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HODGE NUMBERS ARE NOT DERIVED INVARIANTS

IN POSITIVE CHARACTERISTIC

NICOLAS ADDINGTON AND DANIEL BRAGG

Abstract. We study a pair of Calabi–Yau threefolds X and M , fibered
in non-principally polarized Abelian surfaces and their duals, and an
equivalence Db(X) ∼= Db(M), building on work of Gross, Popescu, Bak,
and Schnell. Over the complex numbers, X is simply connected while
π1(M) = (Z/3)2. In characteristic 3, we find that X and M have
different Hodge numbers, which would be impossible in characteristic 0.

In an appendix, we give a streamlined proof of Abuaf’s result that the
ring H∗(O) is a derived invariant of complex threefolds and fourfolds.

A second appendix by Alexander Petrov gives a family of higher-
dimensional examples to show that h0,3 is not a derived invariant in any
positive characteristic.

1. Introduction

What cohomological invariants are preserved by equivalences of derived
categories of coherent sheaves? We consider a smooth proper variety X
over a field k. Certainly the Hochschild numbers hhi = dimHHi(X) are
preserved. If char k = 0 or char k > dimX then these are sums of Hodge
numbers hi,j = dimHj(Ωi

X), namely,

hhi =
∑

j

hj,j−i.

More subtly, Antieau and Vezzosi showed that the same equality holds when
char k = dimX [7, Thm. 1.3].

Popa and Schnell showed that in characteristic zero, the first Betti number
is derived invariant [45], which implies that the Hodge numbers h1,0 = h0,1

are derived invariant. Achter, Casalain-Martin, Honigs, and Vial extended
the result on b1 to positive characteristic [26, Thm. A.1], but there it no
longer implies the result on h1,0 and h0,1, as we will see below. Abuaf
showed that when char k = 0 and dimX ≤ 4, the cohomology ring H∗(OX)
is a derived invariant [1, Thm. 1.3(4)]; in Appendix A we give a streamlined
account of his proof.

It follows Hodge numbers are derived invariants in characteristic zero
when dimX ≤ 3, and a conjecture of Orlov [43, Conj. 1] would imply that
this continues in higher dimensions. In positive characteristic, Antieau and
Bragg showed that Hodge numbers are derived invariants when dimX ≤ 2
[6, Thm. 1.3(1)], and the Euler characteristics χ(Ωi

X) are derived invariants
1
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2 N. ADDINGTON AND D. BRAGG

when dimX = 3 [6, Thm. 5.33]. But in this paper we show that Hodge
numbers of threefolds are not derived invariants in positive characteristic:

Theorem 1.1. There are smooth projective threefolds X and M defined
over F̄3, with Hodge numbers hi,j = hj(Ωi) as shown,

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

X M

1 1
0 0 1 1

0 7 1 1 7 0
= 1 8 8 1 vs. 1 6 6 1

1 7 0 0 7 1
0 0 1 1

1 1

and an F̄3-linear exact equivalence Db(X) ∼= Db(M).

Our threefolds X and M are similar to a pair studied over C by Gross
and Popescu [23, §6], Bak [8], and Schnell [47], which are fibered in (1, 8)-
polarized Abelian surfaces and were the first example to show that π1 is not
a derived invariant. We could not adapt that example to work over F̄2, so
we have taken another example from the same paper of Gross and Popescu
[23, §4], fibered in (1, 6)-polarized Abelian surfaces, and developed it over
both C and F̄3. Over C, the Hodge diamond of either X or M is

1
0 0

0 6 0
1 6 6 1

0 6 0
0 0

1,

(1.1)

but the Hodge numbers jump in different ways when we reduce mod 3.
Two issues arise that were not present in the (1, 8) example. First, the

Abelian fibration X → P1 has some reducible fibers, so more care is required
to construct the dual Abelian fibration M → P1. Second, in the (1, 8)
example, M was isomorphic to the quotient of X by a free action of Z/8×µ8,
but in the (1, 6) example, the analogous action of Z/6×µ6 on X is not free.
The subgroup Z/3×µ3 does act freely, however, and this is enough to make
H1(M,Z/3) 6= 0. Over F̄3, the Artin–Schreier exact sequence

0 // Z/3 // OM
// OM

// 0

f ✤ // f3 − f

yields an injection H1(M,Z/3) →֒ H1(OM ), explaining the jump in h0,1.
Lam also noticed this possibility and discussed it in [39, §9].
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After proving Theorem 1.1 in §2–§5, we compute the crystalline and
Hodge–Witt cohomology of X and M in §6, which clarifies what is going
on with the Hodge numbers. The free parts of these cohomology groups
are the same for X and M , but the torsion parts appear in different places,
reminiscent of the behavior of singular cohomology of complex Calabi–Yau
threefolds seen in [3]. The role that topological K-theory plays for derived
equivalences over C is played here by Hessolholt’s TR invariants, sometimes
called topological restriction homology.

Remarks 1.2.

(a) Van der Geer and Katsura asked whether a Calabi–Yau threefold in
positive characteristic can have h1,0 6= 0 or h2,0 6= 0 in [50, §7]. OurX
shows that h2,0 6= 0 is possible. The quotient X/µ3 shows that h

1,0 6=
0 is possible as well, exactly like Lam’s example of a quintic threefold
modulo µ5 in characteristic 5 [39, Thm. 1.2]. Like that example,
X/µ3 lifts to characteristic zero, giving another counterexample to a
conjecture of Joshi [34, Conj. 7.7.1].

(b) Our M is weakly ordinary by Proposition 6.2, and has 3-torsion
in its Picard group by Proposition 4.3(a), answering a question of
Patakfalvi.

(c) The isogeny class of the reduction (Pic0)red is a derived invariant by
[26, Thm. A.1], but our varieties have Pic0X = 0 and Pic0M = µ3,
showing that it is necessary to take the reduction. On the other
hand, Rouquier showed that Aut0⋉Pic0 is a derived invariant [27,
Prop. 9.45], and in our example the action of Z/6× µ6 on X gives a
copy of µ3 in Aut0X , while the fact that h0(TM ) = h2,0(M) = 0 gives
Aut0M = 0.

(d) Although X and M have different Hodge numbers, we do not expect
them to contradict Orlov’s conjecture mentioned earlier [43, Conj. 1],
which says that they should have isomorphic rational Chow motives.

Questions 1.3.

(a) Antieau and Bragg remarked in [6, Rmk. 5.34] that at least 14
independent linear relations hold among the 16 Hodge numbers of
derived equivalent threefolds in characteristic p ≥ 3. Our example
shows that at most 15 relations hold. We wonder whether the true
number is 14 or 15.

(b) Our M raises questions about the right definition of Calabi–Yau
threefolds in positive characteristic. Of course a Calabi–Yau three-
fold should have trivial canonical bundle, and should not be an
Abelian threefold or a product of an elliptic curve and a K3 surface
(or non-classical Enriques surface). We might consider requiring
π1 = 0, but this is too restrictive, even in characteristic zero, as
discussed in [3]. Many authors require h∗(O) = 1, 0, 0, 1, which our
M does not satisfy. But the first Betti number is a derived invariant,
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as we mentioned above, and in our case b1(X) = b1(M) = 0 by
Proposition 5.4. We suggest that a Calabi–Yau threefold should be
defined (in any characteristic) as one with ω ∼= O and b1 = 0.

(c) Our X deserves further study over C. It is a small resolution of
an intersection of two special cubic fourfolds, similar to the ones
studied by Calabrese and Thomas [16]. The reducible fibers of the
Abelian fibration X → P1 seem to be unions of two sextic elliptic
ruled surfaces, of the kind that appeared in work of Addington,
Hassett, Tschinkel, and Várilly–Alvarado [4]. This would imply
that the special cubics have discriminant 18, so there should be
another Calabi–Yau threefold Z fibered in K3 surfaces of degree
2, a 3-torsion Brauer class α ∈ Br(Z), and a derived equivalence
Db(X) ∼= Db(Z,α).

(d) Still over C, it would be interesting to get hold of the Brauer classes
on X that come from H1(M,Z) = π1(M) = (Z/3)2 via the exact
sequence

0 → H1(M,Z) → Br(X) → Br(M) → 0,

discussed in [3]. Do they account for the whole Brauer group of X,
as Gross and Pavanelli proved in the (1, 8)-polarized example [22]?
One might even try to use these Brauer classes to obstruct rational
points over number fields.

In Appendix B, Alexander Petrov adapts a construction from his paper
[44] to obtain, for any prime p, a pair of varieties X1 and X2 over F̄p with

Db(X1) ∼= Db(X2) but h0,3(X1) 6= h0,3(X2). His varieties, like ours, are
dual Abelian fibrations, and the equivalence is a family version of Mukai’s
equivalence, but otherwise the flavor is quite different: his fibrations are
isotrivial, there is no torsion in crystalline cohomology, and they do not lift
to characteristic zero. The base of his fibration is 4-dimensional, and the
fibers are at least 4-dimensional.

Acknowledgements. We began this project at the conference “Derived
categories and geometry in positive characteristic” in Warsaw in July 2019;
we thank the organizers and IMPAN for their hospitality, and Ben Antieau
for stimulating initial discussions. We thank Mark Gross for advice on [23],
Richard Thomas and Adrian Langer for advice on framed sheaves, and Ben
Young for computer time. Addington was supported by NSF grant no.
DMS-1902213. Bragg was supported by NSF grant no. DMS-1902875.
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2. Construction of X and calculation of its Hodge numbers

In [23, §4], Gross and Popescu studied a complete family of Abelian
surfaces in P5 parametrized by a smooth quadric threefold Q, and the
Calabi–Yau threefolds obtained by restricting this family to lines L ⊂ Q. We
begin by reviewing their construction over C, then analyze what happens
when we carry out the same construction over F̄3.

First, let Z/6 act on P5 by powers of

σ : (x0 : x1 : · · · : x5) 7→ (x5 : x0 : · · · : x4).

Let µ6 act on P5 by powers of

τ : (x0 : x1 : · · · : x5) 7→ (x0 : ξ
−1x1 : · · · : ξ

−5x5),

where ξ is a primitive sixth root of unity. Observe that σ ◦ τ and τ ◦σ agree
up to a power of ξ, so σ and τ commute as automorphisms of P5.1

The space of cubic polynomials invariant under the action of σ2 and τ2

is 8-dimensional, spanned by

f0 = x30 + x32 + x34

f1 = x21x4 + x23x0 + x25x2

f2 = x1x2x3 + x3x4x5 + x5x0x1

f3 = x0x2x4

and σf0, . . . , σf3.
Consider the rational map

φ : P5
99K Gr(2, 4) ⊂ P5

given by the 2× 2 minors of the matrix
(

f0 f1 f2 f3
σf0 σf1 σf2 σf3

)
. (2.1)

This takes values in a linear section Q ⊂ Gr(2, 4) because of the relation

f0 · σf3 − f3 · σf0 = f2 · σf1 − f1 · σf2.

Let X ⊂ P5 ×Q be the graph of φ; then π2 : X → Q is the desired family
of Abelian surfaces.

Given a line L ⊂ Q, the Abelian-fibered threefold X := π−1
2 (L) will turn

out to be Calabi–Yau. The variety of lines on Q is isomorphic to P3, and
for a point

p = (p0 : p1 : p2 : p3) ∈ P3,

we can describe the line L and threefold X explicitly. Let

fp = p0f0 + p1f1 + p2f2 + p3f3,

1Some readers may be interested to know that this action of Z/6×µ6 is related to the
Schrödinger representation of the Heisenberg group. For details see Gross and Popescu’s
paper, or [11, Ch. 6] for a textbook account.
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and let Y ⊂ P5 be the complete intersection cut out by fp and σfp. The
line L is φ(Y ) ⊂ Q. Even more explicitly, the six sextics given by the 2× 2
minors of (2.1) span a 5-dimensional space, of which three vanish on Y ; the
two remaining sextics give a rational map Y 99K P1 = L. Then X ⊂ Y ×P1

is the graph of this rational map, with projections

X
π2 //

π1

��

P1

Y.

Our notation mostly matches Gross and Popescu’s, except that our Y is
their V6,p, and our X is their V 1

6,p.

Gross and Popescu proved in [23, Thm. 4.10] that if the point p ∈ P3

is chosen generically, then Y has 72 ordinary double points and the map
π1 : X → Y is a small resolution of singularities, so X is a smooth Calabi–
Yau threefold. They calculated the Hodge diamond of X to be the one
given in the introduction (1.1). We will end up re-confirming these facts for
a particular choice of p ∈ P3.

Now given a point p ∈ P3 defined over F̄3 (or indeed any field), we can
use the same equations to get a complete intersection Y ⊂ P5, a rational
map Y 99K P1, and its graph X ⊂ Y ×P1.

For definiteness we will choose particular values of p over F̄3 and C. We
expect that the set of p for which the claims in this paper hold is Zariski open,
but to prove this would require substantially more work. Experimentally,
we find that they hold for a few p defined over F9, for most p defined over
F27, for nearly all p defined over F81 and higher, but unfortunately not for
any p defined over F3. We also find that they hold for nearly all p defined
over Q.2

Convention 2.1.

(a) When we discuss X and Y over F̄3, we take

p = (1 : α+ 1 : −α : −α) ∈ P3,

where α is a root of x2 + 2x + 2. (This is the Conway polynomial
used to construct F9 in most computer algebra systems.)

(b) When we discuss X and Y over C, we take

p = (1 : i : 1− i : 1− i) ∈ P3.

We point out that if we regard this choice as being defined over Z[i],
then its reduction modulo 3 gives back our earlier choice over F9,
because i− 1 is a root of x2 + 2x+ 2.

2We will confine our attention to characteristic 0 and 3, but the behavior in
characteristic ≥ 5 seems to be the same as the behavior in characteristic 0, while the
behavior in characteristic 2 is very different: for example, the singularities of Y are not
isolated, and X is not smooth.
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(c) When we do not specify the field, we are making a claim about both
of these.

Proposition 2.2.

(a) Y has isolated singularities.

(b) The map π1 : X → Y is a small resolution of singularities: it is an
isomorphism over the smooth part of Y , the fibers over the singular
points are 1-dimensional, and X is smooth. Thus the canonical
bundle ωX

∼= OX .

(c) Rπ1∗OX = OY , and in particular, h∗(OX) = 1, 0, 0, 1.

(d) Over C we have h∗(TX) = 0, 6, 6, 0.
Over F̄3 we have h∗(TX) = 1, 8, 7, 0.

Proof. Our proof relies on the computer algebra system Macaulay2 [21],
using the code in the ancillary file verify.m2. For readers who prefer
Magma [13], we also provide verify.magma, which cannot do everything
we need, but is faster at the things it can do.

(a) Let Z ⊂ Y be the subscheme cut out by the 2 × 2 minors of the
Jacobian matrix

J =

(
∂fp/∂x0 . . . ∂fp/∂x5

∂(σfp)/∂x0 . . . ∂(σfp)/∂x5

)
. (2.2)

The singular locus of Y is the reduction Zred. With Macaulay2 we find that
Z is zero-dimensional, so Y has isolated singularities.

(b) With Macaulay2 we find that the map π1 : X → Y is smooth of
relative dimension zero away from Z ⊂ Y using the Jacobian criterion.
The equations cutting out X ⊂ Y × P1 are linear in the P1 variables, so
π1 : X → Y has degree 1 away from Z, so it is an isomorphism there. Next
we find that π2 : X → P1 is smooth along π−1

1 (Z), so X is smooth at every
point.

Because Y is an intersection of two cubics in P5, the adjunction formula
gives ωY

∼= OY , so the line bundles ωX and OX agree on the open set U ⊂ X
where π1 is an isomorphism. The complement X \ U has codimension 2, so
ωX

∼= OX .

(c) Macaulay2 gives a free resolution of OX as a sheaf on P5 ×P1:

0 → O(−9,−1)2 → O(−8,−1)9

→ O(−7,−1)12 ⊕ O(−6,−1)8

→ O(−6,−1)3 ⊕ O(−5,−1)18 ⊕ O(−6, 0) (2.3)

→ O(−4,−1)6 ⊕ O(−3,−1)2 ⊕ O(−3, 0)2

→ O → OX → 0.

The terms are π1∗-acyclic, so we can compute Rπ1∗OX by applying π1∗
termwise. The terms of the form O(∗,−1) drop out, leaving the Koszul
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resolution of OY :

0 → OP5(−6) → OP5(−3)2 → OP5 → OY → 0.

So we have Rπ1∗OX = OY , and thus H∗(OX) = H∗(OY ). We compute
H∗(OY ) using the Koszul resolution.

(d) It is infeasible for the computer to find H∗(TX) directly. Instead we
will produce a complex of sheaves on Y that is quasi-isomorphic to Rπ1∗TX ,
and then apply the hypercohomology spectral sequence.

First we study the cotangent complex LY of Y , or rather the tangent
complex L∨

Y . It is a 2-term complex of vector bundles

TP5 |Y → OY (3)
2,

where the underlined term is in degree zero. Or if we replace TP5 with its
Euler resolution, then L∨

Y is quasi-isomorphic to the three-term complex

OY

( x0...
x5

)

−−−−→ OY (1)
6 J
−→ OY (3)

2,

where J is the Jacobian matrix that appeared in (2.2). In the proof of (a)
above we studied the support of coker J , which we called Z ⊂ Y . Using
Macaulay2, we find that the rank of J never drops to 0 on Y , so coker J is
just OZ .

Next we study the tangent complex of the morphism π1 : X → Y . It is
the cone on TX → π∗

1L
∨
Y , which is a 3-term complex of vector bundles

0 → TX → π∗
1TP5 → π∗

1OY (3)
2 → 0.

This complex is exact on the open set U ⊂ X where π1 is an isomorphism.
The complement X \ U has codimension 2, hence depth 2 because X is
smooth and thus Cohen–Macaulay, so by a theorem of Buchsbaum and
Eisenbud [19, Thm. 20.9], the complex is exact except perhaps at the right.
And indeed we see that the cokernel of the last map is

π∗
1 coker J = π∗

1OZ = Oπ−1

1
(Z).

With Macaulay2 we find that π−1(Z) is of the form Z ′ × P1 for a sub-
scheme Z ′ ⊂ Y with the same support as Z. In fact over C we have Z ′ = Z,
but over F̄3 they are different: Z has length 144, while Z ′ has length 72.

Thus TX is quasi-isomorphic to the complex

π∗
1TP5 → π∗

1OY (3)
2 → OZ′×P1 .

The terms are acyclic for π1∗, as we see using the adjunction formula and
the fact that Rπ1∗OY = OX . So Rπ1∗TX is quasi-isomorphic to the complex

TP5 |Y → OY (3)
2 → OZ′ .

We remark that over C, where Z ′ = Z, this means that Rπ1∗TX is just the
tangent sheaf TY := H0(L∨

Y ), whose cohomology can in fact be computed
with Macaulay2, although it is fairly slow.
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Replacing TP5 with its Euler resolution, we get a complex

OY → OY (1)
6 J
−→ OY (3)

2 → OZ′ ,

where the last map is the composition of the map OY (3)
2
։ coker J = OZ

and the map OZ ։ OZ′ . We will compute RΓ(TX) = RΓ(Rπ1∗TX) using the
hypercohomology spectral sequence, which for a complex A• and a left-exact
functor F reads

Ei,j
1 = RjF (Ai) ⇒ Ri+jF (A•).

With F = Γ applied to our complex, the E1 page is

j = 3 k
j = 2 0
j = 1 0
j = 0 k → k36 → k108 → k72

i = −1 i = 0 i = 1 i = 2,

where k is either C or F̄3. In the bottom row, the map k → k36 must be
injective: otherwise the kernel would contribute to H−1(TX). It is straight-
forward to compute the rank of the map k36 → k108 map using Macaulay2:
it is 35 over C or 34 over F̄3.

The map k108 → k72 is more subtle. The computer works on the co-
ordinate ring of Y , that is, on SY := k[x0, . . . , x5]/(fp, σfp). While the
Hilbert polynomial of the module N := coker J ⊗ SY /IZ′ is constantly 72,
the Hilbert function of N does not stabilize immediately; over C it only
becomes constantly 72 in degree d ≥ 1, and over F̄3, in degree d ≥ 2. Thus
we need to compose the natural map S(3)2 → N with a map N → N(d)
given by multiplication with some homogeneous g ∈ SY of degree d ≥ 2 that
does not vanish on Z ′. With this done, we find that the rank is 67 over C

or 66 over F̄3.
Now from the E2 page on, there is nowhere for the differentials to go,

so the spectral sequence degenerates, giving h∗(TX) = 0, 6, 6, 0 over C or
1, 8, 7, 0 over F̄3. �

Remark 2.3. It may be surprising that h0(TX) = 1 when we work over
F̄3, meaning that X carries a non-trivial vector field, because this cannot
happen for Calabi–Yau threefolds defined over C. The vector field comes
from the action of µ3 on X generated by τ2, which will turn out to be free
(Proposition 4.6), and yields an injection µ3 →֒ Aut(X) as we mentioned in
Remark 1.2(c). Over F̄3, the finite group scheme µ3 is non-reduced, and the
tangent space at the identity is 1-dimensional, giving a non-zero element of
H0(TX). Over the complex numbers, µ3 still acts freely on X, but it is a
discrete group isomorphic to Z/3.
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Corollary 2.4. Over F̄3, the Hodge numbers of X are as claimed in Theo-
rem 1.1. Over C, they are as shown in (1.1).

Proof. By Proposition 2.2(b), we have ωX
∼= OX , and therefore Ω2

X
∼= TX .

The claimed values of h∗(Ω2
X) follow from Proposition 2.2(d), and those of

h∗(ΩX) follow by Serre duality. The Hodge numbers h∗(OX) = h∗(Ω3
X) are

given in Proposition 2.2(c). �

3. Construction of M and the derived equivalence

In the last section we constructed a Calabi–Yau threefold X ⊂ P5 ×P1,
defined over either C or F̄3. The projection π2 : X → P1 has many sections
coming from Z ′ ×P1 ⊂ X, where Z ′ ⊂ Y ⊂ P5 is a subscheme of length 72
that appeared in the proof of Proposition 2.2. In this section we show that
π2 is an Abelian surface fibration, we will construct a dual Abelian surface
fibration M → P1, depending on a choice of section of π2, and we will show
that there is a universal sheaf on X ×P1 M that induces an equivalence
Db(X) ∼= Db(M) following Schnell’s argument in [47, §5].

Proposition 3.1. The map π2 : X → P1 is flat. A general fiber is smooth,
and is an Abelian surface.

Proof. Flatness follows from [24, III Prop. 9.7], because X is integral, P1 is
a smooth curve, and π2 has sections and thus is dominant.

With Macaulay2 we find a smooth fiber A of π2, continuing to use the
ancillary file verify.m2. The normal bundle of A in X is trivial, because
it is the fiber of a map to a smooth curve, so by the adjunction formula
we have ωA = OA, and the resolution (2.3) gives χ(OA) = 0. Over C, this
implies that A is an Abelian surface. Over F̄3, Bombieri and Mumford’s
classification [12] implies that A is either an Abelian surface or a quasi-
hyperelliptic surface. We will show that the former holds by computing the
second Betti number of A.

Let k = F̄3, let W be the ring of Witt vectors of k, and let K be the
field of fractions of W . Our point p ∈ P3 defined over k lifts to a point
defined over W , so our equations for the threefold Y and for the rational
map Y 99K P1 lift to W , so the graph X of the rational map lifts as well.
Let XW → Spec(W ) be the lift. The special fiber X = Xk is smooth, and
the general fiber XK is 3-dimensional, so it is smooth as well.

The fibers of Xk → P1
k are 2-dimensional, so the fibers of XK → P1

K are
at most 2-dimensional by semicontinuity, and at least 2-dimensional because
they are fibers of a map from a threefold to a smooth curve. Thus every
fiber of Xk → P1

k lifts to characteristic zero, and the smooth fibers lift to
smooth surfaces with ω = O and χ(O) = 0. Thus the fibers over K are
Abelian surfaces and have b2 = 6, so the fibers over k also have b2 = 6, so
they are Abelian surfaces by [12, Thm. 6]. �
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We want to construct a dual Abelian surface fibration: precisely, let V ⊂
P1 be the open set over which π2 is smooth, let X◦ = π−1

2 (V ) ⊂ X, and
let M◦ → V be the relative Pic0 of X◦ → V ; then we want to construct
M → P1 as a compactification of M◦.

If the fibers of π2 were all integral, we could take M to be the closure of
M◦ in the moduli space of semistable sheaves of rank 1 on the fibers of π2.
Then all the sheaves would in fact be stable, and because π2 has sections,
there would be a universal sheaf on X×P1M , which would eventually induce
a derived equivalence Db(X) ∼= Db(M). But π2 has some reducible fibers,
and we are unable to avoid properly semistable sheaves, even by varying the
polarization.

We can overcome this issue by choosing a preferred section Σ ∼= P1 ⊂ X
of the projection π2. Really we want to define M as the closure of M◦

in a moduli space of framed sheaves, where a point of the moduli space
parametrizes a pure sheaf L on the fiber A ⊂ X, with the same Hilbert
polynomial as OA, together with a surjection L ։ OA∩Σ. But the literature
on framed sheaves only deals with smooth varieties in characteristic 0;
perhaps it is straightforward to adapt the theory to families of varieties,
with reducible fibers, in positive characteristic, but we do not want to carry
out that foundational work, nor to leave it as an exercise to the reader.
Instead we will blow up the section and take the closure of M◦ in a moduli
space of sheaves on the blow-up, and then show that those sheaves descend
to X. Yet another approach would have been to take the moduli space of
rank-1 pure sheaves L such that L ⊗ IΣ is stable, but this is technically
more difficult.

So we construct M . Fix a section Σ ∼= P1 ⊂ X of π2, and let X̃ be the
blow-up of X along Σ as shown:

X̃

̟

��

⊃ E

��
P5 X

π1oo

π2

��

⊃ Σ

P1.

σ

GG✍✍✍✍✍✍

Lemma 3.2. Let E ⊂ X̃ be the exceptional divisor of the blow-up ̟, and
let H ∈ Pic(X) be the pullback of the hyperplane class from P5, which is
relatively ample for π2. Then ̟∗2H − E is relatively ample for π2 ◦̟.

Proof. The fibers of π2 are embedded in P5, so the fibers of π2 ◦ ̟ are
embedded in the blow-up of P5 at a point. The latter is naturally embedded
in P5×P4, and the restriction of OP5×P4(1, 1) turns out to be̟∗2H−E. �
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Proposition 3.3. Let X◦ → V and M◦ → V be as above. Embed M◦ into
the moduli space of (̟∗2H − E)-semistable sheaves on the fibers of π2 ◦̟
by sending a line bundle L on a fiber of π2 to ̟∗L, and let M be the closure
of M◦ in this embedding. Then

(a) M is flat over P1,

(b) M parametrizes only stable sheaves,

(c) there is a universal sheaf P̃ on X̃ ×P1 M , and

(d) P̃ descends a sheaf P on X ×P1 M .

Proof. (a) Flatness follows from [24, III Prop. 9.8], because M◦ was flat over
V ⊂ P1 and M was obtained by taking the closure in a projective scheme
over P1.

(b) (c) Let A ⊂ P5 be a smooth fiber of π2, and let Ã be its blow-up at the
point A ∩Σ. From the resolution (2.3) we find that the Hilbert polynomial
of OA with respect to H is 6t2. Thus the Hilbert polynomial of OÃ with
respect to ̟∗2H − E is

χ(̟∗
OA(2tH)⊗ OÃ(−tE)) = χ(OA(2tH)⊗̟∗OÃ(−tE))

= χ(OA(2tH)⊗ I
t
pt/A).

In K-theory, we have I t
pt/A = OA −

(
t+1
2

)
Opt, so this Hilbert polynomial

equals
6(2t)2 −

(
t+1
2

)
= 47

(
t+1
2

)
− 24t.

Because 47 and 24 are coprime, all semistable sheaves with this Hilbert
polynomial are stable, and there is a universal sheaf P̃ on X̃ ×P1 M by [28,
Cor. 4.6.6].

(d) We set P = (̟×1)∗P̃ , and we argue that the counit of the adjunction

(̟ × 1)∗(̟ × 1)∗P̃ → P̃

is an isomorphism. Because P̃ is flat over M , it is enough to check that
the restriction of this map to the fiber of X̃ ×P1 M over any closed point
of M is an isomorphism. Suppose that we are given a closed point of M
parametrizing a sheaf L on a fiber Ã ⊂ X̃ of π2 ◦̟. Because X̃ is flat over
P1, the restriction of the counit above is just the counit

̟∗̟∗L → L,

and we want to argue that this is isomorphism. Because Ã is the blow-up of
a fiber A ⊂ X of π2 at a smooth point, it is enough to show that L is locally
free in a neighborhood of the exceptional line in Ã, and that its restriction
to that exceptional line has degree zero.

For this last claim we appeal to Altman and Kleiman [5], the lemma in
Step XII of the proof of Theorem 3.2, which states that for a family of rank-1
torsion-free sheaves on the fibers of a smooth, finitely presentable morphism
with integral geometric fibers, being locally free is a closed condition. (It is
also an open condition, but that is more elementary.) Our map π2 : X →
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P1 has finitely many singular fibers, of which some are reducible, but we
can get an open set W ⊂ X that contains the section Σ by deleting the
points at which π2 is not smooth, and for the reducible fibers, deleting the
components that do not meet Σ. Then we apply the lemma to the restriction
of P̃ to ̟−1(W ) ×P1 M , and recall that M was defined as the closure of
a space parametrizing line bundles. Moreover, because those line bundles
were pulled back fromX, their restrictions to the exceptional P1s had degree
zero, so this remains true in the limit. �

We will find that the following theorem applies to our X, M , and P .

Theorem 3.4 (Bridgeland and Maciocia). Let X be a smooth projective
variety of dimension n over an algebraically closed field k of arbitrary char-
acteristic. Let M be an irreducible projective scheme of the same dimension
n over k. Let P be a sheaf on X ×M , flat over M .

Suppose that for each closed point y ∈ M , the sheaf Py on X satisfies
HomX(Py , Py) = k, the Kodaira–Spencer map TyY → Ext1X(Py, Py) is
injective, and Py ⊗ ωX

∼= Py. Suppose that for distincted closed points
y1, y2 ∈ M we have HomX(Py1 , Py2) = 0, and that the closed subscheme

Γ = {(y1, y2) ∈ M ×M : ExtiX(Py1 , Py2) 6= 0 for some i ∈ Z}

has dimension at most n+ 1.
Then M is smooth, and the functor Db(X) → Db(M) induced by P is an

equivalence.

Proof. This is a slight generalization of [15, Thm. 6.1], and the proof is
essentially the same; we only remark on the changes needed. First, while
Bridgeland and Maciocia state all their results over C, they do not use any
special properties of working in characteristic zero such as generic smooth-
ness, and the crucial [15, Thm. 4.3] is valid over an arbitrary field, as Bridge-
land and Iyengar show in [14] which corrects the proof of [15, Thm. 4.3]. On
the other hand, they reason extensively with closed points, so we retain the
hypothesis that k is algebraically closed.

The other difference between Bridgeland and Maciocia’s statement and
ours is that they require the Kodaira–Spencer map to be an isomorphism,
whereas we only require it to be injective. But inspecting the last paragraph
of their proof, we see that injectivity is enough. And in fact Bridgeland and
Maciocia use this in their own application [15, Thm. 1.2], because they ask
for an irreducible component, rather than a connected component, of the
moduli space of sheaves. The latest arXiv version of their paper includes a
new Footnote 2 saying the same thing. �

Proposition 3.5. Theorem 3.4 applies to the X, M , and P constructed in
this section. Thus M is smooth, and Db(M) ∼= Db(X).

Proof. This is entirely similar to [15, §7.3], but for the reader’s convenience
we go through the details.
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Let y1, y2 ∈ M . We have

HomX(Py1 , Py2) = HomX̃(̟∗Py1 ,̟
∗Py2)

because ̟∗OX̃ = OX . Because the ̟∗Pyi are stable sheaves, this Hom
space is 1-dimensional if y1 = y2 and zero if y1 6= y2. Similarly, the Kodaira-
Spencer map is injective because ̟∗ is fully faithful and M is a subvariety
of the moduli space of stable sheaves on X̃ . We have Pyi ⊗ωX

∼= Pyi because
ωX

∼= OX .
It remains to show that Γ is at most 4-dimensional. If y1, y2 ∈ M map to

different points of P1, then Py1 and Py2 are supported on different fibers of
π2 : X → P1, so there are no Exts between them. If y1 and y2 are distinct
but map to the same point of V ⊂ P1, then Py1 and Py2 are different line
bundles of degree 0 on a smooth Abelian surface, so again there are no Exts
between them. Thus we see that

Γ ⊂ (N1 ×N1) ∪ · · · ∪ (Nk ×Nk) ∪∆,

where N1, . . . , Nk ⊂ M are the fibers over the finite set P1 \V . These fibers
are 2-dimensional because M is flat over P1, and ∆ is 3-dimensional, so Γ
is at most 4-dimensional, as desired. �

4. The Picard scheme of M

Now we have smooth Calabi–Yau threefolds X and M , defined over either
C or F̄3, and dual Abelian surface fibrations X → P1 and M → P1. In this
section we compute PicτM , the “torsion component of the identity” of the
Picard scheme of M which parametrizes numerically trivial line bundles. In
the next section we will use it to find the Hodge numbers of M .

Proposition 4.1. π1(X) = 0.

Proof. Over C we follow Gross and Pavanelli [22, Thm. 1.4]. A smooth com-
plete intersection of two cubics in P5 is simply connected by the Lefschetz
hyperplane theorem. The degeneration to a nodal complete intersection
Y ⊂ P5, followed by the the small resolution X → Y , has the effect of
cutting out a D3×S3 for each node, and gluing in an S2×D4, which leaves
π1 unchanged by van Kampen’s theorem.

Over F̄3, we lift X to W as in the proof of Proposition 3.1. The geomet-
ric general fiber is simply connected, and the specialization map on π1 is
surjective by [49, Tag 0C0P], so the special fiber is simply connected. �

Proposition 4.2. PicX = Z6.

Proof. Over C, we know that the Picard group is free Abelian because
π1(X) = 0, and we know its rank by the Lefschetz theorem of (1, 1) classes
and the Hodge numbers given in (1.1). We conclude that the group scheme
PicX is isomorphic to Z6.

Over F̄3, we again liftX toW , and apply [20, Prop. 4.2] to deduce that Pic
is flat over Spec(W ); to use this reference, recall that h1(OX) = h2(OX) = 0
by Proposition 2.2(c). �

https://stacks.math.columbia.edu/tag/0C0P
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Proposition 4.3.

(a) PicτM = Z/3× µ3.

(b) Over C we have π1(M) = (Z/3)2. Over F̄3 we have πét
1 (M) = Z/3.

Let us outline the proof, which will occupy the rest of the section. At the
beginning of our construction in §2, the group G := Z/6 × µ6 acted on P5

by powers of σ and τ . We will show that G acts on X, though not freely,
and that X/G is birational to M . We will take a crepant resolution X̂/G of
X/G, giving a smooth threefold whose canonical bundle is numerically trival.

Thus by [37, Cor. 3.54], the birational map X̂/G 99K M is an isomorphism
away from a set of codimension 2 on either side,3 so the Picard schemes of
X̂/G and M are isomorphic. We will conclude by computing Picτ

X̂/G
.

Lemma 4.4. Let G = Z/6×µ6 act on P5 by powers of σ and τ as introduced
at the beginning of §2. Then G acts on the singular threefold Y ⊂ P5 and
its small resolution X ⊂ P5 ×P1.

Proof. The cubic polynomials f0, . . . , f3 were preserved by σ2 and τ2 by
construction, and in fact they are preserved by τ as well. Thus fp, which
is a linear combination of f0, . . . , f3, is preserved by σ2 and τ . And Y ,
which is cut out by fp and σfp, is preserved by all of G. The rational map
φ : Y 99K P1 ⊂ Gr(2, 4) given by the 2 × 2 minors of the matrix (2.1) is G-
equivariant, with G acting trivially on the target, so G perserves the graph
of φ, which is X. �

Proposition 4.5. The quotient X/G is birational to M .

Proof. As in the last section, let V ⊂ P1 be the open set over which X is
smooth, and consider the smooth fibrationsX◦ → V and M◦ → V . We have
fixed a section ofX◦ → V , so these are dual Abelian schemes, andG becomes
a subgroup scheme of X◦ by acting on the section. The polarization H from
Lemma 3.2 determines an isogeny X◦ → M◦, and because G preserves H,
we see that G is contained in the kernel of this isogeny. We have seen that
χ(OA(H)) = 6 for a fiber A ⊂ X◦, so the kernel has degree 62 = 36 by [41,
§III.16], so G is the whole kernel, and we conclude that X◦/G is isomorphic
to M◦. �

Proposition 4.6. Write G = G′ × G′′, where G′ = Z2 × µ2 is generated
by σ3 and τ3, and G′′ = Z/3 × µ3 is generated by σ2 and τ2. Acting on
X, each non-trivial element of G′ fixes a pair of disjoint, smooth, genus-1
curves, which moreover are disjoint from one another. The action of G′′ on
X/G′ is free.

Proof. We check this using Macaulay2, continuing to use the ancillary file
verify.m2. �

3In fact we expect that the birational map is an isomorphism, but to prove this,
following Schnell’s argument in [47, Lem. 5.4], would require a detailed analysis of the
singular fibers of X → P

1 and M → P
1.
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Let C1, C2 ⊂ X be the curves fixed by σ3, let C3 and C4 be the curves
fixed by τ3, and let C5 and C6 be the curves fixed by σ3τ3. Observe that
σ3 switches C3 ∪ C4 with C5 ∪ C6.

Let X̂ → X be the blow-up of X along these six curves, with exceptional
divisors E1, . . . , E6 ⊂ X̂ . Then X̂/G′ is smooth, by a special case of the

Chevalley–Shephard–Todd theorem: the involution σ3 acts on X̂ fixing a
disjoint union of smooth divisors, so X̂/σ3 is smooth, and then the same

can be said of τ3 acting on X̂/σ3.

Proposition 4.7. The canonical bundle of X̂/G′ is trivial.

Proof. We know that ωX = OX , so ωX̂ = OX̂(E1 + · · ·+E6). To pass from
this to ωX̂/G′ is a Riemann–Hurwitz type calculation. The branched double

cover f : X̂ → X̂/σ3 is ramified along E1 ∪ E2, so the relative canonical
bundle of f is OX̂(E1 + E2), so the canonical bundle of the quotient is

O(f(E3) + f(E4)). Similarly, the branched double cover X̂/σ3 → X̂/G′ is

ramified along f(E3)∪f(E4), so the canonical bundle of X̂/G′ is trivial. �

Proposition 4.8. π1(X̂/G′) = 0 and Picτ
X̂/G′

= 0.

Proof. Because X̂ is the blow-up of X along six disjoint smooth curves, we
have π1(X̂) = 0 and PicX̂ = Z12. We will argue that the branched double

cover f : X̂ → X̂/σ3 induces a surjection on π1 and an injection on Picard
schemes. Then the same argument holds for the branched double cover
X̂/σ3 → X̂/G′.

For surjectivity on π1, we use a result of Kóllar [36, Cor. 6]: f is flat,

hence is universally open, and the fiber product X̂ ×X̂/G′ X̂ is connected

because the diagonal and the anti-diagonal meet along the ramification
divisor. Kollár’s result also holds for topological fundamental groups of
schemes over C, as he remarks in [36, Paragraph 11].

For injectivity on Picard schemes, we first claim that the kernel of

f∗ : PicX̂/σ3 → PicX̂

is 2-torsion. If L ∈ Pic(X̂/σ3) satisfies f∗L = OX̂ , then f∗f
∗L = f∗OX̂ , so

L⊗ f∗OX̂ = f∗OX̂ . Taking determinants, and noting that f∗OX̂ is a vector

bundle of rank 2, we see that L⊗2 is trivial. This argument works in families,
so it works for Picard schemes as well as Picard groups.

Now a 2-torsion group scheme over an algebraically closed field of charac-
teristic 6= 2 is discrete, so it is enough to show that there is no 2-torsion
in the Picard group of X̂/σ3. But a line bundle L ∈ Pic(X̂/σ3) with
L⊗2 = O would give an étale double cover, which is impossible because
π1(X̂/σ3) = 0. �
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Proposition 4.9.

(a) The quotient X̂/G is smooth, its canonical bundle is numerically
trivial, and Picτ

X̂/G
= Z/3× µ3.

(b) Over C we have π1(X̂/G) = (Z/3)2.

Over F̄3 we have πét
1 (X̂/G) = Z/3.

Proof. (a) Writing X̂/G = (X̂/G′)/G′′ we see that it is smooth because

X̂/G′ is smooth and G′′ acts freely on X̂/G′. We know that ωX̂/G′ is trivial,

so ωX̂/G is torsion, hence is numerically trivial. We know that Picτ
X̂/G′

= 0,

so Picτ
X̂/G

is isomorphic to the Cartier dual of G′′ by [51, Cor. 1.2], which

draws on [32]. Note that G′′ = Z/3× µ3 is its own Cartier dual.

(b) Over either field we have π1(X̂/G′) = 0. Over C, the quotient map

X̂/G′ → X̂/G is étale and gives π1(X̂/G) ∼= G′′ ∼= (Z/3)2. Over F̄3, we
factor it into a quotient by µ3, which is a universal homeomorphism and
hence induces an isomorphism on π1 [49, Tag 0BQN], followed by a quotient

by Z/3, which is étale and gives π1(X̂/G) ∼= Z/3. �

5. Hodge numbers of M

In §2 we found the Hodge numbers of X, and in the last section we found
PicτM . In this section we deduce the Hodge numbers of M , completing the
proof of Theorem 1.1. We also record the Hochschild homology groups, de
Rham cohomology groups, and Betti numbers, for use in the next section.

Proposition 5.1. The Hochschild homology groups of X and M are iso-
morphic. Over C, their dimensions are:

i −3 −2 −1 0 1 2 3

hhi 1 0 6 14 6 0 1

Over F̄3, their dimensions are:

i −3 −2 −1 0 1 2 3

hhi 1 1 8 16 8 1 1

Proof. Hochschild homology is an invariant of the derived category, and
we have seen that Db(X) ∼= Db(M). Over C, the Hochschild–Kostant–
Rosenberg theorem implies that the Hochschild numbers are the sums of
the columns of the Hodge diamond. Over F̄3, a result Antieau and Vezzosi
[7, Thm. 1.3] gives the same conclusion, because X is a smooth projective
threefold. The Hodge numbers of X were determined in Corollary 2.4. �

Proposition 5.2. Over C, the Hodge numbers of M are equal to those of
X. Over F̄3, they are as claimed in Theorem 1.1.

Proof. Over C this is automatic, as discussed in the introduction, so we
focus on F̄3.

https://stacks.math.columbia.edu/tag/0BQN
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For general reasons, H1(OM ) is the tangent space to PicM at the origin.
By Proposition 4.3(a) we have PicτM = Z/3×µ3, so Pic0M = µ3, so h0,1 = 1.
Because ωM

∼= OM we get h3,1 = 1, and by Serre duality we get h3,2 =
h0,2 = 1.

Again by [7, Thm. 1.3], the Hochschild numbers of M are the sums of the
columns of the Hodge diamond, so the Hodge diamond must be of the form

1
1 x

1 7 0
1 y y 1

0 7 1
x 1

1,

where x+ y = 7. We will argue that x = h1,0 is equal to 1.
A theorem of Oda [42, Cor. 5.12] gives an injection

DM(PicM [V ]) →֒ H0(Ω1
M ), (5.1)

where PicM [V ] is the subgroup scheme of PicM annihilated by the Ver-
schiebung operator and DM(PicM [V ]) is its covariant Dieudonné module.
Because V F = FV = 3, we see that PicM [V ] is contained in the 3-torsion
subgroup PicM [3] = Z/3 × µ3. Frobenius acts as the identity on Z/3 and
annihilates µ3, and Verschiebung does the reverse, so PicM [V ] = Z/3Z,
whose Dieudonné module is F̄3.

Oda’s result also describes the image of (5.1) as the subspace of indef-
initely closed 1-forms. A 1-form α ∈ H0(Ω1

M ) is called indefinitely closed
if dα = 0, d(Cα) = 0, d(C2α) = 0, and so on, where d is the de Rham
differential and Cn is the iterated Cartier operator, defined on ker(d ◦
Cn−1) ⊂ H0(Ω1

M ).4 Our case is particularly simple: we have seen that
H0(Ω2

M ) = 0, so d = 0, so every 1-form is indefinitely closed, and hence
(5.1) is an isomorphism. �

Proposition 5.3. Over C, the de Rham cohomology groups of X and M
are isomorphic, and their dimensions are:

i 0 1 2 3 4 5 6

hidR 1 0 6 14 6 0 1

Over F̄3, the de Rham cohomology groups of X and M are different, and
their dimensions are:

i 0 1 2 3 4 5 6

hidR(X/F̄3) 1 0 8 18 8 0 1

hidR(M/F̄3) 1 2 8 14 8 2 1

4Oda denotes the Cartier operator by V rather than C; see [42, Def. 5.5].
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Proof. Over C, the Hodge–de Rham spectral sequence always degenerates
at the E1 page, so the de Rham numbers are the sums of the rows of the
Hodge diamond. Over F̄3, the spectral sequence degenerates for X because
X lifts to W , as we saw in the proof of Proposition 3.1. Thus it degenerates
for M by [6, Thm. 2.6]. �

Proposition 5.4. Over either C or F̄3, the Betti numbers of X and M are:

i 0 1 2 3 4 5 6

bi 1 0 6 14 6 0 1

Proof. In characteristic zero, the Betti numbers are the same as the de Rham
numbers. Over F̄3, we again use the fact thatX lifts toW , together with the
fact that Betti numbers are deformation invariant, so the Betti numbers of
X over F̄3 are the same as in characteristic zero. Betti numbers are derived
invariants of threefolds by [6, Thm. 1.2(5)], giving the result for M . �

Remark 5.5. Since X lifts to the ring of Witt vectors W of k := F̄3, it is
interesting to ask whether M lifts to W , or at least to the truncation W2 [6,
Question 2.7]. If M is in fact isomorphic to X/G, and not just birational,
then it does lift, at least for our choice of parameters p ∈ P3. (For other
choices there might be an issue with the fixed locus of G looking different
over the field of fractions K than it looks over k.) The construction of M as
a moduli space need not lift to W , because we found a section of X → P1

by choosing a point of Z ⊂ P5, and Z may not have K-rational points. But
Z does have rational points over a finite extension of K, so at the very least
M lifts to a ramified cover of W .

On the other hand, we will see in the next section that M is weakly
ordinary and hence F -split, so it lifts to W2 as Achinger and Zdanowicz
discuss in [2, §1.3].

6. Hodge–Witt and crystalline cohomology

In this section we work exclusively over k := F̄3. Recall that a proper
variety of dimension n over a perfect field of positive characteristic is called
weakly ordinary or 1-ordinary if the action of absolute Frobenius on Hn(O),
also known as the Hasse–Witt matrix, is bijective.

Proposition 6.1. X is weakly ordinary.5

Proof. We have seen that the resolution of singularities π1 : X → Y ⊂ P5

satsifies Rπ1∗OX = OY , so it is enough to show that Y is weakly ordinary.
Because Y is a complete intersection cut out by two cubic polynomials
fp and σfp in k[x0, . . . , x5], the Hasse–Witt matrix is given by the coef-
ficient of (x0x1x2x3x4x5)

2 in (fp · σfp)
2: this is similar to well-known fact

5We remind the reader that we have chosen a particular threefold X in a family of
threefolds parametrized by P

3. We do not claim that every smooth member of this family
is weakly ordinary, only the one we have chosen, and thus a Zariski open set of them.
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about elliptic curves [24, Prop. IV.4.21], whose generalization to higher-
dimensional hypersurfaces appears in [35, Special Case 2.3.7.17], and to
complete intersections in [38, Prop. 4.1]. We check that this coefficient is
non-zero with Macaulay2. �

We continue to let W be the ring of Witt vectors of k, and to let K =
W [1/3] be the field of fractions of W , which is the universal unramified
extension of Qp. We let σ denote the Frobenius automorphism of k or W
or K. This conflicts with our earlier use of σ as the generator of Z/6 acting
on P5, but it should not cause confusion.

We are interested in the Hodge–Witt cohomology groups Hj(WOX) and
Hj(WΩi

X), for which our main reference is Illusie’s paper [29], but we
also recommend Chambert-Loir’s survey paper [17]. They are Dieudonné
modules, meaning that they are W -modules equipped with a σ-semilinear
endomorphism F (Frobenius) and a σ−1-semilinear endomorphism V (Ver-
schiebung) that satisfy FV = V F = 3.

Proposition 6.2. Weak ordinarity is invariant under derived equivalences.
Thus M is also weakly ordinary.

Proof. For simplicity we deal with threefolds, but the same proof works in
higher dimensions. Start with the exact sequence

0 → WOX
V
−→ WOX → OX → 0.

Take top cohomology and add Frobenius maps to get the following diagram:

H3(WOX)
V //

F
��

H3(WOX) //

F
��

H3(OX) //

F
��

0

H3(WOX)
V // H3(WOX) // H3(OX) // 0.

Weak ordinarity means that that the right-hand vertical map is bijective.
This is determined by the left-hand square, which is determined by H3(WOX)
as a Dieudonné module, and this is a derived invariant by [6, §5]. �

We examine the rational crystalline cohomology groups

H∗(X/K) := H∗(X/W )⊗K

and their slopes, which encode the action of Frobenius. For varieties of
dimension ≤ 3, these are derived invariants by [6, Thm. 5.15].

Proposition 6.3. The slopes of Hi(X/K) and Hi(M/K) for i 6= 3 are as
follows:

i 0 1 2 3 4 5 6

Hi(−/K) K(0) 0 K6(−1) ? K6(−2) 0 K(−3)
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Proof. The dimensions are the same as the Betti numbers, which we com-
puted in Proposition 5.4, so it remains to determine the slopes. For i = 0
and i = 1 there is nothing to say. For i = 2, we found in Proposition 4.2
that Pic(X) = Z6; the first Chern class map

c1 : Pic(X)⊗K → H2(X/K)

is injective and takes values in the slope-1 part, so H2(X/K) is all slope 1
as claimed. The claims for i = 4, 5, 6 follow by Poincaré duality. �

It is difficult to get complete information about the slopes of H3(X/K) ∼=
H3(M/K) ∼= K14. In theory we could find them by counting points: X is
defined over F9, and if we could compute #X(F9k) for sufficiently many
k then we could determine the zeta function of X, which determines the
slopes. But in practice it is infeasible to compute these point counts.

We can get partial information about these slopes, however, from the
fact that X and M are weakly ordinary. We first find the Hodge polygon of
H3(M/W ) using [17, II Thm. 2.3(ii)]. From the universal coefficient theorem

0 → H3(M/W )⊗ k → H3
dR(M/k) → TorW1 (H4(M/W ), k) → 0 (6.1)

and the fact that h3dR(M) = b3(M), we see that H3(M/W ) is torsion free.
The Hodge–de Rham spectral sequence degenerates for M , as we saw in
the proof of Proposition 5.3. Thus the Hodge polygon of H3(M/W ) is
determined by the middle row of the Hodge diamond, which is 1, 6, 6, 1. We
conclude that the Hodge polygon of H3(M/W ) has vertices

(0, 0), (1, 0), (7, 6), (13, 18), (14, 21),

as depicted by the thick line in the following picture.

Our calculations with TR below will show that the Hodge polygons of
H3(M/W ) and H3(X/W )/tors are equal. The Newton polygon, built from
the slopes of H3(M/K), is concave up, and lies on or above the Hodge
polygon. Furthermore, by [2, Prop. 2.4.1], weak ordinarity ofM is equivalent
to the first segment of the Newton polygon being the same as that of the
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Hodge polygon. Thus the slope 0 part of H3(X/K) ∼= H3(M/K) is 1-
dimensional, and by Poincaré duality, the slope 3 part is 1-dimensional as
well. We conclude that the Newton polygon lies on or below the polygon with
vertices (0, 0), (1, 0), (13, 18), (14, 21), depicted as the thin line in the picture
above. Even with the added constraints coming from Poincaré duality, there
remain many possibilities for the Newton polygon.

Let

a = dimK H3(X/K)[1,2) and b = dimK H3(X/K)[2,3),

which satisfy a+ b = 12. It seems reasonable to expect that a = b = 6, so
the Hodge and Newton polygons of H3(M/W ) coincide and M is strongly
ordinary ; this is an open condition in moduli space, but we do not know if
it is non-empty.

Because X is weakly ordinary and has trivial canonical bundle, it is F -
split [40, Prop. 9], and because dimX = 3, this implies that the Hodge–
Witt cohomology groups Hj(WΩi

X) are finitely generated W -modules [33,
Cor. 6.2]. Thus by [31, (2.3)], the slope spectral sequence

Ei,j
1 = Hj(WΩi

X) ⇒ Hi+j(X/W )

degenerates at the E1 page, and the filtration splits, giving

Hk(X/W ) =
⊕

i+j=k

Hj(WΩi
X).

The same holds for M , since it is also weakly ordinary and has trivial
canonical bundle.

Proposition 6.4. The Hodge–Witt cohomology of M is as follows:

H3 W 0 k W

H2 k W a W 6 k

H1 0 W 6 ⊕ k W b 0

H0 W 0 0 W

WOM WΩ1
M WΩ2

M WΩ3
M

All torsion is semisimple6 and is annihilated by V .

Proof. By [29, II Cor. 3.5], we have Hj(WΩi
M) ⊗ K = Hi+j(M/K)[i,i+1),

which determines the ranks of the free parts, so we need only determine the
torsion parts.

There is no torsion in the bottom row by [29, II Cor. 2.17], nor in
H1(WOM ) by [29, II Prop. 2.19], nor in H3(WΩ3

M ) by [29, II Cor. 3.15].

6A finite-length Dieudonné module is called semisimple torsion if the action of F is
bijective, and nilpotent torsion if the action of F is nilpotent. A general finite-length
Dieudonné module can be written uniquely as an extension of semisimple torsion by
nilpotent torsion. For us the nilpotent torsion will always vanish.
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There is no torsion along the diagonals i+j = 3 or i+j = 4: we have seen
that there is no torsion in H3(M/W ) thanks to the exact sequence (6.1) and
the fact that h3dR(M) = b3(M), and the third term in the sequence shows
that there is no torsion in H4(M/W ) either.

From [29, II Prop. 6.8] and the fact that H0(WΩ2
M ) = 0, we see that the

torsion H1(WΩ1
M ) is isomorphic to the torsion in NS(M) tensored with W .

From Proposition 4.3(a) we know that PicτM = Z/3 × µ3, so the torsion in
NS(M) is Z/3, so the torsion in H1(WΩ1

M) is k. It is semisimple because
the action of F on Z/3⊗W is defined to be 1⊗ σ.

By [29, II Rmk. 6.4], the V -torsion submodule H2(WOM )[V ∞] is canon-
ically identified with the covariant Dieudonné module DM(µ3), which is
k with F = σ and V = 0. To see that H2(WOM ) is entirely V -torsion,
we follow the proof of [29, II Prop. 7.3.2]; because H2(WOM ) = 0 and
H3(WOM ) is torsion-free, we get the exact sequence [29, eq. (7.3.2.1)], and
the rest of the argument goes through unchanged.

Finally, we get the torsion in H3(WΩ2
M) and H2(WΩ3

M) using Ekedahl’s
duality theorem, summarized in [30, Thm. 4.4.4(a)]: the semisimple torsion
in Hj(WΩi

M ) is dual to that in H4−j(WΩ3−i
M ), and the nilpotent torsion in

Hj(WΩi
M ) is dual to that in H5−j(WΩ2−i

M ). �

To transfer information from the Hodge–Witt cohomology of M to that
of X, we use Hesselholt’s TR invariants, referring to [6, §3] for discussion
and further references.

Proposition 6.5. The groups TRi(X) = TRi(M) are as follows:

i −3 −2 −1 0 1 2 3

TRi W k W a⊕k ? W b⊕k 0 W ,

where the ? is either W 14 or W 14 ⊕ k.

Proof. We use the descent spectral sequence

Ei,j
2 = Hj(WΩi

M) ⇒ TRi−j(M)

discussed in [6, Def. 3.5(a)]. The E2 page is the same as the table in
Proposition 6.4, but the differentials go up-up-right. We claim that it
degenerates at the E2 page.

The differentials are torsion by [6, Prop. 3.8], so the only interesting
differential on the E2 page is

d2 : H
1(WΩ1

M ) → H3(WΩ2
M).

The natural maps Hj(WΩi
M ) → Hj(Ωi

M ) give a homomorphism from the
descent spectral sequence to the HKR spectral sequence.7 Thus we have a

7This follows from the compatibility of Hesselholt’s de Rham–Witt HKR isomorphism
[25, Thm. C] and the usual HKR isomorphism. The essential verification is the
compatibility under linearization of the operator δ [25, Def. 1.4.3] and Connes’ B operator,
which is [25, Prop. 1.4.6].



24 N. ADDINGTON AND D. BRAGG

commutative diagram

H1(WΩ1
M)

d2 //

��

H3(WΩ2
M )

��
H1(Ω1

M )
d̄2 // H3(Ω2

M )

where d̄2 is the corresponding differential in the HKR spectral sequence. By
[7, Thm. 1.3], the latter spectral sequence degenerates at E2, so d̄2 = 0. We
have seen that H3(WΩ2

M ) ∼= k with V = 0, which implies that the right
vertical arrow is an isomorphism. We conclude that d2 = 0. On the E3

page, the only possibly nonzero differential

d3 : H
0(WOM ) → H3(WΩ2

M )

must vanish for the same reason, or because we can split off H0(WOM ) by
restricting to a closed point as explained in [6, Lem. 5.4(b)]. We conclude
that the descent spectral sequence degenerates at E2, as claimed.

Alternatively, we could argue that if any differential killed off H3(WΩ2
M ),

then would have TR−1 = W a, and in the proof of Proposition 6.7 below we
would find that H2(WΩ1

X) = W a, which would not give enough torsion in
H3(X/W ) to satisfy the universal coefficient formula

0 → H2(X/W )⊗ k → H2
dR(X/k) → TorW1 (H3(X/W ), k) → 0

because h2dR(X/k) = 8.
It remains to analyze the filtration on the TRi coming from the descent

spectral sequence (see [6, Lem. 4.3(iv)] for the indexing). The filtration
splits automatically for i 6= 0. If it also splits for i = 0 then TR0 = W 14⊕k;
otherwise TR0 = W 14. �

Remark 6.6. It seems reasonable to expect that Ekedahl’s duality theorem
on the torsion in Hodge–Witt cohomology has an analogue for TR. In
particular, the semisimple torsion in TRi should be dual to that in TR−i−1,
which in our case would give TR0 = W 14 ⊕ k.

Proposition 6.7. The Hodge–Witt cohomology of X is as follows:

H3 W k 0 W

H2 0 W a ⊕ k W 6 ⊕ k 0

H1 0 W 6 W b ⊕ k 0

H0 W 0 0 W

WOX WΩ1
X WΩ2

X WΩ3
X

Proof. As in the proof of Proposition 6.4, we need only determine the torsion
parts, and there is no torsion in the bottom row, in H1(WOX), or in
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H3(WΩ3
X). Moreover, there is no torsion along the diagonals i + j = 2

or i+ j = 5 because b1(X) = h1dR(X) and b5(X) = h5dR(X).
The descent spectral sequence for X must degenerate: there cannot be

any non-zero differentials on the E2 page by [6, Lem. 5.4(2)], nor on any
later page. This determines all but the torsion in H2(WΩ2

X), which we find
by Ekedahl duality. �

Remark 6.8. Because h2(OX) = 0 and h3(OX) = 1, the Artin–Mazur
formal group Φ3 = Φ3(X,Gm) of X is prorepresentable by a smooth formal
group of dimension 1. Its Cartier module is H3(WOX) ∼= W , and it follows

that Φ3 ∼= Ĝm.

Corollary 6.9. The crystalline cohomology of X and M is as follows:

i 0 1 2 3 4 5 6

Hi(X/W ) W 0 W 6 W 14⊕k2 W 6 ⊕ k2 0 W

Hi(M/W ) W 0 W 6 ⊕ k2 W 14 W 6 k2 W

Appendix A. A result of Abuaf

We give a simplified account of the proof of [1, Thm. 1.3(4)].

Theorem A.1 (Abuaf). Let X and Y be smooth complex projective varieties
of dimension ≤ 4. If Db(X) ∼= Db(Y ) then H∗(OX) ∼= H∗(OY ) as algebras.
In particular h0,j(X) = h0,j(Y ) for all j.

This will follow from two preparatory results:

Proposition A.2. Let X and Y be as in the statement of Theorem A.1,
and let Φ: Db(X) → Db(Y ) be an equivalence. Then there is a line bundle
L on X such that rank(ΦL) 6= 0.

Lemma A.3. Let X be a smooth complex projective variety, and let

Hdg∗(X) :=
⊕

pH
2p(X,Q) ∩Hp,p(X)

be the ring of Hodge classes, endowed with with the Euler pairing

χ(v,w) =

∫

X
(v0 − v2 + v4 − · · · ) ∪ (w0 + w2 + w4 + · · · ) ∪ td(TX),

which makes χ(E,F ) = χ(ch(E), ch(F )).

If dimX ≤ 3, then Chern characters of line bundles span Hdg∗(X).

If dimX = 4, then any non-zero v ∈ Hdg∗(X) that is (left or right)
χ-orthogonal to all Chern characters of line bundles satisfies χ(v, v) > 0.

Proof of Lemma A.3. We omit the cases dimX ≤ 1.
If dimX = n ≥ 2 then by the Lefschetz theorem on (1, 1)-classes we

can choose irreducible divisors D1, . . . ,Dk ⊂ X such that their cohomology
classes [Di] span Hdg2(X). Suppose without loss of generality that D1 is
ample, so [D1]

n = d · [pt] for some d > 0. Observe that

ch(ODi
) = ch(OX)− ch(OX(−Di)) = 0 + [Di] + · · · ,
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and that any product of ch(ODi
)s is a linear combination of Chern characters

of line bundles.
If dimX = 2 then Hdg∗(X) is spanned by

ch(OX) = 1 + · · ·

ch(ODi
) = 0 + [Di] + · · ·

ch(OD1
)2 = 0 + 0 + d · [pt].

If dimX = 3 then Hdg4 is spanned by [D1].[Di] by the hard Lefschetz
theorem, so Hdg∗ is spanned by

ch(OX) = 1 + · · ·

ch(ODi
) = 0 + [Di] + · · ·

ch(OD1
). ch(ODi

) = 0 + 0 + [D1].[Di] + · · ·

ch(OD1
)3 = 0 + 0 + 0 + d · [pt].

If dimX = 4 then in a similar way we can span

H0(X,Q)⊕H1,1(X,Q)⊕ [D1].H
1,1(X,Q) ⊕H3,3(X,Q)⊕H4(X,Q).

If v is (left or right) χ-orthogonal to this then v ∈ H2,2
prim(X,Q), so if v 6= 0

then χ(v, v) = v2.v2 > 0 by the Hodge–Riemann bilinear relations. �

Proof of Proposition A.2. We have

rank(ΦL) = χ(ΦL,Oy) = χ(L,Φ−1
Oy),

where Oy is the skyscraper sheaf of some point y ∈ Y . Suppose this rank
is zero for all L ∈ Pic(X), and let v = ch(Φ−1Oy) ∈ Hdg∗(X). The Euler
pairing on Hdg∗(X) is non-degenerate, so if dimX ≤ 3 then by Lemma
A.3 we have v = 0; but this contradicts the fact that χ(Φ−1OY ,Φ

−1Oy) =
χ(OY ,Oy) = 1. If dimX = 4 then either v = 0, which again is impos-
sible, or χ(v, v) > 0, which contradicts the fact that χ(Φ−1Oy,Φ

−1Oy) =
χ(Oy,Oy) = 0. �

Proof of Theorem A.1. Because rank(ΦL) 6= 0, the natural map of algebra
objects

OY → RHomY (ΦL,ΦL)

is split by the trace map

RHomY (ΦL,ΦL) → OY ,

so it induces an injection

H∗(OY ) →֒ Ext∗Y (ΦL,ΦL) = Ext∗X(L,L) = H∗(OX).

Symmetrically we get an injection H∗(OX) →֒ H∗(OY ). �

We remark that this proof fails in characteristic p because an equivalence
might take all line bundles to objects whose rank is a multiple of p.
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Appendix B. A higher-dimensional example in any
characteristic (by Alexander Petrov)

Let p be an arbitrary prime number. Denote Fp by k.

Theorem B.1. There exist smooth projective derived equivalent varieties
X1,X2 over k such that

h0,3(X1) 6= h0,3(X2)

Moreover, for both i = 1, 2 the variety Xi satisfies the following properties:

(a) Xi can be lifted to a smooth formal scheme Xi over W (k) such that
Hodge cohomology groups Hr(Xi,Ω

s
Xi/W (k)) are torsion-free for all

r, s.

(b) The Hodge-to-de Rham spectral sequence for Xi degenerates at the
first page.

(c) The crystalline cohomology groups Hn
cris(Xi/W (k)) are torsion-free

for all n.

(d) The Hochschild-Kostant-Rosenberg spectral sequence for Xi degen-
erates at the second page. That is, there exists an isomorphism
HHn(Xi/k) ≃

⊕
s
Hs(Xi,Ω

n+s
Xi/k

) for every n.

(e) Xi cannot be lifted to a smooth algebraic scheme over W (k).

The varieties X1,X2 are both obtained as approximations of the quotient
stack associated to a finite group acting on an abelian variety. The key to
the construction is the appropriate choice of such finite group action that
relies on complex multiplication and Honda-Tate theory.

Let G = Z/lZ be the cyclic group of order l where l is an arbitrary odd
prime divisor of a number of the form p2r + 1, for an arbitrary r ≥ 1.

Proposition B.2. There exists an abelian variety A over k equipped with
an action of G by endomorphisms of A such that

dimk H
3(A,OA)

G 6= dimk H
3(Â,OÂ)

G (B.1)

Here Â denotes the dual abelian variety. Moreover, A can be lifted to a
formal abelian scheme A over W (k) together with an action of G.

Proof. Take A = Z ×W (k′) k with Z, k′ provided by [44], Proposition 3.1.
The inequality (B.1) follows because there are G-equivariant isomorphisms

H3(Â,O) ≃ Λ3H1(Â,OÂ) ≃ Λ3(H0(A,Ω1
A/k)

∨) ≃ H0(A,Ω3
A/k)

∨ (the last

isomorphism exists even if p = 3) and dimk H
0(A,Ω3

A/k)
G = dimk(H

0(A,Ω3
A/k)

∨)G

as the order of G is prime to p. �

This proposition is specific to positive characteristic. For an abelian
variety B equipped with an action of a finite group Γ over a field F of char-

acteristic zero there must exist Γ-equivariant isomorphisms H i(B,Ωj
B/F ) ≃



28 N. ADDINGTON AND D. BRAGG

H i(B̂,Ωj

B̂/F
)∨ for all i, j as follows either from Hodge theory or thanks to

the existence of a separable Γ-invariant polarization on B.
A more subtle feature of this construction is that it is impossible to find

an abelian variety B with an action of a finite group Γ with p ∤ |Γ| that

would have dimk H
i(B,OB)

Γ 6= dimk H
i(B̂,O

B̂
)Γ for i = 1 or i = 2. This

can be deduced from Corollary 2.2 of [44] applied to an approximation of
the stack [B/G] where B is a formal Γ-equivariant lift of B that exists by
Grothendieck-Messing theory combined with the fact that the order of Γ is
prime to p.

Proof of Theorem B.1. Let A be the abelian variety provided by Proposition
B.2. By Proposition 15 of [48] there exists a smooth complete intersection
Y of dimension 4 over k equipped with a free action of G. The diagonal
action of G on the product of A× Y is free as well.

Define X1 = (A×Y )/G and X2 = (Â×Y )/G where Â is the dual abelian
variety of A equipped with the induced action of G. In both cases the
quotient is taken with respect to the free diagonal action. The equivalence of
Db(X1) and Db(X2) will follow from the Mukai equivalence between derived
categories of an abelian scheme and its dual. Indeed, consider X1 and X2

as abelian schemes over Y/G. The base changes of both Pic0Y/G(X1) and X2

along Y → Y/G are isomorphic to Â×Y compatibly with the G-action. By
étale descent, Pic0Y/G(X1) ≃ X2 as abelian schemes over Y/G. Proposition

6.7 of [9] implies that Db(X1) ≃ Db(X2).
Next, we compare the Hodge numbers of X1 and X2. By Théorème 1.1

of Exposé XI [18] we have H i(Y,OY ) = 0 for 1 ≤ i ≤ 3. Hence, there are

G-equivariant identifications H3(A × Y,OA×Y ) ≃ H3(A,OA) and H3(Â ×

Y,OÂ×Y ) ≃ H3(Â,OÂ). Since G acts freely on both A× Y and Â× Y , the

projections A×Y → X1 and Â×Y → X2 are étale G-torsors and, since the
order of G is prime to p, we have H3(X1,OX1

) ≃ H3(A × Y,OA×Y )
G and

H3(X2,OX2
) ≃ H3(Â× Y,O

Â×Y
)G.

The inequality (B.1) therefore says that h0,3(X1) 6= h0,3(X2). Condition
(a) can be fulfilled as it is possible to choose Y that lifts to a smooth
projective scheme over W (k) together with an action of G, by Proposition
4.2.3 of [46]. Denote by X1 and X2 the resulting formal schemes over W (k)
lifting X1 and X2. Since Xi for i = 1, 2 can be presented as a quotient
by a free action of G of a product of an abelian scheme with a complete
intersection, the Hodge cohomology modules Hr(Xi,Ω

s
Xi/W (k)) are free for

all r, s.
Both properties (b) and (d) would be immediate if we had dimk Xi ≤ p but

this is not always possible to achieve. Instead, we can argue using the lifts Xi.
For (b), consider the Hodge-Tate complex ∆Xi/W (k)[[u]]. By Proposition 4.15

of [10] there is a morphism s : Ω1
Xi/W (k)[−1] → ∆Xi/W (k)[[u]] in the derived

category of Xi that induces an isomorphism on first cohomology. Taking
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n-th tensor power of s and precomposing it with the antisymmetrization
map Ωn

Xi/W (k) → (Ω1
Xi/W (k))

⊗n we obtain maps Ωn
Xi/W (k)[−n] → ∆Xi/W (k)[[u]]

that induce a quasi-isomorphism ∆Xi/W (k)[[u]][
1
p ] ≃

⊕
n≥0

Ωn
Xi/W (k)[−n] ⊗W (k)

W (k)[1p ]. In particular, the differentials in the Hodge-Tate spectral sequence

Hs(Xi,Ω
r
Xi/W (k)) ⇒ Hs+r

∆
(Xi/W (k)[[u]]) vanish modulo torsion. But, as

we established above, the Hodge cohomology of Xi has no torsion, so the
Hodge-Tate spectral sequence degenerates at the second page. Therefore the
conjugate spectral sequence for Xi degenerates at the second page as well
and, equivalently, the Hodge-to-de Rham spectral sequence degenerates at
the first page.

Similarly, for (d) consider the Hochschild-Kostant-Rosenberg spectral se-
quence Er,s

2 = Hr(Xi,Ω
−s
Xi/W (k)) converging to HH−r−s(Xi/W (k)). There

exist maps εn : Ω
n
Xi/W (k)[n] → HH(Xi/W (k)) into the Hochschild complex

inducing multiplication by n! on the n-th cohomology: εn = n! : Ωn
Xi/W (k) →

H −n(HH(Xi/W (k))) ≃ Ωn
Xi/W (k). Therefore, the HKR spectral sequence

always degenerates modulo torsion, hence degenerates at the second page in
our case. Passing to the mod p reduction gives (d).

The property (c) follows from (a) and (b) asHn
cris(Xi/W (k)) ≃ Hn

dR(Xi/W (k)).
Finally, to prove (e), note that by the same computation as above one

sees that h0,3(X1) = h3,0(X2) 6= h0,3(X2) = h3,0(X1) so both X1 and X2

violate Hodge symmetry. Denote by K the fraction field of W (k). If Xi is
a smooth scheme over W (k) lifting Xi then we have

dimK Hr(Xi,K ,Ωs
Xi,K/K) ≤ dimk H

r(Xi,Ω
s
Xi/k

) (B.2)

for all r, s by semi-continuity while dimK Hn
dR(Xi,K/K) = dimk H

n
dR(Xi/k)

because Hn
dR(Xi/W (k)) ≃ Hn

cris(Xi/W (k)) is torsion-free for all n. Since
Hodge-to-de Rham spectral sequences forXi and Xi,K degenerate at the first
page, we deduce that

∑
r,s

dimK Hr(Xi,K ,Ωs
Xi,K/K) =

∑
r,s

dimk H
r(Xi,Ω

s
Xi/k

)

so (B.2) is in fact equality for all r, s. But this means that the smooth
proper algebraic variety Xi,K over a field of characteristic zero violates
Hodge symmetry which is impossible. �
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