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We visualized negative refraction of phonon-polaritons in hetero-bicrystals of two 
hyperbolic van der Waals materials: molybdenum oxide (MoO3) and isotopically 
pure hexagonal boron nitride (h11BN). The polaritons - hybrids of infrared photons 
and lattice vibrations - form collimated rays that display negative refraction when 
passing through a planar interface between the h11BN and MoO3 crystals. At a 
special frequency 𝜔!, these rays can circulate along closed diamond-shaped 
trajectories. We show that polariton eigenmodes display regions of both positive 
and negative dispersion interrupted by multiple gaps resulting from polaritonic 
level repulsion. 
 
Refraction is an elemental phenomenon in optics, where a ray of light changes direction 
after traveling across an interface between two media (1). Refraction is considered 
‘negative’ if the refracted beam emerges on the same side of the interface normal as the 
incident one. This uncommon occurrence was previously demonstrated in artificial 
metamaterials (2) and superlattices (3) whose permittivity 𝜀 and permeability 𝜇 are 
simultaneously negative. Negative refraction alters a broad range of light-matter effects 
including light amplification and emission (4, 5), non-linear optics (6), and may also cause 
trapped light (7, 8) as well as ‘perfect’ lensing (9). Interfaces between anisotropic meta-
structures with rotationally misaligned principal axes can also enable negative refraction, 
with no need for negative 𝜇 (10-12). Extreme anisotropy is offered by optically hyperbolic 
materials (HM), whose hybrid light-matter modes – polaritons – are predicted to exhibit 
all-angle negative refraction at carefully crafted interfaces (11, 13). In this work, we study 
polaritons in a previously unexplored class of hyperbolic hetero-bicrystals made of two 
thin crystals, MoO3 (14-18) and h11BN (19-21). Our hyperspectral nano-imaging data 
reveal localization, negative refraction, and closed-loop circulation of polaritonic rays 
inside h11BN/MoO3 hetero-bicrystals. Central to the observed effects is the gap in the 
measured polaritonic dispersion, which we extracted from hyperspectral images of 
polaritonic waves.  



 
The hyperbolic electrodynamics of both h11BN (Crystal A) and MoO3 (Crystal B) is born 
out of strong dipole active phonon resonances (22). These phonon resonances drive the 
permittivity negative along at least one principal axis while positive “dielectric-like” positive 
permittivity is preserved along the remaining principal direction(s). Our results, below, can 
be understood by focusing on the 𝑥 − 𝑧	plane (Fig. 1) for frequencies where the phonon 
(Reststrahlen) bands of the constituent crystals overlap, 740	cm"# < 𝜔 < 822	cm"#. At 
these frequencies, the permittivity of h11BN is positive along 𝑥0 and negative along 𝑧̂, 
𝜀$%(𝜔) > 0, 𝜀$&(𝜔) < 0 (type I hyperbolicity). In MoO3, the signs are reversed, 𝜀'%(𝜔) < 0 
and 𝜀'&(𝜔) > 0 (type II hyperbolicity; Fig. 1A) in the same frequency range.  
 
It is customary to refer to electromagnetic modes of polar materials as polaritons. The 
polariton dispersion equation has a simple form (𝑞%( 𝜀&⁄ ) + (𝑞&( 𝜀%⁄ ) = 𝜔( 𝑐(⁄  when the 
polariton momentum 𝑞⃗ = (𝑞% , 𝑞) , 𝑞&) is in the 𝑥 − 𝑧 plane, 𝑞) = 0. In HMs, the 
corresponding polariton isofrequency lines are hyperbolas (Fig. 1B) (14, 19, 20, 23). The 
asymptotes of these hyperbolas are inclined by the angle ±𝜃 with respect to the 𝑥-axis 
where 𝜃 = 𝜃(𝜔), defined by tan 𝜃 = 𝑖	 √𝜀% √𝜀&⁄ , is positive for type-I and negative for type-
II HMs. In the high-𝑞 limit, probed in our near-field experiments, the polariton group 
velocity 𝑣⃗ = ∇*+⃗ 	𝜔 becomes orthogonal to 𝑞⃗ (24). Since the angles 𝜃$ > 0 and 𝜃' < 0 have 
opposite signs while momentum 𝑞% is conserved, the tangential velocity 𝑣% =
−|𝑣|	sgn	𝑞% sin 𝜃 changes sign in refraction at the A-B interface. The net effect is that 
polaritons exhibit negative refraction (See Supplementary Section S1 for details). 
 
Here, we report on a new class of hyperbolic structures: hetero-bicrystals that were 
devised, modeled, fabricated, and demonstrated to reveal negative refraction of 
polaritons. Consider a hyperbolic ray that emerges on the B-side of the A-B interface. The 
ray is laterally displaced by a distance 𝛿'/2 > 0 after propagating through Crystal B. 
Negative refraction that occurs at the interface with Crystal A prompts an additional 
displacement 𝛿$/2 < 0. At a particular frequency 𝜔! where the condition 𝛿$(𝜔!) +
𝛿'(𝜔!) = 0 is satisfied, the ray construction in Fig. 1C reveals that polaritons travel in 
closed trajectories. Experimental signatures of the closed-cycle electrodynamics near 
𝜔!	are evident in our images and spectra in Figs. 2-3. However, these data cannot be 
explained by polaritonic ray optics alone. We show that the principal modes of crystals 
“A” and “B” hybridize into a single strongly coupled eigenmode at 𝜔!, leading to prominent 
gaps in frequency-momentum dispersion relations.  
 
To visualize polaritons we utilized scanning near-field optical microscopy (SNOM). In 
SNOM measurements the metalized tip of an atomic force microscope is used to probe 
optical effects with deeply sub-diffractional spatial resolution, roughly given by the tip’s 
radius of curvature, which is about 20 nm (see Methods). To meet the demand for quasi-
monochromatic excitation at frequencies within the overlapping Reststrahlen bands of 
h11BN and MoO3 in Fig. 1A (25) we generated ultra-narrowband mid-infrared pulses with 
the spectral bandwidth <4 cm-1 (see Supplementary Section S4). This homebuilt 



apparatus was required because commercial monochromatic lasers are presently not 
available at the required frequencies.  
 
Experimental nano-imaging data in Fig. 2 unequivocally demonstrate negative refraction 
in h11BN/MoO3 hetero-bicrystals. In our experiments, we patterned a gold strip with a 
width 2𝑤 ≈ 750	nm on the surface of SiO2. The sharp edges of the strip enhance the field 
of infrared light and excite polaritons in the bicrystal with 𝑞) ≈ 0, since the strip is along 
the y-axis (26). A MoO3 crystal was first placed on top of the launcher with its c-axis nearly 
perpendicular to the strip (see Supplementary Fig. S7). We obtained images of the 
scattering amplitude, |s|, at cryogenic temperatures (T=99 K) to minimize losses. Images 
of	|𝑠|, collected at the surface of MoO3 (Fig. 2B), reveal a pair of characteristic twin-peak 
profiles near the edges of the launching strip (marked 1&2 and 3&4 in the insets of 
Fig. 2C). The separation, 𝛿', between peaks 1&2, or equivalently 3&4, is consistent with 
the directional propagation of hyperbolic rays introduced in Fig. 1 (14). Further, the 
magnitude of 𝛿' increases as the frequency of IR light decreases (Supplementary 
Fig. S8) also supporting the notion of conical ray propagation in MoO3 that is 
characteristic for a hyperbolic medium. 
 
Next, we placed a crystal of h11BN on top of the MoO3/Au assembly and visualized the 
nano-optical intensity at the top of the hetero-bicrystal. A single peak of |𝑠| vis-à-vis each 
edge of the Au strip is observed at the frequency 𝜔! = 787	cm"# in the data shown in 
Fig. 2A and 2C. We also detect a considerable intensity between the two peaks 
(supplementary Section S1).  Our observations, augmented with modeling, are consistent 
with the notion that negative refraction guides the hyperbolic rays to the same lateral 
positions at the top and bottom surfaces of the bicrystal (top inset in Fig. 2C). Effectively, 
negative refraction delivers a projection of the Au strip to the top surface of the bicrystal 
via diverging and converging trajectories of the hyperbolic rays inside the bicrystal cavity. 
Our numerical simulations capture gross features of the nano-imaging data in Figs. 2A 
and 2B (see Supplementary section S1.3 for the analysis of subtle differences between 
the model and experiments). The totality of data in Fig. 2 and Fig. S8 establish negative 
refraction at the h11BN/MoO3 interface. 
 
We now inquire into the frequency-momentum (𝜔, 𝑞%) dispersion of the hetero-bicrystal 
polaritons and its implications for the observed negative refraction. We collected 
hyperspectral data of the frequency dependent near-field amplitude |𝑆P(𝑋, 𝜔)| as a 
function of the distance 𝑋 from the bicrystal edge, following established procedures (20, 
27) (see methods). Except for a narrow window of frequencies around 𝜔! = 787	cm"#, 
we witnessed oscillations (or fringes) of |𝑆P(𝑋, 𝜔)| as a function of 𝑋 in our hyperspectral 
data (Fig. 3B). The period of the oscillations observed in Fig. 3B systematically varies 
with 𝜔. Thus, our observations uncover how the wavelength of polaritonic waves, 𝜆-(𝜔), 
evolves with the frequency of incident IR light. The data in Fig. 3B, therefore, provide 
access to the polaritonic (𝜔, |𝑞%|) dispersion, because 𝜆-(𝜔) = 2𝜋 |𝑞%(𝜔)|⁄  (Fig. 3C). We 
stress a non-monotonic trend of 𝜆-(𝜔). In these data, 𝜆-(𝜔) decreases when the 
frequency is near the lower bound of the overlapping Reststrahlen bands, but then 



reverses the trend and increases with 𝜔 near the upper bound of this frequency range. 
Near the frequency 𝜔" = 773	cm"#, we detect two different fringe periods; hence, there 
are two sets of 𝑞% points at several frequencies around 𝜔" in Fig. 3C (see Supplementary 
Fig. S6). These features, at 𝜔! and 𝜔", are not present in the dispersions of constituent 
crystals (Supplementary Fig. S11). Thus, the hyperspectral data in Fig.3 indicate that 
polaritons in the bicrystal are coupled modes.  
 
A standard method for calculating the polariton dispersion involves finding the maxima of 
the reflection coefficient 𝑟- = 𝑟-(𝜔, |𝑞%|) of a 𝑝-polarized plane wave incident on the 
sample (20, 27-29). The results for Im	𝑟-, presented in Fig. 3, reveal existence of multiple 
dispersion branches. The data points extracted from the measurements match the 
branches with the smallest 𝑞%, the so-called principal modes. The full dispersion of the 
bicrystal displays a non-monotonic 𝑞%(𝜔) dependence and numerous spectral gaps 
(Fig. 3C). This dispersion can be understood as the family of avoided crossings exhibited 
by the modes of the constituent crystals. The polariton branches have a negative 
dispersion, 𝑣% = 𝑑𝜔 𝑑𝑞%⁄ < 0 in Crystal A (red curves) and positive dispersion, 𝑣% > 0,	in 
Crystal B (blue curves; see also Fig. S11). Accordingly, the group velocity components 
𝑣% of the coupled modes of the bicrystal alternate in sign each time |𝑞%| passes through 
an avoided crossing. The location of the crossings is determined by a Bohr-Sommerfeld-
like quantization condition:  
 

 (𝛿$ + 𝛿')𝑞% = 𝜋𝑛 + const, (1) 

 
where 𝑛 is an integer. Equation (1) implies that the frequency 𝜔!, at which 𝛿$ + 𝛿' 
vanishes, is typically gapped at all 𝑞%, in agreement with Fig. 3C. The magnitude of the 
gap ∆ω ∼ 𝜔. arccos|𝑟$'| is determined by two quantities. One is the reflection coefficient 
of the A-B interface, 𝑟$'. For example, if the interface were impenetrable, |𝑟$'| = 1, then 
the gap would vanish. The other quantity is the frequency at which polaritons cycle 
through the hetero-bicrystal, 𝜔.. The cycle frequency and, therefore, the gap size 
decreases as ∼ 1 |𝑞%|⁄ , at large |𝑞%| (Supplementary Section S1). Accordingly, the largest 
gap ∆ω opens at the crossing of the principal dispersion branches. Within the gaps, the 
pole of 𝑟-(𝜔, 𝑞%) occurs at a complex 𝑞% with a nonzero imaginary part even in the absence 
of dissipation. Thus, exactly at 𝜔! the polaritonic modes are evanescent, i.e., 
exponentially localized near a launcher due to the combined effects of negative refraction 
and wave interference. We observe a gap near 𝜔! (Figs. 3C) situated at |𝑞%| = 24 ±
3	µm"# with the size ∆ω = 13.2 ± 3.3	cm"#, which is in good agreement with the calculated 
value of ∆ω(|𝑞%| = 26	µm"#) = 16	cm"# (Fig. 3C and 3D).  The hetero-bicrystal polaritons 
visualized here comply with the definition of the strong mode coupling even at room 
temperature: the magnitude of the gap exceeds the linewidth of the mode (see 
Supplementary section S1). 
 
In this work, we introduced hyperbolic hetero-bicrystal polaritons. We showed that 
interface polaritons in h11BN/MoO3 can display negative refraction, spectral gaps, strong 



coupling, and localization. These attributes of hetero-bicrystal systems could, are broadly 
relevant to applications of mode couplers, converters, phase shifters and splitters (30) in 
addition to light emitters (31) utilizing hyperbolic materials. Hetero-bicrystal systems can 
also reduce symmetries of propagating polaritons. Owing to the orthorhombic structure 
of MoO3, the h11BN/MoO3 bicrystals, studied here, are in-plane hyperbolic within the 
overlapping Reststrahlen bands even though h11BN is in-plane isotropic (see 
Supplementary Fig. S12). Further, like Fabry Perot cavities, negative refraction can cause 
radiation to propagate in closed cycles in our hetero-bicrystal nano-cavities. Dielectric 
losses remain a challenge but could possibly be mitigated with active loss compensation 
(4, 5, 32). 



 

 
Figure 1| Polaritons in hyperbolic hetero-bicrystals. A, The real components of selected principal values of the 
permittivity of h11BN and MoO3. The dots are data for crystals we investigated in this this study. The parameters for the 
calculations, shown with solid lines, are extracted from our data (Table S1). B, Schematic showing qy=0 cuts of the 
polariton isofrequency surfaces of type-I (Crystal A, red) and type-II (Crystal B, blue) HMs (see Supplementary Section 
S1). The group velocities 𝑣⃗!,# and their tilt angles 𝜃! > 0, 𝜃# < 0 are indicated. C, Schematic of the polariton rays in a 
bicrystal assembled from a type I HM (Crystal A, h11BN) and a type II HM (Crystal B, MoO3). The lateral shifts inside 
the crystals 𝛿! < 0, 𝛿# > 0 are indicated with dashed blue and red arrows respectively. The ray paths are closed if 𝛿! +
𝛿# = 0.  

 
Figure 2| Negative refraction of polaritons. A-C, Near-field amplitude data, |𝑠|, obtained at various surfaces in the x 
– y plane of an h11BN/MoO3/Au stack. All data were obtained with at the infrared frequency w=787 cm-1 at the cryogenic 
temperature T=99K with dhBN=98 nm on dMoO3=290 nm thick A=h11BN and B=MoO3 crystals, respectively. A, Imaging 
data of |𝑠| in perspective at the top surface of h11BN/MoO3/Au. B, Data obtained at the surface of MoO3/Au, displayed 
in an identical manner to panel (B). Calculations of |Ez| in the xz-plane, and a strip in the xy-plane, are also shown in 
false color (Supplementary section S1) in panels (A) and (B). Yellow rectangles represent gold bars, beneath the HMs, 
and black dashed lines show the locations of the strip’s edges in our calculations. C, Line profiles of |𝑠| as a function 
of the real-space co-ordinate, X. Schematic insets depict the geometry in the x – z plane. Two pairs of hyperbolic rays, 
1&2 and 3&4, launched by the two edges of the Au strip are labeled. 



 

Figure 3| Spectral gaps in the hetero-bicrystal dispersion. A, Schematic illustrating hyperbolic ray trajectories in 
h11BN (red arrows) and MoO3 (blue arrows) for 𝜔 ≫ 𝜔$. B, Amplitude data, |𝑆/(𝑋,𝜔)| obtained on a h11BN/MoO3 
bicrystal illustrated in panel (A) at ambient temperature. The distance, X, is relative to the edge of the h11BN/MoO3 
bicrystal (solid red line at X=0). The edge of h11BN is located at approximately X = -700 nm (see Supplementary section 
S1). C, False color traces represent the polaritonic dispersion relationship plotted in the form of imaginary part of the 
p-polarized reflection coefficient, Im rp as a function of 𝜔 and the absolute value of the momentum component, |𝑞%|. 
The calculation uses realistic room-temperature losses of h11BN and MoO3 (see Supplementary Table S1). 
Experimental points were extracted from hyperspectral data in panels (B) and in Supplementary Fig. S6. The frequency, 
w0, is also indicated with a horizontal yellow line while the frequency, w-, discussed in the main text is indicated with a 
white arrow.  D, The bicrystal dispersion is shown with black lines for the idealized case with vanishing losses. Thin 
color traces display the dispersions the parent crystals, MoO3 (blue), and h11BN (red) calculated using parameters in 
Table S1. The frequency, w0, is indicated with a horizontal black dashed line. All data in this figure were obtained on a 
h11BN/MoO3 bicrystal with thicknesses of dhBN=58 nm and dMoO3=150 nm.  
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MATERIALS AND METHODS  
 
Experimental set-up.  
 
We used the pseudo heterodyne technique (14, 19, 20) to extract the amplitude (𝑆) and 
phase (𝜑) of the near-field signal in imaging experiments (Fig. 2) and nano-FTIR (20, 27, 
33) to extract spectra of 𝑆(𝜔) and 𝜑(𝜔) (Fig. 3) with spatial resolution approximately given 
by tip’s radius of curvature, which is around 20 nm. In this work, we demonstrate a 
homebuilt monochromator for quasi-monochromatic nano-imaging of polaritons with a 
pulsed light source (25). Details of our experimental apparatus are in Supplementary 
section S4.  
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S1. Hyperbolic modes and hyperbolic rays 

S1.1 Bulk modes and their reflection/refraction at interfaces 

The dispersion of electromagnetic modes in an anisotropic crystal is governed by 
Fresnel’s equation 

 

d𝜀%𝑞%( + 𝜀)𝑞)( + 𝜀&𝑞&(ed𝑞%( + 𝑞)( + 𝑞&(e	
−	f(𝜀) + 𝜀&)𝜀%𝑞%( + (𝜀% + 𝜀&)𝜀)𝑞)( + (𝜀% + 𝜀))𝜀&𝑞&(g𝑞!(	
+	𝜀%𝜀)𝜀&𝑞!/	
= 0	, 

(S1) 

where 𝜀0 = 𝜀0(𝜔) are the dielectric permittivities along the principal axes of the crystal 
𝑖	 = 	𝑥, 𝑦, 𝑧, vector 𝑞⃗ = (𝑞% , 𝑞) , 𝑞&) is the mode momentum, and 𝑞! = 𝜔 𝑐⁄  is the free-
space photon momentum. For our near-field experiments, the quasi-static limit 𝑞( ≫ 𝑞!( 
is pertinent. Here 𝑞 = j𝑞%( + 𝑞)( + 𝑞&( is the magnitude of vector 𝑞⃗. 

For a given direction of the 𝑞⃗ vector, Eq. S1 has two solutions for 𝑞, which are referred 
to as the ordinary and extraordinary. To understand their basic properties, we can 
consider the case where 𝑞⃗ is in the 𝑥-𝑧 plane, so that 𝑞) = 0, which is relevant for our 
experimental setup. It is easy to show that in this case the dispersion equation for the 
ordinary mode simplifies to 𝑞( = 𝑞%( + 𝑞&( = 𝜀)𝑞!(. This equation however has no real 
solutions that belong to the quasi-static range 𝑞 ≫ 𝑞! (unless 𝜀) is unusually large and 
positive). Therefore, the ordinary modes play little role in our experiments. On the other 
hand, the dispersion of the extraordinary modes is 

 𝑞%(

𝜀& +
𝑞&(

𝜀% =
𝜔(

𝑐(	 
(S2) 

for 𝑞) = 0. This equation does have solutions with large real momenta 𝑞 ≫ 𝑞! if 𝜀& and 
𝜀%	are of opposite sign. In this case, for a given fixed 𝜔, Eq. S2 describes a hyperbola in 
the 𝑞%-𝑞& plane, see Fig. 1B of the main text and Fig. S1. The crystal is characterized as 
a hyperbolic material (HM) of type I if 𝜀& < 0 < 𝜀% and a HM of type II if 𝜀% < 0 < 𝜀&. We 
call the extraordinary modes of such HMs hyperbolic polaritons. 

At 𝑞 ≫ 𝑞!, the hyperbolic polariton dispersion curve becomes asymptotic to the pair of 
straight lines 

 𝑞& = ±𝑞% tan 𝜃 , tan 𝜃 = 𝑖
√𝜀%

√𝜀&
	 (S3) 



tilted by the angle ±𝜃 with respect to the 𝑥-𝑦 plane and the complementary angle 𝜃∗ =
(𝜋 2⁄ ) − |𝜃|	with respect to the 𝑧-axis (Fig. S1). The angle 𝜃 = 𝜃(𝜔) is an important 
parameter in the problem. It was introduced in the main text. 

In a uniaxial material HM (such as h11BN) where 𝜀) = 𝜀%, Eqs. (S2) and (S3) are valid 
for an arbitrary 𝑞) if 𝑞%(	is replaced by 𝑞%( + 𝑞)(. Hence, the isofrequency surface in a 3D 
𝑞-space is a hyperboloid asymptotic to a circular cone with the opening angle 𝜃2	in the 
momentum space. For MoO3, which is biaxial, we have a distorted cone instead. 

The polariton modes we discussed so far are plane waves of constant amplitude and 
fixed momentum 𝑞⃗. Such modes can be excited only by sources of infinite size. On the 
other hand, the field generated by a localized source of small size 𝑎 ≪ 𝑞!"# has a 
strikingly different real-space structure in which the amplitude of the field is not constant 
but concentrated on a certain conical surface. It is useful to think that such a field 
configuration is composed of numerous hyperbolic rays. Each ray is a wavepacket of 
polariton modes centered around a given momentum 𝑞⃗. The rays propagate with the 
group velocity 

 𝑣 = ∇*+⃗𝜔	.	 (S4) 

From Eq. S2, we find that for rays with momenta 𝑞 ∼ 𝑎"# ≫ 𝑞!, this velocity is given by 

                 
Figure S1| Isofrequency curves of a hyperbolic crystal. A. The 𝑞! = 0 cross-section of the 
isofrequency surface in a type I HM with 𝜀" < 0 < 𝜀# and 𝜀! > 0	consists of a hyperbola representing the 
extraordinary mode and an ellipse corresponding to the ordinary mode. The momenta of high-𝑞 
extraordinary modes are tilted by the angle 𝜃′ with respect to the 𝑧-axis. The wavepackets of these modes 
form hyperbolic rays that propagate along the direction of the group velocity 𝑣⃗$, which is rotated by the 
complementary angle 𝜃 = (𝜋 2⁄ ) − 𝜃′	 with respect to the same axis. The group velocity points away from 
the asymptotes (straight dashed lines).  B. A similar diagram for a type II HM with 𝜀# < 0 < 𝜀" and 𝜀! >
0	where the hyperbola appears on the other side of the asymptotes and	𝜃 < 0,	so that 𝜃% = (𝜋 2⁄ ) + 𝜃. 



 𝑣% ≃ −
Ω tan 𝜃
𝑞%

		 , 𝑣& ≃
Ω tan 𝜃
𝑞&

		 , Ω(𝜔) ≡ p	
𝑑
𝑑𝜔 tan 𝜃q

"#

> 0	. (S5) 

(Although nonuniversal, the last inequality, i.e., Ω > 0, is valid for both h11BN and MoO3 
and should apply for most other HMs as well.)  Equation (S5) indicates that the 
hyperbolic rays propagate at an angle 𝜃	with respect to the 𝑧-axis. This angle does not 
depend on the momentum: it is common for all the rays in the quasistatic limit. 
Therefore, the real-space field distribution created by the rays emitted by a localized 
source in an infinite HM is peaked at the surface of the so-called “resonant cone” 
inclined by the same angle 𝜃 from the 𝑧-axis. The 𝑥-𝑧 cross-section of this resonant 
cone consists of two lines tilted by the angle ±𝜃 with respect to the 𝑧-axis. The relation 
between the momentum space and the real space distributions is reciprocal: a narrow 
isofrequency cone in 𝑞-space corresponds to a wide resonant cone in real space, and 
vice versa. The described properties can be also understood geometrically. Per Eq. S4, 
𝑣⃗	is normal to the polariton isofrequency surface, which is hyperboloidal or 
approximately conical. Hence, the momentum and the group velocity vectors of high-𝑞 
hyperbolic modes are nearly mutually orthogonal, 𝑣 ⋅ 𝑞⃗ ≈ 0, see Fig. S1. 
A key innovation of the heterostructures studied in our experiments is the interface of 
two different HMs: h11BN (crystal A) and MoO3 (crystal B). The hyperbolic modes 
experience reflection and refraction at this interface, which is oriented normal to the 𝑧-
axis in our case. For either reflection or refraction, the sign and magnitude of the in-
plane momentum component 𝑞% are conserved along the normal to the boundary. The 
angle between 𝑞% and the normal to the boundary is given by the complementary angle 
𝜃∗ defined above. The direction of the reflected/refracted rays is determined by the 
group velocity. From Eq. S5 we see that in a HM, the signs of 𝑣% and 𝑞% are not 
necessarily the same. This leads to the possibility of negative refraction (see Fig.1 of 
the main text for an illustration), where the refracted ray bends back rather than 
continues across the surface normal. Specifically, the group velocity component 
𝑣%	changes sign across the A-B interface if tan 𝜃$	and tan 𝜃' have opposite signs. In 
other words, the negative refraction occurs if one of the crystals is of type I (so that 
tan 𝜃 > 0) and the other of type II (tan 𝜃 < 0).  In contrast, the in-plane phase velocity 
component (𝑞% 𝑞⁄ )(𝜔 𝑞⁄ ) has the same sign as 𝑞%, and so it never changes the sign 
regardless of the material properties or the type of refraction. 
Another process that occurs at the A-B interface is reflection. It is easy to show that 
under the assumptions we made previously (𝑞% ≫ 𝑞! and 𝑞) = 0), the reflection 
coefficient for the hyperbolic polariton incident on this interface from Crystal A has a 
momentum-independent value 

 𝑟$' =
𝜀'̅ − 𝜀$̅
𝜀'̅ + 𝜀$̅

		 , 𝜀3̅ ≡ j𝜀3%j𝜀3&	.	 (S6) 

For the interface of two lossless HMs (with purely real 𝜀4& and 𝜀4%), this quantity is real, 
and its magnitude |𝑟$'| is between 0 and 1. This means that, in general, the polaritons 



are partially transmitted and partially reflected at the A-B interface. On the other hand, 
at the outer surface of an HM, i.e., at its interface with air, 𝜀% = 𝜀& = 𝜀!	, the reflection 
coefficient, which we denote by 𝛽, is complex and its magnitude is equal to unity: 

 𝛽 =
𝜀̅ − 𝜀!
𝜀̅ + 𝜀!

= −𝑒(056(8&), 𝛼(𝜖) ≡
1
𝜋 	arctan p

𝑖𝜖
𝜀̅
q −

1
2	. (S7) 

Therefore, at the outer surface, the polaritons experience a total internal reflection with 
the phase shift 𝜋𝛼(𝜀!). The reflection coefficient can be expressed in terms of these 
phase shifts as follows 

 𝑟$' =
𝛽' − 𝛽$
1 − 𝛽'𝛽$

=
sin[𝜋𝛼'(𝜀!) − 𝜋𝛼$(𝜀!)]
sin[𝜋𝛼'(𝜀!) + 𝜋𝛼$(𝜀!)]

	,		 (S8) 

where the subscripts added to 𝛼 and 𝛽 designate the material. In Fig. S2 we show the 
internal reflectivity 𝑅$'(𝜔) = |𝑟$'|( and the air reflectivities 𝑅:;<,3 ≡ |𝛽3|( computed for 
the studied materials using optical constants from Table S1. Notice two items: i) the 
interval 740	cm"# < 𝜔	 < 822	cm"#	of fractional reflectivity 0 ≤ 𝑅$' < 1 where both 
crystals are hyperbolic and ii) a special frequency 𝜔>! = 814	cm"# near the 𝑧-axis 
phonon frequency of h11BN 𝜔?@

[!!#] = 822	cm"#	(see Table S1) where 𝜀'̅ ≈ 𝜀$̅, so that  
𝑅:;<,$ ≈ 𝑅:;<,' and, in accordance with Eq. S8, the A-B interface is nearly reflectionless, 
𝑅$' ≈ 0. As we will discuss in Sec. S1.2 below, smallness of 𝑅$' promotes coupling 
between the polariton eigenmodes of the two crystals. 

 

Figure S2 | Large-momentum (near-field) reflectivity of material interfaces present in h11BN/MoO3 
heterostructures. The calculated reflectivity	𝑅'(),+ = |𝛽+|, of bulk crystal A (h11BN) - air interface is 
shown by the red line, that of bulk crystal B (MoO3) - air 	𝑅'(),- = |𝛽-|,	is shown by the blue line, and 
that of the A-B interface 𝑅+-(𝜔) = |𝑟+-|,	is represented by the black line. The frequency 𝜔./ where 𝑅+- 
vanishes is marked by the arrow. The tangential component of the polariton momentum is along the 
[001] principal axis of MoO3. 



S1.2 Modes of layered heterostructures 

A finite-thickness layered system can support “waveguide” polariton modes that are 
confined in the out-of-plane (𝑧)-direction but have a definite momentum (𝑞% , 𝑞)) along 
the plane. Let us again assume that 𝑞) = 0 so that 𝑞 = j𝑞%( + 𝑞)( = |𝑞%| ≥ 0 . The 
momentum of the waveguide modes must be outside the light line, 𝑞 > 𝑞!. A standard 
method for finding the waveguide mode spectrum is to consider the reflection coefficient 
of a 𝑝-polarized plane wave incident on the surface of the sample from vacuum (or air). 
For a given frequency 𝜔, this coefficient 𝑟- = 𝑟-(𝑞, 𝜔) is a function of 𝑞. The waveguide 
modes show up as the poles of function 𝑟-(𝑞, 𝜔) at complex 𝑞 = 𝑞′ + 𝑖𝑞′′ or equivalently, 
as sharp peaks of Im	𝑟-(𝑞, 𝜔) at real and positive 𝑞 = 𝑞′.  
In turn, a standard approach for computing 𝑟-(𝑞, 𝜔) is the transfer matrix method. For a 
heterostructure of 𝑀 layers indexed by 1 ≤ 𝑗 ≤ 𝑀 from top to bottom, this method leads 
to the following recursion relation (see, e.g., (34)) 

 𝑟0 =
𝑟0,0C# + 𝑟0C#exp(2𝑖𝑘0C#𝑑0C#)
1 + 𝑟0,0C#𝑟0C#exp(2𝑖𝑘0C#𝑑0C#)

  , 𝑘0 = �𝑞!(𝜀0% −
𝜀0%

𝜀0&
𝑞(	 (S9) 

for the reflection coefficient 𝑟0 	of a sub-stack of layers 𝑖 ≤ 𝑗 ≤ 𝑀 − 1. By convention, 
layer index 𝑗 = 0 refers to the air-filled half-space above the sample. The recursion is 
initialized at 𝑖 = 𝑀 − 1 with 𝑟D"# = 𝑟D"#,D and is continued to successively smaller 𝑖. 
The desired reflection coefficient of the entire sample is 𝑟- = 𝑟!. Note that 𝑘0 has the 
meaning of the 𝑧-axis momentum 𝑞& in the 𝑖th layer, cf. Eq. S2, and that to compute the 
reflection coefficients 𝑟0,0C#	of individual interfaces Eq. S6 can be used. 
Table S1 | Optical constants of h11BN and MoO3. Optical constants were obtained by fitting our 
experimental data in Fig. S11 and S13 (see Section S2.5). These parameters are in a reasonable 
agreement with prior investigations of h11BN (19) and MoO3 (35, 36).  For h11BN, the [001] direction (c-
axis) is along the 𝑧-axis, which is out of the plane. The	[100] and [010], directions are along the 𝑥 and 
𝑦-axis, respectively. For MoO3, the [001] and [100] directions are in the 𝑥-𝑦 plane, with the [001] axis 
making a 𝜑 = 7.5/ angle with respect to the 𝑥-axis in the data of Figs. 3 and S11; the [010] direction is 
out of the plane, along the 𝑧-axis. Accordingly, the requisite components of the dielectric tensor of 
MoO3 are given by 𝜀'% = cos(𝜑	𝜀'

[!!#] + sin(𝜑	𝜀'
[#!!], 𝜀'& = 𝜀'

[!#!]. 

Parameter Crystal A (h11BN) Crystal B (MoO3) 
𝜀0
[2//] 5.9 4.7 

𝜔45
[2//] 1608.7	[cm62] 972	[cm62] 

𝜔75
[2//] 1359.8	[cm62] 820	[cm62] 

Γ[2//] 2.5	[cm62] 7	[cm62] 

𝜀0
[/2/] 5.9 2.4 

𝜔45
[/2/] 1608.7	[cm62] 1004	[cm62] 

𝜔75
[/2/] 1359.8	[cm62] 958	[cm62] 



Γ[/2/] 2.5	[cm62] 8	[cm62] 

𝜀0
[//2] 2.8	 5.2 

𝜔45
[//2] 822	[cm62] 851	[cm62] 

𝜔75
[//2] 740	[cm62] 545	[cm62] 

Γ[//2] 4	[cm62] 7	[cm62] 

 
For the electric field inside the layers, we derived the following recursion relations: 

 

𝐸%(𝑥, 𝑧) = −
𝜕
𝜕𝑥Φ

(𝑥, 𝑧), 𝐸&(𝑥, 𝑧) = −
𝜕
𝜕𝑧Φ

(𝑥, 𝑧)	,	

Φ(𝑥, 𝑧) = �
𝑑𝑞
2𝜋	𝑒

0*%	Φ�(𝑞, 𝑧)	 ,	

	Φ�(𝑞, 𝑧) = 𝐴4(𝑞)𝑒"0E8F&"&8G +	𝐵4(𝑞)𝑒0E8F&"&8G,			𝑧4 < 	𝑧 < 𝑧4"#	,	

𝐴4C#(𝑞) = −
1 − 𝑟4,4C#

𝑟4C#,4𝑟4C#exp(2𝑖𝑘0C#𝑑0C#) − 1
	exp(𝑖𝑘0C#𝑑0C#)	𝐴4(𝑞)	,	

𝐵4(𝑞) = −𝑟4 	𝐴4 	. 

(S10) 

Here 𝑧4 = −∑ 𝑑0
4
0H#  is the 𝑧-coordinate of the bottom of 𝑗th layer. The recursion is 

initialized with 𝐴!(𝑞) = Φ�!(𝑞), where Φ�!(𝑞)	is the Fourier transform of the scalar potential 
due to the incident field at the top surface 𝑧 = 𝑧! = 0. 
 
We used a similar set of equations to compute the field induced by the strip launcher 
discussed in the main text. We treated the launcher as a source located just inside the 
substrate. In this formulation, the potential created by the launcher is therefore incident 
from the bottom not the top of the structure. To adapt Eq. S9 to this situation, the only 
change needed is switching the direction of the 𝑧-axis and renumbering of the layers in 
the opposite order (bottom to top). For the source potential, we used the known analytical 
solution for an ideal metallic strip of width 𝑤 subject to a unit uniform external field: 
Φ!(𝑥) = Re	d𝑥 − j𝑥( − (𝑤 2⁄ )(e, Φ�!(𝑞) = 𝑖𝜋𝑎𝐽#(𝑞𝑤 2⁄ )/|𝑞|	, where 𝐽#(𝑧) is the Bessel 
function. Representative results for 𝐸& in the interior of the sample and on its top surface 
are shown in Fig. 2 of the main text and Fig. S6B, S6D, S6E and S6H-J below.  
 
To model the response of h11BN and MoO3 we use the single Lorentzian oscillator form, 

 𝜀30 = 𝜀I,30 �1 +
𝜔J@,30 ( − 𝜔?@,30 (

𝜔?@,30 ( − 𝜔( − 𝑖𝜔Γ30
�	, 𝑖 = 𝑥, 𝑦, or	𝑧, (S11) 

with parameters listed in Table S1.  
Before discussing the bicrystal, it is instructive to review the case (37) of an 𝑀 = 2 
system - a single finite-thickness slab of an HM on a half-infinite substrate - for which a 
single recursion step of the calculation suffices. After some algebra, 𝑟- can be written as 



 𝑟- = −
sin �	12𝜙 − 𝜋𝛼(𝜀!)�

sin �	12𝜙 + 𝜋𝛼(𝜀!)�
	, (S12) 

 𝜙 = 𝑞𝛿 + 2𝜋𝛼(𝜀K)	, (S13) 

 𝛿 = 2𝑑	tan𝜃 = 2𝑖𝑑
√𝜀%

√𝜀&
	. (S14) 

Here 𝜀K̅ = j𝜀K%j𝜀K& is the effective permittivity of the substrate and 𝜀%, 𝜀& are the in- and 
out-of-plane permittivities of the slab. The physical meaning of quantity 𝜙 is the phase 
accumulation of the polariton wave over a single “bounce” trajectory that involves 
traveling inside the slab from top to bottom, reflecting from the bottom surface, and 
returning to the top. The quantity 𝛿 is the lateral shift of the polariton rays over the same 
bounce. This important parameter will be discussed in more detail shortly. 

As stated above, the waveguide mode momenta are the poles of function 𝑟-(𝑞, 𝜔). As 
one can see from Eq. S12, such poles arise whenever the sum 𝜙 + 2𝜋𝛼(𝜀!) approaches 
an integer multiple of 2𝜋. This is just the usual Bohr quantization rule that the total 
phase accumulation on a closed-cycle trajectory must be equal to 2𝜋𝑙. There is an 
infinite number of such poles (20, 38): 

 𝑞L =
2𝜋
𝛿
[𝑙 − 𝛼(𝜀!) − 𝛼(𝜀K)]	. (S15) 

Admissible values of 𝑙 are determined from the condition 𝑞L = |𝑞%| ≥ 0. Note the sign of 
𝛿 is the same as the sign of tan 𝜃. Therefore, 𝑙 = 0, 1, 2, … are allowed for a type-I HM 
with 𝛿 > 0, such as our crystal A (h11BN) and 𝑙 = −1,−2,−3, … are allowed for a type-II 
HM (crystal B or MoO3), where 𝛿 < 0. The first entries of these lists (𝑙 = 0 for type I and 
𝑙 = −1 for type II) are the principal modes. They are usually easiest to detect 
experimentally. 

Taking the derivative in Eq. S15, we find the in-plane group velocity 𝑣 ≡ 𝑣%(𝑞% = 𝑞 ≥ 0) 
of the waveguide modes: 

 𝑣 =
𝑑𝜔
𝑑𝑞L

= −
Ω(𝜔) tan 𝜃

𝑞L
	�1 +

Ω(𝜔)	tan𝜃
𝑙 − 𝛼(𝜀!) − 𝛼(𝜀K)

	
𝑑
𝑑𝜔

[𝛼(𝜀!) + 𝛼(𝜀K)]�
"#

	. (S16) 

The leading factor in this formula is identical to the first equation in Eq. S5 for a bulk 
HM. The expression inside the braces represents a correction due to the reflection 
phase shifts 𝜋𝛼(𝜀!) and 𝜋𝛼(𝜀K) at the surfaces, i.e., the polaritonic Goos-Hänchen effect 
(34). Assuming this correction is not large, Eq. S16 predicts that for a type-I HM (h11BN) 



the sign of the in-plane component of the group velocity, 𝑣, of the waveguide modes is 
opposite in sign to the phase velocity. For a type-II HM (MoO3), the in-plane group and 
phase velocity components have the same sign. 
Due to unavoidable dielectric losses characterized by the imaginary parts of the 
permittivities 𝜀0, the momenta 𝑞L = 𝑞L2 + 𝑖𝑞L′′ and the velocities 𝑣 = 𝑣′ + 𝑖𝑣′′ given by 
Eqs. S15, S16 are in fact complex. The physically relevant real quantities are the mode 
wavelengths 𝜆L = 2𝜋 𝑞L′⁄  and the mode propagation lengths 𝐿L = sgn 𝑣′ 𝑞L′′⁄ > 0. Per 
Eq. (S15), both quantities scale approximately as 𝜆L , 𝐿L ∝ 1 𝑙⁄  with the mode index 𝑙. 
Hence, higher index modes have shorter propagation lengths. Distinguishing discrete 
eigenmodes remains possible if their momentum spacing Δ𝑞 = 𝑞LC# − 𝑞L =
2𝜋 𝛿⁄ 	exceeds their momentum broadening 𝑞L′′, which is equivalent to the condition that 
the propagation length 𝐿L is longer than |𝛿|. This condition can be reinterpreted in terms 
of the ray picture. It means that the quantized waveguide modes exist only if polariton 
rays can survive multiple roundtrips between the two surfaces of the slab, see below. 
Instead of working with real 𝜔 and complex 𝑞, we can restrict 𝑞 to be real, in which case 
the corresponding mode frequency 𝜔L(𝑞) = 𝜔L2(𝑞) + 𝑖𝜔L′′(𝑞) must be complex, with 
some positive imaginary part 𝜔L22 > 0, which plays the role of the mode linewidth. For 
weak losses, 𝜔L22 ≃ 𝑣′𝑞L22. The mode quantization persists until 𝜔L22, which is roughly 𝑙	-
independent, remains smaller than the intermode spectral gap  

 Δ𝜔 ≈ 𝑣2Δ𝑞 ≈
𝜋
𝑞𝑑 Ω	, (S17) 

which decreases with 𝑞 ∝ 𝑙. 
To illustrate these properties on concrete examples we consider: i) crystal A (h11BN) 
suspended in air and ii) crystal B (MoO3) on SiO2 substrate. These examples represent 
the top and bottom halves of our actual sample. The corresponding reflection 
coefficients are given by (cf. Eq. S12) 

 𝑟- = −
sin �	12𝜙3 − 𝜋𝛼3(𝜀!)�

sin �	12𝜙3 + 𝜋𝛼3(𝜀!)�
	 , 𝑋 = 𝐴	or	𝐵, (S18) 

 𝜙$ ≡ 𝑞𝛿$ + 2𝜋𝛼(𝜀!), 𝜙' ≡ 𝑞𝛿' + 2𝜋𝛼(𝜀K), 𝛿3 ≡ 2𝑑3 tan 𝜃3	.	 (S19) 

The plots Im	𝑟-	for these subsystems are presented in Fig. S3A and S3B, respectively. 
The bright lines tracing the peaks of Im	𝑟-	are the dispersion curves as a function of 𝑞 >
0. These curves have a negative slope 𝑣 < 0	for crystal A and a positive slope 𝑣 > 0	for 
crystal B, in agreement with the above determination. 
In our discussion of a local source in a bulk HM we introduced two complementary 
concepts: modes and rays. The same can be done in the case of a finite-thickness slab. 
The ray picture is useful for understanding real-space field distributions at short 
distances from the source whereas the long-distance behavior is easier to analyze in 



terms of the waveguide modes. To see how the ray picture is modified due to the 
presence of the boundaries, we can expand the reflection coefficient 𝑟- in the infinite 
series 

 𝑟-(𝑞, 𝜔) = −𝑒(056(8&) − f1 − 𝑒(056(8&)g𝑒(056(89)�𝑒(05(M"#)[6(8&)C6(89)]𝑒0M*N
I

MH#

	. (S20) 

(This series are converging because Im	𝛿 > 0 in the presence of losses.) Importantly, 
the only 𝑞-dependence of the coefficients is due to the factors 𝑒0M*N, which act as shift 
operators in the real space. This permits one to interpret the result in terms of the 
method of images: whereas in a bulk HM, a local source creates a field distribution 
peaked on a “resonant” conical surface, in the slab, the field is the superposition of this 
resonant cone with all its images obtained by successive reflections with respect to the 
top and bottom surfaces. The 𝑥-𝑧 cross-section of this distribution consists of ray-like 
trajectories that bounce between the two surfaces maintaining the same angle ±𝜃 with 
respect to the 𝑧-axis. These hyperbolic rays return to each surface with regular intervals 
𝛿 = 2𝑑 tan 𝜃, producing sharp peaks of the field. 

As the rays gradually broaden with the distance travelled, the contributions of 
successive reflections start to overlap and an alternative description in terms of 
waveguide modes becomes more convenient. Indeed, as the distance from the source 
increases, high-𝑙 modes, which have shorter propagation lengths, get rapidly damped, 
so that the long-distance pattern is dominated by the principal mode, a decaying sine 
wave. The period of this wave is 2𝜋 𝑞!2⁄  (in type-I HM), which exceeds the ray repeat 
distance |𝛿| by a numerical factor. In most of near field imaging experiments, including 
ours, this regime is reached rather quickly, as shown in Fig. 2 of the main text and 
Fig. S6 below. Conversely, description of the short distance “ray behavior” in terms of 
waveguide modes is a bit less intuitive. It relies on the fact that the momentum spacing 
of the waveguide modes Δ𝑞 = 𝑞LC# − 𝑞L = 2𝜋 𝛿⁄  is equidistant, see Eq. (S15). Coherent 
beating of multiple such modes produces the sharp 𝛿-periodic peaks in the real space. 
We are now ready to consider the case of a bicrystal, which we model as an 𝑀 =
3	structure with layers 𝑗 = 1, 2, and 3 representing crystal A (h11BN), crystal B (MoO3), 
and the substrate (SiO2), respectively. The reflection coefficient 𝑟- of this system can be 
calculated using two recursion steps of Eq. (S7). After some algebraic manipulations, 
the result can be written as 

 𝑟- = −
sin �𝜙$ + 𝜙'2 − 2𝜋𝛼$(𝜀!)� + 𝑟$' sin �

𝜙$ − 𝜙'
2 − 2𝜋𝛼$(𝜀!)�

sin �𝜙$ + 𝜙'2 � − 𝑟$' sin �
𝜙$ − 𝜙'

2 �
	, (S21) 

where 𝜙$, 𝜙', and 𝑟$' are given by Eqs. (S8) and (S17). The plot of Im	𝑟-	calculated 
according to this formula is shown in Figs. S3C and S3D. In Fig. S3C, we use artificially 
reduced damping parameters to visualize the mode dispersion more clearly; in 



Fig. S3D, we use the realistic parameters from Table S1. The dispersion is complicated, 
consisting of numerous branches that are non-monotonic in 𝑞. As we discuss below, 
these branches result from hybridization and avoided crossing between the two families 
of waveguide modes seen in Figs. S3A and S3B.  
 

 

 
Figure S3 | Waveguide mode dispersions in crystals A, B, and in the A-B bicrystal. A, Mode 
dispersions of crystal A (h11BN). The loss parameters 𝛤 are artificially reduced by a factor of 10: 
compared to Table S1. B Same for crystal B (MoO3). C, D, Dispersions in the A-B bicrystal with reduced 
and realistic losses, respectively. 

According to Eq. (S20), the poles of 𝑟-, which are the mode dispersions, are the roots of 
the following equation: 

 sin p
𝜙$ + 𝜙'

2 q − 𝑟$' sin p
𝜙$ − 𝜙'

2 q = 0	.	 (S22) 

To analyze mathematical properties of these roots we treat the A-B interface reflection 
coefficient −1 ≤ 𝑟$' ≤ 1 as a fixed real parameter and solve Eq. (S20) for 𝜙$ and 𝜙'. A 
few of such solutions are plotted in Fig. S4, using the sum 𝜙C ≡ 𝜙$ + 𝜙' 	and difference 
𝜙" ≡ 𝜙$ − 𝜙' phase variables as the coordinates on the axes. For each 𝑟$', the 



solution consists of an infinite number of curves of the same shape which are related by 
periodic translations. In three cases 𝑟$' = −1, 0, 1, the curves straighten into lines, e.g., 
for the reflectionless interface 𝑟$' = 0 these are the horizontal lines 𝜙C = 2𝜋𝑚, where 𝑚 
is an integer. When 𝑟$' deviates from zero, a special set of points on these lines, where 
𝜙C and 𝜙" are both integer multiples of 2𝜋	remain solutions of Eq. (S21). In between 
such “anchor” points, the curves move either closer or further away from their neighbors 
along the vertical (𝜙C) direction. The minimal distance in 𝜙C between the nearest 
neighbor curves is  

 Δ𝜙C = 4arccos 	|𝑟$'|	,	 (S23) 

which is a decreasing function of the A-B interface reflectivity. If |𝑟$'| = 1, then Δ𝜙C 
vanishes; if 𝑟$' = 0, then Δ𝜙C has the maximum possible value of 2𝜋. 

 

The interpretation of the described structure in terms of eigenmode coupling is 
straightforward. If |𝑟$'| = 1, then the interface is impenetrable, and so the crystal A and 
B are isolated from one another. Their mode dispersion lines (the diagonal lines in 
Fig. S4) can freely intersect, which means that the dispersion of the whole bicrystal is 
gapless. If |𝑟$'| < 1, the A-B interface is partially transparent, so that the two 
subsystems interact. This interaction causes spectral repulsion and the gaps in the 
dispersion. If the interface is fully transmitting, 𝑟$' = 0, then the mode coupling is the 
strongest and the gaps are the largest. In this latter case the two subsystems are 
perfectly impedance-matched, so that they behave as a single slab with 𝛿 equal to 𝛿$ +
𝛿'. Indeed, using Eq. (S19), it is easy to check that the mode quantization condition 
𝜙C = 2𝜋𝑚 that applies for 𝑟$' = 0	is equivalent to the following modification of 
Eq. (S15):  

 
Figure S4 | Waveguide mode dispersion of a bicrystal, expressed in phase variables. The line colors 
mark the A-B reflection coefficient 𝑟+- that varies from −1 (blue) to +1 (red) in six increments. The 
reflectionless interface 𝑟+- = 0 (black horizontal lines) produces the largest possible spectral gaps. 



 𝑞 =
2𝜋

𝛿$ + 𝛿'
[𝑚 − 𝛼(𝜀!) − 𝛼(𝜀K)]								(𝑟$' = 0)	. (S24) 

Here we dropped the subscripts of 𝛼’s because 𝛼$ = 𝛼' in this case. 
Turning to the group velocity component 𝑣, for the (nearly) impenetrable interface case 
|𝑟$'| ≃ 1, it alternates as a function of 𝑞 between two values, 𝑣$ and 𝑣', given by 
Eq. (S15): 

 𝑣3 =	−
Ω3(𝜔) tan 𝜃3

𝑞 	, 𝑋 = 𝐴	or	𝐵 (S25) 

(for simplicity, we neglected the Goos-Hänchen correction). Since 𝑣$ < 0 and 𝑣' > 0,  
the group velocity changes sign at each anti-crossing. For the reflectionless case, the 
group velocity of each branch does not alternate in sign. It is given by the expression  

 𝑣 = 	
𝛿$ + 𝛿'

𝛿$𝑣$"# + 𝛿'𝑣'"#
											(𝑟$' = 0) (S26) 

whose denominator is always negative. Hence, the sign of 𝑣 is opposite to that of the 
numerator 𝛿OPO = 𝛿$ + 𝛿'. The plot of 𝛿OPO(𝜔) computed for our experimental system 
(Fig. S5) indicates that it is an increasing function that crosses zero at frequency 𝜔! =
785	cm"#. 

 
Figure S5 | Calculated ray displacements (real parts) in the bicrystal (see text). 

In general, 𝜔! is the solution of the equation 

 𝛿OPO(𝜔!) = 𝛿$(𝜔!) + 𝛿'(𝜔!) =
j𝜀$%(𝜔)

j𝜀$&(𝜔)
𝑑$ +

j𝜀'%(𝜔)

j𝜀'&(𝜔)
𝑑' = 0	, (S27) 



so it depends on the thickness ratio 𝑑$ 𝑑'⁄  of the two crystals. Frequency 𝜔! plays the 
role of the separatrix dividing the regions of predominantly positive and predominantly 
negative dispersion. Frequency 𝜔! also has an intuitive interpretation within the 
semiclassical ray picture. At frequency 𝜔! the ray orbits become closed (or periodic), 
see Fig. 1C, suggesting that 𝑣 should be zero, in agreement with Eq. (S26). Finally, we 
give the formula for the spectral gaps separating the dispersion curves:  

 Δ𝜔 = 𝑣Δ𝑞 = p
1
Δ𝜔$

+
1
Δ𝜔'

q
"#

∝ 	
1
𝑞 										

(𝑟$' = 0)	. (S28) 

Here the gaps Δ𝜔3 of each subsystem in isolation are given by Eq. (S17). 
In the actual bicrystal, |𝑟$'| varies with frequency and is typically somewhere in between 
0 and 1. Therefore, the numerically calculated dispersions seen in Fig. S3C and S3D 
exhibit behavior intermediate between the two limits described above. For example, the 
coupling of the principal modes of Crystal A and B produces the dispersion lines with 
sign alternating slopes, as appropriate for a non-negligible 𝑟$'. Combining Eqs. (S23) 
and (S28), we estimate the size of the gap for these principal modes to be 

 Δ𝜔 ∼
2
𝜋	p

1
Δ𝜔$

+
1
Δ𝜔'

q
"#

arccos	|𝑟$'|	.	 (S29) 

By definition, strong coupling of the eigenmodes is realized when the mode 
hybridization gap exceeds their combined linewidth, i.e., if Δ𝜔 > 𝜔$22 + 𝜔'22	. Since Δ𝜔 
decreases with 𝑞 while 𝜔3′′ stays roughly constant, the latter condition is more difficult 
to achieve for higher-order modes. Using the parameters from Table S1, we conclude 
that this condition is satisfied for the crossing of the principal modes only.  

S1.3 Numerical simulations of layered heterostructures 

To model the real-space fringe pattern observed via s-SNOM near a MoOQ edge, we 
assumed that the polaritons were launched by the sharp MoOQ edge alone, with the 
s-SNOM tip acting only as a detector. We further assumed that the measured complex 
near-field signal 𝑠𝑒0R is proportional to the out-of-plane field component 𝐸&. To simplify 
the calculation of the field component, 𝐸&, we neglected variation of all the quantities 
along the 𝑦-direction, parallel to the edge of the MoOQ. As in Eq. (S9), we adopted the 
quasistatic approximation 𝐸& = − S

S&
Φ(𝑥, 𝑧), where Φ(𝑥, 𝑧)	is the scalar potential obeying 

the equation 

  	
∂
∂𝑥 𝜀

%(𝑥, 𝑧)
∂
∂𝑥 +

∂
∂𝑧 𝜀

&(𝑥, 𝑧)
∂
∂𝑧	¢ Φ

(𝑥, 𝑧) = 0	. (S30) 

The solution of Eq. (S30) was computed numerically using the MATLAB PDE Toolbox. 
We took the simulation domain to be a 4 × 1.3	𝜇m( rectangle subdivided into layers of 



different materials as depicted in Fig. S6. To include a uniform external electric field 
𝐸¤⃗ !	incident at angle 𝜋 4⁄  in the 𝑥-𝑧 plane we used the boundary condition Φ = −𝐸¤⃗ ! ⋅ 𝑟 at 
the edges of the domain. The frequency dependence of the solution comes from that of 
the permittivity components 𝜀%(𝑥, 𝑧)	and 𝜀&(𝑥, 𝑧). 

 
Figure S6 | Numerical solutions of Eq. (S30) and comparison with experimental data. A, Geometry 
used to model the experiments with edge-launched polaritons. B, Two-dimensional Fourier transform of 
the complex electric field component, |Ez| evaluated at the top surface of the bicrystal. C, The amplitude 
of the two-dimensional Fourier transform of nano-optical data |𝑆M,;(𝑞# , 𝜔)| is shown with a red-white-blue 
colormap. The inset shows the frequency derivative 𝛻<O𝑆M,;(𝑞# , 𝜔)O with a red-white-gray colormap, to 
sharpen subtle features in the data. These data were obtained on the same crystal studied in Fig. 3 of 
the main text. D, and E, One-dimensional Fourier transform of the electric field. D, Both the h11BN and 
MoO3 edges are at 𝑥 = 0. E, The h11BN edge is located at 𝑥 = −700	𝑛𝑚, while the MoO3 edge is located 
at 𝑥 = 0, to replicate the conditions in our experiments (see Fig. S9). The white dashed lines are used to 
indicate the region where experimental data are shown in Fig. 3B of the main text. F and G, Linecuts 
from the hyperspectral |𝑆M,;(𝑞# , 𝜔)| data, indicated with the arrows in panel (C). F, A linecut taken at 
constant frequency 𝜔6 = 773	𝑐𝑚62. The arrows mark the positions where peaks are anticipated from our 
calculations. G, Linecut taken at a constant momentum shows extrema of 𝛻<O𝑆M,;(𝑞# , 𝜔)O, split by Dw=13.2 
cm-1 as we indicate with a black arrow. H-J, Calculated profiles of the normal electric field component 
produced by strip-launched polaritons just above the hetero-bicrystal at frequencies 787, 800, and 
775	𝑐𝑚62, respectively. The crystal thicknesses in the calculations are 98 nm (h11BN) and 290 nm 
(MoO3), appropriate for Fig. 2 of the main text and Fig. S7 and S8 below. 

We proceed to discuss simulations of the edge launched experiments and the 
comparison with our experimental data. We solved Eq. S30 repeatedly on a grid of 
frequency values and the results are presented in Fig. S6. We stress that owing to the 
700	nm lateral displacement between the h11BN and MoO3 edges, interference between 
bicrystal polaritons and polaritons launched by the natural h11BN edge slightly modifies 
their dispersion (see Fig. S6D and S6E). The dashed lines of Fig. 3A of the main text 



show the locations where maxima are observed in the calculations of Fig. S6D, 
obtained for a simplified model where h11BN and MoO3 edges are aligned. The 
simplified model captures the salient features of the experimental data. The two-
dimensional Fourier transform in Fig. S6B was calculated with the 700 nm displacement 
and shows excellent agreement with the experimental dispersion in Fig. S6C. 

The electric field profiles calculated for the strip-launched polaritons are presented in 
Fig. S6H-J. For simplicity, these calculations were performed using the semi-analytic 
recursion procedure (Eq. S9) instead of the fully numerical PDE solver. The calculations 
reproduce the main qualitative features of the data: (1) rapid decay of the polaritonic 
oscillations away from the launcher at 𝜔! = 787	cm"#		vs. their gradual decay above 
and below this frequency (2) lone vs. twin peaks of electric field above the strip edges, 
𝑥 = ±𝑤 2⁄ , at and away from 𝜔!, respectively (3) enhanced electric field above the Au 
strip, −𝑤 2⁄ < 𝑥 < 𝑤 2⁄ , compared to that above the un-patterned SiO2 substrate. We 
note however one key discrepancy between the numerical simulations and the 
experimental data. By symmetry, the solution of Eq. (S30) for 𝐸&(𝑥) is an odd function 
vanishing at 𝑥 = 0. However, a nonzero SNOM signal is observed there in the 
experiments (Fig. 2 of the main text). One of the possible reasons for this discrepancy is 
that our model does not include the tip-launched waves. The tip contribution to 𝐸&(𝑥)	is 
even, so that the total 𝐸&(0) can indeed be nonvanishing. Qualitatively, the tip-induced 
field should display a contrast between Au-patterned and un-patterned parts of the 
substrate and, in addition, 𝜆- 2⁄ -periodic fringes caused by reflections of tip-launched 
polaritons off the strip edges. A quantitatively accurate calculation of this field profile 
remains a challenge for the theory. 

Our numerical simulations and experimental Nano-FTIR data are compared in Fig. S6C. 
These data are simply another representation of the previously displayed hyperspectral 
data of |𝑆P#T(𝑋, 𝜔)| shown in Fig. 3B of the main text. Here, we adopted a two-
dimensional Fourier transform analysis of Nano-FTIR data, as introduced in Ref. (27). 
The analysis involves performing the Fourier transform of 𝑆P#T(𝑋, 𝜔) along the 𝑥-axis and 
taking its absolute value, which yields |𝑆P(T(𝑞% , 𝜔)|. The maxima of |𝑆P(T(𝑞% , 𝜔)| reveal 
the polariton dispersion 𝑞% = 𝑞%(𝜔) of the principal mode, including both the magnitude 
and sign of 𝑞%. Since 𝑣-,% = 𝜔/𝑞%, the analysis also provides the phase velocity of the 
mode, including its sign. By considering ∇U|𝑆P(T(𝑞% , 𝜔)|, in the inset of Fig. S6C subtle 
polaritonic features are sharpened over the background noise. Note that ∇U|𝑆P(T(𝑞% , 𝜔)| 
displays inflection points at the frequencies where |𝑆P(T(𝑞% , 𝜔)|is maximized. Thus, the 
(𝑞% , 𝜔) values corresponding to the principal mode are slightly red shifted from the 
locations where minima are observed in ∇U¥𝑆P(T(𝑞% , 𝜔)¥ in Fig. S6C. Good agreement 
between the experimental data and numerical calculations is readily observed.  
The data in Fig. S6C establish that a change in sign of 𝑣-,% is associated with the 
crossover between positive and negative dispersion in the bicrystal. The negative 
dispersion on the left-hand side of the plot in Fig. S6C derives from h11BN whereas 
positive dispersion on the righthand side stems from MoO3. Polaritons with ‘h11BN-like’ 
character (𝑣-,% < 0) display a gap in their dispersion at 𝜔! (Fig. 3; Fig. S6B, S6C, S6G) 



and, notably, persist at a slightly lower frequency, 𝜔" (Fig. 3; Fig. S6B, S6C, S6F).  
‘MoO3-like’ modes (𝑣-,% > 0), which are also observed at 𝜔", abruptly vanish at 𝜔 ≥ 𝜔!. 
To highlight these features, we show linecuts from the data in Fig. S6C in Figs. S6F and 
S6G. First, in Fig. S6F we show a cut of |𝑆P(T(𝑞% , 𝜔 = 𝜔" = 773	cm"#)|. A clear 
maximum, observed near 𝑞% = 26	𝜇m"# marks the MoO3-like polariton. A second 
maxima is also observed near 𝑞% = −28	𝜇m"#, where the h11BN-like polariton is 
expected from our calculations. We stress that this feature is apparent in the raw data of 
|𝑆P(T(𝑞% , 𝜔)| shown in Fig.S6F and is simply sharpened when we consider ∇U|𝑆P(T(𝑞% , 𝜔)| 
in the color plot of S6C. Thus, at least two modes are observed at 𝜔", one with positive 
and one with negative 𝑞%. A linecut of ∇U|𝑆P(T(𝑞% = 24	𝜇m"#, 𝜔)| reveals a two-peak 
profile, indicating a gap in the polariton dispersion. The ∆𝜔 = 13.2	cm"# magnitude of 
the gap, reported in the main text, is shown with the black arrow. The error quoted in the 
main text represents the spectral resolution of the measurement. Our observations 
establish mode repulsion at 𝜔! and waves with both positive and negative dispersion at 
𝜔". 
  



S2. Extended data  
S2.1 Near-field experiments with strip-launched polaritons 
 

 
Figure S7 | Microscope image of the device used in experiments with Au launchers. The white 
scale bar is about 34 µm in length (See text for details).  
 

Figure S7 shows a microscope image of the device studied in our experiments where 
polaritons were launched by Au strips, Fig. 2 of the main text. The strips were patterned 
on an SiO2 substrate. Next, crystal B (MoO3) was transferred on top of the Au 
launchers, covering them in both regions i and ii, with its c-axis nearly perpendicular to 
the facets of the strips. Finally, crystal A (h11BN) was transferred on top of crystal B 
(MoO3) forming the h11BN /MoO3 bicrystal. Images collected inside regions roughly 
indicated by the white boxes A and B are shown in Fig. 2 of the main text. The data 
shown in Fig. S8 were acquired on the same device, with panels A-C obtained within 
region B and panels D-F within region A. 
 

 
Figure S8 | Near-field images and ray trajectories. images collected on the device shown in Fig. S7 at 
ambient temperature. A-C images collected at the MoO3 surface. D-F images obtained at the 



Figure S8 shows data collected with the bicrystal at three infrared frequencies: below, 
at, and above 𝜔! ≅ 790	cm"#. The top and bottom rows correspond to the top surfaces 
of MoO3 alone and h11BN /MoO3, respectively. Data obtained at a frequency 𝜔 =
776	cm"#, which is below 𝜔!, are shown in Figs. S8A and S8D; data obtained at 
frequency 𝜔 = 795	cm"# which is above 𝜔!. Images obtained at 𝜔! are shown in Figs. 
S8C and S8F. Note that the data in Fig.S8 were obtained at room temperature. 

We identify the maxima of |𝑠|, indicated by the black guides for the eye, with the 
locations where polariton rays launched by an underlying Au strip reach the top surface. 
Below 𝜔! the polaritonic rays are detected at the larger distance away from the 
underlying gold strip. This distance decreases as the infrared frequency increases, 
consistent with the dispersion of MoO3 in Fig. S11. At the bicrystal surface, the 
displacement of polaritonic rays relative to the edge of the strip is non-monotonic with 
frequency. Specifically, at frequencies below 𝜔! the rays are observed away from the 
edges of the underlying gold strip. At 𝜔! the maxima of |𝑠| are nearly re-aligned with the 
lateral positions of the underlying edges of the gold launcher. Above 𝜔! the rays are, 
again, displaced from the edges of the underlying strip. The polaritonic ray trajectories 
are consistent with negative refraction as illustrated in the schematic insets.  

  

h11BN/MoO3 surface. The black lines are guides to the eye that mark the maxima observed in the near-
field amplitude, |s|. Illustrations of the inferred ray trajectories are sketched in the insets. The frequency 
of incident radiation and the position of the underlying Au launcher are indicated at the top of each 
column. Scale bars are indicated with magenta lines in each panel, which are 1 µm in length. 
 



 
S2.2 Near-field experiments with edge-launched polaritons 

Bicrystal dispersion data in Fig. 3 of the main text were obtained on the sample shown in 
Fig. S9. Optical contrast associated with the SiO2 substrate, a rectangular MoO3 crystal, 
an overlying thin h11BN crystal and the h11BN/MoO3 bicrystal are identified in the optical 
microscope image shown in Fig.S9A. A topographic scan recorded near the bicrystal 
edge, within the magenta rectangle in Fig.S9A, is shown in Fig.S9B. At the bottom of the 
image, the substrate establishes a baseline for the topography (Z=0). An increase of 
topographic height marks the samples’ edge. While gradual changes are observed in 
topography data collected within the interior of the sample surrounding the boundaries of 
MoO3, sharp topographic features marking this boundary are not clearly observed. On 
the other hand, the optical data in Fig.S9C, recorded in the same region, reveals clear 
optical contrast between regions where MoO3 is present and surrounding areas where it 
is not. The optical contrast image in Fig.S9C was therefore, used to determine boundaries 
of MoO3. These boundaries are indicated with black dashed lines in Fig.S9B and S9C. 
Co-located linecuts of the data in Fig. S9B and S9C are shown in Fig.S9D. The optical 

 

 
Figure S9| Experiments with edge-launched polaritons. A, Microscope image of the device. The 
magenta rectangle indicates the region where the data in panels (B) and (C) were recorded. B, AFM 
topography image showing the height, Z, of the sample. C, White-light near-field image demodulated at 
the fourth harmonic of the tip-tapping frequency, S4, collected with a broadband light source (see Fig. 
S14) showing the fourth harmonic of the scattering amplitude at ambient temperature. The perimeter of 
MoO3 is outlined with a black dashed line in panels (B) and (C). D, Co-located line profiles of Z and S4 
taken along the white dashed lines indicated in panels (B) and (C). E, Schematic illustrating the cross-
section of the sample along the vertical plane that passes through the white dashed lines indicated in 
panels (B) and (C). 
 



contrast, associated with the edge of MoO3, lags the single-step edge observed in 
topography by about 700 nm. These data are all consistent with the schematic in Fig.S9E. 
The thin h11BN crystal, on top of MoO3, overhangs the underlying MoO3 crystal edge for 
a small lateral distance. The sharp edge observed in topography marks the edge of h11BN 
while the boundary of MoO3, which we refer to as the ‘bicrystal edge’ in the main text and 
in Fig.S6, is located about 700 nm away from the h11BN edge. We stress that this 
interpretation is consistent with the entire image of Fig.S9C. On the right-hand side of the 
image only h11BN is present. The observed change in the topographic height on the right-
hand side of Fig.S9B (~60 nm) is consistent with the 58 nm thickness of h11BN measured 
at the boundary of h11BN well away from the bicrystal and along the h11BN/MoO3 
boundary indicated with the orange line in panel A. Near the center of the topographic 
image in Fig. S9B (white dashed line) we observe a sharp change in the topographic 
height, with a larger magnitude of about 201 nm, at the sample/substrate interface. The 
height gradually increases to 208 nm in the interior of the bicrystal, consistent with the 
total combined thickness of 58 nm h11BN and 150 nm MoO3, which were independently 
measured with topographic scans well away from the bicrystal edge on the same sample.  
 
The specific linecut where the hyperspectral data were acquired is indicated with the white 
dashed line. Here the MoO3 and h11BN edges are nearly parallel.  Further, the [001]MoO3 
direction is nearly perpendicular to the h11BN edge. Finally, we note that the edges of 
h11BN and MoO3 are nearly aligned. We note that ‘MoO3-like’ polaritons with positive 
dispersion were not observed in experimental hyperspectral dispersion data shown in 
Fig. S10A, which were obtained along the edge of only h11BN shown with the orange line 
in Fig. S9A. To explain these results, we performed numerical simulations with the same 
geometry as in the experiment, shown in Fig. S10C. The numerical results confirm the 
qualitative aspect of our observations, that ‘h11BN-like’ modes are launched with higher 
intensity than ‘MoO3-like’ modes. These results are readily rationalized by considering 
that h11BN and MoO3 are nearly impedance matched within the overlapping Reststrahlen 
band. Thus, the h11BN/MoO3 edge is an inefficient polariton launcher. It is possible that 
‘MoO3-like’ modes could be observed in more careful experiments. 
 
 



 
 
We also measured the dispersions of the individual h11BN and MoO3 crystals. These data 
can be represented as a hyperspectral map of ¥𝑆P#T(𝑥, 𝜔)¥ where oscilations normal to the 
crystal edge reveal polaritons. An additional Fourier transform taken along the 𝑥-axis 
yields ¥𝑆P(T(𝑞% , 𝜔)¥. The maxima of this quantity correspond to the polariton momenta. We 
refined the optical constants of our crystals (Table S1 and Fig. 1A of the main text) to 
obtain a good agreement between observed and calculated dispersions. The far-field 
reflectance data of Fig. S13 was another input into this fitting process. With these 
parameters, we calculated the full dispersion relationship of the hetero-bicrystal polaritons 
shown in Fig. 3. 

 
Figure S10| Polariton dispersions at the h11BN edge. A, The amplitude of the two-dimensional Fourier 
transform of nano-optical data obtained at the bicrystal surface |𝑆M,;(𝑞# , 𝜔)| is shown as a function of the 
momentum component q= and frequency of the incident light, ω. These data were recorded along the 
orange line in Fig.S9A. Along this line the h11BN has an edge, while the underlying MoO3 crystal runs 
continuously. B, Numerical calculations of the z-component of the electric field, which are solutions to 
Eq. S30.  C, Geometry of the device in our experiment, panel (A), and calculations, panel (B). 

 



 
  

 
Figure S11| Polariton dispersions of MoO3 and h11BN crystals. A, The amplitude of the one-
dimensional Fourier transform of nano-optical data obtained at the surface of MoO3 |𝑆M2;(𝑞# , 𝜔)| is shown 
as a function of the momentum component q= and frequency of the incident light, ω. The red solid line 
marks the crystals’ physical edge. B, and C, The amplitude of the two-dimensional Fourier transform of 
nano-optical data O𝑆M,;(𝑞# , 𝜔)O, obtained at the surface of B, MoO3 with 150 nm thickness and C, h11BN 
with 98 nm thickness. The white lines show qx=0. The green lines show locations where maxima are 
observed in calculations of Im rp for l (solid lines) and l/2 modes (dashed lines). D, and E, Calculations 
of Im rp as a function of ω and the absolute value of the momentum, |𝑞#|. D, for MoO3, experimental data 
from panel (B) are shown with yellow dots. E, for h11BN, experimental data from panel (C) are shown 
with yellow dots. 



 
S2.3 Experiments with disk-launched polaritons 
 

 
In this section we present two-dimensional images of polaritons excited by a disk-
shaped launcher. Near-field images obtained on the top surface of h11BN reveal ‘hot 
rings’ surrounding the edges of the Au disk (38). Their concentric shape is consistent 
with in-plane symmetry of the material. MoO3 is orthorhombic. At 775 cm-1 only the [001] 
component of the dielectric tensor is negative and the crystal is, therefore, in-plane 
hyperbolic (36). In Fig. S12B we show an image obtained on the top surface of an 
h11BN/MoO3 hetero-bicrystal. The image in Fig. S12B demonstrates that polaritons 
launched by the underlying disk propagate along the [001] direction of MoO3. No 
polaritons propagating along the orthogonal [100] axis have been detected. These 
observations are consistent with the notion that the hetero-bicrystal inherits its in-plane 
hyperbolicity from MoO3.       

 

 
Figure S12| Experiments with disk launched polaritons. A, Experimental near-field amplitude data |s| 
at the surface of h11BN placed on top of an Au disk launcher with diameter 1 µm. B, |s| measured at the 
surface of the h11BN/MoO3/Au disk assembly. The c-axis of MoO3 is indicated with a white arrow. The 
white scale bars in (A) and (B) are 1 µm in length. The data in both (A) and (B) were collected at w=777+/-
4 cm-1 at ambient temperature. The approximate boundary of the disks is indicated in (A) and (B) with 
black dashed lines.  
 



S2.4 Far field reflectivity of h11BN and MoO3 

 
The near-field data in the main-text were augmented with far-field reflectivity 
measurements to determine the optical constants in Table S1. It can readily be 
appreciated that since the wavevector of propagating polaritons at a particular 
frequency, depends on both the in and out of plane components of the permittivity, 
measurements of the dispersion relationship of phonon-polaritons, such as those in Fig. 
11, are insufficient to determine the full dielectric tensor. Infrared reflectivity provides a 
second measurement, which can be used to determine the optical constants within the 
xy-plane of the experiment, along the axis of polarization of the reflected light. The pair 

 

 
Figure S13| Far-field Reflectivity spectra of h11BN and MoO3. A-C Far-field reflectivity of h11BN and 
MoO3. A-B, Reflectivity spectra on MoO3. A, blue dots show data obtained with the polarization along 
the [001] axis. A fit with parameters in Table S1 is shown with black points. B, Green dots show data 
obtained with the polarization along the [100] axis. A fit with parameters in Table S1 is shown with 
magenta points. C, Black dots show the reflectivity spectra obtained on h11BN. A fit with parameters in 
Table S1 is shown with red points. 
 



of measurements allows us to determine the two unknown quantities, namely the in- 
and out-of-plane components of the dielectric tensor, at each frequency.   



S2.5. Ultranarrow band mid-infrared beamline from a pulsed light source 
 
Here we describe the procedure used to generate the ultra-narrowband light used in 
imaging experiments. First, we generate intense mid-infrared pulses with full width at half 
maximum (FWHM) around 30 cm-1 and powers of several mW as described in the 
Methods section. We then send the mid-infrared light to a home-built monochromator by 
placing a slit in the Fourier plane of a pulse shaper (composed of a grating, followed by a 
cylindrical lens, a slit, another cylindrical lens, and another grating) to select light within a 
narrow bandwidth <4 cm-1 (39). Data showing the resulting spectra are presented in 
Fig. S14. Here, we show the spectra from our broadband source, generated by combining 
a tunable idler beam with a bandwidth around 250 cm-1 with a 100 cm-1 broad 1600 nm 
pump beam in a 500-micron thick GaSe crystal, in black. The radiation has full width at 
half maximum spectral width of around 250 cm-1. Narrowband light is generated by 
combining a 40 cm-1 broad 1030 nm pump beam with a 250 cm-1 broad tunable idler beam 
in a 1.5 mm thick GaSe crystal. The full width at half maximum spectral width of the 
narrowband channel is reduced to around 30 cm-1 (red trace). Finally, the ultra-
narrowband radiation with spectral width <4cm-1 is produced, after sending the radiation 
through our monochromator (blue trace). We remark that the spectrometer used to 
measure the data in Fig. S14 has a resolution of only around 4 cm-1, and thus the ultra-
narrowband radiation could have a linewidth narrower than 4 cm-1. 
 

 

 
Figure S14| Spectra of the infrared light sources used in this work. (see text) 
 


