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THE TOPOLOGICAL MODULAR FORMS OF RP? AND RP? A CP?
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ABSTRACT. In this paper, we study the elliptic spectral sequence computing
tmf«(RP?) and tmf.(RP2 A CP?). Specifically, we compute all differentials
and resolve exotic extensions by 2, n, and v. For tmf.(RP2 A CP?), we also
compute the effect of the vi-self maps of RP2 A CP? on tm f-homology.
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1. INTRODUCTION

1.1. Motivation. Topological modular forms (tmf) are ubiquitous in algebraic
topology and homotopy theory. The goal of this paper is to compute the tmf-
homology of two spaces, namely RP? and RP? A CP?, and to determine the differ-
entials and extensions in their elliptic spectral sequences.

We approach this problem from the point of view of stable homotopy theory.
As is common, we let V(0) denote the cofiber of multiplication by 2 on the sphere
spectrum. Then

V(0) ~ XN RP?
and, via the suspension isomorphism, computing tmf,V(0) = m.tmf A V(0) is
equivalent to computing the tm f-homology of RP?. Similarly, let Y be the smash
product of V(0) with C,;, the cofiber of the stable Hopf map 7. Then

Y ~ N 3RP? ACP?

and computing tmf.Y is equivalent to computing the tm f-homology of RP2ACP2.
In this paper, we compute the elliptic spectral sequence for both tmf A V(0) and

tmf AY. From this computation, we deduce tmf,V(0) and tmf,Y and provide
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information about their module structure over ¢tmf,. In particular, we resolve all
exotic 2,7, v extensions as well as compute the effect of v;-self maps of Y on tmf.Y.
Note that determining the tm f,-module structure is much less straightforward than
a simple degree-wise computation of tm f.V(0) or tmf,Y.

Knowing the homology of basic spaces is part of a full understanding of any
generalized homology theory. So we see these computations as having independent
and fundamental interest. They are, at the very least, an addition to the slim bank
of examples of computations in tm f-homology theory of spaces and finite spectra.

However, our motivation for doing this runs deeper and this computation is part
of a more ambitious program, coming from chromatic homotopy theory. Specifically,
our main goal in doing this computation is not just to understand the structure of
tmf,V(0) and tmf.Y as tmf.-modules, but more-so to fully compute their ellip-
tic spectral sequences. To explain this, we let K(2) denote the Morava K-theory
spectrum and F, the Lubin-Tate spectrum (also often called Morava E-theory).

In the sequence of papers [GHM04, GHMR05, HKM13, GHMR15, GH16, GHM 14,
Hen07], Goerss, Henn, Karamanov, Mahowald and Rezk carry out a program for
studying K (2)-local homotopy theory at p = 3 using the theory of finite resolutions.
These are sequences of spectra built from the K(2)-localization of tmf (and tm f
with level structures) that resolve the K (2)-local sphere. Finite resolutions give
rise to Bousfield-Kan spectral sequences. Let us call these finite resolution spectral
sequences. The input is K (2)-local tm f-homology, possibly with level structures,
and the output is K(2)-local homotopy groups. The ultimate goal is to use finite
resolutions to compute 7, L K(Q)SO, but an intermediate step is the computations of
the homotopy groups of Lg (o) F for some key finite spectra F', such as the prime
3 Moore spectrum V(0) [HKM13] and the cofiber of its v;-self map, commonly
denoted V(1) [GHMO4]. So, to use the finite resolution approach to K (2)-local ho-
motopy, a key input is 7. L g2y (tm f A F'). This can be computed via the K (2)-local
Es-based Adams-Novikov spectral sequence (which can also be cast as a homotopy
fixed point spectral sequence). This spectral sequence receives a map from the el-
liptic spectral sequence of tmf A F. Understanding the elliptic spectral sequence
of tmf A F thus provides key input for K(2)-local computations.

Recently, there have been significant advancements towards carrying out an anal-
ogous program at the prime p = 2. See [Bealb, Beal7, BG18, BGH17]. But the
program is still in progress. For example, the only complete computation of the
K (2)-local homotopy groups of a finite spectrum at p = 2 is the computation of
7L Z for Z € Z, where Z is the class of Bhattacharya-Egger spectra admit-
ting a vo-self map. See [BE20a, BE20b] and also [BBB'19]. The motivation for
this project is to add to this bank of computations, namely, to study L g2V (0),
Lk 2)Y, but also Lg2)A1 where A; is the cofiber of a v;-self map of Y. For
this, we found the need to understand the elliptic spectral sequence of tm f AV (0),
tmf AY and tmf A Ay. In [Phal8], the third author computes a K(2)-local Ea-
based Adams-Novikov spectral sequence converging to m. L 9)(tmf A Ar). From
this computation, one can deduce that of the elliptic spectral sequence of tm f A Aj;.

Here, we study instead the elliptic spectral sequences of tm f AV (0) and tmfAY.
For F either V(0) or Y, tmf.F = 0 for * < 0 and tm f.F' is determined by its values
in the range 0 < % < 192. In this paper, we obtain the following result, where the
definition of what we mean by ezotic extensions is given in Definition 2.18.
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Theorem 1.1. The elliptic spectral sequence for tm fAV (0) is depicted in Figures 4,
5, 6 and 7. The tmf-homology of V(0) ~ L~1X®°RP2, namely

tmf.V(0) = tmf,, ,RP?,

together with all exotic 2,n and v extensions in the corresponding elliptic spec-
tral sequence is as displayed in Figures 8 and 9 in degrees 0 < x < 192.

Similarly, the elliptic spectral sequence for tmf AN'Y is depicted in Figures 14,
15, 16, 17, 19 and 20. The tmf-homology of Y ~ L 3%°RP? A CP?, namely

tmf.Y =tmf,, ,RP* ACP?,

together with all exotic 2,n1 and v extensions and almost all exotic v -
extensions in the corresponding elliptic spectral sequence is as displayed in Fig-
ures 21 and 22 in degrees 0 < x < 192. In particular,

2(tmf,(RP? A CP?)) = 0.

Remark 1.2. Computing exotic extensions in this sense of Definition 2.18 can
(and does in some places here) leave ambiguity about the module structure. How-
ever, this definition of exotic extensions, which we borrowed from [IWX20], is very
standard in these kinds of large spectral sequence computations.

1.2. Methods and comparison with existing work. To say a few words about
our techniques, the major input in our computation is the elliptic spectral sequence
of tmf, which was first computed by Hopkins and Mahowald [DFHH14, Ch. 15],
and later by Bauer [Bau08]. The computation of the spectral sequence for tm f,.V(0)
is straightforward given that data, while that of tmf.Y is more intricate. The tech-
nique we use for the latter relies on an observation of the third author from [Phals].
For both V(0) and Y, computation of the exotic extensions requires work and new
input. Several techniques are used to achieve this, and the most interesting among
these is probably the Brown-Comenetz “self-duality” of tm f,.V(0) and tmf.Y . See
Theorem 2.5.

In [BR] (soon to be published), Bruner and Rognes do a thorough investigation
of tmf. A main tool used in [BR] to answer computational questions about tm f
and its modules is the classical Adams spectral sequence. (Note that the study of
the classical Adams spectral sequence of tmf probably goes back to Hopkins and
Mahowald, and later to Henriques in [DFHH14, Chapter 13].) Among many other
topics, including duality for topological modular forms which is relevant for our
approaches, they study the classical Adams spectral sequence of tm f smashed with
many finite spectra, including a study of ¢tmf smashed with V(0). In particular,
they also compute tmf,V(0), determining all but a few 2,7, v-multiplications as
well as vi-multiplications. Here, we deliberately use the word multiplication in
contrast to the word extension discussed above to emphasize that Bruner—Rognes
name all classes, which leads them to a more precise determination of multiplicative
relations. Recently, Bruner and Rognes shared their charts and an advanced copy
of some of the chapters of their forthcoming book with us. However, our results
were obtained independently from theirs and via different methods. So the two
approaches complement one another. We also use a few results on the classical
Adams spectral sequence of tm f, which we verified against both [DFHH14, Chapter
13] and [BR, Chapters 5,9]. Furthermore, [BR, Chapter 10] is a direct reference of
Theorem 2.5, which is used extensively in this paper.
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Finally, we reiterate that for our applications, namely, as an input in the finite
resolution approach to K (2)-local homotopy theory, it is important to understand
specifically the elliptic spectral sequence instead of the classical Adams spectral
sequence because of its close relationship to the homotopy fixed point spectral
sequence, a key tool in chromatic homotopy theory (see the discussion above).

1.3. Organization of the paper. In Section 2, we discuss the elliptic spectral
sequences and other key tools used later in the paper. In Section 3, we review the
computation of the Ea-term of the elliptic spectral sequence for tmf A V(0). In
Section 4 we compute the differentials and some exotic extensions. In Section 5 we
turn to the computation of the Fs-term of the elliptic spectral sequence for tm fAY
and in Section 6 we compute the differentials and exotic extensions.

1.4. Acknowledgements. We thank Robert Bruner and John Rognes for useful
discussions and their generosity in sharing some charts and chapters as well as the
front matter of their book [BR]. We are extremely grateful to Hans-Werner Henn
and Vesna Stojanoska for useful conversations along the way. In particular, Henn
could very well have been a co-author given the extent of interactions we had with
him on this project.

Computations like these are much harder without effective drawing tools and
spectral sequence programs. We are thankful to Tilman Bauer (luasseq) and Hood
Chatham (spectralsequences) for their IATEX spectral sequence programs. While
the charts in this paper have mostly been re-drawn with Hood’s program, early
versions of our computations (before spectralsequences was written) were facilitated
by Bauer’s program and his kindness in helping us make it work in such large scales.
Classic but not least, we thank Bruner for his Ext-program which is an ever-useful
tool.

Finally, the second and third authors also thank ’Université de Strasbourg for
its support during part of the project.

2. BACKGROUND
In this section, we review some of the key tools that will be used in the paper.

2.1. The elliptic spectral sequence. We begin with the elliptic spectral se-
quence. Let
(A, A) = (Zlar, az, az, a4, ag], Z]ay, az, as, as, ag, s, 7, t])
with
‘ai| = 2Za |T| = 47 |8| = 2a |t| =6
be the Hopf algebroid of Weierstrass elliptic curves. Then the elliptic spectral
sequence has the form [Bau0§]
Ey' = ExtY* (A, A) = m_stmf.
Consider the map
QSU(4) — QSU ~ BU

induced by the usual inclusion SU(4) — SU. Let X(4) be the Thom spectrum
of the associated virtual vector bundle over QSU(4). These spectra play a crucial
role in the study of nilpotence and periodicity in chromatic homotopy theory, in
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particular, in the work of Ravenel [Rav87]. As outlined in [DFHH14, Ch. 9], the
elliptic spectral sequence is the X (4)-based Adams spectral sequence for tmf. See
also [Rez].

Let us spell this out. We let R =tmf and E = tmf A X(4). Then
EANRE ~tmfANX(4)NX(4).

Let E be the fiber of the unit map R — E. For any tmf-module M, one can
construct the Adams tower

M<~———FEAgM<~———EANREAg M ~—— ...

EAnp M EAREANg M EAREANREANR M

by splicing together the cofiber sequences

EAR(TL_H) Ar M —)F/\Rn Ar M — E/\REARn Ar M.

We abbreviate

AR

X =E" Ap M~ X(@)" A M,

L= EARE ™ A M X@)AX@) " AM

where X (4) is the fiber of the unit map S® — X (4). As a consequence, the associ-
ated spectral sequence is identified with the X (4)-based Adams spectral sequence
for M.

However, we have that the Hopf algebroid
(me(E),m(EAR E)) = (me(tmf A X(4)), m(tmf A X(4) A X(4)))

is isomorphic to (A, A). In particular, it is flat. Therefore, the Es-term of the
associated spectral sequence is identified with

Ey' (M) = Exty' (A, m.(E Ag M)).

See [BLO1]. When M = tmf, this is precisely the elliptic spectral sequence, and
more generally, this is the elliptic spectral sequence for the tm f-module M.

According to Bousfield [Bou79, Theorem 6.5], since X (4) is connected and
mo(X(4)) = Z, if M is connective, then Ly )M ~ M and the spectral sequence
converges to . (M). In particular, if F' is a finite spectrum, then the elliptic spectral
sequence for tmf A F reads as

Ey' = ExtY (A, m(tmf A X (4) AF)) = m_s(tmf A F).
To simplify the notation, we put
Fu(F):=m(tmf ANX(4)ANF)

noting that this is a A-comodule.
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2.2. (co)Truncated spectral sequences. We will use the (co-)truncation of the
spectral sequence associated to a tower of cofibrations. We will recall the construc-
tions and their basic properties. Let

XO X1 X2 X3 Xn—l%Xn%-"
l 4l 4 J/ 4l i i T
Iy I I Iy Infl.‘

be a tower of cofibrations of spectra. Let (E*,d,),>1 be the associated spectral
sequence.

Let X;/X,, be the cofiber of the evident map X,, — X;. For any n € N, there is
a tower of fibrations, which we call the n-truncated tower:

XO/Xn <;X1/Xn <;X2/Xn < ... %Xn—l/Xn <;pt

Iy L I Iy 1

We denote the terms of the resulting spectral sequence by Efin This spectral

sequence computes the homotopy groups of
Skn,1X0 = Xo/Xn
There is a natural map from the original tower to the n-truncated tower. Let

T3t B3t — B2

r,<n

be the induced map between the respective E,-terms. Then E;in =0 for s > n,

while TQS’t is an isomorphism if s < n — 1 and an injection if s = n — 1. More
generally, we have:

Lemma 2.1. For every r > 2, the map TS has the following properties:

(i) Tt is injective for s <n —1, and
(i) T3t is bijective for s <n—1— (r —1).

Proof. We prove this by induction on the r. From the above discussion, (i) and (ii)
hold for » = 2. Suppose both hold for some r > 2.

We prove that (i) holds at E,;1. Let [z] € Ef_il be represented by an element
x € E>' such that s < n — 1 and T2 ([z]) = 0. So T*(z) is the target of a
d,-differential. That is, there exists y € EJ_;"""~! such that d,(y) = T>!(z).
Since s —r < n —r, T’~"* is bijective by the induction hypothesis. It follows that
there exists y € ES~"'="~! such that T°~"'="~(y) = y. So, by naturality and the
hypothesis that 75! is injective, d,.(g) = x. This means that [z] = 0, and hence

T:_",,_tl is injective when s > n — 1.

Now, we prove that (i) holds at E, 1. Let [z] € E}f; _, with s <n—r—1. We
need to show that [z] is in the image of Tfjfl. By the induction hypothesis, there
is a class T € E%* such that T5(7) = . It suffices to prove that T is a d,.-cycle.
By naturality,

Trs+r,t+r71(dr (7)) = dT(TTS’t (7)) = dr(x) = 0.
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Since d,.(z) € E;ff;r,’f”_l and s +7 < n — 1, the induction hypothesis implies that
d.(z) = 0. O

Next, we look at the co-truncated spectral sequence. Consider the following
tower of fibrations, which we call the n-co-truncated tower,

Vo< v My X, <~ X,y Xoio
[ I e
Jo o =1, Lyt Lo
where Yo = ... =Y, = X, and Jy = ... = J,_1 = pt. We denote by ETSth the

r-term of the spectral sequence associated to this tower. There is an obvious map
from the m-co-truncated tower to the original one. This map induces a map of
spectral sequences:

TPt BN, — B
We observe that Ef;n =0 for s < n, and that ¢T5"" is a bijection for s > n + 1
and a surjection for s = n. The following lemma is proved as in Lemma 2.1.

Lemma 2.2. For every r > 2, the map ¢T'5' has the following properties:

(i) T is surjective for s > n, and
(ii) ¢T3t is bijective for s >n+r — 1.

We will be applying this technology to 2-local spectra. As described in [Bau08,
Section 7], one can simplify the computation of the cohomology of the Weierstrass
Hopf algebroid

(A2) A2)) = (AR L), AR L)

as follows. Let A’ denote Zy)[a1,as] and f: A — A’ the evident projection. Let
A’ denote A’ ®4 A ®4 A’, which is isomorphic to A’[s,t]/~, where the relations ~
are generated by

s* — 6st +ays° — 3aqt — 3azs =0
§5 — 27t? 4+ 3a15° — 9a15%t + 3a3s* — 9a?st + ads® — 27ast = 0.
The map between Hopf algebroids
fr (A, M) — (A N)

induces an equivalence of the associated categories of comodules [Bau08, Sections
2 & 7], where

N— A QA N

for an (A2, A(z))-comodule N. When F is the 2-localization of a finite spectrum,
the Es-term of the elliptic spectral sequence for

tmf ANF ~tmfoy NF
is isomorphic to

Eyt(tmf A F) = Exty/ (A, A @4 F.(F)).
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Remark 2.3. The spectrum tm f A X (4) is a complex oriented ring spectrum (e.g.,
A =m.(tmf A X(4)) is concentrated in even degrees). Let us denote by

H: MU — tmf A X(4)

the map of ring spectra inducing the complex orientation of tmf A X (4) given by
the completion of the universal Weierstrass curve at the origin. Then H induces a
homomorphism of Hopf algebroids

H,: (MU, MUMU) - ((tmf A X(4))s, (tmf A X (4) A X(4)),) = (4, A).
Recall that MU, & Z[x1,xo,...] with |z;| = 2 and MU MU = MU,[mi,ms,...]
with |m;| = 2i. We note that H,(xz1) = £ay. This is discussed in [Bau08, (3.2)].

For any finite spectrum F, H also induces a map from the Adams-Novikov
spectral sequence for 7. (F) to the elliptic spectral sequence for 7, (tmf A F'), which
converges to the Hurewitz map h: m.(F) — m.(tmf A F). Moreover, the induced
map at the Fs is induced by H,.

2.3. Duality. In this section, we discuss Brown-Comenetz duality for tmf. This
will be used for determining some of the exotic extensions in our spectral sequences.
First, we introduce the following notation.

Notation 2.4. Let A be a graded module over a graded commutative ring S and
x € S. We let X" A be the module determined by (¥"A); = A;—,.. We denote by
I'; A the xz-power torsion of A, i.e.,

I A={mecA|z'm=0,i> 0},
and by A/(z>) the module that fits into the exact sequence of S-modules

A=A [H — A/(z>) = 0.

We will also denote by AY the Pontryagin dual A, i.e.,

(4¥). = Hom((4)_.,Q/Z)
with the S-module structure given by (r.f)(m) = (=1)I"I1 f(rm) for every r € S,
fe (Av)|f‘ and m € A|m‘

Now suppose that R is a commutative ring spectrum (e.g., R = tmf) and M is
a R-module. For any = € 7.(R), we define M [%] to be

1 xr — T — xX
M [} = hocolim(M & $=I#lpr & 2wl 2y ),
X

We define M/(2°°) to be the cofiber of the natural map M — M [1]. Inductively,
if (z1,x2,...,x,) is a sequence of element of 7, R, then we define

M /(27,257 .o 230) = (M/ (27, 257, o 27 1)) / (277).-
With this notation, using the long exact sequence on homotopy groups, we see

that the cofiber sequence

1
M—=M {} — M/(z>)

T

gives rise to the short exact sequence of 7, (R)-modules

0= mu(M)/(2%°) = m(M/ (%)) = Tp(mee1(M)) — 0.
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Let Ig,z be the spectrum representing the Pontryagin dual of stable homotopy
groups, so that for a spectrum X,
Ié/Z(X) = Hom(7, X, Q/Z).
Then the the Brown-Comenetz dual of a spectrum X is defined to be

Igyz(X) = F(X,Iy/z).

The literature contains a variety of references and methods for studying duali-
ties of tmf and related spectra. To name a few, we note work of Mahowald—Rezk
[MR99], of Stojanoska [Sto12, Stol4] and of Greenlees [Grel6]. While the identifica-
tion of Ig,z(tmf) is known to experts, there is no direct reference in the literature.
(The work of Greenlees and Stojanoska [GS18] describes the relationship between
various forms of duality, but this work does not directly apply to ¢tmf.) Upcoming
work of Bruner—Rognes [BR, Chapter 10] and Bobkova—Stojanoska will soon fill
this gap and provide a reference for the following result.

Theorem 2.5. There is an equivalence of tm f-modules
I@/Z(tmf/(Qoov CZoa Aoo)) = E2Otmf‘

Remark 2.6. Here and below, “—/A®” we really mean —/(A%)® as A is an
element of the Es-term of the elliptic spectral sequence but it does not survive to
the Eoo-term. However, A® survives and detects a class in mygotm f. Note also that
the class ¢; € mgtmf reduces to v € tmf A V(0) and so cy-power torsion is the
same as vi-power torsion when the latter makes sense.

Corollary 2.7. There are equivalences of tm f-modules

(1) Igz(tmf AV(0)/(2%,¢5°, A®)) ~ S¥tmf AV (0), and
(2) Igsz(tmf AY/(2%°,¢5°,A%)) ~ S tmf A Y.

In the proof of the result below, we use the following lemma.

Lemma 2.8. For X =tmf AV(0) ortmf AY and a € m.X, cya is divisible by
A8 if and only if a is divisible by AS.

Remark 2.9. The proof makes use of the structure of the E..-terms of the elliptic
spectral sequences as a module over Fa[cy, A®]. So this is a bit premature but we
want to have this result here to gather all our techniques in one place. We note
that the logic of the argument is not circular as the determination of the E.,-terms
do not require this lemma.

Proof. Let X be tmf A V(0). The homotopy groups of X decompose as
0—=T, = mX = F, —0

Here, T, is the subgroup of c¢4-torsion elements, and F., = m.(X)/T,,. By the
calculation of the E..-term of the elliptic spectral sequence for X', multiplication
by A® induces a bijective endormorphism of T,, in every stem and an injective
endormorphism of F,,. Furthermore, there are no non-trivial c4-torsion elements
in the stems between 176 and 191, and hence T, satisfies the conclusion of the
lemma. Any element that maps non-trivially to F., is detected in filtrations less
than or equal to 2 of the F.-term of the elliptic spectral sequence. This part of the
E-term is free as a module over Fy[v}, A®], and hence satisfies the conclusion of
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the lemma. (Note that in the elliptic spectral sequence c, is detected by v1.) Now,
suppose we have a € 7, X such that a € T,, and cya is divisible by A®. Then by
our remarks on F.,, a = A8b + ¢ for some element ¢ € T,,. Since A8 is surjective
on T,,, we see that c is in the image of A® and so the claim holds.

For X =tmf AY, a similar argument applies. O

Corollary 2.10. We have the following isomorphisms of w.tm f-modules

(1) Tey(me(tmf AV(0)/(A%))Y =T, (w1 (tmf AV(0))), and
(2) Doy (me(tmf AY)[(A%))Y & Do, (me19(tmf AY)).

Proof. In this proof, we let X = tmf AV (0). Since 7. X is 2-power torsion, we have
X[1/2] ~ *. Thus,
(2.11) X/(2%) ~ DX

The long exact sequence in homotopy associated to the cofiber sequence
(o] o] 1 o0 (o]
X)) - /%) | | - /@),

gives an exact sequence
(212) 0= (m&/(27))/(cf”) = ma(X/(2%,¢77)) = Leyma 1 (X/(27)) = 0.
By (2.11), we have that

(me(X/(2%)))/(5°) = (i1 X) /(5°)
and that
Doy (11 (X/(2%9))) 2 T, (o2 X).

Since A® acts injectively on 7, X, it also acts injectively on T, (7._2X). Moreover,
A¥ acts injectively on (7, X)/(c$°) by Lemma 2.8. The short exact sequence (2.12)
then shows that A® acts injectively on m, (X /(2°°,¢5°)). Therefore, we have that

T (X /(27,657 A%)) = (m X /(27,¢5°)) [ (A%).

The 9-lemma then implies that the following is a short exact sequence of m.tmf-

modules:
(2.13)
0= (mac1X)/(c3°, A) = (X /(2%°,¢5°, A)) = T, (meaX) /(A™) — 0.

By applying Hom(—,Q/Z) to this exact sequence, we obtain that
0= (Pey (ma2X)/(A%))Y = m(X/(27, 57, A%))Y = ((mm1X)/ (3%, A%))Y = 0,

is an exact sequence of m,tm f-modules.

We see that the right most term is cy4-free and the left most term is cy-torsion.
In particular, it follows that

(Fey (M2 X)/(A%))Y

1%

Lo, (ma(X/(2%, 637, A%))Y)
Loy (medg/a(X/ (27, ¢17, A%))),

IR
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where the second isomorphism comes from the definition of the Brown-Comenetz
dual Igz(X/(2%°,c3°,A%)). Together with Corollary 2.7, we obtain an isomor-
phism of 7,tm f-modules

(Tay (72 X)/(A%))Y 2 2T, (- 3X) /(A%))”
= S0, . (Lo (X /(2. 67, A%))
=~ 22er, (1,.X)
~ V2D, (meX).
Substituting X for tmf A'Y and this last 19 with 17 gives the result for Y. [

Remark 2.14. We will explain how to use Corollary 2.10 to compute extensions.
Continue to let X = tmf A V(0). Let K denote the kernel of the homomorphism
induced by multiplication by A® on T, (7.X)/(A%). Since multiplication by A®
induces an isomorphism
(2.15) Lo, (1. X) = T, (Tyt102X)
for * > 0, we see that, for —192 <t < 0,

Kt = FC4(7T*X)/(AOO),5
The Snake Lemma applied to the following diagram

0 ——T¢, (7. X) [R5] A>FC4<7T*X> [As] —0

T

00— K ——> T, (mX)/(A%) 5T, (1.X)/(A%)
gives rise to the exact sequence

8
0 — Do, (1. X) 25 T, (Tus192X) — K — 0.

Using (2.15) again, the homomorphism I, (m.4192X) — K in the above short exact
sequence induces an isomorphism

Lo, (1) — Ki192 2 Ty i (X /(A%)) 1102
for 0 <t < 192.

Now let r be an element of m;(tmf). If 0 < k < 192 — [, multiplication by r
induces a commutative diagram

(o)) — > Kp_199 = T, (1,X) /(A®) _ 102

P i

Doy (X)) ipt — Kpi—102 = Ty (meX) /(A t1—192.

T

Cq

By applying the Pontryagin dual to this commutative diagram, together with Corol-
lary 2.10, we obtain the commutative diagram

Hom(Tc, (7)1, Q/Z) = Lo, (meX) 171k

Hom(T';, (7)1, Q/Z) ~— e, (meX)171—p—1-
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As a consequence, the cardinality of the image of
7 Doy (maX) g = Doy (e X)) gt
is the same as that of
7 Loy (M) 171 -1 — Loy (MaX) 171 -

In particular, this means that a non-trivial multiplication by r on stem k forces a
non-trivial multiplication by r on stem 171 — k — .

Similarly, for tmf A'Y we obtain that a non-trivial multiplication by r on stem
k forces a non-trivial multiplication by r on stem 173 — k —[.

2.4. The Geometric Boundary Theorem. We also make use of the following
result, due to Bruner [Bru78]. A standard reference is Theorem 2.3.4 of [Rav86].
We apply this Theorem 2.3.4 to the X (4)-based Adams-Novikov spectral sequence
and the cofiber sequence

tmf A SO 2 tmf A S S tmf AV(0) B tmf A S
Using X (4)«tmf = A and X(4).(tmf AV (0)) = A/2, we have X(4),p = 0 and
hence a short exact sequence

(2.16) 05 A3 A A/2-0.

Theorem 2.17 (Geometric Boundary Theorem). There are maps
6,1 BXH(V(0)) = EEFY(SY)
such that
b2 =6: B3N (V(0)) — E3TH(S°)
is the connecting homomorphism arising from (2.16). For all r,
Ordy = d.0,
and 0,41 1s induced by 6,.. Furthermore, 6 is a filtered form of

ps: mtmf AV (0) = meqprtmf.

2.5. Further observations on extensions. Here, we collect a few classical but
useful extension results. Note that, in this paper, we use Definition 2.10 of [TWX20]
as our definition of an exotic extension. See Section 2.1 of that reference for a
detailed discussion. However, briefly, we have

Definition 2.18 (Definition 2.10 [IWX20]). Let a € m,tmf be an element detected
by a on the E.-term of the elliptic spectral sequence for tmf. An exotic extension
by « is a pair of elements b and ¢ on the E.-term of the elliptic spectral sequence
for M (where M is a tm f-module) such that

(1) ab =0 on the E -term,

(2) there is an element 3 detected by b such that a3 is detected by e,

(3) if an element S’ detected by b is such that af’ is detected by ¢, then the
filtration of ¥’ is less than or equal to that of b.

Note that this implies that if both a8 and a8’ are detected by ¢ as in Figure 1,
there is no exotic extension from b’ to c.
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FIGURE 1. Here there is no exotic extensions from b’ to ¢, and so
the dashed line would not be drawn.

Lemma 2.19. Let X be a spectrum. Consider the long exact sequence in homotopy
o T X B (XAVO) B X S

associated to the cofiber sequence X X 5 XA V(0). Let a € mp—1 X be an
element of order 2. If o’ € m,(X AV (0)) is such that p.(a’) = a, then

2a’ =i,(na) € T, X AV(0).
Proof. This is a classical result. See, for example, [BGH17, Lemma 3.1.5.]. O

Remark 2.20. Lemma 2.19 will be used with X = tmf and tm f A C,, where C), is
the cofiber of the Hopf map n: S* — S°. This gives all exotic 2-extensions in the
elliptic spectral sequences for tmf A V(0) and tmf AY, since Y ~ C,, AV (0).

Finally, we have the following classical result which is an analogue of Lemma 2.19.

Lemma 2.21. Let b € m, X be such that nb = 0. If b’ € mp12(Cy AX) is such that
pb = b in the long ezact sequence on homotopy groups associated to

X5 xS xac, B2y,

then nb’ = i, (vb).

Proof. First, consider b = ¢ € myC,, given by the inclusion SO — C), of the bottom
cell. We have a cofiber sequence

c, e, nC, B v,
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which is not split because of the non-triviality of S¢* in H*(C,, A C,,,Z/2). We get
a diagram

190,y ———> 130,y A Cp — 1320, — 0

P
m3Cy -, m3(Cp AN Cy)

For any b’ € mo(C, AC,,) such that p,b' = ¢, we must have nb’ # 0, else we could split
the above cofiber sequence. Since v = 0, nb" € i, (m3C))), where w3C,, = Z/4{v1}.
Now, in 7, C,,, we can form the bracket

(t,1,2) € mCyy
with indeterminacy
2m2Cy + 1280 = 2moCy = 2.
So, (1,n,2)n contains a unique element. In m,S° we also have 2v € (n,2,n) with
indeterminacy nmSY. It follows that

(Ln,2)n=1u(n,2,m) = 2v # 0 € m3Cy.
So i, (2v) = 0 and b’ = i, (ve).
For the general case, note that any class b: S™ — X such that nb = 0 can be

extended to a map b: ¥"C, — X. The claim then follows from the commutativity
of the following diagram

e, — X"C, A C,) —= T 20,

J/b J/MC" iz%

X — > XNC, —2—¥2X
Then &' = (b A C,).¢ satisfies nb' = i,(vb). Now, suppose that p,b’ = b. Then
b =V € kerp, = imi,. Therefore, n(b' — b') = 0 so, b’ = i, (vb) as well. O

2.6. Self-maps and their cofiber. It is well-known that V(0) admits v{ self-
maps, i.e., maps Y%V (0) — V(0) which induce multiplication by v{ in K(1)-
homology for K (1) the first Morava K-theory. The map on MU-homology is given
by multiplication by 2} € MUg. Under the map from the Adams-Novikov spectral
sequence of V(0) to that of the ellpitic spectral sequence of tmf A V(0), z; maps
to vy on the Fy-term. See the discussion surrounding (3.3). Any v} self-map is
detected by the same-named element. The spectral sequence inherits an action of
v} and the differentials are v{-linear.

Recall that we let Y be the spectrum V(0) A C,,. In [DM81], Davis and Ma-
howald show that there exist v; self-maps of Y, i.e., maps £2Y — Y which induce
multiplication by v in K(1).Y. Any of these is detected by the element v; on the
FEs-term of elliptic spectral sequence for tmf AY and the differentials are v;-linear.

In Lemma 6.40, we will be studying the v;-multiplication in tmf.Y. Some of
the answers will depend on the choice of vy-self map, so we give a bit of background
here on this subject. This material can be found in [DMS81].

In [DM81], the authors show that there are in fact 8 vi-self maps of Y. They
also show that a wvi-self map of Y is detected in the Adams spectral sequence by
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an element of Ext}f(H *(Y),H*(Y)), where A denotes the Steenrod algebra at the
prime 2.

A class of Exti{g (H*(Y), H*(Y)) is represented by a short sequence of A-modules:

0— S2H*(Y) > M — H*(Y) — 0.
Let A(1) be the sub-algebra of the Steenrod algebra generated by Sq¢' and Sq¢?.
We know that Exti{‘?l)(H*(Y),H*(Y)) =~ F, and its unique non-trivial class is
represented by the short exact sequence of A(1)-module
0— S2H*(Y) = A1) = H*(Y) — 0,

where A(1) is isomorphic to A(1) as an A(1)-module, thus the notation. Davis
and Mahowald showed that a class of Ext}f’(H *(Y), H*(Y)) which detects a vq-self
map of Y is sent to the unique non-trivial class of Exti{‘z’l)(H* (Y),H*(Y)) (via the
map induced by the inclusion A(1) C A).

To put an A-module structure on A(1), it suffices to specify the Sq* action.
Indeed, the action of S¢*, for k > 8 on A(1) is trivial for degree reasons. By the
Adem relations, there must be a non-trivial S¢* on the class of degree one of A(1).
There are possibilities for a non-trivial action of Sq* on the classes of degrees zero
and two, giving rise to four different A-module structures on A(1). This implies,
in particular, that

Ext P (H*(Y), H*(Y)) 2 F3®.
Computing the first three stems of Ext%'(H*(Y), H*(Y)), we see that

Fy ifs=2

Ext’" 2 (H*(Y), H*(Y)) =
A (H(Y) (¥)) {O otherwise.

We deduce that there are eight homotopy classes of maps X2Y — Y detected
in Exti{g(H*(Y),H*(Y)) and mapping non-trivially to Exti{?l)(H*(Y),H*(Y)).
These are the vy self-maps of Y.

The singular cohomology of the cofiber of each of the v;-self map is isomorphic
to one of the four A(1)s as an A-module. We denote the four choices by A;[ij],
with i, j € {0,1}. Here, A;[ij] means that the cohomology has a non-trivial S¢* on
the class of degree 0, respectively 2 if i = 1, respectively if j = 1.

It is somewhat surprising that out of eight v;-self-maps, there are only four
homotopy types which are distinguished by their cohomology, as is shown [DMS81].
We use the notation Ai, for short, when we mean any or all of the four models.

3. tmf.V(0): THE E3-PAGE

From now on, we will be working exclusively with 2-local spectra. We will write
tmf for tmf(2) to simplify the notation. Furthermore, we will be considering only
elliptic spectral sequences for M = tmf A F for F a finite spectrum and so shorten
our notation even more to

Ey'(F) = Exty (A, A @4 Fo(F)).

The map S° =2 S° induces multiplication by 2 on F.(S%) = A, which is injec-
tive. Thus the cofiber sequence

592 89 5 v(0)
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gives rise to a short exact sequence of A’-comodules
(3.1) 0 A 25 A = A @4 F(V(0) = 0.

It follows that A’ ® 4 F.(V(0)) is isomorphic to A’/(2) as a A’-comodule. Since
(2) C A" is a A'-invariant ideal, we have that

Exty! (A, 4'/(2)) = Bty ) (4'/(2), 4'/(2)).
See, for example, [Rav86, Proposition A1.2.16]. So, we have a spectral sequence
(B2 EV0) = Bxti ) (A(2), 4/(2)) = mtmf AVO),
A computation of the cohomology of (A’/(2),A’/(2)) is originally due to Hopkins

and Mahowald and can be found in [DFHH14, Chapter 15, Section 7] and [Bau08,
Section 7]. Let us describe the answer here and introduce some notation.

Classical computations of modular forms yield

Ext (A, A') 2 Zg) [ea, c6, Al /(] — 2 — (12)3A)

where
c4 = ail — 24a1a3
_ 6 3 2
¢ = —ay + 36ajas — 216a3
A = dda3 — 27a}
as well as

Exty) o (4/(2), A'/(2)) = Z/2[ay, Al.

See, for example [Bau08] and [Sil86, I1.1]. The map on Ext®* induced by the mod
2 reduction (A’ A’) — (A’/(2),A’/(2)) sends ¢4 — af and cg + af.

There are also maps of Adams—Novikov Spectral Sequences, where H and h are
as in Remark 2.3:

Extgp pp(BP:, BP.V(0)) ———— m.V(0)

Ext}y v (MU, MUV (0)) .V (0)

EXt}) g (A'/ (2), A /(2) —— metmf AV (0)

Further,
Extyp_pp(BP., BP.V(0)) = Fa[u1];
see [Rav86, Thm 4.3.2].
So, we have ay € Ext}7) , (A'/(2), A'/(2)), v1 € Exty} pp(BP., BR.V(0)) and
1 € Bxty yu (MU, MU,V(0)), and
(33) V1 T = ay.
Note that vy detects either of the two classes in mV(0) = Z/4 which map to

n € 7V (0) under the homomorphism 75V (0) — 71.5° in the long exact sequence
in homotopy. We fix a choice and call it v; € mV(0). It follows that aq survives
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to detect the image of v1 € mV(0) in motmf A V(0). From now on, in mod 2
computations, we abuse notation and denote all classes we have named a; by v;.

Now we will present the Fy page of (3.2) as computed in [DFHHI14, p. 270],
[Stol4, Fig. 5] and [Bau08, p.26]. See Figure 2. Even if the elliptic spectral sequence
for V(0) is not multiplicative, E2(V(0)) is a ring and we can completely describe
the algebraic relations (which also follow from [Bau08]). The ring structure will be
used in our computation of E5(Y") below.

Recall that § = do was defined in Theorem 2.17. In the theorem below, k €
E22 16(59) is the unique non-zero element.
Theorem 3.4 (Figure 2). The ring E2(V(0)) is isomorphic to
Folv1, A, R, v, 2, 9]/ (~)
for elements
neExt"? veBxt!3 &eExt®®  AeExt"*

in the image of Eo(SY) — E2(V(0)), as well as elements

{02, t1,8, (115

v € Ex r € BEx
in the image of 62: E2(V(0)) — F2(S°) where
Sa(v1) =1m, S2(z) =12, Sa(y) = k.
The relations (~) is the ideal generated by

y € BEx

(s=1) Vv vix V1Y
(s=2) vn vr — vinT ny — vz Ty y? —12A
(s =3) nlx — 3 2 — vy

(s=4) A — vl .
Furthermore, we have k = 2% and 65(v%y) = 4k.

Remark 3.5. The algebraic structure in Theorem 3.4 can also be deduced from
the appendix of [BealT].

Remark 3.6. The element A is detected by v3 in the Bockstein spectral sequence
computation of [DFHH14, I1.2.7].

Remark 3.7. Let P denote the following pattern:

€V ° ° | o

o = N w & o o =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Then E5*(V(0)) can be summarized additively as
E3*(V(0)) = P[&, A]/(An* — ko).
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FIGURE 2. The Fs-term of the elliptic spectral sequence for tm f A
V(0). A bullet o denotes Fy and a diamond ¢ denotes a copy of
Fa[v1]. The lines of slope 1 denote multiplication by 7, and the
lines of slope 1/3 denote multiplication by v. Horizontal lines are
v1-multiplications.

4. tmf,V(0): THE DIFFERENTIALS AND EXTENSIONS

We begin with an observation that V' (0) has a v} self map, hence all differentials
d, for r > 3 are v} linear. Since 7, v, k and A® are permanent cycles, all differentials
are linear with respect to multiplication by these elements. Note that there are no
even length differentials due to sparseness.

We will use the following methods when computing differentials in this section.

(1)

3)

The map of spectral sequences induced by the map of spectra
tmf —tmf AV(0)

allows us to import a differential d,(a) = b from the spectral sequence for
tmf if the images of a and b are both non-trivial on the E, page of the
spectral sequence for tmf A V(0). Note also that the elliptic spectral for
tmf A V(0) is a module over the elliptic spectral sequence for tmf.

The long exact sequence in homotopy groups associated to the fiber se-
quence

tmf 2, tmf — tmf AV(0)
gives short exact sequences
0 — (mitmf)/2 = m;(tmf AV (0)) — kera(m;—1tmf) = 0

where kera(m;—1tmf) is the subgroup of elements of order 2. This allows
us to compute the rank of m;(tmf A V(0)) and forces certain differentials
by various dimension count arguments.

The Geometric Boundary Theorem, stated in Theorem 2.17.

4.1. The dsz-differentials.

Lemma 4.1 (Figure 3). The d3-differentials are A and vi-linear. They are deter-
mined by this linearity, the differentials

d3(v) =n%  ds(v}) = vin®,

and the module structure over the elliptic spectral sequence for tmf.
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FIGURE 3. The ds-differentials
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FIGURE 4. ds and dr-differentials in stems 0-48. A o denotes
Fa[vf].

Proof. The two listed d3-differentials occur in the Adams-Novikov spectral sequence
computing .V (0) so happen here also by naturality. See, for example, [Rav78,
Theorem 5.13 (a)]. Since A is a dz-cycle in the elliptic spectral sequence computing
m«tmf and the elliptic spectral sequence for V(0) is a module over this spectral
sequence, the ds-differentials are A-linear. For degree reasons (making use of A
and R-linearity), these determine all ds-differentials. (I

Remark 4.2. On the Es-page, all classes in filtrations s > 3 are vj-torsion. The
vi-free classes are concentrated in stems t — s # 5,6,7 mod 8.

4.2. The ds-differentials.

Lemma 4.3 (Figure 4). The ds-differentials are A2-linear. They are determined
by this linearity, the differential

d5(A) = RV,

and the module structure over the elliptic spectral sequence for tmf.
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FIGURE 5. Differentials in stems 48 to 96

Proof. The same differential occurs in the spectral sequence for m,tmf. The rest
of the argument is as in the proof of Lemma 4.1. |

4.3. Higher differentials. Since all the classes in filtrations 4 and above are in
the ideal generated by &, the differentials that have sources in filtrations 0-3 gen-
erate the other differentials with respect to the module structure over the elliptic
spectral sequence for tmf (denoted E’*(S%)). We focus on these differentials in
the narrative. See Figures 4, 5, 6 and 7.
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Lemma 4.4. The dr-differentials are A*-linear and determined by
d7(AV%y) = R*nuy,
d7(A%%y) = A%R*n?u;
and the module structure over the elliptic spectral sequence for tmf.

Proof. First, note that d7(A*) = n?k = 4vk in the spectral sequence for tmf.
Therefore, for any a € E7(V(0))

d7(A*a) = 4vka + A'dq(a).
Since 4E,(V(0)) = 0, we get A“-linearity.

We give a proof for the differential d7(Av?y) = k?n?v;. The proof for the other
differential is similar. In the spectral sequence for tm f, we have

d7(A4R) = 7’]3R2.
But, for 65: E3'(V(0)) — E5TH(S%) the connecting homomorphism, we have
52(Av%y) = AdR

and
8o (R2n°v1) = &2,
The differential when ¢ = 0 then follows from Theorem 2.17.
Making use of the module structure over the spectral sequence for tmf, the only
other possible dr-differential for degree reasons is on A2v2y. But this class is in
fact a dy-cycle since A2y is a dy-cycle by sparseness. O

Lemma 4.5. Using the module structure over the elliptic spectral sequence fortmf,
the do-differentials are determined by the following differentials with i = 0,1:

(1) do(A*H4) = AYiR2g,

(2) do(A*HHiz) = ARk,

(3) dg(A3+4i7}) = Alt4ig2,
(4) dg(A3+4z:€) — Al+fli:‘€7€277
(5) dg(A2+4z’U1> = A41R21}1.Z'
(6) dg(A2+4l:v1x) = A4i/§'2ny
(7) dg(A3+47j1)1) = A1+41I_€_2’U1$
(8) dg(A3+4Z’Ulfﬂ) — A1+4z/§2ny

Proof. We prove the claim for ¢ = 0. To prove ¢ = 1, one uses exactly the same
arguments in later stems.

In order to show (1), note that A? cannot support any d,. for 7 < 9 by sparseness.
Then we have the differential from the elliptic spectral sequence for tm f

dy(A%n) = RZe
and this differential becomes 7 divisible in the spectral sequence for tmf A V(0).
For (2), we use the same argument with the differential dg(A2%€) = Ak2kn from the
elliptic spectral sequence for tmf.
The differentials (3) and (4) are the images of the same differentials in the elliptic
spectral sequence for tm f. The differentials (5)—(8) are proved using Theorem 2.17.

For example, the differential dg(A%n) = kZ%e and the facts that d(v;) = 7 and
0(vix) = € together imply (5). The others are similar.
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It remains to argue that there are no other generating do-differentials. As noted
above, it suffices to determine this on classes in filtration less than four. Combining
a comparison with the spectral sequence for tm f and sparseness, we see that the
only question is whether or not the classes A*z and Av;z support non-trivial dgs.
However, the possible targets are the sources of K-multiples of the d;;-differentials
(1) and (3) of Lemma 4.6 shown below, which settles the question. d

Lemma 4.6. Using the module structure over the elliptic spectral sequence for tmf,
the dy1-differentials are determined by the following differentials with ¢ = 0,1:

(]) dll(A2+4il‘i) — A4if£377

(2) dll(A3+4iH7’l) — A1+4ir‘€37’]2
(3) dll(A2+4Z:y) = A4iR3’Ul

(4) dir(A* ko) = ATy 3y
(5) du(As’Ul) = A3g2)°

Proof. The differentials (1) and (2) are images of the same differentials in the
spectral sequence for tmjf. The differentials (3) and (4) follow from (1) and (2)
respectively using Theorem 2.17. The differential (5) follows from the fact that
7121 (tmf A V(0)) does not contain v{-torsion, which can be verified by comparing
with m.tmf using the long exact sequence on .

Sparseness and multiplicative structure guarantees that these are all the gener-
ating dy,-differentials, except for a possible di; on A"n?v;. However, the possible
target is the source of the K-multiple of the d;3 below. O

Lemma 4.7. The di3-differentials are determined by
di3(A'y) = AR,
There are no dys-differentials and the dy7-differentials are determined by
d17(A4) = l_€4y.
The dyg-differentials are determined by
dlg(AYI/S) = E5A3’01772.

Proof. The first and second differentials follow from the facts that

mo(tmf AV(0)) =Z/2 and mgs(tmf A V(0)) =0
respectively. The dyg-differential follows from the fact that the there is no vi-torsion
in 7T177(tmf AN V(O))

There are no dy5 differentials and no other di7 and dy9 for degree reasons. The
only argument needed beyond sparseness and multiplicative structure to show that
there are no other d;s-differentials is as follows. There are possible djzs on A3y3
and ATv3. These classes are in the image of the tmf spectral sequence. For tmf,

d13(A313) = 2&k* and the target maps to zero in the spectral sequence for tm f AV (0)
and similarly for A7v3. O

Warning 4.8. The d;3 differential above is in fact equivalent to the 2-extension
in m19tmf. For those familiar with names, this corresponds to 2k = n;k3. For a
recent detailed treatment of this extension, see [BR, Chapter 9].
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Lemma 4.9. There are no doi-differentials. The das-differentials are determined

by:
(1) das(APn) =
(2) daz(A%?) = ﬁﬁAﬁ
(3) dggEA%vl) = rSAv;

(4) dos(ATn?v1) = KO AZnu;

Proof. The differentials (1) and (2) occur in the elliptic spectral sequence for tmf.
The differential (3) is the geometric boundary of (2) as in Theorem 2.17. The last
differential is forced by the fact that the v{-torsion in w171 (tmf A V(0)) is trivial.
There are no da; or other dog-differentials for degree reasons. ([l

The following is now immediate.

Lemma 4.10. The spectral sequence collapses at Esy with a horizontal vanishing
line at s = 22, i.e., E$H(V(0)) =0 for s > 22.

4.4. Exotic extensions. We list the exotic extensions that do occur. All other
possibilities can be ruled out using algebraic structure and duality. We bring to
the attention of the reader the precise meaning of exotic extensions given in Defi-
nition 2.18. Note also that all exotic 2-extensions are deduced from Lemma 2.19.
We do not discuss 2-extensions further but include them in our figures.

Lemma 4.11 (Figure 8). In stems 0 to 45, there are exotic extensions:

(1) [Anly = Re
(2) [Aelv = nmy

(3) [Arnly = &*n?
(4) [Avi]lv = Ruix
(5) [Aviz)y = mwl
(6) [Am}l]u = g2 r]v1
(7) [yv*lv = Fuin?

Proof. The first three extensions are between elements from w.tmf, see [Bau08].
The next three are forced by the fact that the connecting homomorphism in the
long exact sequence on homotopy groups is a map of 7,.S°-modules, the geometric
boundary theorem, and the fact that under the map

5 E3'(V(0)) — E5TH(S)
we have §(v1) = n (and so d(zv1) = €, d(kv1) = 1K, etc.).

The last extension follows from duality and the fact that there is a v multipli-
cation between stems 147 and 150 (already present on the Es-page). (]

Lemma 4.12 (Figure 8). In stems 46 to 96, there are exotic extensions:

(1) [A2 v = Arv3
(2) [A%v]n = ARe
(3) [A%v1n)v = Akav
(4) [A%zv)n = Akkn
(5) [Azv)y = A/mm}l
(6) [A%kv)v = AR %0,
(7) [A%yv?|lv = A2kvin?
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FI1GURE 8. Exotic extensions in the elliptic spectral sequence for
tmfAV(0) in stems 0 to 96. This records tmf.V (0) = tmf, ,RP?2,

Proof. The first two extensions (1) and (2) are multiplicative relations that hold in
m«tmf. Extension (3) follows from (1) and Theorem 2.17. Extension (4) is dual
to the algebraic 1 multiplication from stem 112 to 113, and similarly for (5). The
extension (6) involves classes in the image of i, and this extension happens in tm f,.
Finally, (7) is dual to the algebraic ¥ multiplication from stem 99 to 102. O

Remark 4.13. Looking at the charts in [Bau08], one might have expected ex-
tensions [A2kv]n = Ak?n? and, by the Geometric Boundary Theorem, [A%yv]n =
AR2nv;. However, these are not exotic extensions according to Definition 2.18.

We also note that [A%cy|v # [ARkn] and [A3cyv]v # [AR3n]. The first comes
from the fact in m.tmf, there is no such extension. (This can be seen, for example,
from the Adams Spectral Sequence of tm f.) The second follows from the fact that
the target has a non-trivial &-multiple and kv = 0.

Lemma 4.14 (Figure 9). In stems 97 to 144, there are exotic extensions:
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(5) [A%€|v = A*kRn

(6) [ASwnly = Aw2p

(7) [A*Rzv1]n = ARSvy (from (125,5) to (126,20))

(8) [APxvi]v = A*kkvy (from (129,1) to (132,6))

(9) [ASkv1]v = A*R2nvy (from (136,2) to (139,9))
(10) [ASevi|n = A%EYvin (from (130,2) to (131,17))
(11) [A*v)v = A3Rv? (from (98,0) to (101,7))
(12) [A°kn|n = A3k3n2vy (from (135,3) to (136,14))
(13) [Atyv?lv = [A*Rvin?] (from (117,3) to (120,6))

Proof. Extensions (1)—-(6) follow from studying i.: tmf. — tmf.V(0). Note that
(4) is missing from the [Bau08] charts, but can be obtained from the classical
Adams Spectral Sequence for tmf. See [DFHHI14, Chapter 13] or [BR, Chapter
9]. Extensions (7), (8) and (9) follow from (3), (5) and (6), respectively, using
Theorem 2.17.

For (11), note that by Theorem 2.17, [A%v1] has geometric boundary [A%p].
Since [A%n]v # 0, [A%v1]v # 0 and this extension is the only choice. For (12),
use Remark 2.14 and the algebraic n multiplication between mgstmf A V(0) and
msstmf A V(0). A similar argument applies for (13). O

5

Remark 4.15. There is no exotic v-extension on [A°cy4] since the potential target

is not annihilated by .
Lemma 4.16 (Figure 9). In stems 145 to 191, there are exotic extensions:

(1) [ASv]n = [ASKe] (from (147,1) to (148,6))
(2) [ASkvn = [AS&?n?] (from (161,3) to (162,10))
(3) [A°krnln = [A%&*n?v1] (from (155,7) to (156,18))
(4) [ASyvn = [APR2vin] (from (162,2) to (163,9))
(5) [APkevi]n = [A%&5nuy] (from (150,6) to (151,21))
(6) [ASV3lv = A3RYuin? (from (153,3) to (156,18))
(7) [ASevi|n = ASRkn (from (154,2) to (155,7))
(8) [ASevi|v = ASREkv (from (154,2) to (157,7))
(9) [ACkv)v = APR2v1n? (from (161,3) to (164,10))
(10) [ASyv?lv = [ASKvin?] (from (165,3) to (168,6))
Proof. The first two extensions occur in tmf,. The third is also an extension in
tm f., namely [A°Rrn]n = [A*273], but the image of the class [A*2&3] is detected
by [A3&*n%v1] in tmf.V(0). The extension (4) follow from (2) and Theorem 2.17.
This result also implies (5) from the extensions [A%kr3]n = [A2&5n?] in tmf.. All
the extensions (6)—(10) follow from Corollary 2.10 and Remark 2.14 and the data
for algebraic multiplications in the range 3 <t — s < 20. (]

5. tmf,Y: THE E5-PAGE

Let C,, be the cofiber of the Hopf map 7, so that there is an exact triangle
(5.1) st 280 — ¢, — 52

We define Y ~ V(0) A C,, and study its elliptic spectral sequence. Recall that if F'
is a finite spectrum, then we abbreviate

Fo(F) == mo(tmf A X(4) A F).
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We first describe F.(C,,). Since m,(tmf A X(4)) = A is concentrated in even
degrees, the cofiber sequence (5.1) induces a short exact sequence on tmf A X (4)-
homology

0= A— Fu(Cy) = 24— 0.

This splits as a sequence of A-modules so that
Fu(Cy) 2 A X2 A.

Multiplication by 2 on (), induces multiplication by 2 on tmf A X (4)-homology,
which is injective because F(C)) is torsion-free. Thus the cofiber sequence

Cy B Cy—>Y
induces a short exact sequence in tmf A X (4)-homology
0— F.(Cp) = Fu(C) = Fu(Y) =0,
and it follows that
(5.2) F.(Y) = A/(2) @ X2A/(2)
as an A/(2)-module.

Likewise, since F,(V(0)) is concentrated in even degrees, the induced map on
tmf A X (4)-homology of the cofiber sequence

SV(0) B V(0) =Y
is trivial. It follows that there is a short exact sequence of A-comodules
0— A/(2) = Fu(Y) = ¥24/(2) = 0.

This short exact sequence of A-modules splits because of (5.2). Tensoring it with
A’ over A, we obtain a short exact sequence of A’-comodules, which splits as a
sequence of A’-modules

(5.3) 0—A/2) = A F(Y) = E2A/(2) — 0.

As F,.(Y) is 2-torsion, (5.3) is a short exact sequence of A’/(2)-module, and hence
splits as such. Therefore, applying Exty"(A4’,—) to (5.3), we get a long exact
sequence of Ext}, (A’, A’/(2))-modules. See, for example, [Brol0, p.110, (3.3)]. Its
connecting homomorphism

(5.4) §: Extyf(A', A'/(2)) — Extif T2 (A, A'/(2))

is given by multiplication with n € Extll\’,2 (A, A’/(2)). Here, as is often the case,
we denote by 7 the class in Ext which detects the same-named homotopy class.

We present the effect of the connecting homomorphism separately for the v;-
power torsion and for the vi-free classes of F5(V(0)) in Figure 10 and Figure 11,
respectively.

In Figure 11 a o denotes a copy of Fa[v1], and a line of slope 1 denotes, as usual,
multiplication by 1. Note that we have kv{ = An?, hence kv] = 0 in Ey(Y), while
vy itself is not nilpotent and A is not v; torsion. For our purposes, we need to
determine completely the action of v; on Ey(Y). The class v; € Ext},(A’, 4’/(2)) is
detected by the primitive a; € A’/(2) (with respect to the A’-comodule structure).

Since a; € A’/(2) is a primitive, multiplication by a; € A’/(2) induces the
following diagram of A’-comodules
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4
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0 2 4 6 8 10 12 14 16 18 20 2 24
FIGURE 10. The connecting homomorphism (5.4) for the v1-power
torsion classes
8
6
1
2
0 _|o s
o 2 4 6 8 10 12 14 16 18 2 22 24 2 28 30
FIGURE 11. The connecting homomorphism (5.4) for the v;-free
classes
(5.5)
0 0 0

00— 224"/(2) —=224"/(2) ®a/(2) Fu(Y)

Xay Xay Xaiy

0 A'/(2) A)(2) @a) FulY) ——= 22A4/(2) —0

0——A"/(2,a1) —= A'/(2,a1) ®ay(2) Fu(Y) —= X2 4"/(2,01) —0

We let
M= A'/(Q,al) ®4a/2) ]:*(Y)

YA /(2) ——=0
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The middle vertical short exact sequence induces a long exact sequence

(5.6)
= EYNY) s EyTT(Y) —= Ext (A, M) —= By (v) s

so that we can determine the action of v; on E»(Y) by computing

Exty) (A", M) = Extj\’/*/(anl)(A’/(Q,al),A’/(Q,al) ®a/(2) F«(Y)).

The cohomology ring Extj;’,*/(2 any(A'/(2,a1), A’/(2, a1)) is computed in [Bau08, Sec-
tion 7]. With our notation,

Eth\,'*/@,al)(A//(z’ al)’ A//(Q’ (11)) =T, [777 v, K, U2]/(U2773 - V37 771/)-

The bottom short exact sequence of the above diagram (5.5) splits as a sequence
of A'/(2,ay)-modules. However, it does not split as a one of A’/(2,a;)-comodules,
rather it represents the element n € Ext}\’?/(zyal)(A//(Q, a1),A’/(2,a1)). Therefore,
the connecting homomorphism

(5.7)  Extyr g0, (A7/(2,a1), A/ (2,a1)) = Extyl 2 (A/(2,a1), A/ (2, 1))

of the induced long exact sequence in Exty), . (A'/(2,a1), —) is given by multi-
plication by . We obtain:

Lemma 5.8. As a module over the ring Fan, v, k,va]/(van® — v3,mv), the coho-
mology group

Exty)) .00 (A7/(2,01), A'/(2,01) @4/(2) Fi(Y))
is generated by a[0,0] € Ext®° and a[5,1] € Ext™® with the relations

nal0,0] = 0, nal5,1] = v%a0,0].
Proof. By the description of the connecting homomorphism (5.7), we see that
EXtZ’,*/(27al)(A//(2’ al): A//(2a al) ®A/(2) ‘F*(Y)) = FQ [Va R, U2]/(V3){a[0a 0]7 a’[57 O]}

as an v, &, vo]/(v®)-module. Next, we determine the action of 7. We see easily
that na[0,0] = 0. To calculate nal[5, 1], we remark that

V2a[07 0] = (n,v, 77>a[07 0] = n(v,n, CL[O, 0]>»

where the first equality comes from the Massey product v? = (n,v,n) and the
second is a shuffle. As v2a[0,0] # 0, (v,7,al0,0]) is not trivial and must be equal

to a[5, 1] by sparseness. Hence, v%a[0,0] = na[5, 1]. O
4
3
L L L
2 — T 1T 1/ T
(1) — — — = L
0 6 12 18 24

FIGURE 12. Extf\’,t/(2 any(A'/(2,01), AT/(2,01) ®ay(2) Fi(Y)) de-
picted in the coordinate (¢t — s, s).
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Proposition 5.9 (Figure 13). As a module over E2(V(0)), E2(Y) is generated by
classes

al0, 0], a[5,1],a[17, 3]

The submodule generated by al0,0] is isomorphic to E5(V(0))/n. There are Massey
products

al5,1] = (v,1,a[0,0)), a[17,3] = (nz?,n,al0,0])

and these classes are subject to the following relations. On the new classes, we have
v1 mulitiplications

viaf5,1] = 2al0,0]  v1a[17,3] = 2%a5, 1],
n and v multiplications
na[5,1] = v2af0,0], na[17,3] = va[l7,3] = ya[17,3] =0
as well as

v?yal5,1] = v3kal0,0] .

Proof. Using the description of E5(V(0)), the effect of the connecting homomor-
phism § of (5.4) is straightforward to compute. The cokernel is simply E2V (0)/n as
an E5(V(0))-module. Using the multiplication on E5(V (0)), the kernel is generated
by classes a[5,1] and a[17, 3] defined as

a[5ﬂ 1] = D« (V) a[17a 3] = P« (77352),
where p, is induced by the map A’ @4 F.(Y) — $24’/(2) of (5.3).
Inspecting the long exact sequence (5.6) and the structure of

EXtX'*/@,al)(A//(Q’ a1),A/(2,a1) @ a/2) F(Y)),

we see that via[5,1] = zal0,0] (else the latter Ext"®-term would be nonzero and
contain the image of za[0,0]). That v1a[17, 3] = z%a[5, 1] follows from the fact that
vinz? = 2?v in F2(V(0)) and the definition these classes as images of 4.

By the same argument used in Lemma 5.8, we deduce the np-multiplication on
a[5,1]. The relations na[l17,3] = va[l7, 3] = ya[17, 3] = 0 follows for degree reasons.

It remains to verify that v?ya5, 1] = v$&al0,0]. A juggling of Massey products
gives

yv*(v,n,al0,0]) = (yv*,v.1)al0,0].
The relation v?ya[5, 1] = vi&a(0, 0] then follows by Lemma 5.10 below and the fact

that 7a[0, 0] = 0. O
Lemma 5.10. In Exty"(A’, A'/(2)), there is the following Massey product

Ry € (yv?, v,m)
with indeterminacy

nExtY? (A, A'/(2)) + yr? Ext (AT, A'/(2)).
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0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

FIGURE 13. E3(Y) as a module over E5(V(0)). The dashed lines
are z-multiplications and dotted lines y-multiplications. Other
structure lines are as in Figure 2.

Proof. By [Bau08, Formula 7.9], kv = (n, ki, ) and
Rvi = vi(n, K, @) C (in, K, @) C (n,vikn, ) = (0,77, 2)

and the indeterminacy 7 Ext%?*(A’, A'/(2)) does not contain &v. Here, we used
the relation v1xn = n?y. So kvi = (n, n?y, z) and it follows that

Rup = vi(n, 1y, x) = (vin,y,n*x) = (o, y,v°) C (o, yv, v%)
and the indeterminacy nv; Ext®?® does not contain #vi. So
Rop = (i, yv,v°) = (v, v, v%y) = o1 (n, v, yv?).

As v acts injectively on Ext370(A’, A'/(2)), so &v} = (n,v,yv?) = (yv?,v,n). O

Remark 5.11. In E;’t(Y), there is at most one non-zero element in any bi-degree
(s,t) with filtration s > 0. There is also a unique non-zero element in bi-degree
(0,0). So, for s > 0 or (s,t) = (0,0), we often denote by a[t — s,s] € ES' the non-
zero element, if it exists. Furthermore, when s = 0 and ¢ > 0, we let a[t, 0] denote
the element of Eg’t(Y) which is divisible by the largest power of A. For example,
EJP2(Y) = Fo{v2%a|0,0], v1*Aal0, 0], v2A2a[0,0]} and a[52,0] = v2A2a[0,0].

Although Proposition 5.9 gives us a very compact description of F5(Y), the
elliptic spectral sequence of tmf AY is not a module over the elliptic spectral
sequence of tmf AV (0) as the latter is not even a multiplicative spectral sequence.
However, the elliptic spectral sequence of tmf A'Y is a module over the elliptic
spectral sequence of tmf. In fact, we get even more structure than that from the
fact that Y has vi-self maps. As explained in Section 2.6, we have:

Lemma 5.12 (vq-linearity). The differentials in the elliptic spectral sequence for
tmf ANY are vy-linear.

We state the following “intermediate” result for convenience of reference in the
computations below. The module structure of the elliptic spectral sequence spectral
sequence of tmf A'Y over that of tmf is richer than what is stated here but that
information can be read off of Proposition 5.9.

Corollary 5.13. As a module over

Folvr, v, &, Al/(v1v, V3, v‘ll/?;)
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E5(Y) is generated by
al0,0], a[5,1], a[12,2], a[15,1], a[17,3], a[20,2]
subject to the relations generated by
vial5,1] = v¥a[12,2] = via[15,1] = va[12,2] = va[17,3] = 0
and
v2a[15,1] = via[17,3], v%a[20,2] = vika[0,0] .

3

Furthermore, the differentials are Fo[vy, v, &, A8/ (viv, v3, vi&)-linear.

Proof. This follows from the results of this section and the fact that A® is a per-
manent cycle in the elliptic spectral sequence spectral sequence of tmf. (I

6. tmf,Y: THE DIFFERENTIALS AND EXTENSIONS

Our approach to computing the differentials of the elliptic spectral sequence
for m.(tmf AY) is based largely on the analysis of the action of k. Since & is a
permanent cycle in the elliptic spectral sequence for tmf, £ acts on the spectral
sequence for tmf A'Y and differentials are linear with respect to this action.

Lemma 6.1. The E,.-term of the elliptic spectral sequence for' Y has the following
properties:

(1) All classes in filtration greater than (r — 1) are R-free.
(2) All classes in filtration greater than or equal to 4 are divisible by k.

Proof. We prove these two properties by induction on r > 2. For r = 2, this follows
from Proposition 5.9. Suppose now that r > 2. Let a be a d,_1-cycle and [a] € ES?
the corresponding class. Suppose that a lives in filtration s with s > (r — 1). We
have that %[a] = 0 if and only if there exists b € E,._; such that d,_1(b) = Ra. Then,
b must live in filtration (4+s)—(r—1) > 4. By the second property, b is divisible by
R, i.e., there exists ¢ € F,._1 such that kKc = b. As a consequence of the E-linearity,
Rdr—1(c) = dr—1(b) = Ra, and so &(d,—1(c) —a) = 0. Since (d,_1(c) —a) € E,_4
lives in filtration s greater than r — 2, it is k-free by the second property. It follows
that d._1(c) = a, and so [a] = 0. Therefore, the E,-term has the first property.

For the second property, suppose that a lives in filtration greater than or equal
to 4. By the second property for F,._i, there exists b € E,_; such that &b = a.
It suffices to prove that b is a d,._j-cycle. Suppose that d,_1(b) = c¢. The latter
implies that ¢ lives in filtration greater that (r — 2), hence is &-free by the first
property. Since a is a d,._1-cycle by assumption, we have, by &-linearity, that

0= dr,l(a) = del(l_ib) = KC.
This means that ¢ = 0 and so b is a d,_1-cycle, as required. ([l
Terminology. For convenience, we will call all F-multiples of a class which has
filtration less than four the R-family of that class. By part (2) of the above lemma,

at any term of the spectral sequence, every class belongs to some &-family. The
following corollary tells us how these k-families are organized.

Corollary 6.2. (1) At any term of the spectral sequence, all non-zero R-power
torsion classes survive to the Eo-term.
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(2) Every k-free family consisting of permanent cycles is truncated by one and
only one other k-free family.

Proof. For part (1), let a € E,. be a non-zero k-power torsion class. By part (1) of
Lemma 6.1, a is in filtration less than or equal to r — 1. It follows that a cannot
be hit by any differential from the FE,-term onwards. Moreover, by part (1) of
Lemma 6.1 again, the possible targets of d, (a), v’ > r are R-free classes. Since
a € E, is R-power torsion, it is a permanent cycle, by k-linearity. Therefore, a
persists to the E..-term.

For part (2), let a be a permanent cycle of filtration striclty less than four which
is k-free at the Es-term. Then the R-family of a consists of permanent cycles.
Since & is nilpotent at the F-term of the elliptic spectral sequence for tmf, some
R-multiple of a must be hit by a differential. Suppose that a is k-free at the F,.-
term and that &'a is the smallest A-multiple of a that is hit by a differential, say
d,(b) = kla. Since a is k-free at the E,-term, so is b. It follows that the A-multiples
of b truncate those of &'a by differentials d,., i.e., d,.(k"b) = k't"a. So, all the
classes &*a for k < I — 1 are non-zero A-power torsion classes on the FE,i-term,
hence are essential by part (1).

Finally, we claim that b has filtration less than four so that the &-family of b
truncates the R-family of a. If b had filtration greater than or equal to 4, then
b would be divisible by &, i.e., there would exist ¢ € F, such that k¢ = b, by
Lemma 6.1 part (2). By k-linearity, we have that &'a = d,.(b) = Rd,(c), and so
#(k'"1a — d,(c)) = 0. This means that d,(c) = x'~'a because d,(c) — &' ~'a has
filtration at least r so that it is k-free, by Lemma 6.1 part (1). This contradicts the
minimality of ¢, so b has filtration less than four. O

Slogan 6.3. The &-free families at the E,-page come in pairs. The first member of
the pair is a family consisting of permanent cycles. The second member is a family
which eventually supports differentials (i.e., possibly at a later page) to truncate
the first family.

Corollary 6.4. At the E.-term, we have:

(1) The homomorphism ESt — E$'192 induced by multiplication by A% is an
injection for all s and t,

(2) If a is a class of the Eo-term such that Ala is a d.-cycle, then a is also a
d,-cycle.

Proof. We prove part (1) by induction on r > 2. For r = 2, this can be seen from
the explicit structure of the Es-term. Suppose the E,.-term has these properties
for v/ < r. Let us prove part (1) for E,.. Let a € E,_; represent a class of E,.. If
A3[a] = 0 € E,.. This means that there exists b € E,_; such that d,_;(b) = A%a.
It is obvious that b lives in stem at least 192, hence there exists ¢ € F,._1 such that
b = A8¢, by the induction hypothesis. It follows that A®(d,_1(c) —a) = 0, and so
d-_1(c) = a because of part (1) of the induction hypothesis. Thus [a] =0 € E,., as
needed.

For part (2), by induction, suppose that a is a d,_1-cycle. We need to prove that
a is a d,-cycle. In effect, if d,.(a) = b, then

0 =d,(A%) = A%d,.(a) = A®D.
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By part (1), b= 0, and so d,-(a) = 0, as needed. O

Finally, we will also use the following result to establish the differentials.

Lemma 6.5 (Vanishing line). The spectral sequence for mitmf AY degenerates at
the Eqy-term and has a horizontal vanishing line at s = 24, i.e., E;;f =E3 =0
for s > 24.

Proof. We know that &6 is hit by a differential da3 in the elliptic spectral sequence
for tmf, see [Bau08]. This means that at the Eas-term of the elliptic spectral
sequence for tmf AY, all the classes are annihilated by &%, hence are R-power
torsion. Therefore, by Lemma 6.1, all the classes in the Esy-term are in filtrations
less than 24, meaning that the spectral sequence has the horizontal vanishing line
at s =24, i.e., B3t =0 for s > 24 and r > 24. O

Remark 6.6. The cofiber sequence
V(0) 5y 2 x2v(0) L £v(0)
gives rise to maps of spectral sequences
i E3'(V(0) = E3'(Y),  pe: B3'(Y) = E3'(V(0))
as well as a long exact sequence

(6.7) ot V(0) D tmfV(0) L tmf Y 2 tmfe_ V(0) > ...

6.1. The d3, d5 and dr-differentials. Note that for r even, E.(Y) = E,.;1(Y)
since the spectral sequence is concentrated in bi-degrees (s,t) with ¢ even. The
differentials in this section are depicted in Figures 14, 15, 16 and 17.

Proposition 6.8. There is no non-trivial ds-differential, and so E3(Y) = E5(Y).

Proof. Since A is a d3-cycle in the elliptic spectral sequence of tm f, the ds-differentials
are Faolvy, v, &, A]/(v1v, 13, viR)-linear. All the generators listed in Corollary 5.13
are dz-cycles for degree reasons. (I

We then get the following result for degree reasons.

Corollary 6.9. The classes in stems t — s < 24 are permanent cycles.

Lemma 6.10. The ds-differentials are linear with respect to &,v,v1, A% and are
determined by

ds(A) = VR, ds(Aalb,1]) = vRa[5,1]
ds(Aa[l5,1]) = vRa[15, 1], ds(Aa[20,2]) = vka[20, 2]
under multiplication by elements of Fo[A2, &, v, v1]/(v1v, V3, Kot).
Proof. For linearity, we only need to prove the AZ-linearity. Note that ds(A) = vk
in the elliptic spectral sequence of tmf. By Leibniz rule and the fact that Es(Y)
is 2-torsion,
ds(A%z) = 2Ad5(A)x + A%ds(c) = A%ds(z).
Using the module structure over the elliptic spectral sequence of tm f, we get
ds(Aa[5,1]) = ds(A)a[b, 1] + Ads (a5, 1]) = vRa[5, 1].

The other arguments are similar. ([
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Lemma 6.11. There are no non-trivial d7-differentials.
Proof. This is an immediate consequence of sparseness. ([

The following observation will be crucial for our computation and is motivated
by Slogan 6.3.

Corollary 6.12 (Figure 14). The E-free families on the Eg-term of the elliptic
spectral sequence of tmf AY in stems 0 <t — s < 48 are given by the following 24
classes

al0, 0] a[2,0] = v1al0, 0] al4,0] = v?al0,0
al5,1] al7,1] = via[5,1] al9,1] = via[5,
all2,2] a[l4,2] = v1a[12, 2 a[15,1]

a[l7,3] a[19, 3] = v1a[17, 3] al20, 2]

a[26,0] = Av,al0,0] a[28,0] = Av?al0, 0] a[30,0] = Av?al0, 0]
a[30,2] = Av?al0,0] a[31,1] = Avya[5,1] a[33,1] = Av?al5,1]
a[35,3] = Av?al5,1] a[36,2] = Aa[12, 2] a[38,2] = Avya[l12, 2]
al41,3] = Aa[17, 3] a[43,3] = Avya[17, 3] al45,3] = Av?a[l7, 3]

All E-free families at Eg are given by these classes and their A%-multiples. All the
elements in filtrations four and above are R-multiples of these generators.

10
el
8 — o o
—e
6 ——o /
L,
afir,s]  a[19.3 Pt al35,3] afan,3) | al43.3) -
al12,2] ; a[30,2] L 2 F4L7’ ol
2 - ; 0 afis,
0.0 a[14,2] [20,2] ‘ a[38,2]
0 al15,1] olsh 1] af33.1] -
B0 a0 a[28,0] al2%,0] a30,0]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

FIGURE 14. ds-differentials in stems 0 to 48 and k-free generators
at Eg

The generators of the k-free families in stems 0 < ¢ — s < 48 are presented
in Figure 14. The R-free generators in the range 0 < ¢t — s < 192 are given by
multiples of these with A%, A* and A® and all other &-free generators are multiples
of these with the powers of A8. By Corollary 6.2, each R-free family consisting
of permanent cycles is truncated by exactly one other k-free family. Thus, using
the A8-linearity and Corollary 6.4, we see that the 24 x 4 R-free generators in the
range 0 < t — s < 192 organize themselves as follows. Exactly half of them are
permanent cycles and the other half are not. The R-family of each non-permanent
R-free generator supports a differential that hits the &-family of exactly one of the
other permanent generators. Note that the truncation must begin in stems less
than four by Corollary 6.2. This allows us to determine longer differentials before
settling shorter ones.
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All 24 g-free generators in the range 0 < t — s < 48 are permanent cycles due to
sparseness and in the next section we will find their “partners”.

6.2. The dy-differentials. To analyze the dg-differentials, we make the following
observation, which, in some sense, is a very small part of the geometric boundary
theorem as in [Beh12, Appendix 4].

Lemma 6.13. Let a € ES'(Y) so that p.(a) € E$'72(V(0)). Suppose p.(a)
persists to the E,. term for some v’ > r and that there is a non-trivial differential,
dyr(pea) # 0. Then dy(a) #0 forr" <’

Proof. This is a straight forward application of naturality. Our assumptions imply
that a cannot be hit by a differential d,.» for " < v’ and, furthermore, that if it
persists to the E,. term, that d,~(a) = b for ¥’ such that p,b’ = b. O

The differentials below are depicted in Figures 14, 15, 16 and 17.
Lemma 6.14 (Figures 15, 16 and 17). There are dg-differentials, for i = 0,1,

(1) do(A"+2a[0,0]) = 72 A%v, af5, 1]
(2) do(A¥*2a[5,1]) = F*A%a[12, 2]
(3) dg(A4’+3vla[0, 0]) = R2AYH1y2q[5,1]
(4) do(A**2a17,3]) = K> A*v7al0, 0]
(5) do(AY*a[17,3]) = 5 A vial0, 0]
(6) do(A*"*3a[12,2]) = R*A*+1v1a[17, 3]
(7) do(A%F2a[12,2]) = k2A%v1a[17, 3]

( 1)) =

( 0]

E 1)) =

(

~—

(8) do(A*T3v1a[5,1]) = RZAYFL v1a[12,2]
k2 A%ial5,1]
k2 A%p1a[12,2]

[5
(9) dg A4’+21}1a[0,
(10) dg(A**2vqal5
[1
[1

~— — —
||

(11) do(A*+3v1a

7,3)) = RPAYH134[0, 0]
(12) dg A4’+3v1a 2

3]) =
,2]) = RZA%YH192a[17, 3)

Proof. Let i = 0. The differentials (1) and (3) are the image of a differential in
E5(V(0)) under i,. The second differential (2) follows v;-linearity and from the fact
that do(AY22) = K2A% % in E2(V(0)), ix(z) = via[5, 1] and i (k) = v1a[12,2].

For (4), we use Lemma 6.13. In E,(V(0)), we have di1(A%nk) = n*k3. Since
p«(A%a[17,3]) = A%k, A2%a[17, 3] supports a differential of length at most 11. This
dg is the only choice. The argument for (5) is the same, with one more power of A.

For (6), note that p.(A3a[12,2]) = A3vinx. Since dg(nviz) = vkik2A, the class
A3a[12,2] supports a differential of length at most 9. This is the only choice.

The arguments (1)—(6) when ¢ = 1 are the same as those for i = 0.

For (7)—(8), note that from our computation above, tmf59Y = Z /2. This forces
(7) when ¢ = 0. Arguing in a similar way, tmfr9Y = 0, tmfi55Y = Z/2 and
tmf175Y = 0 imply the other dgs.

The dy-differentials (9)-(12) follow from those of (1), (2), (5), (6), respectively,
by wvi-linearity. O

Remark 6.15. It turns out these are all the dg-differentials. For degree reasons,
there can be very few other dgs. The class A®v;a[0,0] is the image of a dg-cycle in
Eq(V(0)) so does not support a do.

The only other possible dy differentials for degree reasons are
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e A non-trivial dg on A®a[17,3]. This does not happen since it implies a non-
trivial dg on v1A®a[17,3] = A*a[43,3], but this family has already been
paired: it is truncated by A%a[36,2].

e A nontrivial dg on A%a[17,3], truncating the k-family of A2a[4,0]. We
will see below that this does not happen, but at this point, we leave this

undecided.
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FIGURE 15. ds5 and dgy differentials in stems 46 to 86

6.3. Higher differentials. We begin our analysis using Slogan 6.3. The reader
should remember that we only need to analyze the generators of the k-free families,
which are in filtration less than four. All differentials discussed in this section are
depicted in Figures 19 and 20.

Lemma 6.16. There are differentials

(1) dio(A'al5,1]) = &°al0,0]

(2) dlg(A5Ula[ ,].] = R5Av1a[0,0]
(3) dig(A%a[36,2] = RPa[31, 1]

(4) dro(A%a[41,3]) = Fa[36, 2]
(5) dig(A%a[26,0]) = R*a[41, 3]

Proof. For (1), since the element k* € mgo(tmf A V(0)) is not divisible by n and
k5 € mioo(tmf AV(0)) is divisible by 7, the k-family of a[0, 0] in the elliptic spectral
sequence for tmf A'Y must be truncated at £°a[0,0]. Remembering that the source
has to have filtration less than four, the only possibility is this differential.
Inspection then show that the differentials (2)-(4) are the only possibilities to
satisfy Slogan 6.3. O

Lemma 6.17. There are differentials

(1) d17(A4a’[070]) = R4a’[153 1]
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(2) diz(A%a[15,1]) = &4a[30,2]

Proof. For (1), note that in 7, (tmf A V(0)), &3y is not divisible by n and &y = 0.
The class y maps to a[15,1] under 4. so it follows that the R-family of a[15,1] is
truncated at s*a[15,1]. The only possibility is this differential.

For (2), using the long exact sequence, we obtain that m11(tmfAY) =7Z/2. By
part Lemma 6.16 (3), the class &*a[31,1] € E;7’128 survives the spectral sequence
and so detects the unique non-trivial class of w111 (tmf AY). This implies that the
class A*a[l15,1] € E;’lu must support a differential. Taking into account the dy
differentials proves (2). O

Lemma 6.18. There is a differential de3(A*a[30,2]) = &%a[5,1].

Proof. By inspection, taking into account the dgs, the only generators that can be
paired with a[5, 1] are A%a[30,2] and A%a[30,0]. However, it cannot be A%a[30, 0]
because such a differential would have length 25, contradicting Lemma 6.5. ([

Lemma 6.19. Fori = 0,1, there are differentials:

(1) di1(A**2a[15,1]) = B3 A%a[2,0]
(2) di1(A*+2a[28,0]) = k2A%a[35, 3]

Proof. In (1), for both ¢ = 0, 1, these are the image of differentials in the spectral
sequence E,(V(0)). Both source and targets survive to E11(Y) and so these two
differentials occur.

For (2), the long exact sequence shows that m75(tmf AY) = Z/2. Lemma 6.17
(1) implies that the class &3a[15,1] € E;g,ss survives the spectral sequence and
detects the unique non-trivial element of the m75(tmf A'Y). On the other hand,
the class K?Av2al5,1] € E;l’% is a permanent cycle. Thus, it must be hit by a
differential and this is the possibility.

For ¢ = 1, by taking into account the dgy-differentials and the d;;-differential
Lemma 6.17 (2), we see that A%a[35, 3] is a permanent cycle, which is &-free at the
Ej;-term. By inspection, the only class which can truncate its xk-family is A®a[28, 0]
by the indicated d;;-differential. O

Lemma 6.20. There are differentials:

(1) dlg(AQQ[?)O, 2]) = FLBG[l?, 3]
(2) di3(A%a[33,1]) = 7%a[20,2]

Proof. For (1), it follows from (6.7) that mrs(tmf AY) = Z/2. By sparseness,
either A2%a[30,2] or A2a[30,0] is a permanent cycle detecting the non-zero element
of mrg(tmf AY). Suppose that

A%a[30,2] = A*?al0,0]

is a permanent cycle detecting a class a € mrg(tmf AY). At Ey, A312a0,0] is in
the image of i,: E2(V(0)) — E2(Y) and so p.(A3%a[0,0]) = 0. However, since
mrs(tmf AV(0)) =0, p.a # 0 in wr6(tmf AV (0)) and so is detected by a non-zero
class in filtration s > 2, but such a class does not exist. We conclude that AZa[30, 0]
is a permanent cycle and that A%a[30,2] supports the stated differential. For (2),
by inspection, only A2%a[33,1] and A*a[5, 1] can support differentials truncating the
k-family of a[20,2]. But A%a[5,1] is already paired with a[0, 0]. O
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FIGURE 17. ds and dg differentials in stems 160 to 194

Proposition 6.21. The following classes are k-free permanent cycles:

A%a[4,0]  AZ%a[9,1] A2a[14,2] A2a[19,3] A2a[20,2]
A%a[30,0] A2a[35,3] A2a[45,3] A%a[17,3] A%a]20,2]

and the following classes are not permanent cycles:

ASal4,0]  ASal9,1] ASa[14,2] ASa[19,3] ASa[20,2]
A®a[30,0] ASa[30,2] ASa[33,1] ASa[35,3] ASa[45,3]
Consequently, in the elliptic spectral sequence for tmf AY, each generator in (B)
truncates some k-multiple of one and only one generator in (A).

(A):

(B):

Proof. These are the remaining generators of g-free families. No class in (B) can
be a permanent cycle because the -family of a class of (B) cannot be truncated.



THE TOPOLOGICAL MODULAR FORMS OF RP? AND RP? A CP? 43

This means that all the 10 classes of (B) are non-permanent cycles, and so all the
10 classes of (A) are permanent cycles. O

Lemma 6.22. We have the following differentials:

(1) dg(A°a[4,0]) = &' A%a[19, 3]
(2) dio(A 6a[9,1]) = kK°A%a[4,0]

(3) d19(A6a[14, 2]) = /15A2a[9, 1]
(4) dio(A%al19,3]) = kK°A%a[14, 2]
(5) di7(ACal20,2]) = k*AZ%a[35, 3]
(6) di3(A%a[33,1)) = R3A%a[20, 2]
) dsasuli ) = roaraon
(: 23 a|39, = kA% )

Proof. Taking into account the differentials shown above, these are only possible
pairings remaining between the classes in (B) which are the sources in (1)—(8) and
classes of (A). O

Remark 6.23. There are only two generators in (B) left living in the same topolog-
ical degree, namely A%a[30,0] and A%a[30,2]. Each of these supports a differential
truncating the A-families of either A*a[17,3] or A%a[45, 3] and one differential de-
termines the other.

Determining the last differential pattern turns out to be unfortunately tricky (as
far as we know). A crucial step towards settling the last differentials is to establish
the following extension in the E,-term of the elliptic spectral sequence for tmfAY .

Proposition 6.24. There is an exotic extension
v (vA%al0,0]) = R2A%a[17, 3].
To prove this extension, we need some intermediate results.
Lemma 6.25. In Exty (A", A'/(2,a1) ® Fi(Y)), there is a Massey product
(n,v, A%a[12,2]) = A*a[17,3)].

Proof. Since A%a[12,2] = nA%a[11,1] (see Figure 12), we have that
(n,v, A*a[12,2]) = (n,v,nA%[11,1]) D (n,v,n)A%a[11,1] = v?a[11,1] = a[17,1].
The indeterminacy is zero since
nExty (AL A (2,a1) @ Fu(Y)) + Exty0 (A, A'/(2))A%[12,2] =0. O
Proposition 6.26. In Exty, (A', F.(Y)), there is a Massey product
(n,v, A*a[12,2]) = Aa[17,3].
Proof. Let f.: Exty (A, F.(Y)) — Exty,/ (A, 4/(2,a1) ® F.(Y)) be the map

induced by the A-comodule homomorphism F,.(Y) — A'/(2,a1) ® F.(Y). By nat-
urality of Massey products, we have that

Fa((n,v, A%a[12,2])) C (1, v, f.(A%a[12,2])).
Further, f.(A%a[12,2]) = A%a[12,2]. By Lemma 6.25, the above equation gives
fo((n,v,A%[12,2])) = A%a17, 3].

The pre-image of A*a[17, 3] is the same-named class. The indeterminacy is zero. [
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Lemma 6.27. There is an element of mios(tmf AY) detected by A*a[12,2] and
annikilated by R2.

Proof. We have already determined E.,(Y) in stems ¢t — s = 108, 148. We see that
there is a short exact sequence

0 — Z/2{R*A%a[20,2]} — G — Z/2{A%a[12,2]} — 0

where G C myos(tmfAY) is the subgroup of elements detected in positive filtration.
At the F-term in stem ¢ — s = 148, the only non-zero class in positive filtration
is K*A2a[20,2]. In particular, K2A*a[12,2] = 0. So, one of the classes detected by
A*a[12,2] satisfies the claim. O

We will denote also by A%a[12,2] the element in 710s(tmfAY'), which is detected
by A*a[12,2] and is annihilated by &2.
Proposition 6.28. There are the following relations in m.(tmf AY):
(1) v?[vA%al0,0]] # 0
(2) nvA®a0,0]] =0

Proof. The class detected by vASa[0, 0] lifts to m.(tmf A V(0)) and there is a lift
detected by vAS. But in m,(tmf A V(0)), v2[vA°] is not divisible by 7. O

Now, we use the truncated spectral sequences of Section 2.2, applied to the
elliptic spectral sequence of tmf AY. As in Section 2.2, let
sk16(tmf A Y) e Xo/X17

for X,, the nth term of the X (4)-Adams tower of tmf AY. Then EZ,,(Y) as
in Section 2.2 is a spectral sequence computing m.skig(tmf AY), and it satisfies
Eﬁ7’217(Y) =0 for s > 17. Furthermore, we have a map of spectral sequences

T3 EXNY) — Eﬁ,’il?(y)'
Proposition 6.29. In 7. (skig(tmf AY)), we have
(n,v, A%a[12,2]) = A*a[17,3)].
Proof. In . (tmfAY), the product vA%a[12, 2], if not trivial, is detected in filtration
17. Tt follows that vA%a[12,2] is equal to zero in 7, (skig(tmfAY)). Thus, the Toda

bracket (n, v, A*a[12,2]) can be formed. Proposition 6.26 means that in E;:t<17(Y),
there is Massey product

(n,v, A*a[12,2]) = Aa[17,3].

The conditions of the Moss Convergence Theorem [Mos70] are satisfied, so the Toda
bracket (n, v, A%a[12,2]) contains A%a[17,3] and the indeterminacy is zero. O

Proposition 6.30. In the elliptic spectral sequence for tmf ANY , there is an exotic
extension

na[152,2] = k*A%a[17, 3].
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Proof. Since k?A%a[17, 3] lives in filtration s = 11, it suffices to prove that extension
in the E-term of the spectral sequence for skig(tmf AY'). The above proposition
and the choice of A*a[12,2] imply that

R2A%a[17,3] = (n,v, A*a[12,2)) &% = n(v, A*a[12, 2], R?).
Since K2A%a[17,3] # 0 at B, (v, A%a[12,2],%?) must be non-trivial, and it must

be detected by a class which is not in the kernel of 7. This forces (v, A*a[12,2], &?)
to be detected by a[152,2], and so na[152,2] is detected by #2ZA%a[17, 3]. O

Proof of Proposition 6.2/. Let 8 = [vA%a[0,0]]. By Proposition 6.28, n8 = 0 and
we can form the Toda bracket (v,n, ). Then

n(v,n, B) = (n,v,m)B = v*B
On the other hand, v23 # 0 by Proposition 6.28. It follows that (v,n,3) # 0. We

see that it must be detected by a[152,2]. So na[152,2] = v and Proposition 6.30
implies that v23 is detected by x?A%*a[17, 3]. O

Lemma 6.31. There are differentials:

(1) di3(A%[30,2]) = R*A%a[17,3)]
(2) di9(A%a[30,0]) = R*A%a[45, 3]

Proof. Let

tmf ANY < (tmf AY ) < (tmf AY )y < ...
be the Adams tower associated to the X (4)-based resolution of tmf AY. We
consider its 1-co-truncated tower and the induced map of spectral sequences

s,t. pns,t s,t
TS BN, - B2

By Lemma 2.2, ¢TIt is surjective for s > 1.

Let a = 1v2A%a|0,0] € E§’150+2. This is a permanent cycle representing a unique
non-zero element of mi59(tmf AY'), which in this proof we denote by a. Since a
has positive filtration, there is a class a € E227,;510+2 such that ¢Th(a) = a and the
surjectivity of ¢T, guarantees that we can choose @ to be a permanent cycle. It
then detects classes & € mi50((tmf AY)1) that map to «.

Since va is detected by b = k2A%a[17,3] € EL193+LL (Proposition 6.24), va
must be detected in E%153+5(¢T)) for 3 < s < 11. Since ES'*T(¢Ty) = 0 for
3 < 5 < 10 (this is true for E;™), va must be detected by a lift b of b.

The relation kv = 0 € mw,tmf implies that kva = 0 € w,((tmf AY)1). This

implies that d,.(¢) = &b for some non-trivial element ¢ € E:’E;lr’lmﬂwﬂ). As

Eg’; = 0, ¢ must live in filtration 1 < s < 13, and hence so does ¢T;.(¢). In
particular, ¢T).(¢) # A%a[30,0]. However, we find that

d.(cT,(¢)) = cT,(Rb) = & - cT,(b) = R*A%a[17,3)].

The only way for this to make sense is if ¢T,.(¢) is equal to Aa[30,2] and this is
the desired differential (1).

This differential then determines (2) as noted in Remark 6.23. O

Remark 6.32. From, this discussion, we also learn that there is a non-trivial class
in 4,m50V(0) which is detected by a[153, 11].
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6.4. Exotic extensions. In this section we resolve the exotic 2, n, v and vy ex-
tensions in the elliptic spectral sequence of tmf A'Y. The extensions are depicted
in Figures 21 and 22.

We begin with the exotic n-extensions, which are few. To determine them, we
use the following strategies. First, the long exact sequence

ot V(0) B tmf,V(0) S tmf Y 2 tmf_1V(0) > ...
We use the following basic, but useful facts.
Lemma 6.33. Fora € tmf.Y and b € tmf.V(0),
(1) if a =i.b, then na =imb=0,

(2) psna =np.a =0, and
(3) vina = nuia.

Proof. These are easy consequences of the long exact sequence on homotopy groups
combined with the fact that composition as well as the smash product induces the
m+S%module structure in the stable homotopy category. O

Note further that Corollary 2.10 as described in Remark 2.14 gives a way to
relate extensions in different stems between the vi-power torsion classes. We also
use Lemma 2.19 and Lemma 2.21

A stem-by-stem analysis using the above techniques then allows us to determine
that the only non-trivial exotic n-extensions are as follows:

Lemma 6.34. In the elliptic spectral sequence of Y, there are exotic extensions

(1) n[A2val5,1]] = k2a[17, 3]

(2) n[|Atval5,1]] = k5a[5, 1]

(3) n[ASva[5,1]] = k2[A%a[17, 3]]
(4) n[ASva[20,2]] = K5[A%a[20, 2]]

There are no other exotic n-extensions.

Proof. The first extension (1) follows from Lemma 2.21. The extension (2) and (4)
follow from duality: (2) from n[AZ%a[20,2]] = [A%v?a[17,3]] and (4) from nal5,1] =
v%a[0,0]. Finally, (3) is Proposition 6.30.

All possible exotic n-extensions are shown not to occur using Lemma 6.33, duality
and Lemma 2.21. In particular, the possible n-extensions with source in stems
52 <t — s < 57 are shown not to occur using Lemma 2.21 and v;-linearity. |

Now, we turn to the exotic 2-extensions.

Theorem 6.35. There are no exotic 2-extensions in the elliptic spectral sequence
for'Y and, consequently,
2(metmf AY) =0.

Proof. Since we have a cofiber sequence

tmf ACy 2 tmf ACy L tmf AY L Stmf A C,,

we can apply Lemma 2.19 with X = tmf A (), i = j and p = q. From this, we
deduce that if a’ € mutmf AY is in the image of j,, then it has order 2 and that if
g«(a') = a, then 2a’ = j.(na). It follows that if 2a’ # 0, then 2a’ is divisible by 7.
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This leaves one possible extension in stem 57. But such a 2-extension would lead,
by duality, to a 2-extension in stem 116. However, there are no 7n-divisible classes
in that stem. Since the Es-term was 2-torsion and there are no exotic 2-extensions,
mstmf A'Y is annihilated by 2. O

Next, we turn to the v extensions.

Remark 6.36. We will use without mention that kv = 0 in ¢tm f,-modules. This
allows us to eliminate many possible exotic v-extensions.

Lemma 6.37. In the elliptic spectral sequence of Y, there are exotic extensions

(1) va[26,0] = a[29, 5]

(2) val[41,3] = al44, §]

(8) va[52,0] = a[55, 7]

(4) va[54,2] = K2a[17, 3]
(5) val67,3] = K2a[30, 0]
(6) val98,0] = a[101, 15]
(7) va[102,2] = ka5, 1]
(8) val103,1] = a[106, 16]
(9) va[124,0] = a[127,15]
(10) va[129,1] = a[132, 16]
(11) va[150,2] = a[153,11]
(12) va[155,3] = a[158, 16]
(13) va[165,3] = a[168, 22]

Proof. The extensions (1) and (6) follow from the extensions va[26, 0] = a[29, 5] and
a[98,0] = a[101, 7], respectively, in m.tmf A V(0) by applying i.. The extensions
(2), (3), (5) and (9) follow from examining the effect of p. and the extensions
va[39,3] = a[42,10], va[50,2] = a[53,7], val65,3] = a[68,10] and va[l122,2] =
a[125,21] in m.tmf A V(0), respectively.

Extensions (4), (7), (12) and (13) are obtained by duality from algebraic exten-
sions. The extensions (10) and (8) follow by duality from (2) and (5).

The extension (11) is proved in Proposition 6.24. d

Lemma 6.38. In the elliptic spectral sequence of Y, there are exotic extensions
(1) va[57,1] = &%a[20, 2]
(2) val62,2] = Ra[45, 3]
Dually, we have
(3) val[l08,2] = a[111,17]
(4) va[113,3] = a[116, 18]

Together with Lemma 6.37, there are no other non-trivial exotic v-extensions.
To prove Lemma 6.38, we use the tm f-based Atiyah—Hirzebruch spectral se-

quence for Y, whose filtration comes from the cellular filtration of Y. To set up
notation, we have the Fj-page of this spectral sequence

By = @3 _omimf = Tentmf AY.

For a homotopy class 8 in m.tmf AY, we denote by «a[n] the element that detects
it in the E4-page of the tm f-based Atiyah—Hirzebruch spectral sequence, where n
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is the Atiyah—Hirzebruch filtration of 5, and « is a class in w.tm f. The stem of 3
is then the stem of a plus n.

Proof of Lemma 6.38. In our Atiyah—Hirzebruch notation, we can rewrite the two
v-extensions of Lemma 6.38 as

(1) v-&*k[3] = AnrE[1],
(2) v-R3[2] = A%vk[0)].

We first prove (2), namely, that v - &3[2] = A%vk[0]. In mtmf A C,), we have
v R&*[2] = (v,5%,0)[0]

by Lemma 5.3 of [WX18]. By Moss’s Theorem and the differential d; (A%k) = n&3
in the elliptic spectral sequence of tm f, we have

(v,R3,n) = A%vk.
Mapping this relation along the inclusion C,, — Y gives us (2).
For (1), note that in m.tmf A XC,, we have
v-R2R[3] = (v, &%k, n)[1]
by Lemma 5.3 of [WX18]. Since #?k is v-divisible in m.tmf, we may shuffle
(v, R?k,m) = (R*k,v,1).
By Moss’s theorem and the differential ds(Ark) = vk?k in tmf, we have
(R%k,v,m) = AnkR.
Pulling back this relation along the quotient map Y — XC,, gives (1).

Extensions (3) and (4) follow by duality. The fact that there are no other exotic
v-extensions is discussed below. g

Most possibilities for other exotic v-extensions are ruled out in a straightforward
way by analyzing i, and p,, duality, the fact that kv = 0. However, the following
two extensions require us to analyze the classical Adams Spectral Sequence. The
following proof depends on checking algebraic extensions in

ExtA((HF3)" (tmf A Y), (HF)")

using Bruner’s Ext-program [Bru]. See Figure 18 for classical Adams Es-charts for
tmf AV(0) and tmf AY, and see [DFHH14, Chapter 13] for tmf.

Lemma 6.39. In m,dmf AY,

(1) va[31,1] =0

(2) va[36,2] =0
Dually, we have

(3) va[134,2] = 0

(4) va[139,3] =0

Proof. To show this, we need to prove that

(1) val31,1] # a[34,6],
(2) va[36,2] # a[39,7].

In our Atiyah—Hirzebruch notation, we can rewrite these extensions as
(1) v+ K2[3] # wA[0),
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(2) v- Av3[3] # Ank|0)].

We give a proof for (1) that v - k?[3] # kk[0] using the classical Adams Spectral
Sequence. We consider the Adams Spectral Sequence for tmf AY and its subquo-
tients. We will show that the Adams filtration of £?[3] is 7 and the Adams filtration
of k&[0] is 8. The fact that there is no such v-extension follows from the algebraic
fact that on the Adams FEs-page, the ho-multiple of the first element is not the
second element, which is checked by a computer program.

For the class k&[0], it is clear that the Adams filtration of k& in mgstmf is 8, (it
is detected by the element dpg,) and it maps nontrivially on the Adams Es-pages
along the map tmf — tmf A'Y. The image under this map, which we denoted by
dpg[0], is a permanent cycle. It cannot be killed due to filtration reasons. Therefore,
the class k&[0] is detected by dog[0] and, in particular, it has Adams filtration 8.

For the class x?[3], we first consider the class £%[1] in magtmf A V(0). Since
mootmf = 0, m30tmf = 0, we have wzgtmf A V(0) = 0. This forces three nonzero
Adams differentials eliminating the three elements in the Adams Es-page for tm f A
V(0). In particular, we learn that x2[1] in magtm f AV (0) is detected by the only re-
maining element 5[0] in Adams filtration 7, and that there is a nonzero ds-differential
from (t — s, s)-bidegrees (31, 6) to (30,9).

Considering the quotient map tmf AY — tmf A X2V(0), we learn that x2[3]
is detected in Adams filtration at most 7. Considering the induced map on the
Adams Es-pages, we also learn that it is an isomorphism on the (¢ — s, s)-bidegrees
(31,6) and (30,9). So, in particular, the element in (¢ — s, s)-bidegree (31,6) does
not survive. Therefore, k2[3] is detected in Adams filtration exactly 7.

For (2), that v - Av3[3] # Ank[0], we use the Adams spectral sequence again
in a very similar way. We will show that the Adams filtration of Av3[3] is 8 and
the Adams filtration of Ank[0] is 9. The fact that there is no such extensions then
follows as in (1).

For the class Ank[0], it is clear that the Adams filtration of Ank in w3gtmf is 9,
(it is detected by the element u,) and it maps nontrivially on the Adams Es-pages
along the map tmf — tmf A'Y. The image under this map, which we denoted by
dopg|0], is a permanent cycle. It cannot be killed due to filtration reasons. Therefore,
the class Anr[0] is detected by u[0], and in particular it has Adams filtration 9.

For the class Av3[3], we first consider the class Av? in maztmf. The class Av3
in maztmf is detected in the Adams filtration 8. Considering the quotient map
tmf AY — Z3tmf, we learn that Av3[3] is detected in Adams filtration at most
8. To show that it is detected in Adams filtration 8, we will show that the only
other element in lower filtration, the class in (¢ — s, s)-bidegree (36, 7), supports a
nonzero dp-differential.

The maps in the zigzag
tmf ASt<——tmf AV(0) —=tmfAY

are isomorphisms in (¢t — s, s)-bidegrees (36,7) and (35,9) on Adams Es-pages.
So the claimed nonzero ds-differential follows from the one in the Adams spectral
sequence of tmf, from (t — s, s)-bidegrees (35,7) and (34,9). O

We now turn to the study of the v;-extensions. First, recall the discussion on v;-
self maps and A; from Section 2.6. The homotopy groups of tm f A Ay are studied by
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the third author in [Phal8]. Furthermore, the knowledge of the homotopy groups
of tmf A Ay are sufficient to allow us to deduce much of the action of v, on the
homotopy groups of tmf A Y, via the long exact sequence on homotopy of the
cofiber sequence

tmf AXYY 2 tmf AY — tmf A A
Since the outcome depends on the choice of the v;-self-map, we call a vi-self-map
of type I if its cofiber is A;1[01] or A;[10] and of type II, otherwise. Again, see
Section 2.6 for the definition of A;[ij].

Lemma 6.40. (a) For all vi-self maps of Y, there exotic v1-extensions and those
induced by R-linearity:

(1) w0 1) = all1. 3

(2) via[15,1] = a[17, 3]

(3) v1a[30,2) = Fa[12, 2]

(4) via[33.1] = a[35,3

(5) v1a[38,2] = ka [20 2]

(6) v1A%a[9,1] = A%a[11,3)
(7) v1a]99, 1] = /% [21 3]

(8) v1a[104,2] = &*a[26, 0]
(9) v1a[105,1] = a[ 07 3]
(10) v1(v1a[108,2]) = &3a[52, 0]

(11) v1a[114,2] =

3 a[36 9]
(12) either v1a[116, 2]
=3

= k*a[78,0] or v1a[116,2] = Ra[98, 0]
(13) v1Ra[105,1] = R%a[67, 3]
(14) v1a[129,1] = a[131 3}
(15) either v1a[131, 3] = K2a[93, 3] or v1a[131, 3] = ka[113, 3].
(16) via[134,2] = Ra[116,2]
(17) v1Ra[115,3] = a[117 13
(18) v1(v1a[139,3]) = K3a[83, 3]
(19) v17a[120,3] = Ra [ 22,14]
(20) vi(vikal124,0]) = k*a[68, 2]

(21) via[147,1] = a[129 1]
(22) v1a[152,2] = Ra[134, 2]
(23) w1a[156, 10] = a[158, 16
(24) v1a[162,2] = K2a[124, 0]

(b) For vy-self-maps of type I, there are also the following vy -extensions, and
those induced from these by k-linearity:

(1) v1a68,2] = K2a[30, 2]
(2) v1a[83,3] = k*a[15, 1]

Proof. For all parts, except for (9), (12), (15), we see, by inspecting the relevant
parts of the homotopy groups of appropriate tmf A Ap[ij], that the targets of the
stated v; extensions are sent to zero via the natural map

m(tmf AY) = m(tmf A Aqij]).

Therefore, they are in the image of a v;-multiplication and the stated v;-extensions
are the only possibilities.
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For part (9), consider
sky(tmf AY) = (tmf AY)/(tmf AY)s,

where (tm fAY )5 is the 5th term in the X (4)-Adams tower of tm fAY. It is a module
over sky(tmf). Since A* € mog(sky(tmf)), this element acts on m.sky(tmf AY).
We see that the induced map 7w.(tmf AY) — m.skq(tmf AY) sends a[9,1] and
a[11, 3] to non-trivial elements, which we denote by the same names. Furthermore,
it sends a[105,1] and a[107,3] to elements detected by the products A%a[9, 1] and
A%*a[11, 3]. Since via[9,1] = a[11, 3] by part (1),

v1A%al9,1] = A'vial9,1] = Aa[l1,1]

in m.ska(tmf AY). It follows that v1a[105,1] must be detected by [107,3] in the
E-term of the elliptic spectral sequence of tmf AY. O

Remark 6.41. We are left with two undecided vi-extensions, namely (12) and
(15) in Lemma 6.40. We expect that some of these unsettled v;-extensions can be
resolved using comparison with the classical Adams Spectral Sequence for tmf A
V(0), tmf AY and tmf A V(0)/v. These will soon appear in upcoming work of
[BR].
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FIGURE 18. Classical Adams Spectral Sequence FEs-pages for
tmf AV(0) (top) and tmf AY (bottom) computed with Bruner’s
Ext-program [Bru].
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FIGURE 21. Exotic extensions in the elliptic spectral sequence of
tmfAY. This records tmf.Y = tmf, s(RP? ACP?). The zigzags
denote exotic vi-extensions that occur only for certain choices of
v1 self-maps.
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FIGURE 22. Exotic extensions in the elliptic spectral sequence of
tmfAY. This records tmf.Y = tmf, 3(RP? ACP?). The zigzags
denote exotic vi-extensions that occur only for certain choices of
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