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Abstract

The assumption of an inverse S-shaped probability weighting
function allows cumulative prospect theory to explain several
well-established regularities in risky choice between monetary
lotteries. Empirical evidence indicates that in choices between
options with nonmonetary outcomes, the shape of the weight-
ing function is strongly influenced by the negative emotions
often associated with these outcomes. In its current form, how-
ever, cumulative prospect theory is silent with respect to how
to formally integrate the influence of affective processes on
the shape of the weighting function. Here, we propose an af-
fective probability weighting function in which the two main
features of the weighting function, probability sensitivity and
elevation, gradually change with the affective value of the non-
monetary outcomes. We test our proposition in a model com-
petition with three data sets. The results show that the affec-
tive probability weighting function improves the ability of (cu-
mulative) prospect theory to predict choices between options
with nonmonetary outcomes. We observed approximately lin-
ear probability weighting for the least affective nonmonetary
outcomes and probability neglect for the worst or multiple out-
comes. These findings demonstrate that integrating the effect
of affective processes in formal decision models is crucial for
advancing the understanding of choices between nonmonetary
risky options—and thus ensuring the generalizability of the
models beyond choices between monetary lotteries.

Keywords: probability weighting function; prospect theory;
affect; nonmonetary outcomes

Introduction
The consequences of many everyday decisions cannot be pre-
dicted with certainty. People deciding whether to get vac-
cinated, to buy travel insurance, or to gamble on a sporting
event may have information (or a hunch) about the probability
of a specific outcome—but they can never be sure. In recent
decades, many formal models have been proposed to describe
how people make such decisions under risk. One important
line of development has focused on the notion of probability
weighting, which accounts for violations of expected utility
theory by assuming that the weight that a risky outcome re-
ceives results from a nonlinear transformation of its probabil-
ity (Wu et al., 2004). One of the most influential models of
this kind is (cumulative) prospect theory (Kahneman & Tver-
sky, 1979; Tversky & Kahneman, 1992).

In cumulative prospect theory, probability weighting is for-
malized in terms of an inverse S-shaped probability weight-
ing function, which overweights low-probability events and
underweights high-probability events. The inverse S-shape
allows the model to account for empirical phenomena such

as the fourfold pattern of risk attitudes and the common-
ratio effect (Tversky & Fox, 1995). The studies feeding
into the development of (cumulative) prospect theory have
involved choices with monetary outcomes, such as lotteries.
However, many everyday decisions involve nonmonetary out-
comes, such as the potential side effects of medical treat-
ments. Several investigations have demonstrated that non-
monetary outcomes are often associated with higher affect
than are their monetary equivalents (Pachur et al., 2014, 2017;
Suter et al., 2016, 2015). Yet cumulative prospect theory does
not account for the influence of emotions on people’s deci-
sions.

There are clear indications that affect influences decision
making under risk. In a seminal study, Rottenstreich and Hsee
(2001) found evidence that sensitivity to probability differ-
ences is lower when the outcomes are relatively affect-rich
than when they are relatively affect-poor. There is also strong
empirical support that probability weighting differs as a func-
tion of the amount of affect associated with the outcomes.
However, the influences of affect on risky choice have not yet
been systematically integrated into formal models. Few for-
mal models include the emotions caused by choice option at-
tributes (Bell, 1985; Loomes & Sugden, 1982; Mellers et al.,
1997; Juvina et al., 2018; Marinier III et al., 2009; Marsella
& Gratch, 2009), but none of these models explain how affect
may influence probability weighting. Here we aim to close
this gap by proposing and testing a formal account of how
affect may influence the shape of the probability weighting
function.

Next, we briefly describe cumulative prospect theory and
review empirical evidence showing that probability weighting
is sensitive to affect. We then propose an affective probability
weighting function and test it in a rigorous model compari-
son that draws on three data sets involving choices between
nonmonetary risky options.

Cumulative Prospect Theory
The simplified version of cumulative prospect theory de-
scribed here applies to risky options with outcomes of the
same sign—that is, where all outcomes are either gains or
losses. Consider a risky option A with N negative outcomes
xN < ... < x1 < 0 and corresponding probabilities pN , ..., p1.
For illustration, assume that option A is a medication and that
its outcomes are averse side effects. According to cumulative

1025
In J. Culbertson, A. Perfors, H. Rabagliati & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science
Society. ©2022 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



prospect theory, the overall subjective valuation of A, denoted
V (A), is determined as follows:

V (A) =
N

∑
i=1

v(xi)π(pi), (1)

where v(xi) is the subjective value of outcome xi, determined
by the function value v() and π(pi) is the decision weight of
outcome xi.

To quantify the nonmonetary outcome (i.e., side effect),
we use an affect rating denoted a as a proxy and assume no
further transformation of this value:

v(x) = a. (2)

In cumulative prospect theory, the decision weight π in
Equation 1 is (sign- and) rank-dependent and is calculated us-
ing the probability weighting function, based on cumulative
probabilities. However, Camerer and Ho (1994) tested what
they called “separable” prospect theory (i.e., without cumula-
tive weights) against the cumulative version in eight data sets
and found no evidence in favor of the latter model. Recently,
Bernheim and Sprenger (2020) likewise found no support for
the assumption of probability weighting based on cumulative
probabilities. Finally, results of a large-scale study show that
separable prospect theory outperforms the cumulative model
(Peterson et al., 2021). Hence, we assume that the decision
weight π in Equation 1 is a function of an outcome’s non-
cumulative probability. The probability is transformed by a
probability weighting function.

Here, we use a two-parameter version of the weight-
ing function, originally proposed by Goldstein and Einhorn
(1987). It separates the curvature of the function from its ele-
vation (Gonzalez & Wu, 1999):

π(p) =
δpγ

δpγ +(1− p)γ
, (3)

where the parameter γ ∈ [0,1] controls the curvature of the
weighting function and is interpreted as indicating the de-
cision maker’s sensitivity to differences in probability, with
higher values indicating higher sensitivity. The parameter
δ > 0 controls the function’s elevation, with higher values
resulting in more elevated functions, and thus higher overall
decision weights. The elevation is often interpreted as in-
dicating the decision maker’s optimism/pessimism (Wakker,
2001). Figure 1 presents examples of the probability weight-
ing function, showing shapes typically observed for monetary
losses and for relatively affect-rich nonmonetary outcomes.

Finally, in the context of binary choices, the subjective val-
uations of two risky options A an B are entered into a stochas-
tic choice rule to derive a predicted probability of choosing A
over B. To this end, we use a logistic choice rule (also known
as softmax):

P(A|{A,B}) = 1
1+ e−φ(V (A)−V (B))

, (4)

Figure 1: Example shapes of the probability weighting func-
tion. The black (gray) curve shows the weighting function
usually observed in studies with monetary losses (affect-rich
nonmonetary risky options).

where the parameter φ > 0 is a choice sensitivity parameter
that represents the degree to which the difference between the
subjective valuations map onto the probability of choosing
the option A. With φ = 0, choices are random.

The Impact of Affect on Probability Weighting
Several lines of research have observed that probability
weighting—that is, how risky outcomes are weighted as
a nonlinear function of their probability—is modulated by
emotion. In an analysis of US price market data, Kliger and
Levy (2008) demonstrated that investors’ probability sensi-
tivity was lower in periods of the year associated with more
negative mood (i.e., with less daylight time) than in periods
associated with more positive mood. This effect was espe-
cially pronounced in the loss domain. Fehr-Duda et al. (2011)
observed that when choosing between options with positive
outcomes women in a neutral or “worse than usual” mood
had slightly lower probability sensitivity and less elevated
weighting functions—resulting in a more distorted weighting
function—than women in a “better than usual” mood. When
choosing between options with negative outcomes, women
in “worse than usual” mood exhibited substantially more el-
evated weighting functions. Traczyk and Fulawka (2016)
found that a carry-over effect of negative affect from an unre-
lated task led to a slight decrease in probability sensitivity in
an insurance pricing task.

In addition to these effects of incidental affect (i.e., af-
fect that is unrelated to the stimuli but present in the de-
cision maker) on probability weighting, there is also evi-
dence for an effect of integral affect (i.e., affect that is di-
rectly associated with the outcomes). Several studies con-
trasting choices between affect-rich options with choices be-
tween relatively affect-poor options with negative outcomes
have shown substantially lower probability sensitivity and
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more elevated weighting functions in choices between affect-
rich options (Pachur et al., 2014, 2017; Suter et al., 2016).
A neuroimaging study demonstrated that brain areas asso-
ciated with affective processes and autobiographical mem-
ory had higher activation when people chose between affect-
rich options than when they chose between affect-poor (i.e.,
monetary) options (Suter et al., 2015). Integral affect also
impacts probability weighting in decisions from experience
(Lejarraga et al., 2016).

Whereas there is robust evidence for an effect of negative
affect on probability weighting, the evidence for an effect of
positive affect is scant and mixed. Pachur et al. (2014) ob-
served more elevated weighting functions for choices with
positive nonmonetary outcomes than for lotteries with posi-
tive monetary outcomes; there were no differences with re-
spect to probability sensitivity. Petrova et al. (2014) found
slightly higher elevation and lower probability sensitivity in
an insurance pricing task for a camera that was a present from
a grandparent (i.e., an affect-rich outcome) than for a camera
that had been ordered from a website (i.e., an affect-poor out-
come).

An Affective Probability Weighting Function
How can the observed effects of affect on probability weight-
ing be integrated in a formal model? Previous analyses have
mainly documented differences in probability weighting be-
tween situations with relatively high versus low affect. We
propose a formalization that allows probability weighting in a
given choice problem to be determined directly based on mea-
sures of affect in that specific choice problem. Our approach
thus assumes a continuous influence of affect on probability
weighting—rather than distinguishing categorically between
affect-rich and affect-poor options.

Let us assume a nonmonetary outcome x (e.g., a side effect)
that triggers an affective response a, and that the outcome
occurs with probability p. Here we propose that the affective
probability sensitivity γx for this particular outcome is given
by:

γx = γ

|a|
max |a| , (5)

where γ is a baseline probability sensitivity level and max |a|
is a scaling factor that equals the maximum possible value on
the affect rating scale. Equation 5 assures that the resulting
exponent ranges between 0 and 1; as a result, for all combi-
nations of the baseline level γ and the affective value ai of the
respective outcome, the resulting parameter γx will be in the
0–1 range. Importantly, for any fixed value of γ, the affective
probability sensitivity increases as the affective value a of the
nonmonetary outcome decreases.

For the affective elevation parameter δx, we propose a sim-
ple linear form:

δx = δ×|a|, (6)

where δ is the baseline level of the function’s elevation.
Hence, the affective elevation parameter δx increases with
the affective value a of the respective outcome. To obtain

a decision weight based on affective probability sensitivity or
affective elevation, one simply needs to substitute the γ and
δ parameters in Equation 3 with γx and δx, respectively. The
probability weighting function with both affect-specific prob-
ability sensitivity and elevation constitutes the affective prob-
ability weighting function. Note that in cases of risky options
with multiple outcomes, the decision weight of each outcome
is determined based on its own specific values of γx and δx.

We tested the affective probability weighting function by
conducting a model comparison between four models: (1)
standard prospect theory (PT), (2) prospect theory with affec-
tive elevation (PTae), (3) prospect theory with affective prob-
ability sensitivity (PTaps), and (4) prospect theory with affec-
tive probability weighting (i.e., with both affective elevation
and affective probability sensitivity; PTapse). We drew on two
data sets from previous studies examining choices between
options with nonmonetary outcomes—specifically, medical
drugs, each of which had one possible side effect (Pachur et
al., 2017; Suter et al., 2016). In these data sets, the proba-
bilities of the side effects ranged between zero and one, with
the most frequent probability values being near zero and one.
However, an analysis of the actual distribution of the prob-
abilities of side effects (Kuhn et al., 2016) indicated a dis-
tribution with a right skew, with more than 90% of the side
effects having probabilities lower than 10%. Additionally, a
drug usually has several side effects. Thus, the choice prob-
lems in these single-outcome data sets have limited ecological
validity. To address these issues, we also included an unpub-
lished data set of choices between drugs with two side effects
and with a probability distribution designed to match that ob-
served in the Kuhn et al. (2016) data. Including this data set
allowed us to measure the probability weighting function in
the context of choices between risky options with multiple
nonmonetary outcomes and to contrast the results with those
emerging for the simpler choice problems used in previous
studies.

Method
Data Sets
Our study involved two types of data sets: First, we drew on
data sets where each option had a single outcome, using two
published studies that relied on the same method (Pachur et
al., 2017; Suter et al., 2016), with 80 participants each. Par-
ticipants were asked to imagine that they were suffering from
an unspecified illness and that two equally effective medical
drugs were available to treat the condition. Each drug could
result in one side effect with a specific probability. Partici-
pants made 44 such choices and after the choice task provided
negative affect ratings for the side effects on a 10-point Likert
scale.

Second, we used data from an experiment where each op-
tion had two outcomes; here, 92 participants attended two
identical sessions held at least two weeks apart. In each ses-
sion, participants first provided negative affect ratings for 20
side effects on a 10-point Likert scale. Next, they made 100
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hypothetical choices between two drugs with two possible
side effects each, in the same way as in the Pachur et al.
(2017) and Suter et al. (2016) studies. Order of presentation
and information layouts were randomized within each par-
ticipant. The distribution of probabilities ranged from 0.003
to 0.096 and was right-skewed to roughly match that in the
Kuhn et al. (2016) data.

Henceforth, we will refer to the single-outcome data sets
Pachur et al. (2017) and Suter et al. (2016) as Pa17 and Su16,
respectively. The data from the first and the second session
of the two-outcome experiment will be referred to as To1 and
To2, respectively.

Modeling Approach and Model Comparison
All models were implemented in a hierarchical Bayesian ap-
proach, allowing for a simultaneous estimation of individual-
and group-level parameters (e.g., Scheibehenne & Pachur,
2015). We used uninformed priors and parameter ranges
that were consistent with previous findings. Samples from
the posterior distribution were drawn using Gibbs sampling
via the JAGS 4.3.0 software (Plummer, 2003), called from
R 4.1.1. For each model, we used eight parallel chains and
recorded 3,000 samples from each chain. To reduce auto-
correlations in the recorded chains, only every 20th sample
was saved. The burn-in period consisted of 11,000 samples,
including 1,000 samples for adaptation. Convergence was as-
sessed using the Gelman–Rubin statistic and visual inspection
of the chains.

To compare the performance of the models, we used ap-
proximate leave-one-out cross-validation (Vehtari, Gelman,
& Gabry, 2017). For each model, expected log pointwise
predictive density (elpd) was approximated with the R pack-
age loo (Vehtari et al., 2020). A higher elpd indicates better
out-of-sample predictive accuracy, taking into account model
complexity. Two models were considered to differ reliably in
their performance if the 95% confidence interval of the dif-
ference in elpd excluded zero. To provide an intuitive mea-
sure of overall model performance, we also report pseudo-R2

(Nagelkerke, 1991) calculated with the elpd values.

Results
Overall, the tested models showed a better performance on
the To2 data than on the other data sets (Fig. 2a). Regard-
ing the single-outcome data sets, all models performed much
better on the Pa17 data than on the Su16 data (Fig. 2a). This
finding is consistent with the proportions of participants clas-
sified as guessing in the respective articles (which was con-
siderably higher for the Su16 data). The better performance
of the models in the To2 than in the To1 data might suggest
that the affect ratings were more internally consistent in the
second session than in the first.

The PTapse model—which relies on both affective proba-
bility sensitivity and affective elevation—outperformed the
other models on all the data sets except Pa17, as indicated
by positive values of the elpd differences and 95% confi-
dence intervals excluding zero (Figure 2b). In the Pa17 data

Figure 2: Model performance and model comparison results.
a: Estimated log pointwise predictive densities (elpd) for
each model, separately for each data set. The values were
scaled with the log-likelihood of a guessing model, allowing
model performance to be compared across data sets of differ-
ent sizes. Vertical lines show elpd +/− standard error. b:
Elpd differences between the PTapse model (which assumes
affective probability weighting) and the remaining models,
separately for each data set. Vertical lines show 95% confi-
dence intervals of the difference.

set, the PTaps model—which only relies on affective prob-
ability sensitivity—showed nearly the same performance as
the PTapse model. Overall, these results demonstrate that
prospect theory’s performance in accounting for choices be-
tween nonmonetary risky options can be improved without
additional free parameters by assuming an affective probabil-
ity weighting function.

A detailed investigation of the group-level parameter esti-
mates revealed two regularities. First, the estimated proba-
bility sensitivity levels were much lower in the two-outcome
than in the single-outcome data (Fig. 3); this indicates that
differences between probabilities are even less important in
more complex nonmonetary risky decisions. Second, with
the PTapse model and the PTae model—both of which rely
on affective elevation—the range of the group-level posterior
distribution of the δ parameter is greatly reduced in all data
sets except for Su16. This suggests that the high initial un-
certainty in the parameter estimate was caused by the fact
that lower δ values were plausible for choice problems with
less affective outcomes, and higher δ values were plausible
for problems with more affective outcomes. Once the eleva-
tion was tied to the nonmonetary outcome’s magnitude, the
uncertainty in the parameter estimate was greatly reduced.

The shape of the group-level probability weighting func-
tion estimated for the Pa17 data reveals that the transforma-
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Figure 3: Group-level parameter estimates of the probabil-
ity sensitivity (γ) and elevation (δ) parameters for all models
tested, for the single-outcome (a) and two-outcome (b) data
sets. Points represent the median of the posterior distribution
and the horizontal lines are 95% credible intervals.

tion was nearly linear for the least affective outcomes (Fig.
4, top). An increase in the negative affect associated with an
outcome results in the flattening and elevating of the curve;
for the outcomes inducing the strongest negative affect, the
function resembles the pattern associated with probability ne-
glect.

For the two-outcome data with small probabilities, we ob-
served different patterns of probability weighting. The proba-
bility weighting function (Fig. 4, bottom) was almost entirely
flat over the range of probabilities used in the study. The func-
tion changes with an outcome’s affective value mainly with
respect to the elevation. This indicates that for more complex
nonmonetary risky options with small probabilities, the de-
cision weight may reflect the outcome’s relative importance.
In fact, the PTae model outperformed the PTaps model in the
two-outcome data sets, as indicated by a robust difference be-
tween elpds (for the To1 data: 22.2, 95% CI: [7.4, 37]; for the
To2 data: 17.6, 95% CI: [1.67, 33.6]). In the single-outcome
data sets, the PTaps model outperformed the PTae model in
the Pa17 data, (35.3, 95% CI: [22.1, 48.5]). In the Su16 data,
the performance of two models did not differ (2.4, 95% CI:
[−8.8, 13.6]).

Robustness Checks
Alternative Weighting Function. To test to what extent
our results may depend on the choice of a specific probability
weighting function and the assumption of separable weights,

Figure 4: Estimated group-level affective probability weight-
ing functions for choices between drugs with a single side
effect (top) and with two side effects with small probabilities
(bottom).

we conducted additional model comparisons. First, we tested
another form of widely used two-parameter weighting func-
tion proposed by Prelec (1998):

π(p) = exp(−δ(− ln(p))γ). (7)

The parameters γ ∈ [0,1] and δ ∈ [0,1] control the curvature
and the elevation of the function, respectively, as in Equa-
tion 3. One of the minor differences between the two func-
tional forms is that the elevation of the function in Equation
7 increases as the value of the δ parameter decreases. To
integrate affective probability weighting into Equation 7, we
therefore set both parameters to change with affective values
as in Equation 5 (i.e., the parameters γx and δx were forced
to decrease with an increasing absolute affective value a of
the corresponding side effect x). We modeled the Pa17 and
To2 data with the candidate models, now equipped with the
weighting function based on Equation 7. As in the previ-
ous analyses, the PTapse model outperformed the PT model in
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both studies (elpd difference in the single-outcome Pa17 data:
45.6, 95%CI: [38.2, 53]; in the two-outcome To2 data: 181.6,
95%CI: [152.2, 211]).

Probability Weighting with Cumulative Probabilities.
Second, we considered a model with cumulative weights. In
cumulative prospect theory, decision weights W for a risky
option with two negative outcomes x2 < x1 < 0 and corre-
sponding probabilities p2, p1 are given as:

W (p2,x2) = π(p2),

W (p1,x1) = π(p1 + p2)−π(p2),
(8)

where π is a probability weighting function, which we set
to the one used in the main analyses (i.e., Equation 3). When
implementing affective probability weighting based on cumu-
lative weights, it is important to note that π(p1 + p2)≥ π(p2)
always has to be true, because the weights W cannot be nega-
tive. To ensure this, the affective parameters γx and δx should
have the same values in π(p1 + p2) and π(p2). We assumed
that the worse side effect x2 was more important than x1 for
the overall value of the drug and thus used the corresponding
affective value a2 to set the values of γx and δx to determine
the weights within the option. This ensured that the weights
W were always non-negative.

Comparison of the performance of cumulative prospect
theory with standard versus affective weighting functions
in the two-outcome data set again showed that the model
equipped with our proposed affective weighting function out-
performed the standard implementation of the model in both
sessions (elpd difference in the To1 data: 58.2, 95%CI: [49.8,
66.6]; in the To2 data: 63.1, 95%CI: [52.9, 73.3]).1 In con-
clusion, the robustness checks confirmed that assuming an
affective probability weighting function improves the perfor-
mance of both separable and cumulative prospect theory and
that the success of our proposition does not depend on the
form of the weighting function.

Discussion
Recent decades have seen important advances in integrating
cognitive and affective processes in order to account for hu-
man behavior (Dukes et al., 2021). Building on these ad-
vances, we demonstrated that assuming affective probability
weighting substantially improves the ability of prospect the-
ory to predict choices between risky options with nonmone-
tary outcomes. In our proposed probability weighting func-
tion, probability sensitivity and elevation gradually change
with the affective value of the nonmonetary outcome.

The affective probability weighting functions that we ob-
tained for the different data sets are consistent with the frame-
work of the affect heuristic (Slovic et al., 2007), according
to which probability information influences decision making
only when the associated outcomes do not carry much af-
fective information. We observed nearly linear probability

1Cumulative prospect theory reduces to separable prospect the-
ory for risky options with one nonzero outcome; hence, this model
comparison was not meaningful for the Su16 and Pa17 data sets.

weighting functions for the least affective outcomes in the
data sets with single outcomes, and an almost flat weighting
function for the most affective ones (Fig. 4, top). This find-
ing indicates that probability neglect in such simple contexts
occurs only for the most affective outcomes and not for mod-
erately affective outcomes; this highlights the importance of
assuming affective probability sensitivity in this context.

Interestingly, in the data set comprising choices between
drugs with two side effects and small probabilities (i.e., p <
.1), we observed a very low level of probability sensitivity,
which decreased only slightly with increasing affect (Fig.
4, bottom). This result is consistent with the proposal of
Loewenstein et al. (2001) that people perceive small prob-
abilities as subjectively indistinguishable and react only to
the “possibility” of a dreadful event. At the same time, we
observed an important role of affective elevation, with more
affective outcomes having noticeably higher overall decision
weights (Fig. 4, bottom). Thus, in the risky nonmonetary
context with multiple outcomes, more affect-rich outcomes
received higher weights and probabilities were largely ig-
nored.

Johnson and Busemeyer (2016) demonstrated via formal
analysis that the probability weighting function can constitute
high-level representation of an attentional process in risky
choice. In their model, the function’s curvature represents the
tendency for attention to dwell on the associated outcome.
The authors predicted that the tendency to dwell would be
stronger for more affect-rich outcomes, which would result
in a flatter weighting function. However, recent empirical ev-
idence links the curvature of the weighting function to the at-
tention paid to probabilities rather than to outcomes (Pachur
et al., 2018). Our results show that the affective value of a
nonmonetary outcome is related to the function’s curvature
and elevation, which indicates that the outcome induced emo-
tions influence probability weighting. Further research is re-
quired to understand how these results might be linked to at-
tentional processes.

In conclusion, our results indicate that both the curva-
ture and the elevation of the probability weighting function
strongly hinge on the intensity of affect induced by nonmon-
etary risky outcomes. Thus, the exact levels of probability
sensitivity and pessimism/optimism seem to be unique to the
nonmonetary choice problem at hand. Even more impor-
tantly, we proposed a modeling approach that allows to in-
tegrate this effect seamlessly into the formal framework of
prospect theory—without assuming additional estimated pa-
rameters. These results show that taking affective processes
into account is crucial for advancing the understanding of
choices between nonmonetary risky options.
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