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An impurity interacting with an ultracold Fermi gas can form either a polaron state or a dressed molecu-
lar state in which the impurity forms a bound state with one gas particle. This molecular state features rich
physics, including a first-order transition to the polaron state and a negative effective mass at small interactions.
However, these features have remained so far experimentally inaccessible. In this work we show theoretically
how the molecular state can be directly prepared experimentally even in its excited state using state-of-the-art
cold atom Raman spectroscopy techniques. Initializing the system in the ultra-strong coupling limit, where the
binding energy of the molaron is much larger than the Fermi energy, our protocol maps out the momentum-
dependent spectral function of the molecule. Using a diagrammatic approach we furthermore show that the
molecular spectral function serves as a direct precursor of the elusive Fulde-Ferell-Larkin-Ovchinnikov phase,
which is realized for a finite density of fermionic impurity particles. Our results pave the way to a systematic
understanding of how composite particles form in quantum many-body environments and provide a basis to
develop new schemes for the observation of exotic phases of quantum many-body systems.

Understanding the nature of composite particles in a quan-
tum medium is essential to unveil the physics of many intrigu-
ing phases of matter. Notable examples include Cooper pairs
in superconductors [1, 2], the BEC-BCS crossover in ultra-
cold gases [3–11], superfluids of excitons in semiconductors
[12, 13], anyons such as flux-tube-particle composites [14],
and the composite baryons and mesons arising from the quark-
gluon plasma in the QCD phase diagram [15].

A paradigmatic system to understanding the formation of
such composite particles in a quantum environment is the
Fermi polaron problem. Here one distinguishable particle (a
‘quantum impurity’) interacts attractively with a bath of in-
distinguishable fermions. As the attraction between the im-
purity and the bath increases, a first-order transition is pre-
dicted to occur between a polaron state, in which the impurity
is dressed by bath fluctuations, and a composite molecule state
in which the impurity is bound to one of the bath fermions
[16–27]. For strong attraction the molecule is a tightly bound
composite that is nearly unaffected by the quantum medium.
However, as the transition is approached the molecule expe-
riences dressing by and exchange with the bath fermions and
forms a molaron [28], a composite quasiparticle.

Understanding the formation of molarons and their proper-
ties in many-body environments is essential to fully describe
the general phase diagram of imbalanced Fermi mixtures in
ultracold quantum gases and neutron matter [29], as well as
the physics of trions in doped, atomically thin semiconduc-
tors [30]. However, so far molarons have remained exper-
imentally inaccessible. One of the reasons is that typical
probes in condensed matter physics act on the single particle
level, relying for instance on tunneling of single electrons in
solids [31, 32] or electronic transitions of single atoms in cold
atom experiments [27, 33–42] (cf. Fig. 1). Such limitations
hinder the direct creation of the composite particles and have
so far precluded the spectroscopy of molarons including their

momentum-resolved excitation spectrum.
In this letter we propose a new spectroscopic protocol based

on Raman transitions to probe composite quasiparticles in
cold atomic many-body systems. Using this new technique
allows one to directly measure the momentum-resolved mo-
laron spectral function that encodes all information about the
composite quasiparticle including its dispersion, lifetime, ef-
fective mass, and full excitation spectrum. Furthermore, using
a diagrammatic resummation method, we demonstrate that the
finite-momentum properties of the excited molaron state are
intimately connected to the emergence of the Fulde-Ferell-
Larkin-Ovchinnikov (FFLO) [43, 44] phase at finite impurity
density, where composite Cooper pairs condense into a finite-
momentum state. Our finding highlights a remarkable con-
nection between unconventional superconductivity and Fermi
polarons that allows one to observe fingerprints of complex
many-body phases in quantum impurity problems.

Microscopic model.— We start by introducing a two-
channel Hamiltonian [45] to model the Fermi polaron prob-
lem close to a Feshbach resonance

H =
∑

p
εc

pc†pcp +
∑

p
εd

pd†pdp +
∑

p

(
ξp + ν

)
m†pmp

+
h√
V

∑
l,p

m†pcl d−l+p + h.c. . (1)

Here an impurity (d†p) interacts with a bath of N fermions
(c†p) in a volume V via the exchange of a bare molecular
state in a closed scattering channel (m†p). The dispersion re-
lations of the impurity and the bath particles are given by
εd/c

p = p2/2Md/c, respectively, with momentum p and masses
Mc and Md ≡ αMc. The molecule has a dispersion relation
ξp = p2/2(1 +α)Mc and an energy detuning ν which in exper-
iments can be tuned by a magnetic field.
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FIG. 1. Schematic figure of the polaron (dotted black line) to mo-
laron (dashed black line) transition. The inset displays the differ-
ent spectroscopic schemes in ultracold quantum gases: In injection
spectroscopy (blue arrow), an initially non-interacting impurity is in-
jected into a state in which it can interact with the bath particles.
This technique allows for the detection of the polaron, but suffers
from a vanishing overlap between the non-interacting ground state
and the molaron state. In ejection spectroscopy (yellow arrow), the
interacting impurity gets ejected into a non-interacting state, which
allows for the detection of the ground state (yellow). Our proposal
(pink arrow) enables the detection of the excited molaron branch, by
initializing the system in the ultra-strong coupling limit.

The interaction in the system is described by the last term
of Eq. (1), where two fermions in the open scattering chan-
nel are converted into the closed-channel molecule. The con-
version factor h is proportional to the width of the Fesh-
bach resonance and along with the detuning ν it is tuned
to reproduce the s-wave scattering length a and range pa-
rameter r∗ of the impurity-bath interaction via ν0/h2 =

−µ/2πa + V−1 ∑
k 1/(εc

k + εd
k) [46] and h2 = π/r∗µ2 with

µ = Md Mc/(Md + Mc) [47].
At finite fermion density (determined by the Fermi wave

vector kF) the impurity is dressed by fluctuations in the Fermi
gas and forms a polaron. The molecule in the model is
also dressed and forms a composite quasiparticle, the mo-
laron. This molaron is adiabatically connected to the molec-
ular bound state at strong coupling. Theoretically both the
polaron and molaron can be described using diagrammatic
techniques, where the central object is the retarded Green’s
function

GR(E,p) = F
[
−iΘ(t)

〈
FS

∣∣∣∣[Xl
p(t), X†p(0)

]
±

∣∣∣∣ FS
〉]

(2)

with Xp = dp(mp) for the impurity (molecule) and [. , .]± the
(anti-)commutator. Here F denotes the Fourier transform
from time t to frequency space E. The poles of GR(E,p)
directly yield the energy of the attractive and repulsive po-
laron (molaron) as schematically shown in Fig. 1. As can
be seen in the figure, the molaron also exists as an excited
state in the interaction regime where the attractive polaron
is the ground state. Remarkably, the molaron is stabilized
even in the regime of negative scattering lengths where in

the model (1) no molecule exists in vacuum, reminiscent of
Cooper pairing in the theory of superconductivity [1, 2].

The single particle spectral function can be obtained via
A(E,p) = Im GR(E,p) and is shown for the molecule at uni-
tarity, a → ∞, in the left most plot of Fig. 2(a), obtained us-
ing a non-selfconsistent T -matrix resummation approach. The
molaron dispersion is visible in the spectrum. It shows a min-
imum at finite momentum [24, 26, 34, 48], a finding robust
with respect to the theoretical approximation scheme.

Precursor of FFLO.— We now directly connect the exis-
tence of the molaron dispersion minimum at finite momentum
to the emergence of the elusive FFLO phase of superconduc-
tivity. Extending the T -matrix approach to finite fermionic im-
purity density, we keep track of the bosonic molaron spectral
function in dependence on the impurity chemical potential µd.
As can be seen in Fig. 2(a), the dispersion minimum contin-
uously evolves until the finite-momentum molaron becomes
gapless precisely at the predicted onset of the FFLO phase at
µd = 0.196 εF [49]. This continuous relation of the molaron
spectral function towards a gapless spectrum implies a simple
picture of FFLO as a condensate of molarons.

To further substantiate this direct connection between mo-
larons and the formation of the FFLO phase we investigate its
dependence on interaction strengths. To this end we compare
in Fig. 2(b) the predicted quantum critical value of the FFLO
transition for different mass ratios to the critical interaction
strengths at which the minimum of the molaron dispersion
moves to finite momentum. As can be seen, the boundaries lie
in close proximity and exhibit the same behavior with respect
to tuning of the range parameter r∗. Based on this close cor-
respondence, the transition point towards FFLO can already
be inferred from the excited composite states in the Fermi po-
laron problem.

Molecular injection spectroscopy.— Despite its importance
for emerging many-body phases, the molaron has not been ob-
served in experiments at interaction strengths below the tran-
sition (see Fig. 1) [27, 30, 33–35]. Here we propose a general-
ization of atomic Raman spectroscopy to allow for observing
composite states including their full excitation spectrum. In
Raman spectroscopy lasers induce transfers between internal
atomic degrees of freedom adding a momentum qL and an en-
ergy ω to the atoms [34, 50–52].

Within linear response theory the absorption rate with re-
spect to the perturbing atomic transition operator V̂qL is given
by Fermi’s Golden rule

R(ω,qL) =
∑
α

∣∣∣〈α|V̂qL |i〉
∣∣∣2 δ(ω − Eα + Ei) (3)

where |i〉, {|α〉} and Ei, Eα denote the initial state and a basis
set of final states and their respective energies. The polaron
spectral function can be measured by choosing an initial state
in which the impurity and the Fermi gas do not interact with
each other. The transition operator then transfers the impurity
to a final state in which it interacts with the fermions. In such
injection spectroscopy the Raman response is identical to the
polaron spectral function (see Ref. [27] for rf-spectroscopy,
qL = 0, which has been successfully employed to observe
Fermi polarons). However, in this approach the molaron re-
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FIG. 2. (a) Molaron spectral function at unitarity in the contact interaction limit (kFr∗ = 0) for different chemical potentials of the minority
population. The molaron dispersion (gray line) has a minimum at finite momentum. For µd = 0.196 εF , the molaron becomes gapless at finite
momentum, which determines the onset of FFLO. (b) Critical range parameter kFr∗ below which the molaron dispersion minimum is at finite
momentum (blue) and for which FFLO sets on at finite impurity density (pink) for different mass ratios α as function of the interaction strength.

mains completely inaccessible due to a vanishing overlap be-
tween the initial state of fully delocalized particles and the
final state where an impurity is fully localized around one of
the bath fermions (cf. Fig. 1). In ejection spectroscopy, on
the other hand, an initially interacting impurity gets ejected
into a non-interacting state. This technique allows only for
the detection of the ground state. Moreover, finite-momentum
properties of the molaron are not accessible.

We now show how the idea of injection spectroscopy can be
extended to make the full excitation spectrum of molarons ac-
cessible. The idea can most easily be theoretically explained
using a wave function picture. To this end it is helpful to
realize that the diagrammatic calculation leading to GR

mol in
Fig. 2(a) is equivalent to diagonalizing the problem in a trun-
cated Hilbert space corresponding to a molaron wave function
ansatz [19, 20, 26]:

|Mp〉 = αpm†p|FSN−1〉 +
∑

k

β
p
kc†−kd†k+p|FSN−1〉. (4)

This ansatz is an extension of the vacuum solution and creates
a molecule on top of a Fermi sea |FSN−1〉 with N − 1 atoms.

The vanishing overlap in injection spectroscopy highlights
how the choice of an initial state is the key to measuring
molecular properties. The state should fulfill two main cri-
teria:

(a) It has to be a good reference state, i.e., a state that
can be reliably prepared and whose properties are well-
understood.

(b) It should have sufficient spectroscopic overlap with the
final state of interest, in this case the molecular state in
the quantum medium.

We now show that starting from a relatively deeply-bound
molecular state one can fulfill both criteria which allows to re-
liably probe many-body dressed composites in what we term
molecular injection spectroscopy. In this scheme, the first cri-
terion is fulfilled by starting from a molecular state with bind-
ing energy εB,in/εF � 1 so that medium corrections deter-
mined by the Fermi energy εF are negligible. As a result, the

initial state is well described by typical atomic physics mod-
els [47]. Establishing the fulfillment of the second condition
requires a detailed analysis of the action of the Raman opera-
tor V̂qL on this initial state.

Within our two-channel model, understanding the action of
the Raman lasers requires translation of V̂qL from an atomic
state basis (where it takes a form ∼ ∑

p d†p+qL, f
dp,i, with i, f

labeling the internal atomic states of the impurity before and
after the Raman transition) into a basis that explicitly accounts
for the closed-channel molecule m† that arises from having
integrated out atom fluctuations in the closed-channel. To
achieve this we turn to an ab-initio coupled-channel calcula-
tion in the two-body limit. Considering here the two-body
limit is justified since the initial state is tightly bound and
many-body dressing of the final state molecule only affects
its low energy physics, and hence does not affect the form of
the laser operator.

The ab-initio calculation is based on atomic states (see
Appendix A) and yields not only the binding energies and
the magnetic field dependent scattering lengths, but also al-
lows for a clear distinction between the open-channel (long-
range component) and closed-channel (short-range compo-
nent) contributions to the molecular wave functions [53], see
Fig 3. For concreteness we consider here exclusively the ex-
ample of 6Li, which features all key elements to demonstrate
the idea of molecular injection spectroscopy. Specifically, we
focus on two limits where the initial state molecule has either
its weight almost entirely in the closed channels (cf. Fig. 3,
upper left), or in the open channel (upper right), allowing for
a precise characterization of the Raman laser operator.

The left-hand panels in Fig. 3 show the scenario of a
strongly bound closed-channel Feshbach molecule in the ini-
tial state, corresponding to |i〉 = m†0,i|0〉 in our model. Such
a state can be prepared for sufficient detuning from a Fes-
hbach resonance, possible for both narrow and broad reso-
nances. This choice of initial state (the wave functions includ-
ing their hyperfine state contributions are shown as insets in
Fig. 3, see also Appendix A) is ideal to detect molarons in the
final state close to a narrow resonance, due to a large spectro-
scopic overlap between initial and final closed-channel contri-
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FIG. 3. Experimental protocol for the example of 6Li. Scattering
length (solid black) as a function of magnetic field for the initial (top,
blue) and final state (bottom, red). In the left (right) panels one aims
to probe a molaron in a final state at a narrow (broad) Feshbach res-
onance. The insets show the different channel contributions to the
radial wave function of the Feshbach molecule at the applied mag-
netic field: Open channels (blue) and closed channels (pink). In the
top right plot the narrow resonance is omitted for clarity. All data is
obtained from a coupled-channel calculation, using realistic atomic
potentials as input [54]. Dashed (dotted) lines in the insets indicate
the van-der-Waals and scattering length, respectively.

butions (compare insets in Fig. 3). Furthermore, with a size
on the order of the van-der-Waals length lvdW (dashed, vertical
lines in insets), the initial closed-channel contributions yield
only small overlap with the spatially extended open-channel
states in the final state. As a consequence, the Raman op-
erator is well approximated as V̂qL =

∑
p m†p+qL, f

mp,i in the
two-channel model.

A second option, best suited to detect molarons close to a
broad resonance in the final state, is to start from a deeply-
bound initial molecular state close to an open-channel domi-
nated resonance (see right hand panels in Fig. 3). Note that,
compared to the previous scenario, the initial state is less
deeply-bound and in the regime where its energy does not
depend linearly on the B-field. As the coupled-channel cal-
culation shows, the initial state is dominated by open-channel
contributions. In the two-channel model this state is described
by |i〉 =

∑
k β

0
kc†−kd†k,i |0〉. Thus the Raman laser mostly acts on

that contribution which is confined on the order of the scat-
tering length a (dotted vertical line in the inset of Fig. 3),
and transferred to open-channel contributions in the final state
manifold. The projection onto closed-channels of the final
state manifold has a negligible contribution due to a lack-
ing overlap of these states at low energy. Hence, within the
two-channel model the Raman operator is well represented by
V̂qL =

∑
p d†p+qL, f

dp,i.
Theoretical Raman spectra.— Having established the form

of the operator V̂qL we now turn to the prediction of the
Raman absorption R(ω,qL). To this end, using the iden-
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FIG. 4. Raman spectra at unitarity and mass balance. (a) Narrow
Feshbach resonance (r∗kF = 1) in the final state. The Raman spec-
trum equals the molaron spectral function. (b) Broad Feshbach reso-
nance (r∗kF = 0) in the final state and initial state at 1/akF = 1.5. The
Raman spectrum reproduces all key spectral features such as the on-
set of the continuum (white line) and sharp quasiparticle excitations
(black line). Initial state energies are subtracted in both spectra.

tity limy→0+ 1/(x + iy) = −iπδ(x) + P (1/x) and replacing
Eα|α〉 = H|α〉 we eliminate the explicit final state dependence
in Eq. (3)

R(ω,qL)= −1
π

Im
〈
i
∣∣∣∣∣V̂qL

1
ω −H + Ei + i0+

V̂qL

∣∣∣∣∣ i〉. (5)

Here, the initial state |i〉 is given by a molecule state of form
(4) with energy εB,in � εF such that the many-body dressing
by bath particles is negligible.

Using a basis truncation that includes up to one excitation
on top of the Fermi sea, the Raman response takes the form
(for details see Appendix B)

R(ω,qL) = −1
π

Im
(

f qL (ω)GR
mol(qL, ω)

)
+

∑
k

|β̃qL
k |2δ(ω + Emol,i − EFSN−1− εc

k − εd
qL+k), (6)

where β̃qL
k is the open-channel contribution of V̂qL |i〉 and f qL is

a multiplicative structure factor. Eq. (6) shows the direct con-
nection between the Raman response and the molaron Green’s
function GR

mol. Exemplary spectra are shown in Fig. 4.
In the case of a narrow Feshbach resonance in the final state

(Fig. 4(a)), we choose a deeply-bound initial state given by
|i〉 = m†i,0 |FSN−1〉. In this case, β̃qL

k = 0 and f qL ≡ 1, such
that the Raman spectrum and the molecular spectral function
exactly coincide, R = Amol.

Next we turn to a broad Feshbach resonance in the final
state (|i〉 =

∑
k β

0
kc†−kd†k,i |FSN−1〉). In Fig. 4(b) it can be seen

that the Raman spectrum contains the same qualitative fea-
tures as the corresponding molaron spectral function shown
in Fig. 2(a): in particular the position of the molaron as well
as its merging into the continuum can be inferred from the
Raman spectrum. Quantitatively, the difference between these
spectra is merely a redistribution of spectral weight where
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the second part of Eq. (6) has negligible contribution [55].
Importantly, the dispersion relation of the molaron including
its finite momentum minimum is contained in such Raman
spectra. Therefore, our approach allows one to observe a key
signature of the instability towards FFLO both for broad and
narrow Feshbach resonances.

Conclusion.— In this work we have presented a protocol
to measure the momentum-resolved molaron spectral function
at arbitrary interaction strengths. This is achieved using Ra-
man injection spectroscopy with a tunable transfer momen-
tum, where the system is initialized in the ultrastrong cou-
pling limit. The protocol allows for the first time the simul-
taneous observation of both polaron and molaron branches at
the same interaction strength, which provides an experimen-
tal tool to prove not only their coexistence but also the first
order nature of their transition [56–58]. Our results show the
robustness of this approach to observe the non-trivial disper-
sion relations of composite states, including the formation of a

roton-type minimum. Furthermore, we demonstrated that this
finite-momentum minimum in the molaron spectral function
is a precursor of the elusive FFLO phase.

Our approach can be equally applied to the case of Bose
polarons, where the resulting composite is fermionic. Such
impurity systems hold promise to exhibit precursors of topo-
logically non-trivial Fermi surfaces and Fermi surface recon-
struction. Furthermore, it may allow to shed new light on the
role of many-body bound states involving more than one bath
atom as well as emerging phases in mass-imbalanced ultra-
cold gases [59].
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Appendix A: Coupled-Channel calculation for two-body
problem

In this appendix we provide supplementary information on
the coupled-channel calculation leading to the results pre-
sented in the main text (see for example Ref. [54]). The aim is
to find the scattering lengths, bound-state energies and wave
functions for two interacting 6Li atoms, labelled by indices 1
and 2, in an external magnetic field B. Neglecting magnetic
dipole interactions and assuming zero rotational angular mo-
mentum (s-wave scattering), the Hamiltonian in the center of
mass frame of this system is given by

Ĥ = ĤLi(Î1, Ŝ1, B) + ĤLi(Î2, Ŝ2, B)

− 1
2µR

∂2

∂R2 R + V(R, Ŝ1, Ŝ2). (A1)

Here Îi, Ŝi denote the nuclear and electronic spin operators of
the two particles, R is the interatomic distance, µ the reduced

mass, V the interaction potential and ĤLi the Hamiltonian of a
free lithium atom in a magnetic field [60]. We use singlet and
triplet interaction potentials [54] which have been optimized
to match experiments.

We can now express the wave function in terms of the
asymptotic spin eigenbasis, denoted by |i〉, and a position ba-
sis in R.

|Ψ(R)〉 = P̂asym
1
R

∑
i

ψi(R) |i〉 . (A2)

We have included a geometric factor R in the definition of the
radial wave function contribution ψi to channel i and P̂asym is
the anti-symmetrization operator .

In terms of the variables ψi, the problem now reduces
to a second-order matrix-valued differential equation in R,
which we solve with the renormalized Numerov method [61]
with variable stepsize [62]. Since the total projection M =

Îz
1 + Ŝz

1 + Îz
2 + Ŝz

2 of the angular momentum on the magnetic
field axis is conserved, the scattering/bound-state problem can
be solved separately for every value of M. For every M dif-
ferent combinations of the electronic and nuclear spins can
contribute. An example of a channel in the M = 0 manifold is
|ms1 = 1/2,mI1 = 1,ms2 = −1/2,mI2 = −1〉. For ultracold col-
lisions of ground-state atoms, one channel asymptotically lies
below the scattering threshold (“open") and several lie above
(“closed").

The radial wave functions are shown in Fig. 3 for the M = 1
and M = 0 scattering manifolds of 6Li for given magnetic
field strengths. Here we have drawn the open channel in blue
and the closed channels in pink. One can then compute the
corresponding bound state energies, which are shown as grey
lines in the main panels Fig. 3. From the long-distance proper-
ties of scattering wave functions one can furthermore extract
the corresponding scattering lengths, shown as black lines in
Fig. 3.

Appendix B: Computation of Raman spectra

In order to compute the Raman spectra defined in Eq. (5)
of the main text, the matrix elements of the resolvant op-
erator (ρ − H)−1 need to be determined on the final state
manifold spanned by states of the form m†qL, f

|FSN−1〉 and

{c†−kd†k+qL, f
|FSN−1〉} with ρ = ω+ Ei + i0+ and |k| > kF . To this

end, we rewrite the operator as

1
ρ −H =

1
ρ − ε +

1
ρ −H T

1
ρ − ε (B1)

where ε and T denote the kinetic and interaction terms of the
Hamiltonian in Eq. (1), respectively. Defining

|0〉 = m†qL, f
|FSN−1〉 (B2)

|k〉 = c†−kd†k+qL, f
|FSN−1〉 (B3)

along with

ε0 = ξqL + ν + EFS(N − 1) (B4)

εk = εc
k + εd

qL+k + EFS(N − 1) (B5)
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one arrives at the following system of equations:

〈0| 1
ρ −H |0〉 =

1
ρ − ε0 +

1
ρ − ε0 〈0|

1
ρ −H

h√
V

∑
k

|k〉

〈0| 1
ρ −H |k〉 =

1
ρ − εk

〈0| 1
ρ −H

h√
V
|0〉

〈k| 1
ρ −H |0〉 =

1
ρ − ε0 〈k|

1
ρ −H

h√
V

∑
k′
|k′〉

〈k′| 1
ρ −H |k〉 =

δk,k′

ρ − εk
+

1
ρ − εk

〈k′| 1
ρ −H

h√
V
|0〉 . (B6)

This system can be solved and yields

〈0| 1
ρ −H |0〉 =

1
h2

1
ρ−ε0

h2 − 1
V

∑
k′′

1
ρ−εk′′

〈0| 1
ρ −H |k〉 =

1√
Vh

1
ρ − εk

1
ρ−ε0

h2 − 1
V

∑
k′′

1
ρ−εk′′

〈k′| 1
ρ −H |0〉 =

1√
Vh

1
ρ − εk′

1
ρ−ε0

h2 − 1
V

∑
k′′

1
ρ−εk′′

〈k′| 1
ρ −H |k〉 =

δk,k′

ρ − εk

+
1
V

1
ρ − εk

1
ρ − εk′

1
ρ−ε0

h2 − 1
V

∑
k′′

1
ρ−εk′′

(B7)

where all sums are restricted to |k′′| > kF . As can be seen, the
retarded molecular Green’s function given by

GR(ω,qL) = 〈0| (ρ −H)−1 |0〉 (B8)

reappears within all other matrix elements of (ρ − H)−1. For
two arbitrary overlapping Feshbach resonances, after acting
on an initial state given by Eq. (4) in the main text with the
Raman lasers the resulting state is given by

VqL
L |i〉 =β̃

qL
0 m†qL, f

|FSN−1〉 +
∑

k

β̃
qL
k c†−kd†k+qL, f

|FSN−1〉. (B9)

Here the relative weights between the closed and open channel
contribution β̃qL

0 , β̃
qL
k can in general be different from the ones

in Eq. (4), as they depend on the form of the Raman laser
operator.

Finally, given knowledge of the β̃
qL
0 , β̃

qL
k , the Raman re-

sponse function of two arbitrary overlapping Feshbach res-

onances is given by

RqL (ω) = −1
π

Im
(
|β̃qL

0 |2 〈0|
1

ρ −H |0〉

+
∑

k

2 Re
[
β̃

qL∗
k β̃

qL
0

]
〈k| 1

ρ −H |0〉

+
∑
kk′

β̃
q̄∗
k′ β̃

qL
k 〈k′|

1
ρ −H |k〉

)
. (B10)

Thus, it can easily be seen that with the exception of the (triv-
ial) first term within 〈k′| 1

ρ−H |k〉 the resulting Raman response
function contains the molecular Green’s function, i.e.

RqL (ω) = −1
π

Im
(

f qL (ω)GR(qL, ω)
)

+
∑

k

|β̃qL
k |2δ(Re(ρ) − εk) (B11)

where the proportionality function is given by

f qL (ω) = |β̃qL
0 |2 +

∑
k

2 Re
[
β̃

qL∗
k β̃

qL
0

] h√
V

1
ρ − εk

+
∑
kk′

β̃
q̄∗
k′ β̃

qL
k

h2

V
1

ρ − εk

1
ρ − εk′

. (B12)

In the main text, we discuss in detail the two scenarios of
a narrow and a broad Feshbach resonance in the final state.
In the first scenario, the laser operator takes the simple form
V̂qL =

∑
p m†p+qL, f

mp,i and due to the choice of initial state,
this results in β̃qL

0 = β
qL
0 = 1 and β̃qL

k = 0. Therefore, f qL = 1
and the Raman spectrum (B11) reduces exactly to the single
particle spectral function.

In the second scenario, the laser operator takes the form
V̂qL =

∑
p d†p+qL, f

dp,i. Therefore β̃qL
0 = 0 and due to our choice

of initial state β̃qL
k = β

qL
k , which can be simply obtained from

minimizing the energy functional 〈MqL |H − E|MqL〉 and is
given by

|βqL
k |2 =

1
V

 1
ω + i0+ − εc

k − εd
k+qL
− EFS(N − 1)

2

1
1
h2 + 1

V
∑

k′
( 1
ω+i0+−εc

k′−εd
k′+qL

−EFS(N−1)

)2 . (B13)
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