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Integrating out fast degrees of freedom is known to yield, to a good approximation, memory-less,
i.e. Markovian, dynamics. In the presence of such a time-scale separation local detailed balance is
believed to emerge and to guarantee thermodynamic consistency arbitrarily far from equilibrium.
Here we present a transparent example of a Markov model of a molecular motor where local detailed
balance can be violated despite a clear time-scale separation and hence Markovian dynamics. Driving
the system far from equilibrium can lead to a violation of local detailed balance against the driving
force. We further show that local detailed balance can be restored, even in the presence of memory,
if the coarse-graining is carried out as Milestoning. Our work establishes Milestoning not only as
a kinetically but for the first time also as a thermodynamically consistent coarse-graining method.
Our results are relevant as soon as individual transition paths are appreciable or can be resolved.

The formulation of thermodynamic observables, such
as heat and work, along individual stochastic trajecto-
ries unraveled fundamental fluctuation symmetries which
matured into the framework called “stochastic thermo-
dynamics” [1–3]. In the particular case of continuous-
time Markov-jump processes the local detailed balance
paradigm emerged, relating the kinetics to thermody-
namic forces that drive a system out of equilibrium [2–5].
One inherent assumption of this paradigm is a separation
of timescales [5]: the observed degrees of freedom are slow
ensuring that all unobserved/hidden fast degrees of free-
dom equilibrate with instantaneously connected (heat or
particle) reservoirs [3, 6, 7]. Accordingly, the forward and
corresponding backward transition rates between a pair
of meso-states A and B, wA→B and wB→A, respectively,
are related to the entropy production via [8]

kB ln
wA→B
wB→A

= entropy change A→ B, (1)

where kB is the Boltzmann constant, and the entropy dif-
ference reflects the change of both, the intrinsic entropy
and the entropy generated in the reservoirs [5]. How-
ever, as soon as slow hidden degrees of freedom emerge
(within A or B) the exact connection between the ob-
served kinetics and the dissipation embodied in Eq. (1)
disappears, which was explained theoretically [9–28] and
corroborated experimentally [29]. The equality (1) can
nevertheless be restored under specific conditions [13, 30–
32], using affinities [33], by stalling the system [34, 35] or
introducing waiting time distributions [27, 36–38] that
inter alia can further trigger anomalous diffusion [39].

When the underlying degrees of freedom can assume
continuous values any coarse-graining that lumps states
as shown in Fig. 1a inherently leads to non-Markovian
jump dynamics in continuous time [40, 41] due to fast
re-crossings in the transition region between A and B.
Notably, these can nowadays be experimentally resolved
[42–47] and are therefore important practically. Con-
versely, Milestoning [48, 49] (see [50–52] for a broader
perspective) turned out to be a coarse-graining scheme
that allows for a kinetically consistent mapping of highdi-
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FIG. 1. Variants of coarse-graining: the color of the full tra-
jectory evolving from the blue star represent the instanta-
neous coarse-grained states A (blue) and B (yellow), respec-
tively. (a) State lumping: The full set of states Ω is decom-
posed into subsets A and B. (b) Milestoning based on core
sets: two metastable states represent the cores A and B, and
the coarse-grained state corresponds to the last visited core.
(c) Top: contour lines depicting potential iso-surfaces in the
xy plane; milestones A and B resolve the metastable regions.
Bottom: measured equilibrium probability density function
(PDF) with the PDFs of the the individual metastable states
indicated in blue and orange, respectively.

mensional dynamics onto a drastically simplified Markov-
jump process [41, 53]. The state space is dissected into
hypersurfaces which may enclose sub-volumes that are
called “cores” [41, 53]. Fig. 1b depicts two such cores A
and B, whereby the color of the trajectory encodes the
last visited core. Beyond a short transient, Markov-jump
dynamics emerges from the coarse-graining whenever the
trajectory upon leaving any core either (i) quickly returns
to it or (ii) quickly transits to the next core [41]. Hereby,
condition (i) ensures a local equilibration prior to leaving
a state that is required for the emergence of local detailed
balance [2–5]. Besides being kinetically consistent, Mile-
stoning offers two main advantages over lumping.

First, in experiments probing low-dimensional observ-
ables one may be able to separate pairs of metastable
states even if their projections onto the observable display
an overlap (e.g., see [54]). This is illustrated in Fig. 1c,
where two seemingly overlapping metastable states in the
projected space x are resolved by choosing the respec-
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tive milestones outside the overlapping region. When-
ever a milestone is left, the trajectory rapidly returns or
quickly transits to the other milestone. Thus, the last
visited milestone to a good approximation reflects the
currently visited metastable region in a possibly higher
dimensional (here 2d) underlying space. Second, we re-
cently discovered that Milestoning naturally ensures lo-
cal detailed balance in the presence of a time scale sep-
aration [32]. Surprisingly, this extends even to systems
without a clear time-scale separation, which we investi-
gate further below. Notably, with so-called “dynamical
coring” [54, 55] one can, under certain conditions, convert
a “lumped” process into a “milestoned” process by man-
ually discarding short recrossing events as those shown
in Fig. 1a.

In contrast to continuous-space processes, the lumping
of dynamics that evolve on a discrete state space [2–4, 6–
10, 12–23, 27, 30, 31, 34–38] can in fact yield an effec-
tively Markovian jump process. According to perturba-
tion theory Eq. (1) is satisfied by lumped-state dynamics
in the limit of an infinite time-scale separation [15], which
was corroborated in [18, 19, 21]. This general belief was,
however, never systematically scrutinized in practice.

In this Letter we show, by means of a simple yet
biophysically relevant example, that time-scale separa-
tion surprisingly and against common belief does not en-
sure the existence of local detailed balance. The mini-
mum time-scale separation required for Eq. (1) to hold
may grow exponentially with the thermodynamic driv-
ing force. In other words, time-scale separation may not
suffice arbitrarily far from equilibrium. Milestoning, in
stark contrast to lumping (see Fig. 1), robustly ensures
local detailed balance in the limit of a time-scale sepa-
ration. This result indicates that unlike lumping, Mile-
stoning generically yields a thermodynamically consis-
tent coarse-graining.

F1-ATPase driven far from equilibrium.— We consider
the molecular motor F1-ATPase driven by the hydrolysis
of adenosine triphosphate (ATP). The dynamics evolves
as a Markov processes on six rotational states [56] as
shown in Fig. 2a: The binding of ATP occurs with a rate
κ+ proportional to the concentration of ATP and effetcs a
90◦ rotation. The reverse unbinding occurs with the rate
κ−. ATP hydrolisis to ADP is assumed to be infinitely
fast. The release of ADP occurs with rate ω+ and triggers
a 30◦ rotation, and the reverse step occurs with rate ω−.

The free energy µ liberated by the hydrolysis of one
ATP→ ADP at a given concentration relates to the en-
tropy change times the temperature T , and local detailed
balance (1) imposes

kBT ln
ω+κ+

ω−κ−
= µ. (2)

Heneceforth we measure energies, µ, in units of the ther-
mal energy kBT . The steady state probability to find the
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FIG. 2. Model and coarse-graining. (a) Full six state
model; the dotted lines denote odd rotational states {1, 3, 5}
(orange) separated by 120◦. The even intermediate states
(gray) separate each rotation step into 90◦ and 30◦ substeps.
(b) Two types of lumping; the solid boxes “lumping 1+6”
lump states {1, 6}, {2, 3}, and {5, 6}, respectively, whereas the
dashed boxes “lumping 1+2” lump states {1, 2}, {3, 4}, and
{5, 6}. (c) Coarse-grained trajectory using “lumping 1+2”
and “lumping 1+6”; the orange segments represent visits of
odd states. The dotted line (“micro state”) indicates the ro-
tational state of the motor as function of time. (d) Coarse-
grained trajectory deduced from Milestoning; the milestones
are placed at odd states.

ATPase in even and odd states is given by [57]

Podd =
ω+ + κ−
ω + κ

and Peven =
ω− + κ+

ω + κ
, (3)

respectively, where we defined κ ≡ κ++κ− and ω ≡ ω++
ω−. The entropy production rate can be expressed with
the rate of ATP consumption, J = Poddκ+ − Pevenκ−,
via [57]

σ = Jµ. (4)

This completes the description of the “full” system.
Lumping.— We now perform a coarse-graining to re-

duce the six states to three. Two sensible ways to lump
the states are shown in Fig. 2b. Assuming Markovian
dynamics the effective forward “+” and backward “−”
rates on the lumped space read [15]

W 1+6
± = P odd

even
κ± =

(ω± + κ∓)κ±
κ+ ω

,

W 1+2
± = Peven

odd
ω± =

(ω∓ + κ±)ω±
κ+ ω

,

(5)
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and satisfy J = W 1+6
+ −W 1+6

− = W 1+2
+ −W 1+2

− . In terms
of effective rates the coarse-grained entropy reads [15]

σ̃z = J ln
W z

+

W z
−
, (6)

with z = 1 + 6 or z = 1 + 2 and using Eqs. (4-6) yields

σ̃1+6

σ
= 1− 1

µ
ln

1 + eµκ−/ω+

1 + κ−/ω+
, (7)

σ̃1+2

σ
= 1− 1

µ
ln

1 + eµω−/κ+

1 + ω−/κ+
. (8)

Both ratios (7) and (8) are positive and bounded by 1
[15], i.e., σ̃z ≤ σ (see also [58]).

Time scale separation.— In agreement with [15] (see
also [18, 19, 21]) in the limit κ− � e−µω+ (i.e., κ → 0)
we obtain σ̃1+6 ≈ σ, whereas the limit ω− � e−µκ+

(i.e., ω → 0) yields σ̃1+2 ≈ σ. In other words, when
hidden jumps are much faster than those between lumped
states, the coarse-grained dynamics are approximately
Markovian and preserve the entropy production.

In our model κ � ω and κ � ω are the only kinds
of time scale separation, and in principle require two
different types of lumping. At high ATP concentration
(κ � ω) “lumping 1 + 2” (see dashed boxes in Fig. 2b)
hides the fast degrees freedom ∼ κ. Conversely, at low
ATP concentration one should rather lump 1 + 6 (see
solid boxes in Fig. 2b). Note that whenever the entropy
production rate is deduced from a master equation [2–
4, 6–10, 12–23, 27, 28, 30, 31, 34–38] one explicitly (or
implicitly) assumes the observed degrees of freedom to be
formally infinitely slower than any possibly hidden ones.

Violation of local detailed balance.— In practice an in-
finite time-scale does not exist and the driving µ becomes
important if it substantially exceeds the thermal energy
(µ � 1), which in turn implies eµ ≫ 1. To see this set
ω± and κ− to be constant while varying the ATP concen-
tration as κ+ ∝ eµ as in [56] (the parameters are given
in Fig. 3). For µ < 10 we find ω � κ and as expected
σ̃1+6 ≈ σ (see Fig. 3). For µ > 15 we have ω � κ, how-
ever, to our surprise σ̃1+2 6≈ σ (because ω− 6� e−µκ+).
Inspecting Eq. (7) we actually find σ̃1+2 ≈ 1− 10/µ (see
Fig. 3a). Thus one obtains σ̃1+2/σ → 1 in the limit
µ→ 0, which is approached algebraically slowly. For ex-
ample, in the already unphysical situation µ = 40 kBT
[59] only 75 % of the entropy production are recovered in
Eq. (6). Moreover, at physiological conditions µ = 20 we
find a clear time-scale separation, κ/ω ≈ 140� 1, yet the
entropy production is not even remotely restored. This
surprising finding is the first main result of this Letter.

How can we reconcile this? For convenience we focus
on µ = 20 and the lumping “1+2”, which in fact repre-
sents a semi-Markov process of second order [36] (see also
[27, 37, 38]). That is, the waiting time density ψ±|±(t)
depends on both, the previous and next visited state with
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FIG. 3. Entropy production and waiting time statistics with
Milestoning. (a) Entropy production, σ̃1+6 and σ̃1+2 deduced
from the lumpings “1+6” and “1+2”, respectively. The thick
line depicting 1−10/µ approaches σ̃1+2/σ in the limit µ→∞.
The dash-dotted yellow line denotes the steady state proba-
bility Podd. (b) Probability density of waiting time t (see
Fig. 2d) for µ values indicated in (a). The thick black line de-

picts an exponential density ∝ e−t/〈t〉. Parameters: ω+ = 1,
ω− = e−5, κ+ = eµ−15, and κ− = e−10.

the normalization
∫∞

0
[ψ+|i(t)+ψ−|i(t)]dt = 1 and i = ±.

In particular, for the given parameters we find

(
ψ+|+(t) ψ+|−(t)
ψ−|+(t) ψ−|−(t)

)
≈
(

1.007 1.000
2.089 · 10−9 2.075 · 10−9

)
e−λ1t

+

(
−1.007 3.100 · 10−7

6.738 · 10−3 −2.075 · 10−9

)
e−λ2t,

(9)

where λ1 ≈ 1.0 and λ2 ≈ 148.4. The analytical ex-
pression for the waiting time density is immaterial for
the present discussion but straightforward to determine.
For times t & 0.15 the jumps are essentially Marko-
vian – the waiting time density is to a good approxima-
tion exponential and independent of the previous step,
ψ±|+ ≈ ψ±|−, and the fast decaying mode is negligible,

e−λ2t ≈ 0. Hence, only short times t ≤ 0.15 encode a
violation of Markovianity. At strong driving most of the
jumps occur in positive direction “+” and on average
take equally long ≈ 1/λ1 ≈ 1. In fact, only the back-
ward jump “−” can be faster on average, however, if and
only if the preceding jump occurred in the forward “+”
direction, i.e. a forward transition is followed immedi-
ately by a backward transition. In this case one finds∫∞

0
tψ−|+(t)dt/

∫∞
0
ψ−|+(t)dt ≈ 0.0067 ≈ 1/λ2. These

rare events lead to an “overestimation” of the effective
backward transition rate W 1+2

− & ω−κ+/κ. Note that a
locally equilibrated backward rate would need to satisfy
ln(W 1+2

− ) ≈ ln(ω−κ+/κ).

By evaluating exactly the waiting time distribution to
include the short-time behavior one is able to restore the
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entropy production from the two-step affinity via [36]

σ1+2
aff = J ln

∫∞
0
ψ+|+(t)dt∫∞

0
ψ−|−(t)dt

= Jµ, (10)

where the last equality follows from Eqs. (2) and (9) (here
µ = 20). Thus, by taking into account the tiny non-
Markovian features in Eq. (9) one can in principle recover
the entropy production. This, however, poses a serious
practical problem at strong driving µ � 1. Namely, to
deduce Eq. (10) from an experiment we formally require
a trajectory with statistically sufficiently many incidents
of finding two consecutive backward steps not interrupted
by a forward step. It thus seems that one is required to
reliably observe rare events with a probability ∝ (e−µ)2,
which may not be feasible.

In the following we illustrate how an alternative coarse-
graining – Milestoning – effectively restores Markovian
dynamics in a thermodynamically consistent manner
while it concurrently effectively squares the sample size
by relying only on the evaluation of single rare backward
jumps that occur with probability ≈ e−µ.
Thermodynamic consistency of Milestoning.— We de-

fine three milestones (or cores) at locations highlighted by
dotted black lines in Fig. 1a. These represent the three
odd rotational states. We measure the passages across
the milestones (see thick yellow lines in Fig. 1c). If the
angle were measured continuously, the passages through
the milestones would correspond to instantaneous events
[32]. The coarse-grained process at any time reflects the
last visited Milestone (see blue line). As in Ref. [32]
we dissect waiting times into the dwell and transition
time periods. The dwell time represents all loops return-
ing to the original milestone, while the transition-path
time reflects the time of commuting between milestones.
The waiting time can be shown to be the sum of the
statistically independent dwell and transition-path times
(see second main result in [32]). The main advantage
of this decomposition is that the statistics of transition-
path time encode information about potentially hidden
multidimensional pathways [60] (see also [32, 61, 62]).

If the gaps between revisitations of the same milestone
(see vertical arrow in Fig. 1d) and transition-path times
are negligibly short compared to the waiting time in a
state, the resulting “Milestoned process” becomes, to a
good approximation, Markovian [41]. Note that mile-
stones may represent closed (see [41] and Fig. 1b) or open
(see [48, 49] and Fig. 1c) hypersurfaces.

Let φ± denote the splitting probability that the next
milestone will be visited in the forward “+” and back-
ward “−” direction, respectively. One can confirm (cf.
first main result in [32]) that

ln
φ+

φ−
= ln

κ+ω−
κ−ω−

= µ (11)

holds. That is, Milestoning transition probabilities ex-
actly encode the entropy production per hydrolyzed ATP.

Since transition-path times obey a reflection symmetry
[63] and because the dwell time statistics do not depend
on the exit direction [32] the waiting time densities in
the + and − direction coincide, i.e. ψ±(t) = ψ(t). In the
presence of hidden dissipative mechanisms the symmetry
may be lifted counterintuitively [64, 65]. Denoting the
mean waiting time by 〈t〉 =

∫∞
0
tψ(t)dt, the steady state

current becomes JM = φ+/〈t〉−φ−/〈t〉 = J . Defining the
Milestoning rates as WM

± = φ+/〈t〉 and inserting them
into Eq. (6) yields, using Eqs. (4) and (11), σ̃M = σ.
Thus, Milestoning in contrast to lumping preserves the
entropy production in the limit of a time-scale separation
and beyond.

Upon inspecting the waiting time density we find that
it is to a good approximation memory-less for µ . 10
as well as for µ & 20, while the non-exponential behav-
ior is most pronounced in the regime 10 ≤ µ ≤ 20 (see
Fig. 3b). Thus, in the limit of either of the two time-scale
separations, µ . 10 and µ & 20, the Milestoned dynam-
ics is to a good approximation Markovian. In contrast to
lumping, Milestoning restores local detailed balance (1)
in both directions, parallel and anti-parallel to the driv-
ing, even at large asymmetries, which is the second main
result of this Letter.

Notably, the regime µ . 10 clearly fulfills both crite-
ria (i) and (ii) for the emergence of Markovian dynamics
[41] if the probability to reside within a core satisfies
Podd ≈ 1. Conversely, the opposite limit µ & 20 does not
obviously imply Markovian kinetics. To understand why
it does so nevertheless, we point out that in this limit
(a) Peven = 1 − Podd ≈ 1. If we were to choose the even
(gray) states as cores instead of the odd (yellow) ones (see
Fig. 2a), we would obviously restore the criteria for the
emergence of Markovian dynamics [41]. It turns out fur-
ther that (b) the waiting time density remains unaffected
by the exchange of ω± and κ±, i.e. it does not depend on
whether we choose the odd or even states as milestones.
This explains why an exponential distribution emerges to
a good approximation also in the limit µ & 20. We also
note that the kinetic hysteresis discovered in [32] almost
vanishes as soon as Markovian dynamics emerge and the
aforementioned criteria [41] are satisfied, which here fol-
lows from (a) by choosing the even states as milestones.

Conclusion.— We have shown that a clear time scale
separation, in contrast to the common belief, is only a
necessary but not a sufficient condition for the valid-
ity of local detailed balance. By coarse-graining a de-
tailed Markov model of a strongly driven molecular mo-
tor we demonstrated a clear time-scale separation be-
tween the observed and hidden degrees of freedom and
hence Markovian dynamics of the observable, and con-
currently the non-existence of a local equilibrium against
the driving. Our work demonstrates, for the first time,
that Milestoning restores thermodynamic consistency in
the steady state in the presence of strong driving even
if the dynamics displays memory. A coarse-graining not
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based on Milestoning, e.g. lumping, may yield effectively
Markovian dynamics that nevertheless violates local de-
tailed balance. It will be interesting to revisit recent
works on the thermodynamics of systems with slow hid-
den degrees of freedom that employed lumping [27, 36–
38] to inspect if and how these change under the ther-
modynamically consistent Milestoning which will lead to
correlated transitions [66] and/or dwell times [32].
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quality of Markov state models, Multiscale Model. Simul.
8, 1154 (2010).
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