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Abstract
This is a survey focusingon theHasse principle for divisibility of points in commutative
algebraic groups and its relation with the Hasse principle for divisibility of elements of
the Tate–Shavarevich group in theWeil–Châtelet group. The two local-global subjects
arose as a generalization of some classical questions considered respectively by Hasse
and Cassels. We describe the deep connection between the two problems and give
an overview of the long-established results and the ones achieved during the last
twenty years, when the questions were taken up again in a more general setting. In
particular, by connecting various results about the two problems, we describe how
some recent developments in the first of the two local-global questions imply an
answer to Cassels’ question, which improves all the results published before about
that problem. This answer is best possible over Q. We also describe some links with
other similar questions, for example the Support Problemand the local-global principle
for existence of isogenies of prime degree in elliptic curves.
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1 Introduction

In 1923–1924 Hasse generalized to all number fields a result shown by Minkowski
over Q.

Hasse–Minkowski Theorem Let k be a number field and let F(X1, . . . , Xn) ∈
k[X1, . . . , Xn] be a quadratic form. If F represents 0 non-trivially in kv , for all com-
pletions kv of k, then F = 0 has a non-trivial solution in k.

This theorem is also known as the Hasse principle on quadratic forms. The assump-
tion that F is isotropic in kv for all but finitely many completions (implying the same
conclusion) gives a stronger form of the principle. Since then, many mathematicians
have been concerned with similar so-called local-global problems, i.e. they have been
questioning if, given a global field k, the validity of some properties for all but finitely
many local fields kv could ensure the validity of the same properties for k (see among
others [13, 25, 31, 50, 54, 58, 82, 83]). When the answer to such a problem is affir-
mative, one says that there is a local-global principle or a Hasse principle. Along with
the classical Hasse principle on quadratic forms, one of the most famous local-global
principles is the Albert–Brauer–Hasse–Noether Theorem on central simple algebras,
often referred to as the Brauer–Hasse–Noether Theorem (see for instance [86]).

Theorem 1.1 (Albert, Hasse, Brauer, Noether, 1932) Let k be a number field and let
A be a central simple algebra over k. Then A splits over k if and only if A splits over
kv , for all places v of k.

Brauer proved that the tensor product equips the set of equivalence classes of central
simple algebras over k with the structure of an abelian group,which is called theBrauer
group of k and is denoted by Br(k) (see the recent monograph [30] written by Colliot-
Thélène and Skorobogatov). The cohomological description of Br(k) is H2(k, k̄∗),
where k̄ is the separable closure of k, and can be extended in the case of a variety X
defined over k, giving rise to the Brauer–Grothendieck group Br(X) = H2

ét(X , Gm,X )

(see [30, 91] for further details). In [64], Manin showed that in many cases the failure
of the Hasse principle of the existence of k-rational points on X can be explained
by a reciprocity law imposed by Br(X) on the set of adelic points on X . For further
details see [37], in which Creutz shows that the Brauer–Manin obstruction explains
all failures of the Hasse principle of existence of k-rational points for torsors under
abelian varieties (see also [64, Théorème 6], where a similar statement was proved
under the hypothesis of finiteness of the Tate–Shafarevich group, that we will define
in the following).

Local-global questions have often an equivalent formulation in terms of principal
homogeneous spaces under some group schemesG over k, that are classified by the first
cohomology group H1(k,G) ..= H1(Gal(k̄/k),G(k̄)) (see for instance [51, 91]). In
these cases, when the hypotheses require that the assertion holds in all completions kv ,
one can study the behaviour of the Tate–Shafarevich groupX(k,G) to get information
about the validity or the failure of the principle. In fact, this group is the intersection
of the kernels of the restriction maps resv : H1(k,G) → H1(kv,G), as v varies in
the set Mk of places of k, and its vanishing ensures a positive answer to the question.
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On the other hand, by answering the problem in some cases, one can get information
aboutX(k,G). When the hypotheses of a local-global question require its validity in
all but finitely many completions kv , the group that interprets the hypotheses of the
problem in the cohomological context is not exactlyX(k,G), but a similar group, i.e.,
the intersection of the kernels of the maps H1(k,G) → ∏

v∈� H1(kv,G), as v varies
in a subset � of Mk containing all but finitely many places v (see Sect. 3 for further
details). The two groups often coincide, but there are some examples in which they
differ (see Sects. 4 and 7.1 for further details). In various cases it suffices to study the
behaviour of one of them to understand the structure of the other (see Sect. 4).

In this paper we will be concerned with the following local-global problems and
their relation.

Problem 1.2 Let k be a number field, Mk the set of the places v of k and G a com-
mutative and connected algebraic group defined over k. Let P ∈ G(k) and let q be a
positive integer. Assume that for all but finitely many v ∈ Mk , there exists Dv ∈ G(kv)

such that P = qDv . Is it possible to conclude that there exists D ∈ G(k) such that
P = qD?

Problem 1.2 was stated by the first author and Zannier in 2001 [43] and it was named
the local-global divisibility problem. It is the r = 0 case of the following problem.

Problem 1.3 Let k be a number field, Mk the set of the places v of k and G a com-
mutative and connected algebraic group defined over k. Let q be a positive integer,
let σ ∈ Hr (k,G) and let resv : Hr (k,G) → Hr (kv,G) be the restriction map.
Assume that for all but finitely many v ∈ Mk there exists τv ∈ Hr (kv,G) such that
qτv = resv(σ ). Can we conclude that there exists τ ∈ Hr (k,G) such that qτ = σ?

In a slightly different form, i.e. with the assumption that the local divisibility holds
for all v ∈ Mk , Problem 1.3 was stated in 2016 by Creutz [36]. In fact, when r = 1,
a similar question was firstly posed by Cassels in 1962 only in the case when G is an
elliptic curve [14].

Cassels’ question Let k be a number field and E an abelian variety of dimension 1
defined over k. Are the elements of X(k,E) infinitely divisible by a prime p when
considered as elements of theWeil–Châtelet group H1(k,E) of all classes of principal
homogeneous spaces for E defined over k?

Here infinitely divisible by p means divisible by pl, for all positive integers l. Thus,
if one wonders about the divisibility by every power pl of p in Problem 1.3, then this
problem can be considered as a generalization of Cassels’ question to all commutative
algebraic groups. Both Problems 1.2 and 1.3 are generally studied in the case when
q = pl, with p a prime number and l a positive integer. In fact, an answer for all
powers of prime numbers suffices to have an answer for a general integer q, by using
the unique factorization in Z and Bézout’s identity.

Since 1972, Cassels’ question was considered in abelian varieties and not only in
elliptic curves, firstly by Bašmakov [11, 12] and in the last few years by Çiperiani and
Stix [26, 27] and by Creutz [35].

In this paper we carefully explain the connection between these problems and
between some groups that interpret the hypotheses of Problem 1.2 and respectively
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Problem 1.3 in a cohomological context (among them being some Tate–Shafarevich
groups). The relation between these groups was sometimes hinted in the literature, but
never explained in details.Wewill also give a comprehensive overviewof all the results
achieved for those questions, with particular emphasis on the case of elliptic curves.
In fact, in this last case there is a recent answer to Problem 1.2 [78, 79] which implies
an affirmative answer to the mentioned Cassels’ question for every p > (3[k:Q]/2+1)2

over a number field k �= Q and for every p � 5 overQ (see Theorem 6.5). This answer
is best possible over Q. The way of deducing such an answer to Cassels’ question (see
Sect. 6.1) has not been explicitly described in other papers. The answer itself for k �= Q

has not been explicitly stated in other papers. When k = Q it is instead mentioned in
[36] as a consequence of [79].

In addition observe that if the point P in the statement of Problem 1.2 is the zero
point in the group law of G and we require that neither D nor Dv , for all but finitely
many v, is the zero point itself, then the question can be reformulated as follows:
if G admits a kv-rational torsion point of order q , for all but finitely many places
v ∈ Mk , can we conclude that G admits a k-rational torsion point of order q? Thus,
the question is somehow relatedwith some other famous problems about torsion points
or reductions of torsion points in abelian varieties, as the Support Problem studied by
Corrales-Rodrigáñez and Schoof in [32] or the question studied by Katz in [55] about
the group of k-rational torsion points of an abelian variety. Owing to the connection
between the existence of isogenies of prime degree p and the existence of k-rational p-
torsion points, the question is also linked to the local-global problem for the existence
of isogenies of prime degree in elliptic curves, studied by Sutherland in [92]. We will
describe these and some other related problems and the main results obtained about
them in Sect. 6.

The paper is structured as follows. At first we give a historical overview of the
formulation of the two problems and their classical solutions. Then we describe a
cohomological interpretation for Problem 1.2 and give more details about the link
between Problems 1.2, 1.3 and Cassels’ question, that is discussed in Sect. 4. Section
5 is dedicated to Problem 1.3 and Cassels’ question. In Sects. 6 and 7 we describe
the affirmative results achieved for the three problems and respectively the known
counterexamples. As mentioned above, in the last part of the paper we illustrate some
questions similar or somehow related to the three problems, among them the Support
Problem [32], the problem studied by Katz about the existence of a torsion point of
a prescribed order [55] and the local-global principle for the existence of isogenies
of prime degree [92]. We give a brief overview of the main results achieved for those
problems too and explain their connections with Problems 1.2 and 1.3.

2 Classical problems and classical solutions

In the case of a quadratic form X2 + rY 2, where r is a rational number, the Hasse
principle is equivalent to the statement “if a rational number is a square in kv , for all
but finitely many v, then it is a square in k”. It is natural to ask if such a principle
still holds for q-powers of rational numbers, where q is a general positive integer,
and not only for rational squares. The answer to such a question was given by the
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Grunwald–Wang Theorem (see for example [4, Chapters IX and X]). Here we state
the theorem in its classical form, i.e. in the more general case when k is a global field.
Through all the paper, for every positive integer q, we denote by ζq a primitive q-th
root of the unity. Furthermore, for every positive integer s, let ζ̂2s be a 2s-th root of the
unity such that ζ̂2s+1 = ζ̂2s , and let ηs ..= ζ̂2s + (ζ̂2s )

−1. In particular, for every field k,
there exists an integer sk � 2 such that ηsk ∈ k, but ηsk+1 /∈ k.

Theorem 2.1 (Grunwald–Wang, 1933–1950) Let k be a global field, let q be a positive
integer and let � be a set containing all but finitely many places v of k. Consider the
group P(q, �) = {x ∈ k | x ∈ kqv for all v ∈ �}. Then P(q, �) = kq except under
the following conditions:

(1) k is a number field;
(2) −1, 2 + ηsk and − (2 + ηsk ) are non-squares in k;
(3) q = 2t q ′, where q ′ is odd and t > s;
(4) v /∈ �, for all v | 2 where −1, 2 + ηsk and − (2 + ηsk ) are non-squares in kv .

In this special case P(q, �) = kq ∪ η
q
sk+1k

q .

In particular, when k = Q, the principle for q-powers of rational numbers could fail
only when q is divided by 2t, with t � 3. The first example violating the principle was
shown by Trost in 1934 (see [95]).

Theorem 2.2 (Trost, 1948) The equation x8 = 16 has a solution in the p-adic field
Qp, for every p �= 2, but it has no solutions in Q2 and in Q.

Similar examples can be constructed for all powers 2t, with t � 3 and, consequently,
for all integers q = 2t q ′, where q ′ is odd and t � 3, as in the statement of the theorem.
For further details about the formulation of the Grunwald–Wang Theorem, the reader
can see the survey [86] by Roquette.

If we denote by Gm the multiplicative group over k, then the Grunwald–Wang
Theorem holds in the commutative group Gm as well as in k. By questioning if its
validity still holds for a general commutative algebraic group G instead of Gm , we
get nothing but Problem 1.2, i.e. the local-global divisibility problem in commutative
algebraic groups. So in the cases when the answer to Problem 1.2 is affirmative, we
have a kind of a generalization of theHasse principle for squares of k-rational numbers.
The answer to the local-global divisibility depends on k as well as on q and this is
already shown by the Grunwald–Wang Theorem in the case when G is Gm .

As stated in the introduction, the more general Problem 1.3 also was motivated by
a classical problem, i.e. Cassels’ question. This question was formulated in 1962 in
the third paper of Cassels’ famous series Arithmetic on curves of genus 1 (see [17,
Problem (b)] and [16, Problem 1.2]; for the whole series of the mentioned Cassels’
papers see [14–22]). An affirmative answer to the local-global divisibility only by p
for elements in H1(k,E) was soon given by Cassels and Tate (see [17, Lemma 6.1
and its corollary] and see also [16, Theorem 8.1]). In particular Cassels deduced the
validity of the local-global divisibility by p from the following lemma.

Lemma 2.3 (Tate, 1962) Let k be a number field with algebraic closure k̄ and abso-
lute Galois group Gk

..= Gal(k̄/k). Let M be a Gk-module that is isomorphic to
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Z/pZ×Z/pZ. Then an element of H2(Gk, M) is trivial if it is everywhere locally
trivial.

Here everywhere locally trivial means that, for all v, the element vanishes in
H2(Gkv , M(kv)), where kv is the algebraic closure of kv and Gkv

..= Gal(kv/kv).
Assume that G is a smooth commutative algebraic group and that the multiplication-
by-q map [q] is étale, then we have the exact sequence

0 −→ G[q] −→ G
[q]−−→ G −→ 0,

where G[q] is the q-torsion subgroup of G, which implies the long-exact sequence of
Galois cohomology

· · · −→ G(k) −→ H1(k,G[q])
−→ H1(k,G)

[q]∗−−→ H1(k,G) −→ H2(k,G[q]) −→ · · · .

In the case of an elliptic curve E, since E[p] � Z/pZ×Z/pZ, then the local-global
divisibility by p holds in H1(k,E), as a consequence of Tate’s lemma. On the contrary,
for powers pl, with l � 2, the problem remained open for decades, even in the case of
elliptic curves defined over Q. In this last case, an affirmative answer for all powers
p � 5 has been lately proved. We will describe it in Sect. 6.1, as a consequence of
some answers given to Problem 1.2.

3 A cohomological interpretation of Problem 1.2

When G �= Gm a useful way to attack Problem 1.2 was shown in [43], in which the
authors gave a cohomological interpretation of the problem. For every positive integer
q, we denote by K ..= k(G[q]) the number field generated over k by the coordinates
of the points in the q-torsion subgroup G[q] of G. Since K is the splitting field of
the q-division polynomials, then K/k is a Galois extension, whose Galois group we
denote by G. Let P ∈ G(k) and let D ∈ G(k̄) be a q-divisor of P , i.e. P = qD.
Let F be the extension of K generated by the coordinates of D. Two q-divisors of P
differ by a q-torsion point of G. Then we have that F/k is a Galois extension (it is the
splitting field of the polynomials whose roots are the coordinates of the points D̃ ∈ G

satisfying q D̃ = P) and we denote by � its Galois group Gal(F/k) (see also [43]).
For every σ ∈ �, we have

qσ(D) = σ(qD) = σ(P) = P.

Thus the points σ(D) and D differ by a point in G[q] and we can define a cocycle
{Zσ }σ∈� of � with values in G[q] by

Zσ
..= σ(D) − D. (3.1)
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Proposition 3.1 The class of the cocycle {Zσ }σ∈� defined in (3.1) vanishes in
H1(�,G[q]) if and only if there exists D′ ∈ G(k) such that qD′ = P.

Proof Assume that {Zσ }σ∈� vanishes in H1(�,G[q]), then there existsW ∈ G[q] such
that σ(W ) − W = Zσ = σ(D) − D, for all σ ∈ �. We have σ(D − W ) = D − W ,
for all σ ∈ �. Thus D′ ..= D − W ∈ G(k), since qD′ = qD − qW = qD = P . The
reverse implication is trivial. 	

As mentioned above, the vanishing of some specific first cohomology group often
ensures an affirmative answer to this kind of problems. This is quite a standard way of
proceeding in local-global questions, so we stated the proof of Proposition 3.1 for the
reader’s convenience. The goal in [43] was to consider a subgroup of H1(G,G[q]),
whose vanishing still ensures an affirmative answer to Problem 1.2.

Definition 3.2 Let� be the subset ofMk containing thevaluationsv that are unramified
in K . For every v ∈ �, let Gv

..= Gal(Kw/kv), where w is a place of K extending
v. We call the first local cohomology group (of G with values in G[q]) the following
subgroup of H1(G,G[q]):

H1
loc(G,G[q]) ..=

⋂

v∈�

ker
(
H1(G,G[q]) resv−−→ H1(Gv,G[q])). (3.2)

The first local cohomology group portrays the hypotheses of the problem in the coho-
mological context. In fact, observe that if there exists a point Dv ∈ G(kv) such that
P = qDv , then as in (3.1) we can define a cocycle ofGv with values in G[q] vanishing
in H1(Gv,G[q]). The elements of H1

loc(G,G[q]) are represented by cocycles that van-
ish in H1(Gv,G[q]), for all v ∈ �. We can say that the cocycles representing a class in
H1
loc(G,G[q]) are locally coboundaries. The group H1

loc(G,G[q]) was firstly defined
by Tate, as stated by Serre in [88], where the group was introduced (and denoted by
H1∗ (G,G[q])). It is very similar to the Tate–Shafarevich groupX(k,G[q]) up to iso-
morphism (see Sect. 4 for further details). Observe that, by the Chebotarev Density
Theorem (see [60, 94]), the local Galois group Gv varies over all cyclic subgroups of
G as v varies in �. Then, for every σ ∈ G, there exists v ∈ �, such that Gv = 〈σ 〉.
Thus, if {Zσ }σ∈G ∈ H1

loc(G,G[q]), then for every σ ∈ G there existsWσ ∈ G[q] such
that Zσ = (σ − 1)Wσ . As stated in [43, Definition on p.321], we have the following
equivalent definition of H1

loc(G,G[q]).
Definition 3.3 A cocycle {Zσ }σ∈G ∈ H1(G,G[q]) satisfies the local conditions if,
for every σ ∈ G, there exists Wσ ∈ G[q] such that Zσ = (σ − 1)Wσ . The subgroup
of H1(G,G[q]) formed by all the cocycles satisfying the local conditions is the first
local cohomology group H1

loc(G,G[q]).
This second definition shows explicitly the kind of cocycles that one has to check if
they are coboundaries or not. Such a description was useful to get a solution to the
problem both in cases when the answer is affirmative and in cases when it is negative.
In fact, the triviality of the first cohomology group assures an affirmative answer to
Problem 1.2.
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Theorem 3.4 (Dvornicich, Zannier, 2001) If H1
loc(G,G[q]) = 0, then the local-global

divisibility by q holds in G over k.

On the other hand, in the cases when such a group is nontrivial we have counterexam-
ples over a finite extension of k. In Sect. 7 we state such a converse of Theorem 3.4
over a finite extension L of k (i.e. Theorem 7.1) and describe its proof, which gives
an explicit method to find counterexamples over L . In the case of elliptic curves, this
method was successfully applied to find counterexamples over k itself. In Sect. 7 we
also discuss when one can find a counterexample over k or not.

Remark 3.5 To apply the Chebotarev Density Theorem, it suffices to have a subset
of Mk of Dirichlet density 1. So the hypotheses of Problem 1.2 can be reformulated
by asking that the local divisibility holds for a set of places v of Dirichlet density 1.
Indeed we have

H1
loc(G,G[q]) =

⋂

v∈S
ker

(
H1(G,G[q]) resv−−→ H1(Gv,G[q])),

where S is a subset of � such that Gv varies over all cyclic subgroups of G as v varies
in S. If we are able to find such a set S, then we can replace the hypotheses of Problem
1.2 about the validity of the local divisibility for all but finitely many v ∈ Mk with
the assumption of the validity of the local divisibility for every v ∈ S. Notice that in
particular S is finite, being G finite (on the contrary � is not finite). So it suffices to
have that the local divisibility by q holds for a finite number of suitable places to get
the global divisibility by q. An explicit set S is produced in [42] for elliptic curves
defined over Q.

4 First local-cohomology group and Tate–Shafarevich group

As stated in the previous sections, the definition (3.2) of H1
loc(G,G[q]) is very similar to

the classical definition of the Tate–Shafarevich groupX(k,G[q]) up to isomorphism.
The Tate–Shafarevich group was firstly introduced in the case of an abelian variety,
but the definition can be generalized to the case of a commutative algebraic group G.
We have already defined

X(k,G) ..=
⋂

v∈Mk

ker
(
H1(k,G)

resv−−→ H1(kv,G)
)
.

More generally, for every r � 0, one can define

Xr (k,G) ..=
⋂

v∈Mk

ker
(
Hr (k,G)

resv−−→ Hr (kv,G)
)
,

where Hr (k,G) ..= Hr (Gk,G(k̄)) and Hr (kv,G) ..= Hr (Gkv ,G(kv)). Clearly,
X(k,G) = X1(k,G). If we consider the Gk-module G[q] instead of G, in the same
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way we get

X(k,G[q]) ..=
⋂

v∈Mk

ker
(
H1(k,G[q]) resv−−→ H1(kv,G[q]))

(and respectively Xr (k,G[q]), with r � 0). Let � be the subset of Mk containing
the valuations that are unramified in K and consider the following modified Tate–
Shafarevich group:

X�(k,G[q]) ..=
⋂

v∈�

ker
(
H1(k,G[q]) resv−−→ H1(kv,G[q])) (4.1)

(see also [87], in which the author considered similar modified Tate–Shafarevich
groups, with a slightly different notation; in the notation used in [87] the group in
(4.1) would be denoted by XMk\�). Clearly, X(k,G[q]) ⊆ X�(k,G[q]) and in
particular the triviality ofX�(k,G[q]) implies the triviality ofX(k,G[q]). It is well
known that H1

loc(G,G[q]) is isomorphic to X�(k,G[q]) and we have the follow-
ing Proposition 4.1, that is proved for instance in [34, Proof of Lemma 3.3] and [68,
Chapter I, Lemma 9.3].We firstly recall that as a consequence of Chevalley’s Theorem
on the classification of the commutative algebraic groups in characteristic zero, we
have a group isomorphism G[q] � (Z/qZ)n, where n is a positive integer depending
only on G (see [89] and [43, Section 2]). In the case when G is an abelian variety of
dimension g, it is well known that n = 2g. Therefore we have a representation of Gk

in the general linear group GLn(Z/qZ)

ρ : Gk ↪−→ GLn(Z/qZ).

The image ρ(Gk) is isomorphic to G = Gal(k(G[q])/k) = Gal(K/k), and we still
denote byG such an image. The groupGk acts onG[q] asG and the q-torsion subgroup
G[q] is a Gk-module as well as a G-module. We have G � Gk/ker(ρ) and by the
inflation map, the group H1(G,G[q]) is isomorphic to a subgroup of H1(k,G[q]).
Similarly, the group H1(Gv,G[q]) is isomorphic to a subgroup of H1(kv,G[q]), for
every v ∈ �. By the injection given by the inflation map, the group H1

loc(G,G[q]) is
isomorphic to a subgroup of X�(k,G[q]).
Proposition 4.1 Let� be the subset of Mk containing the valuations v that are unram-
ified in K . The groups H1

loc(G,G[q]) andX�(k,G[q]) are isomorphic. In particular,
if H1

loc(G,G[q]) = 0, then X(k,G[q]) = 0.

Proof Let �K denote the set of places w of K extending the places v ∈ �. Consider
the following diagram given by inflation-restriction exact sequences:

0 H1(G,G[q]) inf

∏
resv

H1(Gk ,G[q]) res

∏
resv

H1(GK ,G[q])
∏

resw

0
∏

v∈� H1(Gv,G[q]) inf ∏
v∈� H1(Gkv ,G[q]) res ∏

w∈�K
H1(GKw ,G[q]).
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The kernel of the vertical map on the left is H1
loc(G,G[q]) and the kernel of the central

vertical map isX�(k,G[q]). The vertical map on the right is injective because of GK

acting trivially on G[q] and by the Chebotarev Density Theorem. Then we have

0 H1
loc(G,G[q]) inf

X�(k,G[q]) res
0

0 H1(G,G[q]) inf

∏
resv

H1(Gk ,G[q]) res

∏
resv

H1(GK ,G[q])
∏

resw

0
∏

v∈� H1(Gv,G[q]) inf ∏
v∈� H1(Gkv ,G[q]) res ∏

w∈�K
H1(GKw ,G[q])

and H1
loc(G,G[q]) � X�(k,G[q]). In particular, if H1

loc(G,G[q]) = 0, then
X�(k,G[q]) = 0, implying X(k,G[q]) = 0. 	


The group X(k,G[q]) itself is often isomorphic to H1
loc(G,G[q]) and this is in par-

ticular the case when H1
loc(G,G[q]) is trivial, which surely happens for p sufficiently

large [11, 12, 36]. Anyway, in a few cases, the two groupsmay differ. If the local-global
principle fails and there is a point locally divisible for all places but a finite number of
them (unramified in K ) for which the local divisibility does not hold and this point is
not globally divisible as well, then there is a nontrivial class in H1

loc(G,G[q]), whose
image in X�(k,G[q]) does not belong to X(k,G[q]) (see Sect. 7.1 for some exam-
ples in elliptic curves defined over Q). The most of the results obtained for Problems
1.2 and 1.3 are produced by showing the triviality of H1

loc(G,G[q]) or X(k,G[q])
[11, 12, 27, 43, 78, 79], etc.

5 On Problem 1.3 and Cassels’ question

In this section we give some more information about Problem 1.3 and Cassels’ ques-
tion. As mentioned above, in the more general case of an abelian variety A, Cassels’
question was firstly considered by Bašmakov in [11, 12], since 1972. Anyway, even
if he stated the problem for abelian varieties, in his papers he focused especially on
elliptic curves. In the recent papers [26, 27], Çiperiani and Stix gave a very detailed
analysis of Cassels’ questions, both in the case of elliptic curves and in the case of
general abelian varieties. Quite at the same time with [26], the question for abelian
varieties was also considered in [35], in which Creutz stated the following result (see
also [27, Proposition 4.3]).

Theorem 5.1 (Creutz, 2013) Let A be an abelian variety defined over a number field
k. LetA∨ be its dual andA[q]∨ the Cartier dual ofA[q], where q is a positive integer.
In order to have that X(k,A) ⊆ qH1(k,A) it is necessary and sufficient that the
image of the natural map X(k,A[q]∨) → X(k,A∨) is contained in the maximal
divisible subgroup of X(k,A∨).
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The maximal divisible subgroup div(H1(k,A∨)) of X(k,A∨) is the right kernel of
the pairing

X(k,A)×X(k,A∨) −→ Q/Z,

known as Cassels–Tate pairing, since it was defined by Tate in [93] as a generalization
of Cassels’ pairing on the Tate–Shafarevich group of an elliptic curve (see also [35]).
More generally there is the following Cassels–Tate pairing:

Xi (k,A)×X2−i (k,A∨) → Q/Z,

whose left and right kernels are the maximal divisible groups ofXi (k,A) and respec-
tively X2−i (k,A∨), for 0 � i � 2 [69, Theorem 8.6.7], [27]. Observe that if
X(k,A∨[q]) is trivial, then the image of the map X(k,A[q]∨) → X(k,A∨) is
contained in div(H1(k,A∨)). On the contrary, the nontriviality ofX(k,A∨[q]) does
not assure in general thatX(k,A) � qH1(k,A). The proof of Theorem 5.1, is based
on the Cassels–Tate pairing. Consider again the exact sequence

0 −→ A[q] −→ A
[q]−−→ A −→ 0,

which implies the long-exact sequence of cohomology

· · · → Hr (k,A[q]) → Hr (k,A)
[q]∗−−→ Hr (k,A)

δr−−→ Hr+1(k,A[q]) → · · ·
(5.1)

An element σ ∈ Hr (k,A) is locally divisible by q if and only if its image under δr is
inXr+1(k,A[q]) and it is globally divisible by q if and only if δr (σ ) = 0. Therefore,
ifXr+1(k,A[q]) = 0, then the local-global divisibility by q holds in Hr (k,A). It is
known thatXr+1(k,A[q]) = 0, for all r � 2 [93, Theorem 3.1]. Then Theorem 5.1
implies the following statement too [36].

Theorem 5.2 (Creutz, 2016) Assume any of the following:

(1) r = 0 and X(k,A[q]) = 0;
(2) r = 1 and X(k,A[q]∨) = 0;
(3) r � 2.

Then the local-global divisibility by q holds in Hr (k,A).

Theorem 5.2 has an extension to the case when k has positive characteristic, that was
implemented by Creutz and Voloch in [38]. The triviality of X(k,A[pl ]), for every
l � 1, implies an affirmative answer in A∨ over k to Cassels’ question for p and to
Problem 1.3 for every power of p. When A is a principally polarized abelian variety,
thenA � A∨. In this last case, the triviality ofX(k,A[pl ]), for every l, is a sufficient
condition to have an affirmative answer to Cassels’ question for p in A.

Corollary 5.3 Let A be a principally polarized abelian variety defined over a number
field k. If X(k,A[pl ]) = 0, for some prime number p and some positive integer l,
then the local-global divisibility by pl holds in Hr (k,A), for every r � 0.
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In addition, Creutz proved that if A is principally polarized and X(k,A) is finite,
then the condition X(k,A[pl ]) �= 0 implies that for some r � 0 the local-global
divisibility by pl fails in Hr (k,A) [36, Proposition 2.2.].

In [27], Çiperiani and Stix gave some sufficient conditions to haveX(k,A[pl ]) =
0, for every l � 0.

Theorem 5.4 (Çiperiani, Stix, 2015) LetAbeanabelian variety definedover anumber
field k and let p be a prime number. If

(1) H1(G,A[p]) = 0, and
(2) the Gk-modules A[p] and End(A[p]) have no common irreducible subquotient,

then

X(k,A[pl ]) = 0, for every l � 1.

To prove these results and the other ones in their mentioned papers [26, 27], the
authors use Galois representations, characters of representations, Poitou–Tate duality
and especially sequences in cohomology and maps between cohomology groups, that
allow them to deduce the triviality of X(k,A[pl ]). The vanishing of this group also
assures an affirmative answer to Problem 1.2 by part (1) of Theorem 5.2 (recall that
Problem 1.2 is the r = 0 case of Problem 1.3 asmentioned in Sect. 1). By investigating
certain exact sequences [27, (4.4) and (2.1)] involving the group X(k,A[pl ]) and
the group X(k,A)[pl ], i.e. the pl -torsion part of the group X(k,A), Çiperiani and
Stix also get the same conclusion by showing that Theorem 5.4 implies the following
equality, for all l:

{
P ∈ A(k) | P ∈ pl A(kv) for all v ∈ Mk

} = plA(k).

Thus Theorem 5.4 gives sufficient conditions to have an affirmative answer to Problem
1.2 in abelian varieties. In view of Theorem 5.2, ifA is a principally polarized abelian
variety, then Theorem 5.4 gives sufficient conditions to have an affirmative answer to
Cassels’ question for p, to Problem 1.3 for every power of p and to Problem 1.2 for
every power of p. Till now, Cassels’ question has not been investigated in a general
commutative algebraic group G.

6 Known affirmative results about the local-global divisibility
problem and Cassels’ question

We are going to give an overview of all the results achieved for Problem 1.2, Cassels’
question and Problem 1.3 since their formulations. We will also describe in which
cases some affirmative results to Problem 1.2 implied affirmative results to Cassels’
question and to Problem 1.3, thanks to the connection between the three problems,
that we explained in the previous sections.
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6.1 Local-global divisibility in elliptic curves

In the case when G is an elliptic curve E, the local-global divisibility of points has
been widely studied during the last fifteen years. Having explicit equations satisfied
by torsion points of such commutative algebraic groups was useful to describe the
extension K/k and the group H1

loc(G,E[q]) in various examples. By Tate’s Lemma
2.3 and the exact sequence (5.1) (for r = 1), the local-global divisibility by p holds
in elliptic curves defined over number fields. This result was reproved in [43, 98]. In
[98], Wong studied a problem similar to Problem 1.2, that we will state in Sect. 8 (see
Problem 8.8).

Regarding the local-global divisibility by powers pl, with l � 2, we summarize the
results of the main statements of [78, 79] in the next theorem.

Theorem 6.1 (Paladino, Ranieri, Viada, 2012–2014) Let p be a prime number, ζp a
primitive p-th root of the unity and ζp its complex conjugate. Let E be an elliptic curve
defined over a number field k that does not contain the field Q(ζp + ζp). Suppose that
at least one of the following conditions holds:

(1) E has no k-rational torsion points of exact order p;
(2) k(E[p]) �= k(ζp);
(3) there does not exist any cyclic k-isogeny of degree p3 between two elliptic curves

defined over k that are k-isogenous to E.

Then, the local-global principle for divisibility of points by pl holds in E over k, for
all positive integers l.

The hypothesis that k does not contain the field Q(ζp + ζp) is necessary, for all the
conditions (1), (2), (3) in Theorem 6.1, as shown by an example produced in [79,
Section 6]. The proof is based on showing the triviality of the first local cohomology
group by the use of Galois representations. Observe that when k = Q, in view of
Mazur’s Theorem on the possible subgroups Etors(Q) of rational torsion points of
elliptic curves [65], condition (1) implies that the local-global divisibility by pl, with
l � 1 holds for E over Q, for all p � 11. Furthermore, Merel and Stein [67] and
Rebolledo [85] proved that if Q(E[p]) �= Q(ζp) then p ∈ {2, 3, 5} or p > 1000.
Therefore condition (2) implies that the local-global divisibility by pl , with l � 1,
holds for E over Q, for all p � 7. Finally, in [56], Kenku proved that there does
not exist any rational isogeny of degree 53 in elliptic curves over Q, by showing that
the modular curve Y0(125) has no rational points. Then Theorem 6.1 implies that the
local-global divisibility by pl, with l � 1, holds in E over Q, for all p � 5.

Corollary 6.2 (Paladino, Ranieri, Viada, 2012–2014) LetE be an elliptic curve defined
over Q and let p � 5. Then the local-global divisibility by pl, with l � 1, holds in E

over Q.

This result is best possible, since for powers pl, with p ∈ {2, 3} and l � 2, there
are counterexamples, as we will see in Sect. 7.1. A second proof of Corollary 6.2 for
p � 11 was given in [27] and a third one for p � 5 was given in [62, Theorem 24]. In
this last paper Lawson and Wuthrich list all cases when H1(G,E[pl ]) �= 0 and from

123



S612 R. Dvornicich, L. Paladino

them they deduce Corollary 6.2. Some of their techniques of proof are similar to the
ones in [78, 79], namely the use of the existence of an isogeny of prime degree and
Galois representations. But they also use some exact sequences in cohomology, that
allow them to shorten the proofs.

For a general k, condition (1) in Theorem 6.1 is also very interesting in view of
Merel’s Theorem on torsion points of elliptic curves. Here we recall its statement [66].

Theorem 6.3 (Merel, 1994) For every positive integer d, there exists a constant
B(d) � 0 such that for all elliptic curves E over a number field k, with [k : Q] = d,
we have

|Etors(k)| � B(d).

In his very cited but unpublished paper [72], Oesterlé showed that Merel’s constant
B([k : Q]) can be taken as (3[k:Q]/2 +1)2. Thus Theorem 6.1, combined with Theorem
6.3, implies the next statement.

Corollary 6.4 (Paladino, Ranieri, Viada, 2012–2014) LetE be an elliptic curve defined
over a number field k. Then there exists a number B(d), depending only on the degree
d = [k : Q] of k over Q, such that the local-global principle for divisibility of points
by pl in E over k holds for every prime number p > B(d) and every l � 1. In addition
B(d) � (3d/2+ 1)2.

Observe that the statement of Corollary 6.4 holds for all k and not only for number
fields that do not contain Q(ζp + ζp). In fact the number B(d) can be chosen as
max{p0, (3d/2 + 1)2}, where p0 is the largest prime such that k contains the field
Q(ζp0 + ζp0). Since p0 � 2[k : Q] + 1, then B([k : Q]) � (3[k:Q]/2+ 1)2.

Gillibert and Ranieri considered the restriction of Problem 1.2 to torsion points of
elliptic curves over number fields and showed that in this case the answer is affirmative
for all powers of every p � 3 [46]. Their result is best possible, since for powers of 2
the local-global principle fails even in this case.

In the case of global fields of positive characteristic, the problem was treated by
Creutz and Voloch in the mentioned [38]. In particular they showed some counterex-
amples to Problem 1.2 in elliptic curves and also some counterexamples to Cassels’
question. An analogue of Problem 1.2 for Drinfeld modules and respectively Carlitz
modules was studied in [52, 70]. In [52], van der Heiden considered the problem for
Drinfeld modules of rank 1 and rank 2 over function fields. The answer is affirmative
in many cases, but there are counterexamples too (see in particular [52, Theorem
18]). In [70], Dong Quan Ngoc Nguyen studied a generalization of such a problem
for Carlitz modules over function fields and generalizes van der Heiden’s results by
giving some sufficient conditions to have an affirmative answer.

Regarding Cassels’ question, as showed in Proposition 4.1, the triviality of
H1
loc(G,E[q]) implies the triviality of X(k,E[q]). For elliptic curves we have

E[q] � E[q]∨ and consequently X(k,E[q]) � X(k,E[q]∨). Then, in view of
Theorem 5.1, Corollary 6.1 (see also Corollary 6.2) assures an affirmative answer
to Cassels’ question over Q for all prime numbers p � 5. We have also an affirmative
answer to Problem 1.3, for all r � 0, for every q = pl, with p � 5 and l � 1.
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Furthermore, for a general number field k, Theorem 6.1, combined with Corollary
6.4, imply an affirmative answer to Cassels’ question (respectively to Problem 1.3,
for all r ) in elliptic curves over k, for every p > (3[k:Q]/2+ 1)2 (resp. for all powers
pl of every p > (3[k:Q]/2+ 1)2). A description of how to reach these conclusions by
combining the cited theorems does not appear in the literature before. The conclu-
sions themselves for k �= Q do not appear in the literature too (the case when k = Q

is mentioned in [36] as a consequence of [79]). Here we explicitly resume all these
conclusions for Cassels’ question in the next theorem.

Theorem 6.5 Let E be an elliptic curve defined over a number field k. Then Cassels’
question has an affirmative answer for all p > (3[k:Q]/2 +1)2 in E over k. In addition,
when k = Q, Cassels’ question has an affirmative answer for all p � 5.

In [27], the authors proved a similar result.

Theorem 6.6 (Çiperiani, Stix, 2015) Let E be an elliptic curve defined over a number
field k. Let B(d) be the constant in Theorem 6.3, where d = [k : Q]. Then Cassels’
question has an affirmative answer in the following two cases:

(1) p > max{B(d), (2d + 2d/2)2};
(2) p � 3, [k(ζp) : k] �= 2 and E[p] is an irreducible Gk-representation.

The bound p > (3[k:Q]/2 + 1)2 in Theorem 6.5 is better than the bound p > (2[k:Q] +
2[k:Q]/2)2 in Theorem 6.6. In fact, we have already observed that B(d) can be taken
� (3d/2 + 1)2. Then max{B(d), (2d + 2d/2)2} = (2d + 2d/2)2. Both Theorem 6.1
and Theorem 6.6 give a criterion to establish the validity of Cassels’ question for p
in E over k. Observe that if k �= k(ζp), then the condition [k(ζp) : k] �= 2 implies
Q(ζp + ζp) � k in the second part of Theorem 6.6. Moreover the irreducibility of
E[p] as a Gk-module implies that E has no k-rational p-torsion points, as required in
Theorem 6.1. We do not know if the bound p > (3[k:Q]/2 +1)2 is sharp, when k �= Q.
When k = Q, such a bound is not sharp, since Cassels’ question has an affirmative
answer for all p � 5; so we may expect that it can be improved for other number
fields too. The bound p � 5 is sharp. In fact, when k = Q, there are counterexamples
to Cassels’ question (resp. Problem 1.3), for p ∈ {2, 3} (respectively for powers pl,
with p ∈ {2, 3} and l � 2), see Sect. 7.1.1 for further details. When k = Q, in [27]
the authors give another proof of Theorem 6.5 for p � 11.

6.2 Local-global divisibility in algebraic tori

The study of Problem 1.2 in algebraic tori began in [43]. Illengo gave a more complete
description in [53], by proving the following statement.

Theorem 6.7 (Illengo, 2008) LetT be an algebraic torus, defined over k, of dimension

n < 3(p − 1).

Then the local-global divisibility by p holds in T over k.

Illengo also showed that his bound is best possible, since for all n � 3(p−1) there are
counterexamples (see Sect. 7.2 below). For powers of p the question is open. Cassels’
question is also open in algebraic tori, as well as Problem 1.3 for r � 1.
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6.3 Local-global divisibility in abelian varieties

When G is an abelian variety A, we have some more information about Problem 1.2,
provided by Gillibert and Ranieri in [47].

Theorem 6.8 (Gillibert, Ranieri, 2017) Let A be an abelian variety defined over
a number field k and let p be a prime. Suppose that there exists an element σ ∈
Gal(k(A[p])/k), with order dividing p − 1 and not fixing any nontrivial element of
A[p]. Moreover suppose that H1(Gal(k(A[p])/k),A[p]) = 0. Then the local-global
divisibility by pl holds in A over k and X(k,A[pl ]) = 0, for every l � 1.

The same authors studied the local-global divisibility especially in the case of abelian
varieties of GL2-type [46, 48].

Along with Theorem 5.1, one of the main results about Cassels’ question in abelian
varieties is the mentioned Theorem 5.4, proved by Çiperiani and Stix (see also [26]).

Observe that both the conclusion of Theorem 5.4 and the conclusion of Theorem
6.8 hold under the assumption that H1(Gal(k(A[p])/k),A[p]) is trivial. As discussed
above, the vanishing of this group implies the validity of the local-global divisibility by
p inA over k and in H1(k,A). Therefore the case of the divisibility by p is not covered
either by Theorem 5.4 or by Theorem 6.8. In [47, Theorem 1.3], Gillibert and Ranieri
gave sufficient conditions to have an affirmative answer to Problem 1.2 in principally
polarized abelian varieties, without assuming H1(Gal(k(A[p])/k),A[p]) = 0. Any-
way the question for the divisibility by p remained open in abelian varieties that are
not principally polarized, as well as in a general commutative algebraic group.

6.4 Some remarks about the local-global divisibility of points in other
commutative algebraic groups

We have seen that the local-global divisibility by p holds when G is a torus isomorphic
to Gm and when G is an elliptic curve. This is not true in general for a commutative
algebraic groupG, as shown by some counterexamples that wewill describe in the next
section and as underlined in [43, Remark 3.6]. In particular they show that for abelian
varieties of dimension higher than 1 and for algebraic tori of dimension higher than 1, it
is not true in general that the local-global divisibility by a prime p holds. Furthermore,
we have just observed at the end of the previous section, that Theorems 5.4 and 6.8
do not give information about the local-global divisibility by p in abelian varieties
that are not principally polarized. A result in [77] gives conditions on G[p] ensuring
the validity of the local-global divisibility by p, for a general commutative algebraic
group G. It underlines that the reducibility of G[p] as aGk-module or as an H -module,
for any subnormal subgroup H of Gk is the greatest obstruction to the local-global
divisibility by p. In particular every class of Galois groups Gal(k(G[p])/k) for which
the local-global divisibility by p may fail in G is shown in that paper.
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7 Counterexamples

The triviality of H1
loc(G,G[q]) is not exactly a necessary condition for the local-global

divisibility by q in G over k. In fact, the existence of a cocycle of G with values in
G[q] that satisfies the local conditions and it is not a coboundary ensures the existence
of a counterexample over a finite extension of k. Here is the precise statement, proved
in [45].

Theorem 7.1 (Dvornicich, Zannier, 2007) Let q be a positive integer and let K =
k(G[q]) be the q-division field of a connected commutative algebraic group G defined
over a number field k. Let {Zσ }σ∈G be a cocycle with values in G[q] representing
a nontrivial element in H1

loc(G,G[q]). Then there exist a number field L such that
L ∩ K = k and a point P ∈ G(L) which is divisible by q in G(Lv) for all places v of
L, but not divisible by q in G(L).

Therefore, the nontriviality of H1
loc(G,G[q]) is an obstruction to the validity of the

principle in finite extensions of k.
A method to obtain explicit counterexamples from a nontrivial class in {Zσ }σ∈G ∈

H1
loc(G,G[q]) is given by considering the equality (3.1) with D ∈ G(k̄) (and {Zσ }σ∈G

such a nontrivial element in H1
loc(G,G[q])). When we know explicit equations for

the group law of G, as for instance in the case of elliptic curves, we get an explicit
system of equations in the coordinates of D, as variables. When G is an elliptic curve,
we have a system of two equations in two variables. In the proof of Theorem 7.1 in
[45], the authors show that, as σ varies in G, that system defines an algebraic variety
B that is isomorphic to G over K . Furthermore, they show that every k-rational point
of B corresponds to a point D ∈ G(K ), such that P = qD is a k-rational point of
G violating the Hasse principle for divisibility by q. This construction clarifies why
in certain cases the non-vanishing of H1

loc(G,G[q]) is not a necessary condition; it
depends on the existence of a k-rational point on the variety B. In the case when B

has no k-rational points, we are not able to find a counterexample over k. However an
L-rational point of B, where L is a finite extension of k linearly disjoint from K over
k, corresponds to a point D ∈ G(LK ) such that P = qD is an L-rational point of G
violating the Hasse principle for divisibility by q. Theorem 7.1 ensures the existence
of an L-rational point inB and consequently assures the existence of a counterexample
to Problem 1.2 in a finite extension of k linearly disjoint from K (in some cases we
also have that L is k itself, as stated above).

Once we have a counterexample for pl, a method to find counterexamples to
the local-global divisibility by pl+s , for every s � 0, is shown by the sec-
ond author in [75]. It is based on producing maps between H1

loc(G,G[pl ]) and
H1
loc(Gal(k(G[pl+s]/k),G[pl+s]) that are injective under certain conditions. This

method has been applied to produce explicit counterexamples for 2l and 3l, with
l � 2, respectively over Q and over Q(ζ3) (see Sect. 7.1 for further details). It works
both to prove the existence of counterexamples and to find explicitly some of them.

Remark 7.2 The most interesting case for counterexample is when k = Q, since a
counterexample overQ gives also a counterexample over all but finitely many number
fields k. In fact, assume that P is a point giving a counterexample to the local-global
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divisibility byq inGoverQ and let D be aq-divisor of P , i.e. P = qD. LetQ(G[q])(D)

be the extension of Q obtained by adding to Q(G[q]) the coordinates of D. As stated
in Sect. 3, since two different q-divisors of the same point differ by a q-torsion point
in G, then Q(G[q])(D)/Q is a Galois extension. If k is a number field linearly disjoint
from Q(G[q])(D)/Q over Q, then P is locally divisible by q in all but finitely many
completions kv , with v ∈ Mk (because it is locally divisible by q in all but finitely
many p-adic fields Qp), but it is not divisible by q in k (since the coordinates of the
q-divisors of P lie in Q(G[q])(D)/Q).

Concerning the link between counterexamples to Problem 1.2 and counterexamples
to Problem 1.3 and Cassels’ question, observe that, by Theorem 5.1, if we have coun-
terexamples to Cassels’ question in an abelian variety A, then the image of the map
X(k,A[q]∨) → X(k,A∨) is not contained in the maximal divisible subgroup
div(H1(k,A∨)) of X(k,A∨). In particular X(k,A[q]∨) is nontrivial, implying
H1
loc(G,A[q]∨) �= 0 too. Therefore a counterexample to Cassels’ question inA gives

a counterexample to the local-global divisibility in A∨, but the converse is not true.
In fact, the Tate–Shafarevich groupX(k,A∨) could vanish even if the first cohomol-
ogy group H1

loc(G,A[q]∨) does not vanish and, in any case, even the nontriviality of
X(k,A[q]∨) does not imply that the image of the map X(k,A[q]∨) → X(k,A∨)

is not contained in div(H1(k,A∨)). If A is principally polarized (that in particular
happens when A is an elliptic curve), we also have that a counterexample to Cassels’
question in A gives a counterexample to the local-global divisibility in A, but the
converse it is not true in general.

7.1 Counterexamples about Problem 1.2 and Cassels’ question in elliptic curves

The first paper dedicated exclusively to the counterexamples to the local-global divisi-
bility of points of elliptic curves is [44]. The authors produced explicit counterexamples
to the local-global divisibility by 4 in some elliptic curves over Q. They use equation
(3.1) and themethod explained above.Oneof the counterexamples is givenby the curve
y2 = (x + 15)(x − 5)(x − 10), with its rational point P = (1561/122, 19459/123),
that is locally divisible by 4 in Qp, for all p �= 2, but it is not divisible by 4 in Q and in
Q2. This is one of the cases when H1

loc(G,E[4]) and X(k,E[4]) are different, since
the point P comes out from a notrivial class {Zσ }σ∈G in H1

loc(G,E[4]), which does
not belong to X(k,E[4]), being P not divisible by 4 in Q2. In [44] the authors also
show that the point

P = (5086347841/18482,−35496193060511/18483)

of the curve y2 = (x + 2795)(x − 1365)(x − 1430) is locally divisible by 4 in all Qp,
but it is not globally divisible by 4 in Q. Similar counterexamples appear in [36, 73].
As mentioned above, in [75] it was shown that the first cited counterexample to the
divisibility by4, givenby P = (1561/122, 19459/123) in y2 = (x+15)(x−5)(x−10),
can be raised to counterexamples to the local-global divisibility by 2l, for all l � 2. In
particular, the point 2l−2P gives a counterexample to the local-global divisibility by
2l.
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Even when the question about the local-global divisibility is restricted only to the
torsion points of an elliptic curve, for p = 2 there are still counterexamples, as shown
by Gillibert and Ranieri in [46].

The first counterexamples to the local-global divisibility by 3l, for some l � 2,
were produced in [74]. They are counterexamples to the local-global divisibility by
32, but the points giving the counterexamples have rational abscissas only, whereas the
ordinates are not rational and are defined over Q(ζ3). Those counterexamples to the
local-global divisibility by 32 imply counterexamples to the local-global divisibility
by 3l, for all l � 2, in elliptic curves overQ(ζ3) [75]. In 2016, Creutz produced the first
counterexamples to the local-global divisibility by 3l, for all l � 2, in elliptic curves
over Q [36]. Those examples are given by the elliptic curve E : x3 + y3 + 30z3 = 0
defined over Q (with distinguished point P0 = (1 : − 1 : 0)) and the rational point
P = (1523698559 : − 2736572309 : 826803945). For every l � 2, the point 3l−1P
is locally divisible by 3l in all p-adic fields Qp but it is not divisible by 3l in Q. The
techniques used to find those counterexamples are different from the one illustrated
above. Creutz considered a 3-covering C of E over Q. The 3-coverings of E over Q

are parametrized up to isomorphism by H1(Q,E[3]) [33, Proposition 1.14]. He took
into account the exact sequence

· · · → E(Q)
δ−−→ H1(Q,E[3]) → H1(Q,E) → . . .

and the class ξ ∈ H1(Q,E[3]) associated toC . The images resv(ξ) are in δ(E(Qp)[3]),
for every p. On the other hand he took a rational point on C and calculated its image
in E, which is P . Therefore ξ = δ(P) and by showing ξ �= 0 he got the conclusion.

Another counterexample to the local-global divisibility by 9 in elliptic curves over
Q appears in [62]. Lawson and Wuthrich show that the point (−2, 3) on the elliptic
curve y2 + y = x3 + 20 is locally divisible by 9 in Qp, for all p �= 3, but it is not
divisible by 9 in Q and in Q3. To find this counterexample, they considered elliptic
curves admitting a 3-isogeny where either the kernel has a rational 3-torsion point
or the kernel of the dual isogeny has a rational 3-torsion point. In fact in [45] it is
essentially shown that the non-existence of an isogeny of degree p for E is a sufficient
condition to the local-global divisibility of points by pl, for every l � 1 over fields k
not containing Q(ζp + ζp) (indeed the proof is carried on in the case when k = Q, but
it can be easily generalized to every number field k � Q(ζp +ζp); see also [78] where
this last condition has been explicitated). For each of those E, Lawson and Wuthrich
computed the pair (ap(E), p) modulo 9, for all p < 1000, where ap(E) is the trace
of the Frobenius element of Gal(k(E[p])/k). On the other hand, they considered the
pairs (tr(σ ), det(σ )), formed by trace and determinant of matrices σ ∈ GL2(Z/9Z),
such that the kernel of the map H1(G,E[9]) → ∏

v∈� H1(Gv,E[9]) is nontrivial. In
the cases when a pair of the first type coincided with a pair of the second type, they
got a curve E, which was a good candidate for a counterexample. Then they checked
that for the candidate with the smallest conductor, the local divisibility by 9 holds for
all but finitely many v, but the global divisibility does not hold.

There are no explicit counterexamples to the local-global divisibility by powers of
p � 5 in elliptic curves over any number field k. Anyway, in [84], Ranieri exhibited
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all possible subgroups G of GL2(Z/pZ), such that there could exist an elliptic curve
E with Galois group Gal(k(E[p])/k) isomorphic to G, with a point violating the
local-global divisibility by 5l, for some positive integer l.

7.1.1 Counterexamples to Problem 1.3 and Cassels’ question in elliptic curves

The first counterexample to Problem 1.3 appears in [35] and it is given by the curve

y2 = x(x + 80)(x + 205),

such that X(Q,E) � 4H1(Q,E).
To produce this example Creutz used Theorem 5.1. In [36], he showed that this

example implies counterexamples to Problem 1.3 in elliptic curves, for every power
2n, with n � 2. In the same paper he also shows counterexamples to Problem 1.3 in
elliptic curves for every power 3n, with n � 2. Those counterexamples also imply a
negative answer to Cassels’ question for p ∈ {2, 3}.

7.2 Counterexamples to Problem 1.2 in algebraic tori

As mentioned in Sect. 6.2, Illengo showed that the bound in Theorem 6.7 is best
possible, since for all n � 3(p − 1) there are counterexamples.

Theorem 7.3 (Illengo, 2008) Let p �= 2 be a prime and let l � 3(p − 1). Let F l
p

be the field with pl elements. There exists a p-group G in SLn(Z) such that the map
H1(G, F l

p) → ∏
H1(C, F l

p), where the product is taken on all cyclic subgroups C
of G, is not injective.

Other counterexamples to the local-global divisibility by p in algebraic tori are pro-
duced in [43].

7.3 Counterexamples to Problems 1.2, 1.3 and Cassels’ question in abelian
varieties

In 1996 in [23, Chapter 6, Section 9, p. 61], Cassels and Flynn produced a counterex-
ample to the local-global principle for divisibility by p = 2 in an abelian surface. They
considered a curve C of genus 2 defined over Q, with equation y2 = A(x)B(x)C(x),
where A(x), B(x),C(x) ∈ Q[x] are quadratic polynomials with constant term equal
to 1, irreducible over Q, but splitting respectively over Q(

√
2), Q(

√
17) and Q(

√
34).

They showed that the Jacobian A of C has a point P locally divisible by 2 over all
p-adic fields Qp and over R, but not divisible by 2 over Q. This is a counterexamples
to Problem 1.2 (and to the r = 0 case of Problem 1.3) in abelian varieties and pre-
dates the counterexamples in elliptic curves. Since the local divisibility holds for all
p, then we have X(Q,A) �= 0. The abelian surface A is principally polarized and it
is conjectured thatX(Q,A) is finite. In this last case we also have a counterexample
to the local-global disivibility by 2 in Hr (Q,A), for some r , as mentioned in Sect. 5.
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More generally, in [35], Creutz showed some counterexamples to Problem 1.3 and to
Cassels’ question in abelian varieties for every p.

Theorem 7.4 (Creutz, 2013) Let k = Q(ζp). Let p, r be two prime numbers satisfying
r ≡ 1 (mod p2) if p is odd or r ≡ 1 (mod 8) if p = 2. Let

f (x) = (x p − ζp)(x
p − r)(x p − ζpr) · · · (x p − ζ

p−1
p r).

There are infinitely many classes c ∈ k∗/(k∗)p such that the Jacobian J of the
cyclic cover of the projective line P1(k) defined by y p = c f (x) satisfies X(k, J ) �

pH1(k, J ). In particular there are infinitely many non-isomorphic abelian varieties
over k with this property.

Those counterexamples are over the cyclotomic field k = Q(ζp), but the author also
deduces counterexamples over Q, by restriction of scalars. To have counterexamples
to Problem 1.2 for the divisibility by p in the Jacobian J of Theorem 7.4, one can take
the class c = 1.

8 Other related problems

In the literature there are various classical problems and also recent ones somehow
linked to Problems 1.2 and 1.3.We are going to recall briefly some of them. As already
observed in the introduction, if the point P in the statement of Problem 1.2 is the zero
point in the group law of G and we ask that neither D nor Dv , for all but finitely many
v, is the zero point itself, then the question can be reformulated as follows.

Question 8.1 If G admits a kv-rational torsion point of order q, for all but finitely many
places v ∈ Mk , can we conclude that G admits a k-rational torsion point of order q?

This is one of the reasons why the local-global divisibility problem is related to the
following problems about torsion points, number fields generated by the coordinates of
torsion points, existence of isogenies in abelian varieties, etc. Through all this section,
we denote by pv the prime ideal associated to the valuation v and by Fv the residue
field.

(i). In [55], Katz studied this problem formulated by Lang.

Problem 8.2 (Lang, 1981) Let q � 2 be a positive integer. LetA be an abelian variety
defined over a number field k and letAtors(k) denote the set of k-rational torsion points
of A. For every v ∈ Mk , let Ãv be the reduction of A modulo v and let N (v) denote
the number of Fv-rational points of Ãv . Suppose that the congruence

N (v) ≡ 0 (mod q)

holds for a set of places v of Dirichlet density 1. Does there exist an abelian variety
A′ that is k-isogenous to A and such that

#A′
tors(k) ≡ 0 (mod q)?
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Katz proved that when A is an elliptic curve or an abelian variety of dimension 2,
then we have an affirmative answer to Problem 8.2. On the contrary, he produces
counterexamples for every abelian variety of dimension g � 3 and every positive
integer q � 3.

Assume that E is an elliptic curve with good reduction at v. If q is coprime with
the characteristic of the residue field Fv , then by [90, VII, Proposition 3.1], the group
E(kv)[q] of the kv-rational q-torsion points of E injects into the group Ẽv(Fv) of the
Fv-rational points of Ẽv . Then the existence of a kv-rational point of exact order q
implies the existence of a subgroup of Ẽv(Fv) of order q. If q � N (v), then there are no
kv-rational q-torsion points in E. Since E(k)[q] injects into E(kv)[q], this also implies
that there are no k-rational q-torsion points in E. Therefore an affirmative answer to
Problem 8.2 implies an affirmative answer to Question 8.1.

Katz reformulated Lang’s question in terms of representations to prove some of his
results (see also [39, 40]).

Problem (Lang, Katz, 1981) Let q � 2 be a positive integer. Let A be an abelian
variety defined over a number field k. For every place v, denote by Tv(A) the v-adic
Tate module ofA, by ρv the associated v-adic representation and by ρ̄v the associated
mod v representation. If for every σ ∈ Gk , we have det(1 − ρ̄v(σ )) = 0 in kv , is it
true that the semisimplification of Tv(A)⊗kv contains the trivial representation?

(ii). Owing again to the particular case when P ∈ G(k) is the zero point, Problem
1.2 is also linked to the famous Support Problem, considered by Corrales-Rodrigáñez
and Schoof in [32]. The original question about integers was posed by Erdős in 1988,
during a conference in number theory that took place in Banff.

Problem 8.3 (Support Problem, Erdős, 1988) Let x, y, q be positive integers such
that xq ≡ 1 (mod p) if and only if yq ≡ 1 (mod p), for every prime number p. Can
we conclude that x = y?

The name Support Problem is a consequence of the name support used to indicate
the set of prime numbers dividing xq − 1. In [32], Corrales-Rodrigáñez and Schoof
answered affirmatively to Problem 8.3.Moreover they show that the answer is affirma-
tive even with the hypotheses holding for all but finitely many prime numbers p. They
also considered the question on a number field k and proved the following statement.

Theorem 8.4 (Corrales-Rodrigáñez, Schoof, 1997) Let k be a number field and let
x, y ∈ k∗. Assume that for almost all valuations v of k, and for all positive integers q
one has

yq ≡ 1 (mod pv) whenever xq ≡ 1 (mod pv).

Then y is a power of x.

In addition, they considered the same question in the case of elliptic curves.

Problem 8.5 (Corrales-Rodrigáñez, Schoof, 1997) Let E be an elliptic curve over a
number field k. Let P, Q ∈ E(k). Assume that for every positive integer q and all but
finitely many places v of k for which E has good reduction, we have

qP ≡ 0 in Fv whenever qQ ≡ 0 in Fv.
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What can we conclude about P and Q?

One of the main differences between Question 8.1 or Problem 8.2 and the Support
Problem is that in this last case one considers two points having the same behaviour
with respect a certain property and wonders about their possible relation.

Corrales-Rodrigáñez and Schoof showed that two points P and Q satisfying the
assumptions of Problem 8.5 are actually linked as follows.

Theorem 8.6 (Corrales-Rodrigáñez, Schoof,1997) Let E be an elliptic curve defined
over a number field k. Let P, Q ∈ E(k). If for every positive integer q and all but
finitely many places v of k for which E has good reduction, one has

q P ≡ 0 in E(Fv) whenever qQ ≡ 0 in E(Fv),

then either Q = φ(P), for some k-rational endomorphism φ of E or both P and Q
are torsion points.

The same question was afterwards considered for abelian varieties by Larsen [61],
by Demeyer and Perucca [41, 80, 81], by Banaszak, Gajda and Krasoń [5, 6] and by
Baranćzuk [10]. In particular in [61], Larsen proved this generalization of Theorem
8.6.

Theorem 8.7 (Larsen, 2003) Let A be an abelian variety over a number field k. Let
P, Q ∈ A(k). Assume that for every positive integer q and all but finitely many places
v of k for which A has good reduction, we have

qP ≡ 0 in E(Fv) �⇒ qQ ≡ 0 in E(Fv).

Then there exists a k-endomorphism φ ofA and a positive integer m such that φ(P) =
mQ.

In [41], Demeyer and Perucca showed an explicit m. In the same paper, as well as
in [81] they also considered the question for tori. Moreover Li treated it for Drinfeld
modules in [63]. In [57], Khare and Prasad studied the same local-global problem for
endomorphisms of an abelian variety (and, more generally, of a commutative algebraic
group) instead of points. Other similar problems are treated in [2, 59].

(iii). In [98], Wong considered the following question.

Problem 8.8 (Wong, 2000) Let G be an algebraic group defined over a number field
k and q > 1 a positive integer. Denote by  a subset of Mk of density 1 and by U a
finite subset of the set of k-rational points G(k) of G. For every v ∈ Mk let G̃v be the
reduction of G modulo v. Assume that for every v ∈ , there exists a non-zero point
Pv ∈ U , whose image in G̃v(Fv) is a q-th power of a point in G̃v(Fv). DoesU contain
a q-th power of an element of G(k)?

The answer clearly depends on U , as well as on k and q. When U = {P}, with P a
k-rational point of G, Problem 8.8 is similar to Problem 1.2, but here one considers
the q-divisors of the image of P in G̃v(Fv), instead of the q-divisors of P in G(kv).
Problem 8.8 was even formulated quite at the same time than Problem 1.2. It is also
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related to Problem 8.5 in abelian varieties, in the case when P is the zero point. The
main result about Wong’s question is the following.

Theorem 8.9 (Wong, 2000) Let A be an abelian variety defined over a number field
k, let U = {P}, with P ∈ A(k) and let q be a positive integer. Assume that one of the
following conditions hold:

(a) H1(Gal(k(A[q])/k),A[q]) = 0;
(b) A is an elliptic curve and q = p.

If the image of P in Ã(Fv) is the q-th power of an element of Ã(Fv) for a set of places
v of density 1, then P is the q-th power of a point in A(k).

(iv). Let E be an elliptic curve defined over k. It is well-known that there is a close
connection between the existence of a k-rational torsion point of order p in E and
the existence of a k-rational isogeny φ : E → E of degree p. Therefore Question 8.1
(as well as the other mentioned problems) is also linked to the following local-global
problem for existence of isogenies of prime degree in elliptic curves.

Problem 8.10 (Sutherland, 2012) Let k be a number field and E be an elliptic curve
defined over k. Assume that E admits a kv-rational isogeny of degree p, for all places
v of k. Does E admit a k-rational isogeny of degree p?

As we recalled in Sect. 7, the connection between the existence of isogenies and
Problem 1.2 is also underlined in [45]. The converse of Problem 8.10 is trivially true.
Sutherland proved the following result.

Theorem 8.11 (Sutherland, 2012) Let p be a prime number. Assume that
√(−1

p

)
p /∈ k

and that E admits a rational isogeny of degree p locally at a set of primes with density
1. ThenE admits an isogeny of degree p at a quadratic extension of k. If p ≡ 1 (mod 4)
or p < 7, then E admits a k-rational isogeny of degree p.

When k = Q, he furthermore showed that the question has an affirmative answer for
every prime p �= 7. If p = 7 there exists only one counterexample up to isomorphism.
The counterexample is given by the elliptic curve with the equation

y2 + xy = x3 − x2 − 107x − 379,

admitting an isogeny of degree 7 locally at every prime of good reduction and over R,
but admitting no rational isogenies of degree 7. Anyway, according to Theorem 8.11,
the curve admits a k-rational isogeny over a quadratic extension k of Q. In addition,
when k is a number field containing the quadratic subfield of Q(ζp), the author gives
a classification of the curves for which the principle fails.

The study was completed in [9] by Banwait and Cremona for number fields k that
do not contain the quadratic subfield of Q(ζp). In particular they showed all possible
elliptic curves for which the principle fails when k is a quadratic extension.

In [3], Anni gives an upper bound for the primes p such that the local-global
divisibility for existence of isogenies of degree p may fail in elliptic curves over a
number field k. This bound depends only on the degree of k and on its discriminant.
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In the recent paper [97], Vogt considers Problem 8.10 for rational isogenies of
arbitrary degree q. In particular he shows that for a fixed number field k and a fixed
positive integer q there are only finitelymany non-isomorphic elliptic curves for which
the local-global existence of a rational isogeny of degree q fails.

(v). Having investigated about the vanishing of two subgroups of H1(G,G[pl ]), we
have to recall that a very interesting question is about the vanishing of this group itself.
In the case of elliptic curves, this problem has been especially investigated in [24] and
in the mentioned [62], in which the authors proved the following statement.

Theorem 8.12 (Lawson, Wuthrich, 2016) Let E be an elliptic curve defined over Q.
The group H1(G,E[p]) is trivial except in the following cases:

(1) p = 3, there is a rational point of order 3 on E, and there are no other isogenies
of degree 3 from E that are defined over Q;

(2) p = 5 and the quadratic twist of E by D = 5 has a rational point of order 5, but
no other isogenies of degree 5 defined over Q;

(3) p = 11 and E is the curve labeled as 121c2 in Cremona’s label, given by the
global minimal equation y2 + xy = x3 + x2 − 3632x + 82757.

In each of these cases, H1(G,E[p]) has p elements.

For a general commutative algebraic group G, sufficient conditions to the vanishing
of H1(G,G[p]) are given by Nori in [71, Theorem E].

Theorem 8.13 (Nori, 1972) There exists a constant c(n) depending only on n such
that if p > c(n) and G � GLn(Fp) acts semisimply on F n

p , then

H1(G, F n
p ) = 0.

Many other authors have investigated about the vanishing of the group H1(�, M),
where � is a group and M is a �-module (see for examples among others [28, 29,
96]).
(vi). Another question, that is not a local-global one, but it is strongly related to Prob-
lem 1.2 (and consequently to Problem 1.3) is the classification of all q-division fields
k(G[q]), for a fixed integer q. In fact, information about the extension k(G[q])/k pro-
vides information about theGalois groupG = Gal(k(G[q])/k) and then about the local
cohomology group H1

loc(G,G[q]) and the Tate–Shafarevich groupX(k,G[q]). In par-
ticular in [74] the interest of classifying all elliptic curves such that Q(E[3]) = Q(ζ3)

was motivated by the possible applications to Problem 1.2. Anyway, independently
from the local-global divisibility, an interesting question is to understand when the
field k(E[p]) is as small as possible, i.e. k(E[p]) = k(ζp). We have already mentioned
that Merel and Stein [67] and Rebolledo [85] proved that Q(E[p]) = Q(ζp) implies
p ∈ {2, 3, 5} or p > 1000. The curves with Q(E[2]) = Q(ζ2) (resp. k(E[2]) = k(ζ2))
are the ones with two rational (resp. k-rational) torsion points of order 2, that are lin-
early independent. All the curves with Q(E[3]) = Q(ζ3) (resp. k(E[3]) = k(ζ3)) are
shown in [74] (resp. [8]). All the curves with Q(E[5]) = Q(ζ5) were lately classified
in [49] by González-Jiménez and Lozano-Robledo.
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They also proved that if Q(E[q]) = Q(ζq), for any integer q, then q ∈ {2, 3, 4, 5}
and describe the family of elliptic curves such that Q(E[4]) = Q(ζ4). Moreover, they
studied some properties of the extension Q(E[q])/Q in the case when it is abelian.
In particular they described all possible abelian Galois groups Gal(Q(E[q])/Q) and
proved the following statement.

Theorem 8.14 (González-Jiménez, Lozano-Robledo, 2016) Let E be an elliptic curve
defined over Q and let q be a positive integer. Assume that Q(E[q])/Q is abelian.
Then n ∈ {2, 3, 4, 5, 6, 8}.
A classification of all number fields k(E[q]), for q ∈ {3, 4}, is given in [8] (see also [7]
for number fields Q(E[3]) and [76] for number fields k(E[5]), where E is an elliptic
curvewith complexmultiplicationwithWeierstrass form y2 = x3+bx or y2 = x3+c,
where b, c ∈ Q). In the same paper a new set of generators is provided for the extension
k(E[q]), when q is an odd number. Let ζq be a primitive q-th root of the unity as above
and P1 = (x1, y1) and P2 = (x2, y2) two q-torsion points of E forming a basis of
E[q]. Then

k(E[q]) = k(x1, ζq , y2).

In addition, if q = pl, with p odd, then k(E[pl ]) = k(x1, ζp, y2), for every l [42],
where ζp is a primitive p-th root of the unity and P1 = (x1, y1) and P2 = (x2, y2)
two pl -torsion points of E forming a basis of E[pl ]. For some other information about
q-division fields k(E[q]), see also [1].
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