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Abstract. Operations on the cohomology of spaces are important tools en-

hancing the descriptive power of this computable invariant. For cohomology
with mod 2 coefficients, Steenrod squares are the most significant of these

operations. Their effective computation relies on formulas defining a cup-i

construction, a structure on (co)chains which is important in its own right,
having connections to lattice field theory, convex geometry and higher cate-

gory theory among others. In this article we present new formulas defining a

cup-i construction, and use them to introduce a fast algorithm for the compu-
tation of Steenrod squares on the cohomology of finite simplicial complexes.

In forthcoming work we use these formulas to axiomatically characterize the
cup-i construction they define, showing additionally that all other formulas in

the literature define the same cup-i construction up to isomorphism.

1. Introduction

Discrete models are indispensable for effective computations involving topologi-
cal spaces. The category of simplicial complexes provides models not only for spaces
but also, through the simplicial approximation theorem, for continuous maps be-
tween them. We can obtain algebraic models from these via simplicial chains and
their dual cochains, from which Betti numbers can be readily computed using linear
algebra alone.

In this article we focus on finer invariants of spaces enriching their mod 2 co-
homology and going beyond Betti numbers. We are referring to the celebrated
Steenrod squares

Sqk : H•(X; F2)→ H•(X; F2).

These operations can be thought of as arising from the broken S2-symmetry of the
diagonal map

X X ×X
x (x, x)

occurring during the passage from continuous descriptions to discrete/algebraic
models.

We mention the following examples to illustrate the additional discriminatory
power these operations provide:

Key words and phrases. Computational topology, cohomology operations, Steenrod squares,

simplicial complexes, cup-i products.
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(1) The real projective plane and the wedge of a circle and a sphere have, with
F2-coefficients, the same Betti numbers, yet the rank of Sq1 tells them
apart.

(2) Similarly, the complex projective plane and the wedge of a 2-sphere and a
4-sphere have the same Betti numbers with any coefficients, yet the rank
of Sq2 distinguishes them.

(3) The suspensions of the two spaces above have the same Betti numbers and
also isomorphic cohomology rings, yet the rank of Sq2 tells them apart.

For simplicial complexes, effective constructions of Steenrod squares have been
known since their introduction in Steenrod’s seminal 1947 paper [Ste47]. They all
rely on a cup-i construction, a structure on chains given by a collection of natural
linear maps

∆i : C•(X; F2)→ C•(X; F2)⊗2 ,

satisfying for every integer i the following key identity:

(1 + T )∆i−1 = ∂ ◦∆i + ∆i ◦ ∂,

where T denoted the transposition of tensor factors, and such that ∆0 is a chain
approximation to the diagonal of X. These cup-i coproducts and their linear dual
cup-i products are important in their own right. For example, they are used to
describe action functionals of topological field theories [GK16; KT17; Bar+21], to
define the nerve of n-categories [Med20b], and their comodules can be used to fully
faithfully model chain complex valued presheaves [Med22b] on X.

In this article we introduce new formulas defining a cup-i construction on sim-
plicial complexes and simplicial sets, a categorical closure of simplicial complexes
used, for example, to define the singular homology of topological spaces.

Several formulas defining cup-i constructions have been given in the literature
starting with Steenrod’s original [Ste47]. These include those resulting from the
approach of Real [Rea96] and González-Dı́az–Real [GR99; GR+03; GR05] based
on the EZ-AW chain contraction, the operadic methods of McClure-Smith [MS03]
and Berger-Fresse [BF04], and the prop viewpoint of the author [Med20a; Med21b].
The question of comparing the resulting cup-i constructions will be addressed via
an axiomatic characterization in [Med22a], where it is shown that all of these cup-i
constructions, including the one given here, are isomorphic and not just homotopic.

We highlight three uses for the formulas introduced in this paper. 1) They are
key to prove the axiomatic characterization of Steenrod’s cup-i construction. 2) In
[Can20], Cantero-Morán defined Steenrod squares in mod 2 Khovanov homology
[Kho00] by reinterpreting them in the context of augmented semi-simplicial objects
in the Burnside category. 3) They lead to fast computations of Steenrod square as
we describe next.

Given a cup-i construction and a finite simplicial complex, a representative of
Sqk

(
[α]
)

for a cocycle α is given by the cocycle β = (α ⊗ α)4i(−) where i is an
integer that depends only on the degree of α and k. A direct algorithmic way
to compute the support of β is to iterate over all simplices x of the appropriate
dimension, compute 4i(x), and record x if the value of (α ⊗ α) on it is 1 ∈ F2.
Our algorithm improves on this scheme by considering only simplices x related to
the support of α. More specifically, it constructs the universal support of β and
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then discards simplices in it that are not in X. In this way our algorithm depends
primarily on the size of the support of α, and is therefore less sensitive to the
number of simplices of X.

For the effective computation of Steenrod squares on simplicial complexes, an al-
gorithm based on [GR99] was implemented in the open-source mathematics system
SAGE by John Palmieri [The21]. We present a proof-of-concept performance com-
parison between a Python implementation of our algorithm and the one in SAGE.
The speed gained with our algorithm is essential for the incorporation of Steenrod
squares into persistence homology [LMT22], a technique typically used in highly
intensive data analysis tasks [Car+08; CCR13; Lee+17] and for which various soft-
ware projects exist [Bau21; The22; Tau+21]. A specific implementation for the
computation of Steenrod barcodes based on the algorithms introduced here can be
found in the project steenroder1.

Outline. In Section 2 we review the notions from equivariant homological algebra
and simplicial topology needed to present, in Section 3, the definitions of cup-i
constructions and Steenrod squares. We introduce our new formulas in Section 4
deferring the proof that they define a cup-i construction to Section 8. We present
our algorithm in Section 5 and a proof of its correctness in Section 6. We devote
Section 7 to a proof-of-concept comparison of our method using SAGE. In Section 9
we discuss finer invariants associated to Steenrod squares, and provide conclusions
and an outline for future work in Section 10.

Acknowledgments. We would like to thank Mark Behrens, Greg Brumfiel, Tim
Campion, Federico Cantero-Morán, Roćıo González-Dı́az, Kathryn Hess, Riley
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the anonymous referees for several suggestions improving the exposition of this
work.

We are grateful for the hospitality of the Laboratory for Topology and Neuro-
science at EPFL, where part of this work was carried out, and acknowledge partial
financial support from Innosuisse grant 32875.1 IP-ICT-1.

2. Preliminaries

In this section we review the basic notions used in this article and set up the
conventions we follow.

2.1. Chain complexes. We assume familiarity with the notion of chain complex
over a ring k.

The tensor product C ⊗ C ′ of chain complexes C and C ′ is the chain complex
whose degree-n part is

(C ⊗ C ′)n =
⊕
i+j=n

Ci ⊗ C ′j ,

where Ci ⊗ C ′j is the tensor product of k-modules, and whose boundary map is
defined by

∂(v ⊗ w) = ∂v ⊗ w + (−1)|v|v ⊗ ∂w.

1Currently hosted at https://github.com/Steenroder/steenroder

https://github.com/Steenroder/steenroder
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The hom complex Hom(C,C ′) is the chain complex whose degree-n part is the
subset of linear maps between them that shift degree by n, i.e.,

Hom(C,C ′)n = {f | ∀k ∈ Z, f(Ck) ⊆ C ′k+n},
and boundary map defined by

∂f = ∂C′ ◦ f − (−1)|f |f ◦ ∂C .
Notice that a chain map is the same as a 0-cycle in this complex, and that two chain
maps are chain homotopy equivalent if and only if they are homologous cycles. We
extend this terminology and say that two maps f, g ∈ Hom(C,C ′) are homotopic
if their difference is nullhomologous, referring to a map h ∈ Hom(C,C ′) such that
∂h = f − g as a homotopy between f and g.

Regarding k as a chain complex concentrated in degree 0, the linear dual of a
chain complex C is the chain complex Hom(C,k). We refer to the contravariant
functor Hom(−,k) as linear duality.

For any three chain complexes, there is a natural isomorphism of chain complexes

(1) Hom(C ⊗ C ′, C ′′) ∼= Hom(C,Hom(C ′, C ′′))

referred to as the adjunction isomorphism.

2.2. Group actions. Symmetries on chain complexes play an important role on
this work. Let G be a finite group. We will later focus solely on the symmetric
group S2. We denote by k[G] the group ring of G, i.e., the free k-module generated
by G together with the ring product defined by linearly extending the product on
G. We refer to a chain complex of left k[G]-modules as a chain complex with a
G-action and to k[G]-linear maps as G-equivariant.

Given a chain complex C with aG-action we naturally associate the following two
chain complexes. The subcomplex of invariant chains of C, denoted CG, contains
all elements c ∈ C satisfying g · c = c for every g ∈ G. The quotient complex of
coinvariant chains of C, denoted CG, is the chain complex obtained by identifying
elements c, c′ ∈ C if there exists g ∈ G such that c′ = g · c.

Let C and C ′ be chain complexes and assume C has a G-action. The chain
complex Hom(C,C ′) has a G-action induced from (g · f)(c) = f(g−1 · c) and there
is an isomorphism

(2) Hom(C,C ′)G ∼= Hom(CG, C
′).

2.3. Simplicial topology. Simplicial complexes are used to combinatorially en-
code the topology of spaces. An abstract and ordered simplicial complex, or a
simplicial complex for short, is a pair (V,X) with V a poset and X a set of subsets
of V such that:

(1) The restriction of the partial order of V to any element in X defines a total
order on it.

(2) For every v in V , the singleton {v} is in X.
(3) If x is in X and y is a subset of x, then y is in X.

We abuse notation and denote the pair (V,X) simply by X referring to V as its
poset of vertices.

The elements of X are called simplices and the dimension of a simplex x is
defined by subtracting 1 from the number of vertices it contains. Simplices of
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dimension n are called n-simplices and are denoted by their order set of vertices
[v0, . . . , vn]. The collection of n-simplices of X is denoted Xn. There are natural
maps dni : Xn → Xn−1 for i ∈ {0, . . . , n} defined by

dni
(
[v0, . . . , vn]

)
= [v0, . . . , v̂i, . . . , vn]

and referred to as the ith face map in dimension n. These satisfy the simplicial
relation:

(3) dn−1
i dnj = dn−1

j−1 d
n
i

for any 0 ≤ i < j ≤ n. We will omit the superscripts of these maps when no
confusion arises from doing so.

A simplicial map X → X ′ is a morphisms between their posets of vertices
f : V → V ′ sending simplices to simplices, i.e., satisfying that if [v0, . . . , vn] ∈ X
then the set {f(v0), . . . , f(vn)} defines a simplex in X ′.

Let X be simplicial complex. The degree-n part of the chain complex of chains
of X is defined by

Cn(X;k) = k
{
Xn

}
,

i.e., the k-module freely generated by the n-dimensional simplices of X. The
degree-n part of the boundary map ∂ is the linear map defined on simplices by

Cn(X;k) Cn−1(X;k)

x
∑n
i=0(−1)idi(x).

∂n

Given a simplicial map f : X → X ′, the induced chain map f• : C•(X;k) →
C•(X

′;k) is defined on simplices by f•([v0, . . . , vn]) = [f(v0), . . . , f(vn)] if i 6= j
implies f(vi) 6= f(vj) and it is 0 otherwise.

We refer to

C•(X;k) = Hom
(
C•(X;k),k

)
as the cochains of X and to the dual δn of ∂−n as the nth coboundary map. Fur-
thermore, we denote the linear dual of the map f• induced by a simplicial map f by
f•. We remark that Cn(X;k) = 0 for n < 0 and Cn(X;k) = 0 for n > 0. Elements
in the kernel of δn are called cocycles and those in the image of δn+1 coboundaries.
The nth-cohomology Hn(X;k) of X is the quotient ker δn/ img δn+1. We denote by
[α] the cohomology class represented by a cocycle α.

We will abuse notation and identify simplices in Xn with their associated basis
elements in Cn(X;k). When X and k are clear from the context we will omit them
from the notation.

3. Cup-i constructions and Steenrod squares

Let F2 be the field with two elements and S2 the group with only one non-identity
element T . In this section we define for any simplicial complex X and every integer
k the kth Steenrod square

Sqk : H•(X; F2)→ H•(X; F2)

using an arbitrary cup-i construction.
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3.1. Cup-i constructions. Consider the chain complex

W = F2[S2]{e0} F2[S2]{e1} F2[S2]{e2} · · ·1+T 1+T 1+T

with its natural S2-action. For any simplicial complex X, the chain complex W ⊗
C•(X; F2) has an S2-action concentrated on the left factor, and C•(X; F2)⊗2 has
one given by transposition of factors.

We are interested in S2-equivariant chain maps

(4) 4X : W ⊗ C•(X; F2)→ C•(X; F2)⊗2

defined naturally for every simplicial complex X, i.e., such that 4Y ◦ (idW ⊗ f•) =
(f• ⊗ f•) ◦ 4X for any simplicial map f : X → Y .

Definition 1. A (non-degenerate) cup-i construction is a natural collection of maps
as above such that 4X 6= 0 if X is a simplicial complex with a single vertex.

A cup-i construction is determined by a collection {4i}i∈Z of natural linear
maps C• → C⊗2

• satisfying 40

(
[v]
)
6= 0 for any vertex v and

(5) (1 + T )4i−1 = ∂ ◦ 4i +4i ◦ ∂

for any i ∈ Z. The correspondence is given by 4i = 4(ei⊗−), and we refer to the
map 4i as the cup-i coproduct of the cup-i construction, and to the linear dual `i
of 4i as its cup-i product. Explicitly, given two cochains α and β and a chain c we
have

(α `i β)(c) = (α⊗ β)4i(c).

3.2. Steenrod squares. Let us consider a cup-i construction W ⊗ C• → C⊗2
• .

Using the linear duality functor and passing to fix points it gives a chain map

Hom (C• ⊗ C•,F2)
S2 Hom (W ⊗ C•,F2)

S2 ,

which we can complete, using isomorphisms (1) and (2) of Section 2, to a commu-
tative diagram

Hom (C• ⊗ C•,F2)
S2 Hom (W ⊗ C•,F2)

S2

(C• ⊗ C•)S2 Hom (WS2
⊗ C•,F2)

C• Hom (WS2
, C•) ,

doubleing

where the choice of coefficients ensures that the doubleing map α 7→ α⊗α is linear.
Using the adjunction isomorphism, the dashed arrow defines a linear map

(6)
C• ⊗WS2 C•

α⊗ ei (α⊗ α)4i(−)

descending to mod 2 cohomology. As described below, the Steenrod squares are
defined by reindexing this map.
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Definition 2. The kth Steenrod square is defined by

(7)
Sqk : H−n H−n−k

[α]
[
(α⊗ α)4n−k(−)

]
.

for any cup-i construction 4.

3.3. Additional comments.

Remark 3 (Simplicial sets). For the interested reader we mention that a cup-i
construction also defines, through a well known categorical construction, natural
cup-i coproducts on the chains of simplicial sets [Fri12] and, consequently, Steenrod
squares in their mod 2 cohomology.

Remark 4 (Cup product). Although in this article we do not use the algebra
structure on the mod 2 cohomology of spaces, we remark that the cup-0 product of a
cup-i construction represents the cup product in cohomology. Explicitly, if [α], [β] ∈
H• then [α][β] = [α `0 β], in particular, if [α] is of degree −k then Sqk

(
[α]
)

=

[α][α], which motivates the term squares in the name of the Sqk operations.

Remark 5 (Transverse intersections). From a geometric viewpoint, the cup prod-
uct can be interpreted in terms of intersections of cycles in certain cases. For any
space, Thom showed that every mod 2 homology class is represented by the push-
forward of the fundamental class of a closed manifold W along some map to the
space. Furthermore, if the target M is a closed manifold, and therefore satisfies
Poincaré duality

PD : Hk(M ; F2)→ H|M |−k(M ; F2),

the cohomology class dual to the homology class represented by the intersection
of two transverse maps V → M and W → M , or more precisely their pull-back
W ×M V → M , is the cohomology class [α][β] where [α] and [β] are respectively
dual to the homology classes represented by V → M and W → M . By taking
[α] = [β] we have that Sqk

(
[α]
)

with α of degree −k is represented by the transverse
self-intersection of W → M , that is, the intersection of this map and a generic
perturbation of itself. In manifold topology, the relationship at the (co)homology
level between cup product and intersection is classical. For a comparison between
these at the level of (co)chain see [FMS21]. A generalization of this result to cup-i
products is the focus of current research.

Remark 6 (Odd primes). For the reader familiar with group homology, we remark
that Steenrod squares are parameterized by classes on the mod 2 homology of
S2. Steenrod used this group homology viewpoint to non-constructively define
operations on the mod p cohomology of spaces [Ste52; Ste53; SE62] for any prime
p. To define these constructively, analogues of explicit cup-i coproducts for odd
primes were introduced in [KM21] using May’s operadic viewpoint [May70] and
implemented in the computer algebra system ComCH [Med21a].

4. New formulas for cup-i products

In this section we introduce formulas which we show to define a cup-i construc-
tion in Section 8. To the best of our knowledge these are new expressions. In



8 ANIBAL M. MEDINA-MARDONES

forthcoming work [Med22a] we prove that the resulting cup-i construction agrees
up to isomorphism with Steenrod’s original and all other cup-i constructions in the
literature.

Notation. Let X be a simplicial complex and x ∈ Xn. For a set

U = {u1 < · · · < ur} ⊆ {0, . . . , n}

we write dU (x) = du1 · · · dur (x), with d∅(x) = x.

Definition 7. For any simplicial complex X and integer i

∆i : C•(X; F2)→ C•(X; F2)⊗ C•(X; F2)

is the linear map defined on a simplex x ∈ Xn to be 0 if i 6∈ {0, . . . , n} and is
otherwise given by

(8) ∆i(x) =
∑

dU0(x)⊗ dU1(x)

where the sum is taken over all subsets U = {u1 < · · · < un−i} ⊆ {0, . . . , n} and

(9) U0 = {uj ∈ U | uj ≡ j mod 2}, U1 = {uj ∈ U | uj 6≡ j mod 2}.

Example 8. For any x ∈ Xn and i = 0 our formulas give

∆0(x) =

n∑
j=0

dj+1 · · · dn(x)⊗ d0 · · · dj−1(x),

a map known as Alexander–Whitney diagonal and widely used to define the algebra
structure on cohomology (Remark 4).

Example 9. For any simplex x ∈ Xn our formulas give

∆n(x) = x⊗ x,

implying, after Theorem 10 below, the well known fact that Sq0 is the identity.

Theorem 10. The maps introduced in Definition 7 define a cup-i construction.

Remark 11. Two cup-i constructions, say 4 and 4′, are isomorphic if there is
an automorphism φ of W making the following diagram commute:

W ⊗ C• W ⊗ C•

C• ⊗ C• .

φ⊗id

4 4′

The cup-i products of Steenrod seem to be combinatorially fundamental. In forth-
coming work [Med22a] that depends on Theorem 10 we show, through an axiomatic
characterization, that all known cup-i constructions on simplicial chains are isomor-
phic – and not just homotopic – to the one introduced here. These constructions are:
Steenrod’s original [Ste47], the one obtained using the EZ-AW contraction [Rea96;
GR99], those from combinatorial operads [MS03; BF04], and the one defined by the
M-bialgebra structure on standard simplices [Med20a; Med21b]. Furthermore, this
cup-i construction defines naturally another fundamental construction: the nerve
of higher categories [Str87; Med20b].
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In order to prove Theorem 10 we need to check that each ∆i is natural and
satisfies (5) – Example 9 implies the non-degeneracy condition. We state these
claims as two lemmas.

Lemma 12. For any simplicial map f and integer i we have

∆i ◦ f• = (f• ⊗ f•) ◦∆i.

Proof. Consider a simplex x = [v0, . . . , vn] and let i ∈ {0, . . . , n}, otherwise the
identity holds trivially. First assume that f•(x) is not 0. Then, for any proper
subset U ( {0, . . . , n} the image of dU (x) is not 0 as well and we have

∆i ◦ f•(x) = ∆i

(
[f(v0), . . . , f(vn)]

)
=
∑

dU0

(
[f(v0), . . . , f(vn)]

)
⊗ dU1

(
[f(v0), . . . , f(vn)]

)
= (f• ⊗ f•)

∑
dU0

(
[v0, . . . , vn]

)
⊗ dU1

(
[v0, . . . , vn]

)
= (f• ⊗ f•) ◦∆i(x).

If f•(x) = 0 then there exists consecutive elements vj and vj+1 with f(vj) =
f(vj+1). To prove that (f• ⊗ f•) ◦ ∆i(x) = 0 it suffices to show that for any
U ∈ Pn−i(n) either the simplex dU0(x) or dU1(x) contains both vj and vj+1. If
U does not contain both j and j + 1 this is immediate. If it does, we have that
j, j + 1 ∈ U0 or j, j + 1 ∈ U1 since they are consecutive implying vj , vj+1 ∈ dU1(x)
in the first case and vj , vj+1 ∈ dU0(x) in the second. �

Lemma 13. For any integer i we have

∂ ◦∆i + ∆i+1 ◦ ∂ = (1 + T )∆i−1.

We devote Section 8 to the proof of this lemma. We now turn to the development
of a fast method for the computation of Steenrod squares on the cohomology of finite
simplicial complexes leveraging formula (8).

5. New algorithm for Steenrod squares

For a finite simplicial complex X, integer k and cocycle α of degree −n, the
cocycle β = (α⊗α)∆n−k(−) is by Definition 2 and Theorem 10 a representative of
Sqk

(
[α]
)
. In this section we will present and discuss an algorithmic description of

suppβ, the support of β.
Let A = {a1, . . . , am} ⊆ Xn be the support of α, which is defined by

α(x) =

{
1 x ∈ A,
0 x 6∈ A,

for any x ∈ X.
If k < 0 or k > n, we have β = 0 by definition, so suppβ = ∅. If k = 0,

Example 9 shows that β = α, so suppβ = A. For the remaining cases we have the
following characterization whose proof occupies Section 6.

Theorem 14. Let B be the output of Algorithm 1 when the input is A and k, then
suppβ = B.
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We now give an intuitive comparison between our proposed method and a more
direct approach using a generic presentation of a cup-i construction

4i(x) =
∑
Γi

x(1) ⊗ x(2).

An algorithm for the computation of the support of (α⊗α)4n−k(−) can be defined
by looping over Xn+k times Γn−k while evaluating (α⊗α) on the associated tensor
pair. Algorithm 1 improves on this scheme by using the specific form of (8) to
filter summands using the support of α. So, even if Xn+k and Γn−k are very large,
Algorithm 1 loops over

m(m− 1)

2

unordered pairs of distinct simplices, where m is the cardinality of suppα. Many of
these pairs are discarded quickly, after checking that the union of its simplices does
not have exactly n+ k vertices. One could wonder if the next step in Algorithm 1
– determining if a resulting set of n + k vertices is a simplex of X – could slow
down the routine significantly. As illustrated in Section 7 through an example,
even for a sub-optimal implementation of our algorithm this is not the case. For
high-performance tasks this look-up time could be further reduced by using data
structures specialized on the representation of simplicial complexes, but we do not
discuss these optimizations here.

Algorithm 1:

Input: A = {a1, . . . , am} ⊆ Xn and k ∈ {1, . . . , n}
B = ∅
forall ai and aj with i < j do

aij = ai ∪ aj
if aij ∈ Xn+k then

ai = ai \ aj ; aj = aj \ ai ; aij = ai ∪ aj
ind: aij → F2

∼= {0, 1}
forall v ∈ aij do

p = position of v in aij ; p = position of v in aij
ind(v) = p + p residue mod 2

if ind(ai)4 ind(aj) = {0, 1} then
B = B4{aij}

Output: B ⊆ Xn+k

Figure 1. Let X be a simplicial complex X. Passing the support
A ⊆ Xn of a cocycle α and an integer k ∈ {1, . . . , n}, the algorithm
returns the support B ⊆ Xn+k of a cocycle representing Sqk

(
[α]
)
.

We use the notation S4S′ = S ∪ S′ \ (S ∩ S′) and ind(S) =
{ind(v) | v ∈ S}.
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6. Correctness of Algorithm 1

Let us consider the same setup as above. Explicitly, a simplicial complex X, a
cocycle α whose support is A = {a1, . . . , am} ⊆ Xn and an integer k ∈ {1, . . . , n}.
Denote by αi the cochain dual of ai, and consider ∆n−k as in Definition 7.

Before proving Theorem 14, the correctness of Algorithm 1, let us record a few
properties satisfied by our cup-i construction.

Lemma 15. For i 6= j and x ∈ Xn+k:

(1) (αi ⊗ αi)∆n−k(x) = 0.
(2) If (αi ⊗ αj)∆n−k(x) 6= 0 then (αj ⊗ αi)∆n−k(x) = 0.
(3) If (1 + T )(αi ⊗ αj)∆n−k(x) 6= 0 then x = ai ∪ aj.

Proof. Recall that

∆n−k(x) =
∑

U⊆{0,...,n+k}
|U |=2k

dU0(x)⊗ dU1(x).

(1) If (αi ⊗ αi)∆n−k(x) 6= 0, then there exists a non-empty U in the sum with
U0 = U1, which is impossible since U0 ∩ U1 = ∅.

(2) If (αi⊗αj)∆n−k(x) 6= 0 and (αj ⊗αi)∆n−k(x) 6= 0, then there are distinct
subsets V and W in the sum such that V 0 = W 1 and W 0 = V 1. But then
V = V 0 ∪ V 1 = W 1 ∪W 0 = W , which is a contradiction.

(3) If (1 + T )(αi ⊗ αj)∆n−k(x) 6= 0, then there exists U ⊆ {0, . . . , n + k} of
cardinality 2k such that {ai, aj} = {dU0(x), dU1(x)} and, since U0∩U1 = ∅,
we have x = dU0(x) ∪ dU1(x). The claim follows.

�

We will need the following functions.

Definition 16. Given a finite totally ordered set S, the position function posS : S →
N sends an element s ∈ S to the cardinality of {s′ ∈ S | s′ ≤ s}.

Definition 17. For U = {u1 < · · · < um} ⊆ N the index function is defined by

indU : U → F2

uj 7→ (uj + j) mod 2.

We can use the index function to give the following characterization of (9) in
the definition of our cup-i construction.

Lemma 18. For any finite set U ⊂ N

U0 = ind−1
U (0), U1 = ind−1

U (1).

Notation. We will use the following notational conventions:

(1) For any function f and S ⊆ dom(f)

f(S) = {f(s) | s ∈ S}.

(2) For any two sets S and S′

S4S′ = S ∪ S′ \ (S ∩ S′).
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Proof of Theorem 14. We have to show that suppβ = B, where β = (α⊗ α)∆n−k
and B is the output of Algorithm 1 when the input is A and k.

Using (1) in Lemma 15, for any x ∈ Xn+k we have that

β(x) = (α⊗ α)∆n−k(x)

= (α1 + · · ·+ αm)⊗2∆n−k(x)

=
(∑
i6=j

αi ⊗ αj +
∑
i

αi ⊗ αi
)

∆n−k(x)

=
(∑
i 6=j

αi ⊗ αj
)

∆n−k(x)

=
∑
i<j

(1 + T )(αi ⊗ αj)∆n−k(x)

(10)

where αi is the cochain dual to ai. By (2) and (3) in Lemma 15, for any pair
{αi, αj} the evaluation of αi ⊗ αj or αj ⊗ αi on ∆n−k(x) is non-zero if and only if

(1 + T )(αi ⊗ αj)∆n−k(x) 6= 0

and x is equal to aij = ai∪aj . We say that the pair {αi, αj} is non-zero in this case.
Using these observations and (10), the support of β can be constructed iterating
over pairs i < j as follows: Consider a set B′ initialized as the empty set and update
it to B′4{aij} = B′ ∪ {aij} \ (B′ ∩ {aij}) when {αi, αj} is non-zero. Here we are
taking advantage of the fact that cardinality mod 2 can be kept track of using the
symmetric difference. At the end of the iteration we have suppβ = B′.

The construction of B′ is structurally the same as that of B with the exception
that the condition on a pair {αi, αj} to be non-zero is replaced by an if condition
in terms of the pair {ai, aj} only. The theorem will follow after showing that these
two conditions are equivalent.

A pair {αi, αj} is non-zero if and only if there exists U ⊆ {0, . . . , n + k} of
cardinality 2k such that

{ai, aj} = {dU0(aij), dU1(aij)}.

If such U exists it is unique, and it is the image under the position function
posaij : aij → N of the subset aij defined by

ai = ai \ aj , aj = aj \ ai, aij = ai ∪ aj .

Therefore, a pair {αi, αj} is non-zero if an only if for U = posaij (aij) one has

(11)
{

posaij (ai), posaij (aj)
}

= {U0, U1}.

We now give an equivalent condition for this. Consider the function ind: aij → F2

defined by

ind(v) = posaij (v) + posaij (v) mod 2

and notice that the following diagram

aij U

F2

posaij

∼=

ind indU
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commutes. Therefore, by Lemma 18 the identity (11) holds if an only if the function
ind: aij → F2 is constant on both ai and aj with different values. This is equivalent
to the identity

ind(ai)4 ind(aj) = {0, 1},
as in the second if condition of Algorithm 1. �

7. Proof-of-concept comparison

In this section we present a proof-of-concept comparison between the existing
method for the computation of Steenrod squares on simplicial complexes, based on
González-Dı́az–Real’s approach [GR99, Corollary 3.2], and the one introduced here.
We used a Python implementation of our algorithm and the open source computer
algebra system SAGE v9.3.rc3 [The21] which includes an implementation of the
existing method written by John Palmieri. A complexity theoretic analysis goes
beyond the scope of this paper.

7.1. Suspensions of the real projective plane. Given a topological space X the
suspension of X is the topological space ΣX obtained from X × [0, 1] by collapsing
X ×{0} and X ×{1} to points. Suspension is a natural construction and, for each
integer i 6= 0, there is an isomorphism Hi(X) ∼= Hi+1(ΣX), which can be extended
to i = 0 by considering reduced cohomology. A crucial fact about Steenrod squares
is that for reduced cohomology with mod 2 coefficients, all operations commuting
with the suspension isomorphism are generated by the Steenrod squares.

The real projective plane RP2, obtained by identifying antipodal points in a
sphere, is the simplest space with a non-trivial Steenrod square. Its reduced mod 2

cohomology has a single basis element xj ∈ H̃j(RP2; F2) for j ∈ {1, 2} and satisfies
Sq1(x1) = x2. Therefore, its ith suspension ΣiRP2 has a non-trivial operation given
by Sq1(Σix1) = Σix2.

7.2. Pipeline. We now describe the pipeline we followed for the comparison. In
SAGE we produced a simplicial complex model of ΣiRP2 for each i ∈ {0, . . . , 10}
using the methods RealProjectiveSpace(2) and suspension(i). We used the
method cohomology_ring(GF(2)) on this model and on its output the method
basis() to obtain a model for the element Σix1. Finally, we applied the method
Sq(k) to it with k = 1 and record the execution time of this last step. We imple-
mented in Python an alternative for the method Sq(k) based on Algorithm 1 and
modified the above pipeline accordingly. We recorded the average execution time of
these implementations for each ΣiRP2 over b10000/2ic runs for each i ∈ {0, . . . , 10}.
The results of this pipeline are presented in Figure 2.

8. Proof of Lemma 13

Throughout this section X denotes a simplicial complex and ∆i the ith map
introduced in Definition 7.

To aid readability of the relatively long proof of Lemma 13 we split it into four
lemmas. We start by introducing some notation.

Definition 19. For n ≥ 0 and q ∈ {0, . . . , n}, let Pq(n) be the set of all sets U =

{u1 < · · · < uq} with each uj ∈ {0, . . . , n}. For any U ∈ Pq(n), let U ∈ Pn+1−q(n)
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Figure 2. Average execution time in SAGE of two methods com-
puting Steenrod squares. In orange the one proposed in this article
and in blue the one included in SAGE v9.3.rc3. More specifically,
for each i ∈ {0, . . . , 10} we timed the computation of the non-
trivial Steenrod square in the cohomology of the ith suspension of
the real projective plane, averaged over a number of runs equal to
the integral part of 10000

2i .

contain the elements of {0, . . . , n} not in U . For ū ∈ U , define ū.U ∈ Pq+1(n) to
contain ū and the elements in U . For q > 0 and u ∈ U , define U r u ∈ Pq−1(n) to
contain the elements of U not equal to u.

Recall that for any U = {u1 < · · · < uq} ∈ Pq(n) we write dU for du1
· · · duq

with d∅ = id, that the index function of U is given by

indU : U F2

ui ui + i,

and that we denote the preimage of ε ∈ F2
∼= {0, 1} by Uε ⊆ U .

With this notation, for any simplex x ∈ Xn and i ∈ {0, . . . , n} we have

∆i(x) =
∑

U∈Pn−i(n)

dU0(x)⊗ dU1(x).

Lemma 20. For any x ∈ Xn and U ∈ Pq(n)

(12) ∂n−q ◦ dU (x) =
∑
ū∈U

dū.U (x).

Proof. Let U = {u1 < · · · < uq}. Using the simplicial relation (3) we have

∂n−q ◦ dU (x) =

n−q∑
i=0

di du1
· · · duq

(x) =
∑
ū∈U

du1
· · · dū · · · duq

(x) =
∑
ū∈U

dū.U (x)

as claimed. �
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Lemma 21. For any x ∈ Xn and q ∈ {1, . . . , n}

(13) ∆n−q ◦ ∂n(x) =
∑

U∈Pq(n)

( ∑
u∈U1

du.U0 ⊗ dU1 +
∑
u∈U0

dU0 ⊗ du.U1

)
(x⊗ x).

Proof. Let

S1 =
{

(u, V ) | V ∈ Pq−1(n− 1) and u ∈ {0, . . . , n}
}
,

S2 =
{

(w,W ) |W ∈ Pq(n) and w ∈W
}
.

Identity (13) is equivalent to

(14)
∑

(u,V )∈S1

dV 0du ⊗ dV 1du =
∑

(w,W )∈S2

{
dw.W 0 ⊗ dW 1 if w ∈W 1,

dW 0 ⊗ dw.W 1 if w ∈W 0.

Define S1 → S2 by sending
(
u, {v1 < · · · < vq−1}

)
to
(
u, {w1 < · · · < wq}

)
with

wi =


vi if vi < u,

u if vi < u ≤ vi+1,

vi−1 + 1 if vi < u.

This function is a bijection since it is injective and both sets have cardinality

(n+ 1)!

(n+ 1− q)!(q − 1)!
.

The simplicial identity implies that if (u, V ) 7→ (u,W ) then

dV 0du ⊗ dV 1du =

{
du.W 0 ⊗ dW 1 if u ∈W 1,

dW 0 ⊗ du.W 1 if u ∈W 0,

which concludes the proof. �

Lemma 22. For any x ∈ Xn and i ∈ {1, . . . , n}

(15) (∂ ◦∆i + ∆i ◦ ∂)(x) =
∑

U∈Pn−i(n)

ū∈U

(
dū.U0 ⊗ dU1 + dU0 ⊗ dū.U1

)
(x⊗ x).

Proof. Let q = n− i, we want to prove that(
∂2n−q ◦∆n−q + ∆n−q ◦ ∂n

)
(x) =

∑
U∈Pq(n)

ū∈U

(
dū.U0 ⊗ dU1 + dU0 ⊗ dū.U1

)
(x⊗ x).

Using Lemma 20 we have

∂2n−q ◦∆n−q(x) =
∑

U∈Pq(n)

(
∂ ◦ dU0 ⊗ dU1 + dU0 ⊗ ∂ ◦ dU1

)
(x⊗ x)

=
∑

U∈Pq(n)

v̄∈U0, w̄∈U1

(
dv̄.U0 ⊗ dU1 + dU0 ⊗ dw̄.U1

)
(x⊗ x).
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Since for ε ∈ F2 we have a partition of Uε into U1+ε and U the above can be written
as

∂2n−q ◦∆n−q(x) =
∑

U∈Pq(n)

( ∑
u∈U1

du.U0 ⊗ dU1 +
∑
u∈U0

dU0 ⊗ du.U1

)
(x⊗ x)

+
∑

U∈Pq(n)

ū∈U

(
dū.U0 ⊗ dU1 + dU0 ⊗ dū.U1

)
(x⊗ x)

and Lemma 21 implies

∂2n−q ◦∆n−q(x) = ∆n−q ◦ ∂n(x)

+
∑

U∈Pq(n)

ū∈U

(
dū.U0 ⊗ dU1 + dU0 ⊗ dū.U1

)
(x⊗ x)

which proves the claim. �

Lemma 23. For any x ∈ Xn and i ∈ {1, . . . , n}

(16)
∑

U∈Pn−i(n)

ū∈U

dū.U0 ⊗ dU1 + dU0 ⊗ dū.U1 = (1 + T )∆i−1(x).

Proof. Let q = n− i ∈ {0, . . . , n− 1}. We need to show that

(17)
∑

U∈Pq(n)

ū∈U

dū.U0 ⊗ dU1 + dU0 ⊗ dū.U1 = (1 + T )
∑

U∈Pq+1(n)

dU0 ⊗ dU1.

Notice that for any U = {u1 < · · · < uq+1} ∈ Pq+1(n) we have

∀u ∈ (U r u1), indU (u) 6= indUru1(u),

∀u ∈ (U r uq+1), indU (u) = indUruq+1
(u).

Therefore, the right hand side of (17)

(18)
∑

U∈Pq+1(n)

dU0 ⊗ dU1 + dU1 ⊗ dU0

is equal to ∑
U∈Pq+1(n)

indU (uq+1)=0

duq+1.(Uruq+1)0 ⊗ d(Uruq+1)1

+
∑

U∈Pq+1(n)
indU (uq+1)=1

d(Uruq+1)0 ⊗ duq+1.(Uruq+1)1

+
∑

U∈Pq+1(n)
indU (u1)=1

du1.(Uru1)0 ⊗ d(Uru1)1

+
∑

U∈Pq+1(n)
indU (u1)=0

d(Uru1)0 ⊗ du1.(Uru1)1.

(19)
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With notation that will be introduced next, (19) will be seen to be equal to∑
Le

max

dū.U0 ⊗ dU1 +
∑
Ro

max

dU0 ⊗ dū.U1 +
∑
Lo

min

dū.U0 ⊗ dU1 +
∑
Re

min

dU0 ⊗ dū.U1,

and the left hand side of (17) to∑
L

dū.U0 ⊗ dU1 +
∑
R

dU0 ⊗ dū.U1.

For any U = {u1 < · · · < uq} ∈ Pq(n) and ū ∈ U define when possible

lūU = max{u ∈ U | u < ū}, rūU = min{u ∈ U | ū < u},

and the following sets, where we use tabbing to represent inclusion and a schematic
to aid readability:

L =
{
ū.U0 ⊗ U1 | U = {u1 < · · · < uq} ∈

Pq(n), ū ∈ U
}

Le = {indū.U (ū) = 0}
Lemax = {uq < ū}
L
e

max = Le \ Lemax
L
e,e

max = {indū.U (rūU ) = 0}
L
e,o

max = {indū.U (rūU ) = 1}

Lo = {indū.U (ū) = 1}
Lomin = {ū < u1}
L
o

min = Lo \ Lomin
L
o,e

min = {indū.U (lūU ) = 0}
L
o,o

min = {indū.U (lūU ) = 1}

L

LeLemax L
e

max

L
e,o

max

L
e,e

max

LoLomin L
o

min

L
o,e

min

L
o,o

min

R =
{
U0 ⊗ ū.U1 | U = {u1 < · · · < uq} ∈

Pq(n), ū ∈ U
}

Re = {indū.U (ū) = 0}
Remin = {uq < ū}
R
e

min = Re \Remin
R
e,e

min = {indū.U (rūU ) = 0}
R
e,o

min = {indū.U (rūU ) = 1}

Ro = {indū.U (ū) = 1}
Romax = {ū < u1}
R
o

max = Ro \Romax
R
o,e

max = {indū.U (lūU ) = 0}
R
o,o

max = {indū.U (lūU ) = 1}

R

ReRemin R
e

min

R
e,o

min

R
e,e

min

RoRomax R
o

max

R
o,e

max

R
o,o

max
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With this notation, (17) is equivalent to∑
L

dū.U0 ⊗ dU1 +
∑
R

dU0 ⊗ dū.U1 =
∑
Le

max

dū.U0 ⊗ dU1 +
∑
Ro

max

dU0 ⊗ dū.U1

+
∑
Lo

min

dū.U0 ⊗ dU1 +
∑
Re

min

dU0 ⊗ dū.U1,

or, equivalently, to their difference being 0. Explicitly,∑
L

e
max

dū.U0⊗dU1 +
∑
R

o
max

dU0⊗dū.U1 +
∑
L

o
min

dū.U0⊗dU1 +
∑
R

e
min

dU0⊗dū.U1 = 0,

which is a direct consequence of the following identities we now prove:

(20) R
e,e

min = L
e,e

max, R
e,o

min = R
o,e

max, L
o,e

min = L
e,o

max, L
o,o

min = R
o,o

max.

For a pair U ∈ Pq(n) and ū ∈ U define when possible the sets

V ūU = {v1 < · · · < vq}, W ū
U = {w1 < · · · < wq},

by

vi =

{
ui if ui 6= lūU ,

ū if ui = lūU ,
wi =

{
ui if ui 6= rūU ,

ū if ui = rūU .

Intuitively, V ūU is obtained from U by replacing with ū the largest element in U
that is less than ū. A similar description applies to W ū

U . When U and ū are clear
from the context we simplify notation writing V and W instead of V ūU and W ū

U ,
and l and r instead of lūU and rūU . Notice that

l.V = ū.U = r.W

and that for any u ∈ ū.U with u 6∈ {l, ū, r} we have

indV (u) = indU (u) = indW (u).

Let us now show that R
e,e

min = L
e,e

max. Consider U0 ⊗ ū.U1 ∈ R
e,e

min which by
definition satisfies indū.U (ū) = indū.U (lūU ) = 0. This is equivalent to ū ∈ V 1 and
l ∈ U0. Therefore,

U0 ⊗ ū.U1 = l.V 0 ⊗ V 1

and, since l.V 0 ⊗ V 1 is an element in L
e,e

max, we have R
e,e

max ⊆ L
e,e

max . Similarly, an

element ū.U0 ⊗ U1 ∈ Le,emax is equal to W 0 ⊗ r.W 1 ∈ Re,emin which gives the other
inclusion and proves the first identity in (20). The others are proven analogously,
and the lemma follows. �

We can now provide the proof of Lemma 13 and of our main theorem.

Proof of Lemma 13. For any integer i and x ∈ Xn we need to prove that

(21) (∂ ◦∆i + ∆i ◦ ∂)(x) = (1 + T )∆i−1(x).

If i < 0 or i > n+ 1 then both sides are equal to 0 by definition. If i = 0, the right
hand side of (21) is 0 by definition and the left hand side is 0 since the Alexander–
Whitney diagonal is a chain map, please consult Example 8 for the relationship
between ∆0 and this well known map. If i = n+ 1, then the left hand side of (21)
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is equal to 0 by definition and the right hand side is equal to (1 + T )(x ⊗ x) = 0.
If i ∈ {0, . . . , n− 1}, Lemma 22 expresses the left hand side of (21) as∑

U∈Pq(n)

ū∈U

(
dū.U0 ⊗ dU1 + dU0 ⊗ dū.U1

)
(x⊗ x),

whose right hand side is, thanks to Lemma 23, equal to (1 + T )∆i−1(x). �

9. Secondary operations

Lifting relations from the (co)homology level to the (co)chain level is often a
source of further (co)homological structure. For example, cup-i products provide
an effective construction of coboundaries coherently enforcing the commutativity
relation of the cup product in cohomology and lead to Steenrod squares. It is natural
then to wonder about what relations are satisfied by Steenrod squares themselves.
There are two notable relations to consider. The first one, known as the Cartan
relation, expresses the interaction between these operations and the cup product:

Sqk
(
[α][β]

)
=
∑
i+j=k

Sqi
(
[α]
)
Sqj
(
[β]
)
,

whereas the second, the Adem relation [Ade52], expresses dependencies appearing
through iteration:

SqiSqj =

bi/2c∑
k=0

(
j − k − 1

i− 2k

)
Sqi+j−kSqk,

where b−c denotes the integer part function and the binomial coefficient is reduced
mod 2. To tap into the secondary structure associated with these relations, one
needs to provide effective cochain level proofs for them, that is to say, construct
explicit cochains enforcing them when passing to cohomology. Such proofs were
recently given respectively in [Med20c] and [BMM21], and we expect that the ad-
ditional structure they unlock will also play an important role in computational
topology.

10. Conclusions and future work

In this article we introduced new formulas describing cup-i products on simplicial
cochains over F2. As proven in work being finalized [Med22a], these formulas
give raise to a cup-i construction isomorphic to those introduced by Steenrod and
others, but their specific form allowed us to development a fast algorithm computing
Steenrod squares on the mod 2 cohomology of finite simplicial complexes. Our
method is based on the determination of the universal support of a representative
of Sqk

(
[α]
)

given the support of a cocycle α, and it is therefore less impacted by
the size of the simplicial complex than traditional methods that iterate over all
simplices of dimension |α|+ k.

In future work we will treat the general prime p case. More specifically, we will
describe new formulas defining cup-(p, i) products on simplicial cochains over Fp.
These new formulas will lead to fast computations of mod p Steenrod operations
for simplicial complexes, and, as in the work of Cantero-Morán [Can20] over F2, to
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the definition of Steenrod operations on Khovanov homology over Fp for a general
prime p.
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