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ABSTRACT 

Despite decades of study of memory, it remains unclear what makes an image 

memorable. There is considerable debate surrounding the underlying determinants of memory, 

including the roles of semantic (e.g., animacy, utility) and visual features (e.g., brightness) as 

well as whether the most prototypical or most atypical items are best remembered. Prior studies 

have relied on constrained stimulus sets, limiting any generalized view of the features that may 

contribute to memory. Here, we collected over one million memory ratings (N=13,946) for 

THINGS (Hebart et al., 2019), a naturalistic dataset of 26,107 object images designed to 

comprehensively sample concrete objects. First, we establish a model of object features that is 

predictive of image memorability, capturing over half of the explainable variance. For this 

model, we find that semantic features have a stronger influence than visual features on what 

people will remember. Second, we examined whether memorability could be accounted for by 

the typicality of the objects, by comparing human behavioral data, object feature dimensions, and 

deep neural network features. While prototypical objects tend to be the most memorable, the 

relationship between memorability and typicality is more complex than a simple positive or 

negative association and typicality alone cannot account for memorability.  

 

SIGNIFICANCE STATEMENT  
 

Why is it that we seem to remember and forget the same things? Our lived experiences 

differ, but there is remarkable consistency in what is remembered across people. Here, we 

collected memory performance scores for a comprehensive and diverse collection of natural 

object images to identify which properties determine our ability to remember. We created a 

model for predicting memory from object features showing that semantic properties more than 

visual properties contribute primarily to memorability. Further, we find that it is neither the most 

prototypical or atypical images that are best remembered, which suggests that typicality alone 

cannot account for memorability. Our findings challenge decades of prior research that suggest 

that the most atypical items are most memorable, informing our understanding of the features 

and organizational principles of memory. 
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INTRODUCTION 

What is it that makes something memorable? Researchers have been struggling for 

decades to understand the determinants of memory and how information is encoded, processed, 

and retrieved in the brain. The majority of research in memory uses a subject-centric framework, 

attempting to understand the underlying processes of memory and individual differences across 

people. This subject-centric framework is motivated by the highly personal nature of memory, as 

everyone has their own experiences that influence what they will later remember. However, a 

complementary stimulus-centric framework has arisen out of the surprising finding that, despite 

our individual experiences, we largely remember and forget the same images (Isola et al., 2011; 

Bainbridge et al., 2013). This new stimulus-driven perspective allows for a targeted examination 

of what we remember, and why. 

This stimulus-driven perspective has revealed that images have an intrinsic memorability, 

defined for a stimulus as the likelihood that any given person will remember that stimulus later 

(Bainbridge et al., 2019). By using aggregated task scores for each stimulus rather than 

individual participant responses, memorability for a given stimulus can be quantified, repeatedly 

demonstrating a high degree of consistency in what people remember (Isola et al., 2011; 

Bainbridge et al., 2019) across stimulus types (see Isola et al., 2011; Bainbridge et al., 2013; 

Borkin et al., 2013; Xie et al., 2020). These memorability scores can account for upwards of 50% 

of variance in memory task performance (Bainbridge et al., 2013) and demonstrate remarkable 

resiliency across tasks and robustness to attention and priming (Bainbridge, 2020). This high 

consistency allows one to make honed predictions about what people will remember, which 

could have far-reaching implications for fields including advertising, marketing, public safety 

(Bainbridge et al., 2019), patient care (Bainbridge, Berron, et al., 2019), and computer vision 

(Needell & Bainbridge, 2022). However, in spite of these high consistencies in what individuals 

remember, what specific factors determine the memorability of an image is still largely 

unknown. 

Prior research has sought to explain memorability as either a proxy for a given stimulus 

feature such as attractiveness or brightness, while others have attempted to reduce memorability 

to a linear combination of features in a constrained stimulus set (Bainbridge et al., 2013; Isola et 

al., 2014). These studies mostly utilize faces or scenes as stimuli, and none of them have 

explained the majority of variance in memorability using these models. More recently, 

researchers have emphasized the importance of considering items in a multidimensional 

representational space, with memorability arising from the relative location of an item within that 

space (Lukavský & Děchtěrenko, 2017; Bainbridge, 2019; Koch et al., 2020). This theoretical 

framework has sparked debate about the roles of low-level visual features such as color and 

shape and semantic information such as animacy in determining what we remember and what we 

forget (Khosla, 2015; Jaegle et al., 2019; Madan, 2020; Xie et al., 2020). Additionally, 

researchers disagree on whether the most memorable items are the most prototypical items 

(Bainbridge, Dilks, & Oliva, 2017; Bainbridge & Rissman, 2018) or the most atypical items 

(Bylinskii et al., 2015; Lukavský & Děchtěrenko, 2017; Mosenzadeh et al., 2019). Thus, there is 
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a lack of consensus surrounding the roles of visual and semantic features as well as typicality 

with regards to what we remember, necessitating a much broader and detailed investigation. 

Here, we provide a comprehensive characterization of visual memorability across an 

exhaustive set of picturable object concepts in the American English language (THINGS 

database, Hebart et al., 2019). Specifically, we determine the object features that drive our 

memories. We collected over 1 million memory scores for all 26,107 images in the THINGS 

database, which we have made publicly available 

(https://osf.io/5a7z6/?view_only=675e901c176c4bec9c2540fc4981e5fe). We then leveraged 

three complementary measures—human judgments, multidimensional object features, and 

predictions from a deep convolutional neural network (CNN)—to examine the relationship of 

memorability to object typicality. We construct a feature model that is able to predict a majority 

of the variance in image memorability. Among those features, our results uncover a primacy of 

semantic over visual dimensions in what we remember. Further, while we find evidence of the 

most prototypical items being best remembered, our discovery of high variance in the 

relationship between memorability and typicality at multiple levels suggest that typicality alone 

cannot account for memorability.   

RESULTS 

To explore memorability across concrete objects, we collected memorability scores for 

the entire image corpus of the THINGS database of object images (Hebart et al., 2019) and 

uncovered a dispersion of memorability across the hierarchical levels of THINGS. We examined 

the roles of semantic and visual information by predicting memorability from semantic and 

visual features using multivariate regression, revealing that semantic dimensions contribute 

primarily to object memorability. We then analyzed multiple measures of object typicality along 

with the memorability scores and found a small but robust effect of the most prototypical items 

being best remembered. 

THINGS is a hierarchically structured dataset containing 26,107 images representing 

1,854 object concepts (such as aardvark, tank, and zucchini) derived from a lexical database of 

picturable objects in the English language (see Methods), 1,619 of which are assigned to 27 

higher categories (such as animal, weapon, and food). The concepts were assigned to categories 

in prior work through a two-stage process where one group of participants proposed categories 

for a given concept while a second group narrowed the potential categories further, with the most 

consistently chosen category becoming the assigned category for the concept (Hebart et al., 

2020). The concepts and images are also characterized by an object space consisting of 49 

dimensions that capture 92.25% of the variance in human behavioral similarity judgments of the 

objects (Hebart et al., 2020). Each concept and each image thus can be described by a 49-

dimensional embedding that corresponds to the representation of that item in the object space. 

This overall dataset structure enables the analysis of memorability at the image, concept, 

category, and dimensional levels. 

Memorability is Highly Variable Across Objects 
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In order to quantify memorability for all 26,107 images in THINGS, we conducted a 

continuous recognition memory task (N = 13,946) administered over the online experiment 

platform Amazon Mechanical Turk (AMT) wherein participants viewed a stream of images and 

were asked to press a key when they recognized a repeated image that occurred after a delay of at 

least 60 seconds. Memorability was quantified as the corrected recognition (CR) score for a 

given image, calculated as the proportion of correct identifications of the image minus the 

proportion of false alarms on that image (Bainbridge & Rissman, 2018). The overall pattern of 

results remains unchanged when corrected recognition is instead substituted with hit rate or false 

alarm rate (Supplementary Material). To test if we observe consistency across people in what 

they remember and forget, we conducted a split-half consistency analysis across 1,000 iterations 

and found significant agreement in what independent groups of participants remembered 

(Spearman-Brown corrected split-half rank correlation, mean ρ = 0.449, p < .001), which is 

striking given the diversity of the THINGS images. This consistency in memory performance 

demonstrates that memorability can be considered an intrinsic property of these stimuli.  

When assessing memorability at the concept level (e.g. candy bars, windshields), we 

observe that memorability varied widely across the concepts (Figure 1a). This dispersion of CR 

suggests that not all concepts in THINGS are equally memorable. For example, candy bars were 

highly memorable overall with a maximum CR of 1, a mean of 0.873, and a minimum of 0.756 

(range = 0.127), while windshields were less memorable with a maximum CR of 0.756, a mean 

of 0.649, and a minimum of 0.404 (range = 0.352). We observe a similar diversity of 

memorability patterns at the higher category level (e.g. dessert, part of car; Figure 1b). The 

average CR across the THINGS categories is 0.793, with some categories demonstrating a higher 

average memorability than others; body parts attained the highest average memorability at 0.855 

while part of car had the lowest average memorability of 0.753. These measures highlight the 

rich variation present within the THINGS database as it relates to memorability. 

The previously reported embeddings along 49 dimensions for each of the object concepts 

(Hebart et al., 2020) allow us to determine if certain dimensions are more strongly reflected in 

memorable stimuli (Figure 1c). Specifically, we examined Spearman rank correlations between 

the memorability of the THINGS concepts and the concepts’ embedding values for each of the 

49 dimensions. We found that 36 dimensions showed a significant relationship to memorability 

(FDR-corrected q < 0.01), of which 9 were positive and the remaining 27 were negative. These 

correlations reveal that some properties used to characterize an object do show a relationship to 

memorability. For example, the positive relationship for the body / body part dimension (ρ = 

0.257, p = 1.873 × 10-29) indicates that stimuli related to body parts tend to be more memorable, 

while a negative correlation like metal / tools (ρ = -0.323, p = 1.689 × 10-15) implies that stimuli 

made of metal tend to be less memorable. 
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Figure 1. Descriptive analyses of memorability across the concept and category levels of the THINGS database as 

well as the 49 object dimensions. (A) The spread of corrected recognition (CR) across the 1,854 object concepts 

revealed that not all concepts are equally memorable. For concepts like candy bars, the entire range of component 

image memorability values were contained above the average value for a concept like windshields. (B) Visualizing 

the same spread across higher order categories revealed variation in average memorability across the 27 categories, 

with some categories including part of car displaying a CR score below the overall average memorability of 0.793 

represented by the dotted horizontal line while others like body parts displayed a score above the average. (C) This 

high variability in memorability continues when examining the correlation between memorability and embeddings 

along the object dimensions. 36 out of 49 dimensions displayed a significant association with memorability (shaded 

bars, FDR-corrected q < 0.01), with 9 showing a positive relationship (i.e., body / body parts being more 

memorable), and 27 showing a negative relationship (i.e., metal / tools being less memorable).  

Having explored memorability across the structure of THINGS, we can readily observe 

that memorability varies at the exemplar, concept, higher category, and dimensional levels. With 

this understanding, the question becomes: what determines some concepts/categories/dimensions 

to be more memorable than others? 

Semantic Information Contributes Most to Memorability 

To examine which object features are most important for explaining what is remembered 

and what is forgotten, we used the object space dimensions to  predict the average memorability 

scores of the THINGS concepts (Table 1). Our regression model utilized the 49-dimensional 
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embedding of each concept to predict the average CR score for the concept. Overall, the model 

explained 38.52% of the variance in memorability (Figure 2b). Because memorability scores 

contain some noise, we also calculated performance of this model in comparison to a noise 

ceiling estimated by predicting split halves of the memory data across 100 iterations (see 

Methods). We found our model explained 61.66% of the variance given the noise ceiling, 

implying that these dimensions capture a majority of variance in memorability. 

The explanatory power of our model serves as a strong starting point for an analysis of 

the types of dimensions that contribute most to memorability. We sorted the dimensions into two 

main categories: visual and semantic dimensions. Dimension names were determined in a prior 

study, as the top two-word phrases selected by naïve observers for sets of the most heavily 

weighted images on those dimensions (see Methods; Hebart et al., 2020). We defined visual 

dimensions of an image to be those concerned primarily with color and shape information, such 

as “red / color”, “long / thin”, “round / circular”, and “pattern / patterned” (Table 1). We defined 

semantic dimensions as categorical information that did not include references to color or shape, 

such as “food / carbs”, “technology / electronic”, and “body / body parts”. Any dimensions that 

contained both semantic and visual information as defined above were classified as mixed, such 

as “green / vegetables”, “black / accessories”, and “white / winter”. 

 

Table 1. Categorization of THINGS object space dimensions across semantic, visual, and mixed dimensions. 

Dimension names were derived from naïve observers viewing the highest weighted images on each dimension. 

Dimensions are listed in order of highest to lowest correlation with memorability score. 

Semantic Visual Mixed 

Metal / Tools Colorful / Colors Furniture / Bland to Colorful 

Food / Carbs Circular / Round Green / Vegetables 

Animal / Animals Patterns / Piles Wood / Brown 

Clothes / Clothing Long / Thin Royalty / Gold 

Backyard / Garden Red / Color Dirt / Grainy 

Cars / Vehicles Round / Circular Black / Accessories 

Body / Body Parts Pattern / Patterned Long / Rope 

Technology / Electronic Tall / Big Paper / White 

Sports / Sport Mesh / Nets Rope / Bands 

Tools / Hand Tools  Construction / Long 

Paper / Books  Unknown / Colorful 

Liquids / Containers  White / Winter 

Water / Ocean  Shiny / Jewels 

Feminine / Flowers   

Bathroom / Hygiene   

War / Military   

Instruments / Music   

Flight / Air   

Insects / Bugs   

Feet / Body Parts   

Fire / Heat   

Face / Head   

Wheels / Can Sit On   

Containers / Hold Other Things   

Baby / Children   

Medicine / Medical   

Candles / Crafts   
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With these dimensions labelled, we can differentiate the contributions of primarily 

semantic and primarily visual dimensions to memorability. By analyzing the embeddings of each 

concept in the multidimensional object space, we revealed that 70.44% of the concepts were 

more heavily embedded in dimensions classified as semantic than dimensions classified as visual 

(Figure 2a). We ran a regression model that predicted memorability only from the dimensions 

strictly classified as either semantic or visual (excluding mixed dimensions). The resulting 36-

dimensional model (27 semantic, 9 visual) explained 35.16% of the variance in memorability, 

and the semantic dimensions contributed 31.22% of the variance while visual dimensions only 

accounted for 1.62% with a shared variance of 2.32% (Figure 2c). This result suggests a clear 

dominance of semantic over visual properties in memorability. To examine the effects of 

dimensions labelled as mixed, we also broke down the unique and shared variance contributions 

from semantic, visual, and mixed dimensions in the full 49-dimensional model, demonstrating 

that mixed dimensions contributed 1.03% of variance in memorability (see Supplementary 

Material). 

However, since there are also a larger number of semantic dimensions than visual 

dimensions in that model, we conducted a follow-up analysis with a model using just the top 9 

highest weighted semantic dimensions and top 9 highest weighted visual dimensions. This model 

accounted for 19.15% of variance in memorability, with the top 10 semantic dimensions 

contributing 15.21% of variance while the top 10 visual dimensions contributed 1.87% of 

variance with a shared variance of 2.07% (Figure 2d). A summary of all regression results is 

displayed in Figure 2b. 
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Figure 2. Analyses of relative contributions of semantic and visual properties to memorability. (A) Histogram of 

averaged embedding values in semantic (red) and visual (blue) dimensions across concepts. The yellow histogram 

represents the difference between the visual and semantic embeddings (blue - red).  The embeddings of the 1,854 

concepts in the object space reveal that 70.44% of the concepts are more heavily embedded in semantic dimensions 

than in visual dimensions. (B) Table of regression models. The semantic and visual models utilize all 27 semantic 

and 9 visual dimensions respectively to predict memorability and captured 38.52% of the variance in memorability. 

The top models utilized only the 9 most heavily embedded semantic and visual dimensions, to balance the number 

of semantic and visual dimensions in the model. Across models, the majority of variance was captured by semantic 

dimensions. (C) Venn diagram displaying the unique contributions to memorability from semantic and visual 

dimensions. For the model using all non-mixed dimensions, the majority of variance is captured by the 27 semantic 

dimensions, with a smaller contribution from the 9 visual dimensions. Note the larger shared variance than visual 

variance, suggesting that most of the contribution of visual dimensions may be contained in shared variance with 

semantic dimensions. (D) The same type of Venn diagram as in (C) but with a model including equal numbers of 

semantic and visual dimensions (9 regressors each). Again, the majority of explained variance comes from semantic 

dimensions. 

Taken together, our results indicate that semantic properties contribute far more than 

visual properties towards the memorability of an image. While the results reveal contributions of 

visual properties, these contributions are largely captured by shared variance with semantic 

properties.  

Memorability is More than Just Typicality 

 While we have determined that semantic features are the most predictive dimensions of 

the object space for memorability, there is still the question of whether it is the most prototypical 

or most atypical items that are best remembered along these dimensions. In terms of the object 

feature space, items that are clustered closely together are the most prototypical items, while 
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items spaced further apart are the most atypical items. The relationship between typicality and 

memory has been studied extensively in face processing, scene recognition, and related fields 

(Lee et al., 2000; Bylinskii et al., 2015; Lukavský & Děchtěrenko, 2017), with some studies 

using memorability interchangeably with atypicality or distinctiveness (e.g., Bruce et al., 1994). 

A recent body of work has suggested three different hypotheses, where the relationship between 

typicality and memorability is either always negative (Lukavský & Děchtěrenko, 2017), always 

positive (Bainbridge & Rissman, 2018), or a specific combination of the two (Koch et al., 2020). 

Here, we leverage the scale of THINGS to determine this relationship utilizing converging 

methods for defining typicality based on the multidimensional object space derived from human 

similarity judgments, a deep neural network for object recognition, and behavioral ratings. These 

three complementary approaches allow for testing a wide range of hypotheses concerning 

whether the most prototypical or atypical items are most often remembered. 

 

Figure 3. Generating typicality scores from object space dimensions, CNN activations, and behavior. (A) To 

generate typicality scores from the object space dimensions, we begin with loadings on each of the 49 dimensions of 

the object space for each of the 26,107 THINGS images. Correlating the resulting dimension loadings within each of 

the object concepts allowed for the generation of similarity matrices for each object concept. From these matrices, 

we compute the typicality of each image as the mean correlation between that image and all other images of a given 

object concept, resulting in a typicality score for every image in relation to its concept. (B) The procedure for 

generating typicality scores from a CNN is largely the same as the process for the object space dimensions but 

relying instead on layer activations at each of the 22 layers of the VGG-F network as the representations for each 

image, which were then correlated to form similarity matrices. (C) For behavioral typicality, participants on Amazon 

Mechanical Turk used a 0-10 Likert scale to assess the typicality of a given object concept (snake) to its higher 

category (animals). These typicality scores were then aggregated across all the concepts under a given higher 

category to generate a typicality score for that category.  
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Object Space Typicality 

 Our first measure of typicality we dub “object space typicality”, and it is derived from the 

object space employed in the previous analysis of the visual and semantic dimensions (Figure 

3a). Specifically, we quantify an object’s typicality as the average similarity of a given example 

image (e.g. a particular example of a squirrel) to all other examples of that image’s concept (e.g. 

all images of squirrels in THINGS; see Methods). The 49-dimensional space has been 

demonstrated to capture human behavior in excess of 90% of the noise ceiling (Hebart et al., 

2020) and we have just shown it is able to predict memorability with high accuracy.  

We first tested the overall relationship between corrected recognition and typicality 

scores for the 26,107 image corpus of THINGS. We found a significant positive relationship 

between image typicality and memorability across the THINGS dataset (r = 0.309, p = 6.131 × 

10-7). This suggests that more memorable images tend to be more prototypical of their concept in 

their representations across these dimensions, arguing against a general primacy of atypicality in 

memorability. We also analyzed the relationship between object space typicality and 

memorability within each of the 1,854 concepts in THINGS by correlating memorability and 

typicality values across the exemplar images of each concept. In other words, within each 

concept, what is the relationship between typicality and memorability? We determined that 

overall, the concepts were more likely to display a relationship where more prototypical images 

tended to be more memorable (one sample t-test: t(1852) = 2.074, p = 0.038).  

While this finding of most object concepts showing a positive relationship between object 

space typicality and memorability seems to provide evidence for memorability corresponding to 

object prototypicality, it is important to note that many object concepts (917) show the opposite 

relationship where more atypical images are more memorable. For example, for coats, more 

prototypical images were more memorable (r = 0.857, p = 3.66 × 10-4), but for other concepts 

such as handles, more atypical images were more memorable (r = -0.798, p = 0.001).  

Additional mixed evidence is also apparent when relating the typicality and memorability 

of concepts within each of the 27 higher categories present in THINGS, in contrast to the 

previously described analyses that tested the typicality of images in relation to their concepts. 

For any given concept, the category typicality score reflects the typicality of that concept (e.g. 

squirrels) relative to all other concepts of its higher category (e.g. animals). 

When examining the relationship between memorability and object space typicality at the 

category level, we observed that certain categories, such as containers (r = -0.213, p = 0.029) and 

electronic devices (r = -0.232, p = 0.047) showed negative relationships (e.g., more atypical 

containers are more memorable), while animals (r = 0.159, p = 0.034) and body parts (r = 0.473, 

p = 0.005) demonstrated positive relationships. Overall, across all high-level categories, there 

were an equal number of positive and negative significant relationships, demonstrating further 

mixed evidence within the THINGS dataset. 

CNN-Based Typicality 
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 We term our second measure of typicality “CNN-based typicality”, as it employs the 

VGG-F deep CNN to compute similarity ratings across the 22 layers of the network (Figure 3b). 

Deep neural network models have demonstrated success in predicting the neural responses of 

different regions in the visual system (Yamins et al., 2014; Khaligh-Razavi & Kriegeskorte, 

2014). A critical insight from these studies suggests that earlier layers in the network represent 

low-level visual information such as edges, while later layers represent more complex and 

semantic features like categorical information (Güçlü & van Gerven, 2015). Unlike the object 

space derived scores, these typicality values are directly computed from image features, rather 

than based on behavioral similarity judgments in response to the images themselves. 

Recent analyses using CNNs have suggested that the relationship between typicality and 

memorability may differentially depend on similarity across semantic and visual features; for 

example, for a set of scene images, images that were the most visually atypical (i.e., atypical at 

early layers) but semantically prototypical (i.e., prototypical at late layers) tended to be most 

memorable (Koch et al., 2020). We can directly address this hypothesis using our CNN-based 

typicality measure, as we can directly compare typicality values at both early and late layers of 

the VGG-F network. If the pattern displayed in Koch et al. (2020) holds true, we would expect to 

see a strong negative correlation between memorability and early layer typicality (i.e., visually 

atypical items are best remembered) and a strong positive correlation with late layer typicality 

(i.e., semantically prototypical items are best remembered).   

We test this hypothesis by producing two correlations for each object concept – the 

correlation between CR and early layer (2) typicality, and the correlation between CR and late 

layer (20) typicality. This produces a pair of correlations for each of the 1,854 object concepts. 

We then visualize these correlation pairs (Figure 4a) and provide a best fit line, which 

demonstrates the relationship between each correlation pair. The resulting correlation (r = 0.253, 

p = 2.504 × 10-28) suggests that in general, visual and semantic features (as represented in early 

and late layers) show similar correlations with memorability across the object concepts. 

We also segment the concepts into quadrants, which represent four potential patterns for 

the correlation pairs for a given object concept. The first quadrant contains concepts that display 

positive correlations for both early and late layers (i.e., visually and semantically prototypical 

items are best remembered). The second quadrant contains concepts that have positive early 

layer correlations but negative late layer correlations (i.e., visually prototypical and semantically 

atypical items are best remembered). The third quadrant contains concepts with negative 

correlations for both early and late layers (i.e., visually and semantically atypical items are best 

remembered), and the fourth quadrant contains concepts with negative early layer and positive 

late layer correlations (i.e., visually atypical and semantically prototypical items are best 

remembered). This fourth quadrant can be considered a representation of Koch et al.’s (2020) 

hypothesis, as it corresponds to visually atypical and semantically prototypical items being best 

remembered. 
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A chi-square analysis on each quadrant revealed that significantly more concepts than 

chance showed a pattern where the most memorable items were prototypical in terms of both 

early and late layer features (χ2 = 38.046, p = 6.909 × 10-10). In contrast, we find significantly 

fewer concepts than chance show a mixed pattern, where memorable items were determined by 

early layer prototypicality and late layer atypicality (χ2 = 8.454, p = 0.004), or the opposite 

pattern of early layer atypicality and late layer prototypicality (χ2 = 20.286, p = 6.668 × 10-6). 

Finally, there was no difference from chance in the proportion of concepts that showed a pattern 

where the most memorable items were the most atypical items for both early and late CNN 

layers (χ2 = 8.3993, p = 0.553). These results suggest that in general, memorable images tend to 

be those that are both visually and semantically prototypical of their object concept, although 

there are also concepts for which memorable images may tend to be either visually or 

semantically atypical.  

 

Figure 4. Examining relationships between typicality, memorability, and semantic and visual content. (A) 

Visualizing the correlation of CNN-based typicality and memorability for all 1,854 concepts in terms of an early 

layer (layer 2) and late layer (layer 20) allows for the observation of an overall positive relationship between early 

and late layer typicality scores across the concepts (r = 0.253, p = 2.504 × 10-28). A chi-square analysis of the four 

quadrants of the scatterplot demonstrated significantly more concepts than chance showed a pattern where the most 

memorable items were prototypical in terms of both early and late layer features (χ2 = 38.046, p = 6.909 × 10-10). 

Contrastingly, we find significantly fewer concepts that demonstrate “mixed” patterns where more memorable items 

demonstrated early layer prototypicality and late layer atypicality (χ2 = 8.454, p = 0.004), or the opposite pattern (χ2 

= 20.286, p = 6.668 × 10-6). We found no significant difference from chance for concepts where the most 

memorable items were atypical across both early and late layer features (χ2 = 8.3993, p =0.553). This suggests that, 

in general, memorable concepts tend to be both visually and semantically prototypical. (B) Example concepts that 

fell into each quadrant of the scatterplot seen in A. 

 

Behavioral Typicality 

 Our third and final measure of typicality, referred to as “behavioral typicality”, consists 

of behavioral ratings derived from a concept to category matching task (Hebart et al., 2020) 

(Figure 3c). In this prior study, participants on Amazon Mechanical Turk used a 0-10 Likert 

scale to assess the degree to which a given concept was typical of a category (e.g., how typical is 

a snake of animals?). These ratings allow us to capture human intuition regarding typicality.  
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 A correlation between CR scores and behavioral typicality scores across all higher 

categories showed no significant relationship between typicality and memorability (r = 0.139, p 

= 0.576). When examining the distribution of correlations between typicality and memorability 

within the higher categories, we observed a marginal effect of more atypical (rather than 

prototypical) categories being more memorable (t(26) = -2.022, p = 0.054). When examining the 

correlations for each of the 27 categories separately (see Supplementary Material), we found that 

home décor (r = -0.384, p = 0.009), office supplies (r = -0.430, p = 0.032), and plants (r = -0.429, 

p = 0.003) showed significant negative relationships, implying that more memorable examples of 

each category were more atypical. In contrast, animals (r = 0.176, p = 0.020), food (r = 0.115, p 

= 0.050) and vegetables (r = 0.317, p = 0.041) had positive relationships, implying that more 

memorable examples were more prototypical. Overall, when examining typicality using 

behavioral ratings, we find additional evidence suggesting that memorability is not accounted for 

by either object prototypicality or atypicality. 

 Together, our results demonstrate that memorability cannot be considered synonymous 

with either prototypicality or atypicality, as has been suggested in previous studies (e.g., 

Valentine et al., 1991; Bylinskii et al., 2015; Bainbridge et al., 2017). Certain results collected 

using both object space-derived and CNN-derived typicality scores suggest a trend towards more 

prototypical stimuli being more often remembered, but the large number of counterexamples 

present across the different typicality scores and levels of analysis suggest that the relationship 

between memorability and typicality is likely more complex than a simple positive or negative 

association, varying strongly from concept to concept.  

DISCUSSION 

 We acquired and analyzed a large dataset of memory ratings for a representative object 

image database to uncover what makes certain objects more memorable than others. Specifically, 

we investigated the roles of semantic and visual features and revealed that semantic properties 

more strongly influence what is remembered than visual properties. We leveraged three 

complementary measures of object typicality to determine whether the most prototypical or most 

atypical images are best remembered and uncovered some evidence suggesting more 

prototypical items are more memorable, but also a high degree of variance across concepts and 

categories, suggesting that memorability is not just a measure of the typicality of an object or 

image. These findings shed new light on the determinants of what we remember and stand in 

contrast to previous studies that have claimed both that semantic information is not required to 

determine memorability (Lin et al., 2021) and that memorability is synonymous with atypicality 

(Bruce et al., 1994). 

Semantic Primacy of Memorability 

We analyzed the contributions of semantic and visual dimensions to memorability to 

determine if the two types of information contribute differentially to the THINGS stimuli. Our 

results reveal a primacy of semantic dimensions in explaining memorability, based on multiple 

regressions comparing the relationship of the entire object dimensional space to memorability. 
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Even after equalizing the number of semantic and visual dimensions inputted to the model, 

88.02% of the variance in memorability captured by the space was exclusively from the top 9 

semantic dimensions. 

Previous findings of the ability of CNNs (Khosla et al., 2015) and monkeys (Jaegle et al., 

2019) to predict human performance on memorability tasks and examples of memory 

performance robust to semantic degradation (Lin et al., 2021) have led to the assertion that 

semantic knowledge is not required to make an image memorable. However, recent research has 

demonstrated that semantic similarity is predictive of memorability and lexical stimuli also 

display intrinsic memorability despite a lack of rich visual information (Xie et al., 2020; Madan 

et al., 2021). More recently, other studies have demonstrated that both visual and semantic 

features contribute differentially with regards to both object memory (Hovhannisyan et al., 2021) 

as well as the typicality-memorability relationship, where visually atypical but semantically 

prototypical scene images may be the most memorable (Koch et al., 2020). Additionally, recent 

research in memorability prediction suggests that adding semantic information to a deep neural 

network improves the prediction of memorability scores (Needell & Bainbridge, 2022). Our 

results demonstrate a strong semantic primacy in memory which lends additional support to 

recent findings demonstrating the importance of semantic information in determining what we 

remember.  

Beyond behavior, our findings align with the results from recent neuroimaging studies 

that have examined the neural correlates of memorability. One such study found a lack of 

memorability-related activation in the Early Visual Cortex (EVC), suggesting that areas involved 

in lower-level perception may not be sensitive to memorability (Bainbridge et al., 2017). This 

result, coupled with a study demonstrating faster neural reinstatement for highly memorable 

stimuli in the Anterior Temporal Lobe (ATL), an area typically associated with semantic 

processing (Xie et al., 2020), could potentially reflect a neural signature of the observed outsize 

influence of semantic features in determining what is best remembered. In this study, 

memorability for word stimuli could be significantly predicted by the semantic connectedness of 

these words, where words that exist at the roots of a semantic structure tended to be more 

memorable (Xie et al., 2020). This suggests that memorability could reflect our semantic 

organization of items in a memory network. Other work has also found sensitivity to 

memorability in late perceptual areas, such as the Fusiform Face Area (FFA) and the 

Parahippocampal Place Area (PPA) (Bainbridge et al., 2017; Bainbridge & Rissman, 2018), 

often associated with the patterns seen in late CNN layers (Yamins et al., 2014; Khaligh-Razavi 

& Kriegeskorte, 2014).  

Our findings are particularly surprising given the fact that the object space dimensions 

explained 61.66% of the variance in memorability. Unlike previous studies of memorability 

using single attributes (Bainbridge et al., 2017; Isola et al., 2014) or linear combination models 

with constrained stimulus sets (Bainbridge et al., 2013), we are able to explain a large degree of 

the variance in memorability, further highlighting the importance of semantic properties. The 

success of this model also means that this same model can be applied to selecting stimulus sets 
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intended to drive memory in specific ways; given an object’s feature space, we can predict which 

items are likely to be remembered or forgotten. However, given the remaining unexplained 

variance, it is clear that there are still lingering questions about the determinants of what we 

remember and what we forget. 

Typicality as it Relates to Memorability 

Here, we observe that across our images, concepts, and categories, there are some by 

which the most prototypical are the most memorable, while there are others where the most 

atypical are the most memorable. These results suggest that memorability does not just reflect an 

object’s typicality, and it is not merely that memorable items are the most distinctive, atypical 

items. In fact, across multiple levels of analysis, we observe the opposite, where in general more 

prototypical items tend to be the most memorable.  

This is surprising, given that typicality has long been thought to encapsulate the effect of 

memorability based on evidence from faces (Valentine, 1991; Bruce et al., 1994) and scenes 

(Bylinskii et al., 2015), whereby more atypical items are thought to be easier to remember. Other 

studies have rebutted this claim by demonstrating that semantic similarity is predictive of 

memorability (Xie et al., 2020). Furthermore, late visual areas regions show neural patterns 

reflective of our current behavioral findings, where memorable face and scene images show 

more similar neural patterns to each other (i.e., have more prototypical patterns), while 

forgettable images have more dissimilar neural patterns (i.e., more atypical patterns; Bainbridge 

et al., 2017; Bainbridge & Rissman, 2018). Further, Koch and colleagues (2020) found a 

complex relationship with typicality, where visually distinct and semantically similar images 

were most often remembered in an indoor-outdoor classification task. Our divergent findings 

could possibly be explained by the constrained stimulus sets utilized in prior studies. While prior 

work focused on narrow stimulus sets such as faces or a smaller sampling of scene images, our 

study examines a comprehensive, representative set of object images across the human 

experience. Our divergent findings from these earlier studies may suggest that while previous 

findings are reasonable extrapolations from the stimuli domains examined, they are not 

characteristic of memorability as a whole. When assessed at a global scale, it is neither 

prototypicality nor atypicality of an item that makes it memorable. 

The observation of variability in the typicality-memorability relationship may have 

important ramifications for neuroimaging research examining the neural correlates of 

memorability and memory more broadly. Observations of prototypicality in neuroimaging 

research reference a phenomenon called pattern completion as a means by which the 

hippocampus retrieves a complex representation from a given cue (LaRocque et al., 2013). This 

process depends on another hippocampal phenomenon termed pattern separation, where similar 

inputs are assigned distinct representations to facilitate the mnemonic discrimination required in 

memory (Ngo et al., 2020). Whole-brain fMRI analyses have revealed that different areas 

involved in memory utilize separated and overlapping information to facilitate memory 

(LaRocque et al., 2013), suggesting a potential role for both prototypicality (as represented by 
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pattern completion) and atypicality (as represented by pattern separation) in facilitating memory. 

Future neuroimaging research could identify potential neural markers of prototypicality and 

atypicality and determine if the effects of semantic and visual information are dissociable at a 

neural level.  

Conclusion 

Here, we have created the best performing model to date of the object features that are 

predictive of image memorability. From this model, we have observed a primacy of semantic 

properties in determining what we remember. This underscores recent findings of the important 

role of semantic information in memory (Xie et al., 2020) and emerging work with CNNs that 

demonstrate a classification performance benefit when including semantic information into their 

models (Needell & Bainbridge, 2022). 

 Beyond highlighting the roles of semantic and visual dimensions, our results demonstrate 

that neither prototypicality nor atypicality fully explains what makes something memorable, and 

if anything, prototypical items tend to be the most memorable. Our findings challenge decades of 

prior research suggesting we best remember more atypical items (Valentine, 1991; Vokey & 

Read, 1992; Lee et al., 2001; Bylinskii et al., 2015; Lukavský & Děchtěrenko, 2017). This trend 

towards prototypicality is reflected in recent neuroimaging studies (Bainbridge et al., 2017; 

Bainbridge & Rissman, 2018; Xie et al., 2020), suggesting that prototypicality may be related to 

the underlying neural mechanisms governing memory.  

Our findings shed new light on the features and organizational principles of memory, 

opening up a wide variety of potential follow-up studies. In fact, with this large-scale analysis, 

we have identified the stimulus features that govern memorability within and across a 

comprehensive set of objects, and make this data publicly available for use 

(https://osf.io/5a7z6/?view_only=675e901c176c4bec9c2540fc4981e5fe). This will allow 

researchers to make honed predictions of memory within these categories, or use these 

dimensions to design ideal stimulus sets. For example, our analysis found that animal images are 

highly memorable, while manmade, metal images are highly forgettable, and so memorability is 

an important factor to consider in studies looking at visual perception of animacy (Konkle & 

Caramazza, 2013). Further, given the success of our feature model in predicting memorability, 

this model could be potentially used to identify memorable images in other image datasets. 

While THINGS representatively samples concrete object concepts, there are additional stimulus 

domains beyond objects including dynamic stimuli such as movies, scenes, and non-visual 

stimuli that could be analyzed in the context of our results. With the understanding that neither 

prototypicality nor atypicality alone fully characterizes the relationship between typicality and 

memorability, there is the question of what biases certain stimuli towards one or the other.  

We uncover both a semantic primacy in explaining memorability and determine that the 

relationship between typicality and memorability is more complex than either prototypicality or 

atypicality alone. We provide this comprehensive characterization in pursuit of a nuanced 

understanding of the underlying determinants of memorability, and memory more broadly. 
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Developing this understanding further will have implications far beyond cognitive neuroscience 

in realms such as advertising, patient care, and computer vision. With the development of 

generative models of stimulus memorability, it is more important than ever before to ground 

these models in an empirical understanding of what makes something memorable. 

METHODS 

 

Participants 

13,946 unique participants completed a continuous recognition repetition detection task 

on the THINGS images over AMT (see “Obtaining Memorability Scores for THINGS”). All 

online participants acknowledged their participation and were compensated for their time, 

following the guidelines of the National Institute of Health Office for Human Subjects Research 

Protections (OHSRP). Participants had to be located within the United States and have 

participated in at least 100 tasks previously on AMT with at least a 98% approval rating overall 

to be recruited for the experiment. Participants who made no responses on the task were removed 

from the data sample. 

 

Stimuli: THINGS 

To examine memorability across a broad range of object concepts, we utilized the entire 

26,107 image corpus of the THINGS database (Hebart et al., 2019, https://osf.io/jum2f/) for all 

of our experiments. The THINGS concepts span the wide range of concrete objects, including 

animate and inanimate, as well as manmade and natural concepts, such as aardvarks, goalposts, 

tanks, and boulders. These 1,854 concepts were generated from the WordNet lexical database 

through a multilevel web scraping process (Hebart et al., 2019). Each concept has a minimum of 

12 exemplar images, though some have as many as 35. These concepts were sorted into 27 

overarching categories including animal-related, food-related, and body parts. These higher 

categories were generated using a two-stage AMT experiment.  

At the concept level, we utilized the representational embedding of each concept supplied 

by THINGS as the multidimensional space for our analyses (Hebart et al., 2020). The original 

49-dimensional behavioral similarity embeddings (Hebart et al., 2020) had been generated based 

on the 1,854 object concepts. Dimension names were generated by two pools of naïve observers 

in a categorization task (Hebart et al., 2020). The first pool of observers viewed the most heavily 

reflected images along a given dimension of the space and generated potential labels from the 

images. The second pool of observers then narrowed down the list of labels until the top two 

labels remained for each dimension, which was then assigned as the name for that dimension. To 

derive 49-dimensional embeddings for each of the 26,107 images in the THINGS database, we 

used predictions from a deep neural network as a proxy. The prediction was carried out for each 

dimension separately using Elastic Net regression based on the activations of object images in 

the penultimate layer of the CLIP Vision Transformer (ViT, Radford et al., 2021), which has 

been shown to yield the most human-like behavior of all available CNN models in a range of 
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tests (Geirhos et al., 2021). The Elastic Net hyperparameters were tuned and evaluated using 

nested 10-fold cross-validation, yielding high predictive performance in most dimensions (mean 

Pearson correlation between predicted and true dimension scores: r > 0.8 in 20 dimensions, r > 

0.7 is 32 dimensions, r > 0.6 in 44/49 dimensions). We then tuned the hyperparameters on all 

available data using 10-fold cross-validation and applied the regression weights to the CNN 

representations of THINGS images, yielding 49-dimension scores for all 26,107 images. 

Obtaining Memorability Scores for THINGS 

In order to examine memorability in the context of the THINGS space, we collected 

memorability scores for all 26,107 images (publicly available in an online repository:  

https://osf.io/5a7z6/?view_only=675e901c176c4bec9c2540fc4981e5fe). To quantify the 

memorability of each stimulus, each participant viewed a stream of images on their screen and 

was instructed to press the R key whenever they saw a repeated image. Each image was 

presented for 500ms, and the interstimulus interval was 800ms. For each repeated stimulus, there 

was a minimum 60-second delay between the 1st and 2nd presentation of that image, although 

this delay was jittered so that repetitions could not be predicted based on timing. The task also 

included easier “vigilance repeats” of 1-5 images apart, to ensure participants were paying 

attention to the task. The presentation of images was such that approximately 40 participant 

responses were gathered per image. Of the 1,854 concepts in THINGS, each concept was either 

represented with a single exemplar or not represented at all during a participant’s set of trials in 

order to control for within-concept competition effects on memory performance. To avoid 

familiarity effects, participants were only allowed to participate again after a minimum delay of 

2 weeks. 

Memorability was quantified in THINGS using corrected recognition (CR) scores for 

each image. Corrected recognition is calculated by subtracting the false alarm rate for a given 

stimulus from the hit rate for the same stimulus. Hit rate is defined as the proportion of correct 

repetition detections, whereas false alarm rate is defined as the proportion of incorrect detections. 

CR allows for a single metric that integrates information about both hit rate and false alarm rate. 

However, we also replicate all results using hit rate and false alarm rate separately 

(Supplementary Material). 

We ran a split-half consistency analysis to determine if participants were consistent in 

what they remembered. The analysis randomly partitioned participants into two halves and 

calculated a Spearman rank correlation between the CR scores for all images, as defined by the 

two random halves of participants. In other words, this analysis determines how similar the 

memory performance is for each image between these two independent halves of participants. 

This process was repeated across 1,000 iterations and an average correlation rho was calculated. 

This rho was then corrected using the Spearman-Brown correction formula for split-half 

correlations. If there is no consistency in memory performance across participants, we would 

expect a zero value for rho, whereas a high value would suggest that what one-half of 

participants remembered, so did the other. To estimate chance, we correlated one half of 
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participants’ scores with those for a shuffled image order of the other participant half, across 

1,000 iterations. The p-value was calculated as the proportion of shuffled correlations higher 

than the mean consistency between halves. 

Semantic/Visual Contribution and Regression Model Analyses 

With memorability scores at the image level available, we can relate the memorability of 

THINGS stimuli with the associated representational space and determine the relative 

contributions of semantic and visual dimensions to memorability. To accomplish this, we 

analyzed the embeddings of the 1,854 concepts in the 49 dimensions and separated them into 

semantic and visual dimensions. Of the 49 dimensions, 27 were identified as semantic, 9 as 

visual, and the remaining 13 as mixed (Table 1).  

To determine the effects of semantic and visual dimensions on memorability, we ran a 

series of multiple regression models. We began with an omnibus model predicting average 

memorability for each of the 1,854 concepts using the full set of 49 dimensions. This model 

assessed the total variance in memorability explained by the dimensions. We then utilized a 

model predicting memorability from the 36 dimensions classified as either semantic or visual to 

determine the differential contributions of each type of information. As there were more 

semantic dimensions than visual dimensions, we also ran a model that only used the 9 most 

heavily reflected semantic and 9 most heavily reflected visual dimensions to control for the 

overrepresentation of semantic information. In order to assess the potential variance explained by 

dimensions classified as mixed, we also break down the unique variance contributed by mixed 

dimensions to the full 49-dimensional model (see Supplementary Material). In all models we 

also analyzed the unique and shared variance contributions of the two types of dimensions to 

memorability using variance partitioning. Unique semantic variance was calculated as the overall 

R2 value for the full model minus the R2 value for a model containing only the visual dimensions 

and vice versa for visual variance. The shared variance was calculated as the overall model R2 

minus both the unique semantic and unique visual variance. 

In order to compare the performance of the omnibus model (all 49 dimensions) to the 

noise ceiling, we conducted a split-half regression analysis. Across 100 iterations, the participant 

sample was split into two random halves, and we ran two models. For the first model, we looked 

at the ability of the 49 dimensions to predict the memorability scores derived from the first half 

of participants. For the second model, we included an additional 50th predictor which was the 

memorability scores derived from the second half of participants, for the same images. This 

second model serves as a noise ceiling of memorability from which we can compare the first 

model. To see the proportion of variance explained in comparison to this noise ceiling, we then 

averaged the ratio of the R2 of the first model to the second model, across iterations. 

Memorability-Typicality Relationship Analyses 

To determine if memorability is reflective of object prototypicality or atypicality, we 

assessed the relationship between typicality and memorability of the THINGS images. We 
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conducted these analyses at two levels: mapping images to concepts, and mapping concepts to 

categories. We utilized typicality scores from the object space dimensions, the VGG-F 

Convolutional Neural Network (CNN), and behavioral ratings of typicality.  

To create our object space typicality scores, we leveraged the 49-dimensional object 

space and embeddings of all 26,107 images within that space. For each concept, we generated a 

similarity matrix containing the embedding values of the component images of that concept 

along all 49 dimensions. From that matrix, we can extract a single value for each image that is 

the average similarity (Pearson correlation) between that image’s dimensional embeddings and 

those of the other images of that concept, which we define as the typicality of that image. In 

other words, a low mean correlation would imply a highly atypical stimulus (distinct from other 

exemplars of the same concept), while a high mean correlation would imply a highly 

prototypical stimulus (very similar to exemplars of the same concept). We utilize the same 

paradigm to generate typicality values for each concept in relation to other concepts under a 

given category using an embedding of each concept in the object space and comparing its 

similarity to the embedding of all other concepts within the same category. 

For our CNN-based typicality scores, we leveraged the VGG-F CNN object classification 

network to compute typicality directly from image features. Early layers of CNNs are more 

sensitive to low-level image features, such as edges, while later layers are more sensitive to 

higher-level and semantic features, such as animacy (Güçlü & van Gerven, 2015). We can 

therefore extract information at these various points in the network to test the separate 

contributions of visual and semantic typicality. The paradigm for extracting typicality values was 

similar to the object space typicality values: for each concept, similarity matrices were generated 

based on the flattened layer output values for all component images. The typicality for each 

exemplar was then calculated as the mean of its similarity (Pearson correlations) with all other 

exemplars in the concept. This measure tells us how similar a given exemplar is to all other 

exemplars in terms of its CNN-predicted features. This procedure is repeated for every layer in 

VGG-F, resulting in 21 typicality values for each image in relation to its object concept, one for 

each layer of VGG-F. 

For our behavioral typicality scores, we employed the ratings collected as part of the 

THINGS database (Hebart et al., 2020). These ratings were collected for each of the 1,854 

THINGS concepts and represent the typicality of the concept in relation to its higher category on 

a scale of 0 to 10. For example, the typicality rating for stomach under the higher category body 

parts reflects how typical a stomach is as a body part (considering other body parts like legs or 

shoulders).  

 

To analyze the relationships between typicality and memorability across the THINGS 

dataset, we use our object space, CNN-based, and behavioral typicality scores at two different 

levels of analysis: image level and concept level. At the image level, we analyze the object space 

and CNN-derived typicality values to examine their relationship to memorability across all 
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26,107 images in THINGS, which gives a single value for the overall typicality-memorability 

relationship of the THINGS images. Beyond the overall trend, we also examine the relationship 

within each of the 1,854 image concepts by correlating the typicality scores and memorability 

scores of their component images. This allows for the visualization of more nuanced 

relationships between the THINGS concepts. At the concept level, we perform a correlation 

between the behavioral typicality scores and CR scores and examine the resulting distribution of 

the relationships for each of the 27 higher categories.  

ACKNOWLEDGEMENTS 

 

The researchers would like to thank Coen Needell and Deepasri Prasad for their helpful 

comments on the manuscript and Sara Hedberg for assistance in generating figures. This research 

was funded by the Intramural Research Program of the National Institutes of Health (ZIA-MH-

002909), under National Institute of Mental Health Clinical Study Protocol 93-M-1070 

(NCT00001360). 

REFERENCES 

1. Isola, P., Xiao, J., Torralba, A., & Oliva, A. (2011). What makes an image memorable? 

Journal of Vision, 11(11), 1282–1282. https://doi.org/10.1167/11.11.1282 

2. Bainbridge, W. A., Isola, P., & Oliva, A. (2013). The intrinsic memorability of face 

photographs. Journal of Experimental Psychology: General, 142(4), 1323–1334. 

https://doi.org/10.1037/a0033872 

3. Bainbridge, W. A. (2019). Memorability: How what we see influences what we 

remember. Psychology of Learning and Motivation Knowledge and Vision, 1–27. 

https://doi.org/10.1016/bs.plm.2019.02.001 

4. Borkin, M. A., Vo, A. A., Bylinskii, Z., Isola, P., Sunkavalli, S., Oliva, A., & Pfister, H. 

(2013). What Makes a Visualization Memorable? IEEE Transactions on Visualization 

and Computer Graphics, 19(12), 2306–2315. https://doi.org/10.1109/tvcg.2013.234 

5. Xie, W., Bainbridge, W. A., Inati, S. K., Baker, C. I., & Zaghloul, K. A. (2020). 

Memorability of words in arbitrary verbal associations modulates memory retrieval in the 

anterior temporal lobe. Nature Human Behaviour, 4(9), 937–948. 

https://doi.org/10.1038/s41562-020-0901-2 

6. Bainbridge, W. A. (2020). The resiliency of image memorability: A predictor of memory 

separate from attention and priming. Neuropsychologia, 141, 107408. 

https://doi.org/10.1016/j.neuropsychologia.2020.107408 

7. Bainbridge, W. A., Berron, D., Schütze, H., Cardenas-Blanco, A., Metzger, C., Dobisch, 

L., … Düzel, E. (2019). Memorability of photographs in subjective cognitive decline and 

mild cognitive impairment: implications for cognitive assessment. 

https://doi.org/10.1101/660365 

8. Needell, C. D., & Bainbridge, W. A. (2022). Embracing new techniques in deep learning 

for estimating image memorability. Computational Brain & Behavior. 

https://doi.org/10.1007/s42113-022-00126-5  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2022. ; https://doi.org/10.1101/2022.04.29.490104doi: bioRxiv preprint 

https://doi.org/10.1167/11.11.1282
https://doi.org/10.1037/a0033872
https://doi.org/10.1016/bs.plm.2019.02.001
https://doi.org/10.1109/tvcg.2013.234
https://doi.org/10.1038/s41562-020-0901-2
https://doi.org/10.1016/j.neuropsychologia.2020.107408
https://doi.org/10.1101/660365
https://doi.org/10.1007/s42113-022-00126-5
https://doi.org/10.1101/2022.04.29.490104
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

   
 

 

   
 

9. Bainbridge, W. A., Dilks, D. D., & Oliva, A. (2017). Memorability: A stimulus-driven 

perceptual neural signature distinctive from memory. NeuroImage, 149, 141–152. 

https://doi.org/10.1016/j.neuroimage.2017.01.063 

10. Isola, P., Xiao, J., Parikh, D., Torralba, A., & Oliva, A. (2014). What Makes a 

Photograph Memorable? IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 36(7), 1469–1482. https://doi.org/10.1109/tpami.2013.200 

11. Valentine, T. (1991). A Unified Account of the Effects of Distinctiveness, Inversion, and 

Race in Face Recognition. The Quarterly Journal of Experimental Psychology Section A, 

43(2), 161–204. https://doi.org/10.1080/14640749108400966 

12. Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global Vectors for Word 

Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural 

Language Processing (EMNLP). https://doi.org/10.3115/v1/d14-1162 

13. Khosla, A., Raju, A. S., Torralba, A., & Oliva, A. (2015). Understanding and Predicting 

Image Memorability at a Large Scale. 2015 IEEE International Conference on Computer 

Vision (ICCV). https://doi.org/10.1109/iccv.2015.275 

14. Jaegle, A., Mehrpour, V., Mohsenzadeh, Y., Meyer, T., Oliva, A., & Rust, N. (2019). 

Population response magnitude variation in inferotemporal cortex predicts image 

memorability. ELife, 8. https://doi.org/10.7554/elife.47596 

15. Lin, Q., Yousif, S. R., Chun, M. M., & Scholl, B. J. (2021). Visual memorability in the 

absence of semantic content. Cognition, 212, 104714. 

https://doi.org/10.1016/j.cognition.2021.104714 

16. Madan, C. R. (2020). Exploring word memorability: How well do different word 

properties explain item free-recall probability? Psychonomic Bulletin & Review, 28(2), 

583–595. https://doi.org/10.3758/s13423-020-01820-w 

17. Lee, K., Byatt, G., & Rhodes, G. (2000). Caricature Effects, Distinctiveness, and 

Identification: Testing the Face-Space Framework. Psychological Science, 11(5), 379–

385. https://doi.org/10.1111/1467-9280.00274 

18. Bylinskii, Z., Isola, P., Bainbridge, C., Torralba, A., & Oliva, A. (2015). Intrinsic and 

extrinsic effects on image memorability. Vision Research, 116, 165–178. 

https://doi.org/10.1016/j.visres.2015.03.005 

19. Lukavský, J., & Děchtěrenko, F. (2017). Visual properties and memorising scenes: 

Effects of image-space sparseness and uniformity. Attention, Perception, & 

Psychophysics, 79(7), 2044–2054. https://doi.org/10.3758/s13414-017-1375-9 

20. Mohsenzadeh, Y., Mullin, C., Oliva, A., & Pantazis, D. (2019). The perceptual neural 

trace of memorable unseen scenes. Scientific Reports, 9(1). 

https://doi.org/10.1038/s41598-019-42429-x 

21. Hebart, M. N., Dickter, A. H., Kidder, A., Kwok, W. Y., Corriveau, A., Wicklin, C. V., & 

Baker, C. I. (2019). THINGS: A database of 1,854 object concepts and more than 26,000 

naturalistic object images. https://doi.org/10.1101/545954 

22. Koch, G. E., Akpan, E., & Coutanche, M. N. (2020). Image memorability is predicted by 

discriminability and similarity in different stages of a convolutional neural network. 

Learning & Memory, 27(12), 503–509. https://doi.org/10.1101/lm.051649.120 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2022. ; https://doi.org/10.1101/2022.04.29.490104doi: bioRxiv preprint 

https://doi.org/10.1016/j.neuroimage.2017.01.063
https://doi.org/10.1109/tpami.2013.200
https://doi.org/10.1080/14640749108400966
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1109/iccv.2015.275
https://doi.org/10.7554/elife.47596
https://doi.org/10.1016/j.cognition.2021.104714
https://doi.org/10.3758/s13423-020-01820-w
https://doi.org/10.1111/1467-9280.00274
https://doi.org/10.1016/j.visres.2015.03.005
https://doi.org/10.3758/s13414-017-1375-9
https://doi.org/10.1038/s41598-019-42429-x
https://doi.org/10.1101/545954
https://doi.org/10.1101/lm.051649.120
https://doi.org/10.1101/2022.04.29.490104
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

   
 

 

   
 

23. Bainbridge, W. A., & Rissman, J. (2018). Dissociating neural markers of stimulus 

memorability and subjective recognition during episodic retrieval. Scientific Reports, 

8(1). https://doi.org/10.1038/s41598-018-26467-5 

24. LaRocque, K. F., Smith, M. E., Carr, V. A., Witthoft, N., Grill-Spector, K., & Wagner, 

A. D. (2013). Global Similarity and Pattern Separation in the Human Medial Temporal 

Lobe Predict Subsequent Memory. Journal of Neuroscience, 33(13), 5466–5474. 

https://doi.org/10.1523/jneurosci.4293-12.2013 

25. Ngo, C. T., Michelmann, S., Olson, I. R., & Newcombe, N. S. (2020). Pattern separation 

and pattern completion: Behaviorally separable processes? Memory & Cognition, 49(1), 

193–205. https://doi.org/10.3758/s13421-020-01072-y 

26. Contier, O., Hebart, M. N., Dickter, A. H., Teichmann, L., Kidder, A., Corriveau, A., 

Zheng, C., Vaziri-Pashkam, M., Baker, C. I. (2021). THINGS-fMRI/MEG: A large-scale 

multimodal neuroimaging dataset of responses to natural object images. 

27. Hebart, M. N., Zhang, C. Y., Pereira, F., & Baker, C. I. (2020). Revealing the 

multidimensional mental representations of natural objects underlying human similarity 

judgements. Nature Human Behavior. https://doi.org/https://doi.org/10.1038/s41562-020-

00951-3 

28. Chatfield, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Return of the devil in 

the details: Delving deep into convolutional nets. Proceedings of the British Machine 

Vision Conference 2014. https://doi.org/10.5244/c.28.6 

29. Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. 

(2014). Performance-optimized hierarchical models predict neural responses in higher 

visual cortex. Proceedings of the National Academy of Sciences, 111(23), 8619–8624. 

https://doi.org/10.1073/pnas.1403112111 

30. Khaligh-Razavi, S.-M., & Kriegeskorte, N. (2014). Deep Supervised, but Not 

Unsupervised, Models May Explain IT Cortical Representation. PLoS Computational 

Biology, 10(11). https://doi.org/10.1371/journal.pcbi.1003915 

31. Güçlü, U., & van Gerven, M. A. (2015). Deep neural networks reveal a gradient in the 

complexity of neural representations across the ventral stream. Journal of Neuroscience, 

35(27), 10005–10014. https://doi.org/10.1523/jneurosci.5023-14.2015 

32. Vokey, J. R., & Read, J. D. (1992). Familiarity, memorability, and the effect of typicality 

on the recognition of faces. Memory & Cognition, 20(3), 291–302. 

https://doi.org/10.3758/bf03199666 

33. Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., 

Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021). Learning 

Transferable Visual Models From Natural Language Supervision. 

http://arxiv.org/abs/2103.00020 

34. Geirhos, R., Narayanappa, K., Mitzkus, B., Thieringer, T., Bethge, M., Wichmann, F. A., 

& Brendel, W. (2021). Partial success in closing the gap between human and machine 

vision. http://arxiv.org/abs/2106.07411 

35. Madan, C.R. (2021). Exploring word memorability: How well do different word 

properties explain item free-recall probability?. Psychon Bull Rev 28, 583–595 

https://doi.org/10.3758/s13423-020-01820-w 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2022. ; https://doi.org/10.1101/2022.04.29.490104doi: bioRxiv preprint 

https://doi.org/10.1038/s41598-018-26467-5
https://doi.org/10.1523/jneurosci.4293-12.2013
https://doi.org/10.3758/s13421-020-01072-y
https://doi.org/https:/doi.org/10.1038/s41562-020-00951-3
https://doi.org/https:/doi.org/10.1038/s41562-020-00951-3
https://doi.org/10.5244/c.28.6
https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1371/journal.pcbi.1003915
https://doi.org/10.1523/jneurosci.5023-14.2015
https://doi.org/10.3758/bf03199666
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2106.07411
https://doi.org/10.3758/s13423-020-01820-w
https://doi.org/10.1101/2022.04.29.490104
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

   
 

 

   
 

36. Konkle, T., & Caramazza, A. (2013). Tripartite Organization of the ventral stream by 

animacy and object size. Journal of Neuroscience, 33(25), 10235–10242. 

https://doi.org/10.1523/jneurosci.0983-13.2013 

37. Bruce, V., Burton, M. A., & Dench, N. (1994). What's distinctive about a distinctive 

face? The Quarterly Journal of Experimental Psychology Section A, 47(1), 119–141. 

https://doi.org/10.1080/14640749408401146 

38. Hovhannisyan, M., Clarke, A., Geib, B., Cicchinelli, R., Monge, Z., Worth, T., 

Szymanski, A., Cabeza, R., & Davis, S. (2020). The visual and semantic features that 

predict object memory: concept property norms for 1000 object images. 

https://doi.org/10.31234/osf.io/nqmjt 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2022. ; https://doi.org/10.1101/2022.04.29.490104doi: bioRxiv preprint 

https://doi.org/10.1523/jneurosci.0983-13.2013
https://doi.org/10.1080/14640749408401146
https://doi.org/10.31234/osf.io/nqmjt
https://doi.org/10.1101/2022.04.29.490104
http://creativecommons.org/licenses/by-nc-nd/4.0/

