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Abstract

Summary: Various constraint-based optimization approaches have been developed for the computational analysis
and design of metabolic networks. Herein, we present StrainDesign, a comprehensive Python package that builds
upon the COBRApy toolbox and integrates the most popular metabolic design algorithms, including nested strain
optimization methods such as OptKnock, RobustKnock and OptCouple as well as the more general minimal cut sets
approach. The optimization approaches are embedded in individual modules, which can also be combined for set-
ting up more elaborate strain design problems. Advanced features, such as the efficient integration of GPR rules and
the possibility to consider gene and reaction additions or regulatory interventions, have been generalized and are
available for all modules. The package uses state-of-the-art preprocessing methods, supports multiple solvers and
provides a number of enhanced tools for analyzing computed intervention strategies including 2D and 3D plots of
user-selected metabolic fluxes or yields. Furthermore, a user-friendly interface for the StrainDesign package has
been implemented in the GUI-based metabolic modeling software CNApy. StrainDesign provides thus a unique and
rich framework for computational strain design in Python, uniting many algorithmic developments in the field and
allowing modular extension in the future.

Availability and implementation: The StrainDesign package can be retrieved from PyPi, Anaconda and GitHub
(https://github.com/klamt-lab/straindesign) and is also part of the latest CNApy package.

Contact: klamt@mpi-magdeburg.mpg.de

1 Introduction

Various constraint-based methods have been developed for the
computer-aided design of metabolic networks and for the targeted
optimization of microbial cell factories. As the first method of its
kind, OptKnock (Burgard et al., 2003) harnessed mixed-integer lin-
ear programming (MILP) for the rational design of microbial pro-
duction hosts based on the concept of growth-coupled production.
Today, a plethora of computational methods exists for various
applications of metabolic design, for example, to enforce growth-
coupled or even growth-independent production of a target chem-
ical or to find synthetic lethals (Cardoso et al., 2018; Jensen et al.,
2019; Pereira et al., 2021; Schneider et al., 2020, 2021; Tepper and
Shlomi, 2010).

However, the landscape of toolboxes provided for strain design
is very scattered, often hindering a broader and more efficient appli-
cation of metabolic design approaches in combination with effective
analysis tools. Despite the increasing number of constraint-based
modeling tools developed in Python [e.g. ScrumPy (Poolman, 2006),

COBRApy (Ebrahim et al., 2013), cameo (Cardoso et al., 2018),
OptCouple (Jensen et al., 2019), ReFramed (https://zenodo.org/re
cord/4700490), CNApy (Thiele et al., 2021) and MEWpy (Pereira
et al., 2021)], available packages with strain design algorithms are
still distributed over different platforms including the Python pack-
ages mentioned above, the MATLAB-based COBRA toolbox
(Heirendt et al., 2019) and CellNetAnalyzer (von Kamp et al.,
2017), as well as the Java-based OptFlux (Rocha et al., 2010).
Moreover, each of these packages focuses only on one or very few of
the published design methods. In particular, no toolbox exists that
provides bi-level optimization techniques (e.g. OptKnock,
RobustKnock and OptCouple) together with the more general min-
imal cut set (MCS) approach (Schneider et al., 2020, 2021). A single
framework allowing the use (and comparison) or even combination
of different classes of methods would be highly desirable. This
would also facilitate the reuse of modules developed for certain sub-
tasks relevant for all optimization approaches (e.g. preprocessing
and network compression).

VC The Author(s) 2022. Published by Oxford University Press. 4981

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(21), 2022, 4981–4983

https://doi.org/10.1093/bioinformatics/btac632

Advance Access Publication Date: 16 September 2022

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/21/4981/6701962 by M
PI fuer D

ynam
ik kom

plexer technischer System
e user on 04 N

ovem
ber 2022

https://orcid.org/0000-0001-8858-428X
https://orcid.org/0000-0003-2563-7561
https://github.com/klamt-lab/straindesign
https://zenodo.org/record/4700490
https://zenodo.org/record/4700490
https://academic.oup.com/


Herein, we present the Python package StrainDesign, which
aims to provide an integrated and extendable framework for MILP-
based strain optimization approaches. StrainDesign also offers tools
for the efficient analysis of calculated design strategies and a devel-
oped interface for CNApy provides the option to access most fea-
tures and methods of the package via a user-friendly graphical
environment.

2 Features and implementation

2.1 Strain design algorithms
The StrainDesign package integrates currently four of the most popu-
lar MILP-based strain design approaches RobustKnock (Tepper and
Shlomi, 2010), OptCouple (Jensen et al., 2019), OptKnock (Burgard
et al., 2003) and MCS (Schneider et al., 2020, 2021). The specifica-
tion of the respective design problems is simplified by predefined opti-
mization modules; it requires only minimal user input (e.g. definition
of the objective function) and all steps for the MILP construction are
automated. Moreover, StrainDesign allows combinations of protected
(desired) and suppressed (undesired) regions, known from MCS-
related formulations (Schneider et al., 2020), with one of the other
three (multi-level) MILP problems. One such hybrid approach is
shown in the first example under point (2) in Figure 1. This example
uses an OptKnock module to maximize the possible production rate
of a desired chemical at maximum growth. At the same time, the

added MCS-like module suppresses knockout sets that would lead to
low production rates at maximum growth. In contrast to classical
OptKnock solutions, this formulation guarantees growth-coupled
production. The corresponding design objective function (here: maxi-
mization of product synthesis) is taken from the selected bi-level opti-
mization module OptKnock. The second example in Figure 1 shows
the computation of synthetic lethals, which can be formulated as a
pure MCS problem, where the number of knockouts is minimized to
obtain a non-viable phenotype.

There are various features, options and parameters that can be used
for the specification of design problems, for example, allowance of
interventions on reaction or gene level, regulatory interventions, reac-
tion (or) gene additions, number of solutions to be calculated, the max-
imal number of allowed interventions, allowance of sub-optimal (e.g.
non-minimal) solutions to speed-up calculations and many others.

The computational pipeline is largely standardized for all design
problems and involves a comprehensive preprocessing routine. As
one building block, if the user demands to compute intervention sets
operating on genes, gene–protein-reaction associations are com-
pressed and integrated into the metabolic network structure as
described in Schneider et al. (2020). Regulatory interventions can be
emulated by introducing additional variables and constraints in the
form of pseudo-reactions and metabolites (Mahadevan et al., 2015).
Likewise, potential reaction (or gene) additions are treated as inverse
knockouts in the MILP (Schneider et al., 2020). Powerful network
compression techniques, adopted and partially extended from

Fig. 1. Overview of features and workflows of the StrainDesign package. For further explanations, see text
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efmtool (Terzer and Stelling, 2008), are applied to the entire model
structure to reduce the problem size. Flux variability analysis (FVA)
is used to identify reactions being essential for protected phenotypes,
which are then excluded as possible intervention targets to further
reduce the search space.

With its supported features, StrainDesign can emulate several other
computational strain design approaches including gMCS (Apaolaza
et al., 2019), cRegMCS (Mahadevan et al., 2015), FOCAL (Tervo and
Reed, 2012), OptKnock with tilted objective function (Feist et al.,
2010) and ModCell2 (Garcia and Trinh, 2019).

2.2 Strain analysis tools
A collection of canonical linear-programming-based analysis tools
complements the actual design algorithm. These tools are, on the one
hand, useful to analyze a wild type’s metabolism (e.g. maximum bio-
mass and product yields, production envelopes etc.) and to formulate,
from this information, realistic strain design goals. On the other
hand, these analysis tools are indispensable for validating and evaluat-
ing computed strain designs regarding their fitness and production
capacities. Analysis methods integrated in the StrainDesign package
include flux balance analysis (FBA), FVA, true yield optimization
through linear-fractional programming (Klamt et al., 2018) and plot-
ting functions to generate arbitrary 2D or even 3D projections of the
metabolic flux space onto user-selected reaction rates or yield terms
(including 2D and 3D production envelopes and yield spaces; see ex-
ample in Fig. 1). StrainDesign’s FBA and FVA implementations also
support SCIP and, for FVA, parallelized computations required for ef-
ficient preprocessing and analysis of large (genome-scale) models.

2.3 Implementation, integration in CNApy and

availability
The StrainDesign Python package operates on COBRApy models.
Since COBRApy ships with the open-source MILP solver GLPK, no
further packages are required for small-scale computations. The
more powerful MILP solvers IBM CPLEX, Gurobi and the open-
source alternative SCIP (Bestuzheva et al., 2021) are also supported
by StrainDesign. The ability to use indicator constraints by these
solvers often avoids numerical problems and increases the speed of
the computations.

Importantly, all functions from the StrainDesign package can
also be accessed through a graphical user interface developed and
integrated in the metabolic modeling package CNApy (Thiele et al.,
2021) (see the screenshot of the dialog box in Fig. 1). This enables
also non-experts to use all features of StrainDesign in a user-friendly
environment. Moreover, the computed intervention strategies can
be displayed and analyzed within a network visualization.

StrainDesign can be retrieved from the package indexes PyPi and
Anaconda. Source code, examples and documentation are available on
GitHub (https://github.com/klamt-lab/straindesign). The latest CNApy
package (release 1.1.1) contains the GUI interface for StrainDesign.

3 Conclusion

StrainDesign is a Python package that builds upon the COBRApy-
framework and provides a single platform with a large collection of
advanced methods and features for MILP-based metabolic network
design and strain optimization. In particular, it is the first Python
package supporting the powerful and very flexible MCS framework,
which can now also be combined (or compared) with multi-level
(nested) optimization approaches. Together with the different sup-
ported intervention types, a huge variety of design problems can be
formulated and state-of-the-art network compression techniques
allow their efficient treatment also in large-scale networks.
Regarding MEWpy and cameo, two existing Python-based packages
for metabolic network design, our toolbox complements MEWpy,
which focuses on evolutionary algorithms for strain design, and it
has only a small overlap (OptKnock) with cameo. The StrainDesign
toolbox can be used in Python scripts or programs or accessed via
the GUI of CNApy. The integration of further strain optimization

techniques in the future is facilitated by a modular structure of the
computational pipeline.
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