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ABSTRACT:

Tackling the accelerated human-induced biodiversity loss requires tools able to map biodiversity and its changes globally. Remote
sensing (RS) offers unique capabilities of characterizing Earth surfaces; therefore, it could map plant biodiversity continuously and
globally. This approach is supported by the Spectral Variation Hypothesis (SVH), which states that spectra and species (taxonomic
and trait) diversities are linked through environmental heterogeneity. In this work, we evaluate the capability of the DESIS
hyperspectral imager to capture plant diversity patterns as measured in dedicated plots of the network FunDivEUROPE. We
computed functional and taxonomical diversity metrics from field taxonomic, structural, and foliar measurements in vegetation plots
sampled in Spain and Romania. In addition, we also computed functional diversity metrics both from the DESIS reflectance factors
and from vegetation parameters estimated via inversion of a radiative transfer model. Results showed that only metrics computed
from spectral reflectance were able to capture taxonomic variability in the area. However, the lack of sensitivity was related to the
insufficient plot size and the lack of spatial match between remote sensing and field data, but also the differences between the
information contained in the field traits and remote sensing data, and the potential uncertainties in the remote estimates of vegetation
parameters. Thus, while DESIS showed some sensitivity to plant diversity, further efforts are needed to deploy suitable biodiversity
evaluation and validation plots and networks that support the development of biodiversity remote sensing products.

1. INTRODUCTION is connected with plant functional and taxonomic diversities, as
stated by the Spectral Variation Hypothesis (SVH) (Palmer et

The accelerated loss of biodiversity induced by human actions al., 2002). Additionally, remote sensing signals can be related to

imposes a pressing need to develop reliable tools to monitor
Earth’s biodiversity (Pereira et al., 2013). Remote sensing
provides global maps of multiple variables that are relevant for
the study of Climate Change (GCQOS, 2003), as well as major
biodiversity drivers, but not of biodiversity itself (e.g., land-use
change and climatic variables) (Sohl and Sleeter, 2012; Yang et
al., 2013). In this context, Pereira et al. (2013) proposed that
global characterization of biodiversity could be achieved by the
definition, estimation, and analysis of the termed “Essential
Biodiversity Variables” (EBVs). Due to their nature and
influence on the optical radiation scattered by vegetation
surfaces, several of these variables could be inferred by remote
sensing (Hardisty et al., 2019; Jetz et al., 2019).

Alternatively, plant diversity might be directly inferred from the
variability of the spectral signals captured by satellite imagers.
The underlying idea is that the variability of the spectral signals
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vegetation state parameters through the inversion of radiative
transfer models (RTMs). These models describe the interaction
of radiation with canopy structures, e.g., leaves, and known
optical properties, e.g., the absorption coefficients of pigments.
Some of these parameters have been proposed as EBVs
(Skidmore et al., 2021). Therefore, the reflectance factors’
variability and parameter estimates from those could be
informative of the vegetation diversity.

Nonetheless, biodiversity is a complex term. It involves
different facets of the biological variability, such as taxonomical
(species), functional (functional traits, the “characteristics of an
organism that are considered relevant to its response to the
environment and/or its effects on ecosystem functioning” (c.f.
Cabido and Diaz (2001)), or phylogenetic (the branch length of
the evolutionary tree of a community). We will focus on the two
first aspects. Taxonomic diversity is usually defined as a
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function of the species in a study area. However, functional
diversity can be described with several traits, and therefore can
involve multidimensional information that must be summarized
in comparable quantities. This is the aim of the functional
diversity metrics (FDMs). These metrics quantify different
aspects of functional diversity (i.e., richness, evenness, and
divergence) with a single value (Laliberté and Legendre, 2010;
Mason et al., 2005; Villéger et al., 2008). A meaningful
computation of FDMs typically requires removing the
covariance between trait dimensions (Anderson, 2006).
Otherwise, the addition of co-variated variables can spuriously
inflate their value. In a remote sensing context, they can be
computed both from parameter estimates, which operate as a
surrogate of functional traits (Schneider et al., 2017), or directly
from spectral reflectance factors replacing functional by
“spectral traits” (Torresani et al., 2019). However, the potential
of such approaches still needs to be understood better before
they can be widely applied.

Also, the trade-offs between different sensor resolutions,
methods, and metrics remain unclear. The increasing
availability and the expected arrival of spaceborne hyperspectral
missions (e.g., DESIS, PRISMA, EnMAP, SBG, CHIME) will
provide better and detailed information of Earth surfaces in the
spectral domain. Compared with multispectral imagers, these
missions will enable the exploitation of narrow spectral features
characteristic of certain species or traits, increase the parameter
retrieval accuracy and the number of parameters that could be
estimated by improving the constrain of RTMs (Goetz, 2009).

In order to accelerate the exploitation of full-range
hyperspectral data provided by the upcoming missions such as
EnMAP, we evaluate the potential of functional diversity
metrics computed from hyperspectral imagery to quantify
taxonomic and functional diversity in plots of the
FunDivEUROPE network (Baeten et al., 2013). These plots
were established in mature European forests to characterize
diversity-function relationships but not specifically for the
evaluation of remote sensing products. We used DESIS imagery
of similar spatial resolution and a narrower (400-1000 nm)
spectral range than EnMAP.

2. METHODS
2.1 FunDivEUROPE biodiversity plots

The FunDivVEUROPE network has deployed 30x30 m plots in
forests where taxonomic and functional diversity were
characterized from species identity, abundances, and foliar and
structural traits measured in place for species accounting for
more than 95 % cumulative species abundance (Baeten et al.,
2013; Benavides et al., 2019a; Benavides et al., 2019b). Tree
height (hc, m), diameter at breast height (DBH, m), and crown
cross-sectional area (CCSA, cm?) were measured per species.
LAl was determined per plot with an LAI-2000 Plant Canopy
Analyzer (LI-COR, Lincoln, NE, USA) per plot (Grossiord et
al., 2014). Also, leaf nitrogen concentration (Nmass, %), leaf
carbon concentration (Crmass, %), leaf area (l, mm?), specific leaf
area (SLA, mm?/mg), and leaf dry matter concentration (LDMC,
mg/g) were measured per species (Benavides et al., 2019a;
Benavides et al., 2019b). Measurements took place in the
summer of 2013. Further information about the data available in
these plots can be found in Ma et al. (2019). Not all the
parameters were “functional traits” (Diaz and Cabido, 2001),
but just vegetation parameters varying with environmental
conditions and ontogeny (e.g., canopy height or leaf area
index). Although the network expands through six European
countries, only the sites of Romania and Spain were could be

used in this study since DESIS imagery and foliar traits were
available.

2.2 DESIS imagery and spectral data analysis

DESIS imagery was acquired over the FunDivEUROPE sites of
Spain (2020-Jun-21, 06:51) and Romania (2020-Jun-29, 07:02),
covering 19 and 15 plots in each country, respectively. DESIS
L2A products were downloaded from the EOWEB® GeoPortal
(https://eoweb.dIr.de/egp/) after automated processing following
DLR standard procedures (Alonso et al., 2019). 4x binned
images featuring 58 bands were downloaded and clipped 250 m
around each of the biodiversity plots. Figure 2 shows the DESIS
3x3 pixels window (blue square) extracted around one of the
FunDivEUROPE plots in Spain (red-dashed square) (a) and the
spectra of those pixels on the left (b). As can be seen, DESIS
spatial resolution is comparable to the plot size, and the
diversity metrics are computed from a larger extent where field
data are sampled.
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Figure 1. DESIS 3-by-3 window over a FunDivEUROPE site.

Sun zenith (Gwn) and azimuth (¢sun) angles and the averaged
aerosol optical thickness of the scene were obtained from the
imagery metadata and assumed homogeneous for all plots. View
zenith (Biew) and azimuth (¢view) angles were provided at the
center of the scene in the metadata. Knowing sensor height (also
in the metadata), the position of the sensor was estimated from
these angles. Knowing the scanning direction followed by the
sensor, we recalculated the observation angles of each point of
the image, and therefore for each plot. From these angles, sun-
view azimuth difference (A¢) was calculated per plot (Table 1).

Spain Romania
Date 2020-Jun-29 10:11 2020-Jun-29 07:02
n plots 19 15
Mean Gsun 30.8 45.9
Mean Oview 23.8 2.1
Mean A¢ 6.6 3.7
Mean AOT 0.266 0.275

Table 1. DESIS imagery.

2.3 Retrieval of vegetation parameters

In order to calculate functional diversity metrics from estimates
of vegetation parameters, we constrained an RTM with DESIS
reflectance factors within a 3-by-3 pixel window centered on
each plot. Vegetation parameters were retrieved by inverting the
optical RTM of the model SCOPE (van der Tol et al., 2009). In
addition, to fit the observed reflectance factors, soil parameters
of the SCOPE’s model BSM were also estimated (Table 2).
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Parameter Symb | Units Bounds
ol
Vegetation Parameters (Prtv)
Leaf chlorophyll content Cab pug cm? | [0, 100]
Leaf carotenoids content Ceca pgem? | [0, 25]
Leaf anthocyanins content Cant pugem? | [0, 10]
Leaf senescent pigments Cs a.u. [0, 1]
Leaf water content Cw gcm? [0.004,
0.045]
Leaf dry matter content Cdm gcm? [0.00190,
0.01570]
Leaf structural param. N layers [1, 3]
Leaf area index LAI m? m2 [0, 8]
Leaf inclination param. LIDFa | - [-1, 1]
Leaf inclination param. LIDFy, | - [-1,1];
Canopy height he M [0.1,10.0]
Leaf width lqw M [001, 01]
Soil Parameters (BSM model)
Soil brightness B - [0.5, 1.0]
Spectral shape latitude Lat Deg [20, 40]
Spectral shape longitude Lon Deg [45, 65]
Soil moisture capacity SMC | % [5, 55]
Soil moisture content Lat - [0, 1]

Table 2. Retrieved SCOPE parameters.

The inversion took place in two steps. First, a solution was set
for each pixel using an emulator of the SCOPE model trained
with a dataset of 6000 synthetic samples generated using Latin
Hypercube Sampling (McKay et al., 1979). The emulator was
trained using the Python module scikit-learn (Pedregosa et al.,
2011). Its performance was evaluated with a validation dataset
of 1000 samples (Table 3). The emulator’s performance was
assessed using the root mean squared error (RMSE) and the
relative root mean squared error (RRMSE).

Training Validation
n samples 6000 1000
RMSE (-) 0.0050 0.0056
RRMSE (%) 5.92 6.59

Table 3. Emulator training and validation synthetic sample
sizes and performance statistics.

We averaged soil parameters per plot in a second step, assuming
little variability within the 90 m x 90 m region analyzed. Then,
the vegetation parameters only were optimized minimizing a
regularized cost function (Eq. 1) with the trust-region-reflective
algorithm (Coleman and Li, 1996) implemented in the Matlab™
function Isgnonlin (MathWorks, Natick, MA, USA)

. = sC 3
= Z(R.lprsd —Ryghs) + ( L1 (C_r:a —0.20) ] +
1 ek K @
(¥ Caut:': + (}r! L"Ur:-gj-
where 2 = Cost function error
Rupred = Predicted spectral reflectance factor
Rx,00s = Observed spectral reflectance factor
y1=10"
y2 =102
3 =5-10" in Romania or 4-10 in Spain
LAI = LAI in Spain and |LAI-6.0| in Romania

2.4 Taxonomic and functional diversity metrics

We computed per plot Species Richness (S, number of species
in each plot) and the Shannon index (H, Eq. 2) from the
taxonomic data in FunDivEurope plots. The Shannon index is
defined as

H=—FL 4;log(4;), 2)

where S = Species Richness or number of species

A = relative species abundance

We also computed Rao’s Q parametric indices of order a
(RaoQ., Eq. 3) ranging between 0 and infinity (Rocchini et al.,
2021):

Bl

Raof, = (X7;4:4d;"): 3)
where  d = distance metric, in this case, Euclidean
o = parameter weighting the roles of the distance
metric.

RaoQ. was also computed for the reflectance factors and the
vegetation parameters estimated from those. In fact, we
computed Rao’s Q parametric indices on the components of a
Principal Components Analysis (PCA) applied on these traits
after standardization.

For the spectral variables (reflectance factors and parameters),
we computed as well the metrics implemented in the dbFD
package (Laliberté and Legendre, 2010). The dbFD package
applies standardization and Principal Coordinates Analysis
(PCoA) to the distance matrix (not the traits). The package
provides: Functional Richness (FRic), which is the volume of
the multidimensional convex-hull; Functional Evenness (FEve),
which describes the uniformity of the abundances of the traits;
Functional Divergence (FDiv), which represents the degree of
divergence of the traits; Functional Dispersion (FDis), which is
the weighted average distance to the centroid of the
multidimensional space; and RaoQ which describes the
weighted mean distance between traits (or «=1 in Eq. 3).

3. RESULTS
3.1 Estimation of vegetation biophysical parameters

Some of the vegetation parameters estimated via radiative
transfer inversion could be evaluated using field measurements.
Figure 2 compares the estimated leaf area index (LAI, Figure
2a) and leaf dry matter content (Cam, Figure 2c). No chlorophyll
content measurements were available; therefore, we compared
chlorophyll content retrievals (Ca) with leaf nitrogen
concentration (Nmass, Figure 2b). The evaluation was performed
with the coefficient of determination (R?), and the relative root
mean squared error (RRMSE). Statistics show that the retrieval
of LAl was most problematic in the sites of Romania (R? =
0.07). In Spain LAI values were slightly higher but correlated
with field observations (R? = 0.49). Altogether, LAl estimates
correlated with field measurements with R?> = 0.56. Cap
retrievals showed low correlations with Nmass, the highest R?
was found in Romania (0.29). All the sites together presented a
low correlation (R? = 0.07) and an RRMSE of around 30 %. Dry
matter content estimates showed larger values than field
measurements. Correlations were higher for the Spanish (R? =
0.42) than for the Romanian sites (R?> = 0.13) and became
higher when both sites were compared together (R? = 0.46).
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Figure 2. Evaluation of estimated parameters (subscript
“RTMinv”’) with field measurements (subscript “obs”).

3.2 Relationships between functional diversity metrics

Figure 3 shows the Pearson correlation coefficient (r) between
the taxonomical and functional diversity metrics computed from
field data and the functional diversity metrics computed from
DESIS imagery computed either using the dbFD package (a) or
following Rocchini et al. (2021) (b). Functional Richness
(FRic), Evenness (FEve), and Divergence (FDiv) computed
from reflectance factors are not significantly related to field
diversity metrics, and in some cases, the relationships are
negative. Only Functional Diversity (FDis) and some of the
Rao’s Q parametric formulations achieve significant
relationships with field taxonomical metrics, mostly with S.
Maximum Pearson correlation coefficients were 0.53 for the
dbFD package metrics (Figure 3a) and 0.48 for the parametric
Rao’s Q (Figure 3b).
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Figure 3. Pearson correlation between field and remote sensing
(reflectance factors-based) metrics. Asterisks indicate
significant relationships at 95 % of confidence.

Functional diversity metrics computed from the vegetation
parameter estimates (Figure 4) obtained via RTM inversion
showed no significant correlations with field functional or
taxonomical metrics. Still, similar patterns of correlation than
those observed for reflectance factors-based metrics (Figure 3),
except for FRic, which presents relatively stronger correlations
than FEve or FDiv this time. Maximum Pearson correlation
coefficients were 0.53 for the dbFD package metrics (Figure 4a)
and 0.48 for the parametric Rao’s Q indices (Figure 4b).
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Figure 4. Pearson correlation between field and remote sensing
(parameter estimate-based) metrics. Asterisks indicate
significant relationships at 95 % of confidence.
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4. DISCUSSION

The direct comparison of DESIS functional diversity metrics
with field taxonomical and functional diversity metrics led to a
few weak but significant linear relationships, mainly with the
taxonomical indices. Comparing remote sensing estimates of
plant functional diversity with field data was challenging for
several reasons that might explain the limited number of
significant correlations found.

First, the fact that field plot size equals the spatial resolution of
the remote sensor, which forced us to compare information from
different extents (the surroundings of the field plot).
Taxonomical metrics are better correlated with remote sensing
information than functional diversity metrics, especially when
species abundance is ignored (i.e., species richness, S). We
hypothesize that if the species richness does not change in the
surroundings of the FunDivEUROPE plots (there is the same
number of species but with different abundances), functional
richness inside the plot could still correlate with spectral
variability, even if the sensor cannot discriminate the individual
species or their abundances. Ideally, field plots should be large
enough to include several remote sensing pixels in biodiversity
applications.

A second potential source of uncertainty is the temporal
mismatch between field and remote sensing samplings (8 years,
but taking place in the same season). However, Ma et al. (2019)
proved that FunDivEUROPE plots are relatively stable in time.
They analyzed remote sensing data time series and found that
spectral information was comparable between different years at
the same phenological stages. These results are coherent with
the design of the FunDivEUROPE experiment. The plots were
located in mature and stable forests not subject to management
nor human exploitation (Baeten et al., 2013), minimizing thus
the effect of temporal mismatches. Based on these results, we
assumed that data acquired within the same phenological stage
in different years should still be comparable if no major
disturbance occurred. Still, some inter-annual variability in the
functional traits and eventual tree mortality might account for
some unexplained variance.

A third potential source of uncertainty is the mismatch between
the information contained in the vegetation and traits compared.
The traits sampled in the field were selected to perform
ecological studies to analyze the relationships between function
and biodiversity. On the contrary, vegetation parameters
estimated from remote sensing are limited to traits describing
light-matter interaction in an RTM, independently of their
ecological significance. Correlations can exist between these
parameters. For example, field structural parameters are usually
related to leaf area index by allometric equations (Fischer et al.,
2019; Turner et al., 2000), nitrogen relates with chlorophyll
content (Evans and Clarke, 2019; Li et al., 2019), and with
specific leaf area (Reich, 2014; Wright et al., 2004). Therefore,
spectral variability and the variability of parameters estimated
remotely might be explained by traits of ecological significance.
Still, the interspecific variability of these radiative transfer and
ecological parameters might induce some uncertainty.

The fourth challenge in the comparison of remote sensing and
field estimates of vegetation diversity is the presence of
uncertainties in the remote sensing signals (they exist in the
field data as well). Uncertainty in the reflectance propagates to
the retrieval of vegetation parameters, which adds to the
uncertainties associated with the model estimation process
(Beven, 2006). Also, the retrieval of vegetation parameters is
affected by the model’s inaccuracies. The use of more complex
and detailed RTMs might have provided more accurate
estimates of vegetation parameters. These facts might explain

the absence of significant relationships found in the metrics
computed from the parameter estimates. For example,
comparing these estimates with field data showed medium and
low correlations (Figure 2).

The abovementioned sources of uncertainty prevent evaluating
the potential of spaceborne hyperspectral imagers to infer plant
functional diversity from space. Part of these uncertainties
relates to the fact that biodiversity monitoring sites and
networks have not usually considered the need to support
remote sensing studies. On the one hand, biodiversity plots
should be at least three times larger than the spatial resolution
of hyperspectral imagers so that their variability can be
characterized with 3-by-3 windows in the imagery. On the other
hand, field surveys should also measure variables that control
the spectral signals captured by these sensors (i.e., radiative
transfer parameters), enabling a sounder comparison with
spectral variability. Collaboration between ecologists and the
remote sensing community should be enhanced to develop new
satellite products that describe plant functional diversity on a
global scale.

Also, our analysis does not fully cover the optical domain.
Several authors have identified the short-wave infrared (SWIR)
region as valuable insight on relevant leaf traits such as specific
leaf area (one of the traits sampled in the FunDivVEUROPE
plots), among others (Cavender-Bares et al., 2020). We
hypothesize that hyperspectral imagers covering the SWIR
region, such as EnMAP, could improve the monitoring of plant
functional diversity from space and effectively enable
alternative methods based on the variability of estimated plant
traits (Schneider et al., 2017). Other remote sensing techniques,
such as Radar and Lidar have recently proven potential to assess
plant biodiversity (Bae et al., 2019) could be combined with
optical data to improve plant biodiversity characterization
Further work with suitable datasets is needed to understand how
plant trait diversity propagates to spectral diversity, how remote
sensing can infer the first using different missions and metrics.
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