and a pair of
nodes i,j in V. A walk w in G from 1 to j is an alternating sequence of edges
and nodes from i (node of origin/source) to j (node of destination/target).

With this definition in hand, we are prepared to state Theorem [2.1] which
tells us that the number of walks of a given (finite) length is finite so long as
|V is finite.

Theorem 2.1 (Finite number of walks). Consider a simple graph G =
(V,E). Take i,j € V, the number of walks of length 1 between i and j is

given by -
w() = (4,
where A;; is the corresponding entry in the adjacency matriz of G — see

Definition [2.3
Proof. This is a well-known result. See Lemma 2.5 in [6]. O

Now, consider trajectories in a graph without ever visiting any node twice.
Such a trajectory is called a path:



Definition 2.5 (Path). Consider a simple graph G = (V, E) and a pair of
nodes i,j in |V|. A path p;; in G from i to j is an open (i # j) walk from i
to 7, and with no repeated edges or nodes.

As Definition makes clear, paths are specializations (restrictions) of
walks. This might prompt the reader to think that one can study paths by
considering restrictions to results about walks. As we will show later on, this
is not always the case. Our approach is somehow similar to Self Avoiding
Walks (SAW) [9], but we fix not only the source but also the target for each
path.

In this paper, we will devote attention to connected graphs (Defini-
tion , that is, graphs for which there exists at least one path for every
pair of vertices i,j € V.

Definition 2.6 (Connected Graph). A simple graph G = (V, E) is con-
nected if for every pair of vertices i, j one can construct a subset C;; C V', with
|Ci;| = K where the vertices c1, . .., cx € Cyj are such that i and ¢, share and
edge as do j and cx and also ¢ and cxyq share an edge, for2 <k < K —1.
In other words, G is connected if and only if one can always construct at
least one path between i,j € V', for every such pair.

The number of vertices visited in the path p;; is the path length (Def-
inition , and the shortest such path (Definition is usually of great
interest as it is related to many optimization problems, such as the traveling
salesman problem. We now state a few more definitions related to traversal
of graphs, which will be useful in the remainder of the paper.

Definition 2.7 (Path Length). Consider a simple graph G = (V, E). The
number of edges on the path from i to j is the path length (I') of that path.

Definition 2.8 (Shortest Path Length). Consider a simple graph G =
(V,E). The number of edges on the shortest path from i to j is the shortest
path length (s') of that path. The s' is a number associated with the pair i-j:
for each pair i-j there is one and only one s': s'(i,j).

Remark 2.1 (Shortest Path). Consider a simple graph G = (V, E). For
any two vertices i,j € V there is at least one path from i to j which the path
length is the shortest possible.



3. Main problem: computing the frequency and length of walks
and paths

First, let us take a look at the number of walks: in a simple graph G' =
(V, E), for any two vertices i, j € V, there is an infinite number of walks from
1 to 7, which holds even for finite graphs. However, if we take a finite path
length, the number of walks with that path length is finite, and it is given by
f(lij) = (A™);;, with n = [;;. One might now ask what the expected value for
li; is. As we can always get a walk longer than any other, we cannot define
a normalized probability measure; thus, this expectation does not exist.

Let us define the shortest walk length from 7 to j, s;;, as the minimum
value of [;; - obviously that the walk associated with this length is a path.
Then, once any (finite) [;; can be expressed as l;; = s;; + k, k > 0, k € N, and,
therefore, a “truncated” expected value, under a k-th order approximation,

is:
S (A,

Szt (A,

Now, let us move from walks to paths. Between any pair of nodes i-j
in G, there is at least one path p, from ¢ to j - we are considering a single
connected component in G. While # p is finite, the problem of counting the
number of s-t (source-destination) paths in a graph is NP-complete [7].

Here we propose a k-th order approximation for the case of paths. The
length of p;; is [j;, and it is between 1 and N — 1. Let us define the shortest
path length from i to j, sl’, as the minimum value of ;. Any [;, therefore,
can be expressed as [j; = s;; + k, for a finite value of k < N — 2. Finally, the
expected value, under the k-th order approximation, is:

E[l] = (1)

n:s;jJrk

S 0 (n)
E[r) = = , 2)

n:s;,jJrk

Zn:sgj f(n)

where f(n) is the frequency of a [};=n.

There is no analytical expression for f(n) in the literature. Finding all
paths in a graph can be very computationally expensive - O(N!) in the worst
case: a complete graph with order N. Here we perform a depth-limited



search (DLS) in order to find f(n), which can found here[]

It is worth highlighting we do an exhaustive search - finding all possible
paths from a node to another. However, the main insight is that we do not
need to go so far beyond the shortest paths - in order words: we do not use
a so much high value of k in the k-th order approximation.

4. Results

In this section, we present an analytical result considering complete graphs
(4.1), and, based on a depth-limited Search, results for the Zachary’s Karate

Club graph (4.2]).

4.1. Complete graphs

In a complete graph all nodes are directly connected to all others (s;jzl,
V i,j). The number of paths between any pair of nodes is a combinatorial
result based on the arrange of N-2 nodes in a path of length I’.

Theorem 4.1 (Number of paths in a complete graph). Let G be a
complete simple graph. Then the number of paths of length k + 1 is

1, k=0,
flk+1) =<' N-r, 0<k<N-1,
0, k>N-1

It is possible to note that, in a simple but complete graph, between any
pair of nodes:

e There is only one walk (and path) of length 1;
e The number of walks grows exponentially with the number of nodes;

e The number of paths grows with the number of nodes, but at a rate
inversely related to the number of nodes;

'https://github.com/gioguarnieri/all_paths

2We discussed “to go beyond the shortest path” in 2018 and implemented the first
complete version of this code in August 2019. The COVID-19 pandemic has changed
research agendas worldwide. We resume this paper in 2022.
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e The most frequent path length are the longest ones (lengths N-1 and
N-2);

e [t is always possible to get a walk longer than a previous one;

e There is no path of length longer than N-1.

Figure [I] illustrates this result for the a complete graph with 10 nodes
(C-10).
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Figure 1: Number of walks (blue squares) and paths (red circles) from 0 to 1, in the C10
graph, for each path length.

4.2. Zachary’s Karate Club

Zachary’s Karate Club graph is a well known graph [8] [10], with N = 34,
M = 78, 1 connected component. Figure [2|shows the Zachary’s Karate Club
graph, with numerated nodes.



Figure 2: Zachary’s Karate Club graph [8] has with N = 34 vertices and M = 78 edges
and a single connected component.

Figure |3| shows the distribution of the number of walks and paths with
specific lengths from node 0 to node 1 in the Zachary’s Karate Club graph.
Considering walks and paths between nodes 0 and 1, it is possible to note
that:

e There is an edge connecting nodes 0 and 1, so, Ag; = 1.

o As (AY)g; = A1 = 1, there is only 1 walk from 0 to 1 with length 1.
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e That walk is a path as well.

e The shortest path length between nodes 0 and 1 is 1: sp; = 1.
o As (A?)g; = 7, there are 7 walks from 0 to 1 with length 2.

e All those walks are paths as well.

o As (A%)g = 37, there are 37 walks from 0 to 1 with length 3.
e However, only 13 of those 37 walks are paths as well.

e The length of the longest path between nodes 0 and 1 is 18.

The number of paths is calculated using the Depth-limited search (DLS),
setting the path length as the limit of the DLS. The longer the path length,
the more significant the difference between the number of walks and paths
between a pair of nodes. There are infinite walks between nodes 0 and 1,
but precisely 8.854.467.719.776.520.000 (~ 8E18) walks with lengths up to
18. The number of paths between nodes 0 and 1 is 80.137 (~ 8E4).

Going beyond the shortest path, let us calculate the expected value for [,
under the k-order approximation:

s k n
o (A™)i5
ZZHZ(A”)
The expected value for wg;, under the k=17-order approximation is, thus:
>y (A1
oy (A™)on

On the other hand, the expected value for I’, under the k-order approxi-
mation is:

E[l;;] = (3)

E[lm] - (4>

si; Tk n £09) (n)
Bl = =5 1+k - (5)
Zn 1 P ( )

So, the expected value for [{);, under the k=17-order approximation:
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Figure 3: Number of walks (blue squares) and paths (red circles) from node 0 to node 1,
in the Zachary Karate Club graph, for each path length.

Figure[d]shows our “delta measure”: E[wq1]—swo: (for walks), E[lf,]—slf,
(for paths), for each value of k.

It is essential to highlight that difference, for the walks-case, grows indef-
initely. However, in the case of the paths, it converges: it happens because
when we allow longer paths, although the numerator increases (path length),
that increment decreases - once, in a non-complete graph, the number of
paths with a length close to the longest possible is smaller than the number
of paths with intermediate lengths.

Considering all origins and destinations (all the nodes), we notice that
the largest number of paths are between nodes 16 to 25, with 4319868 paths,
going from length 4 to 23. This is interesting since node 16 appears in every
case where the shortest path length is equal to the diameter of the network,
is on the top of the mean length of paths, and has the highest mode. Node 16
seems the most unapproachable from the network by looking at these data.
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Figure 4: E[wg1] — swo1 (blue squares) and E[l{;;] — sl{; (red circles), in the Zachary karate
club graph, for different k-order approximations

To access the table containing the statistics of all paths click herd?|

5. Conclusions

This short report presents an original idea about going “beyond the short-
est path”. After presenting some fundamental concepts in graph theory, we
presented an analytical solution for the problem of counting the number of
possible paths between two nodes in complete graphs, and a depth-limited
approach to get all possible paths between each pair of nodes in a general
graph. Using the simple and well-known Zachary’s karate club graph, we
showed the distribution of walks and path lengths.

The most important result is that we can go beyond the shortest path
(facing an NP-hard problem), but (fortunately) we do not need to go so far:
there is a convergence/saturation value for the path-length expected value -

3https://github.com/gioguarnieri/Pesquisa_Doutorado/blob/master/all_
paths_data.md
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once, in a non-complete graph, the number of paths with a length close to
the longest possible is smaller than the number of paths with intermediate
lengths. The value of that control parameter (k - number of edges beyond
the shortest path length) can be even smaller when considering penalties for
longer paths.

In future work we plan to apply those ideas to a real-world problem,

addressing urban mobility-related problems.
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