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Words typically form the basis of psycholinguistic and computational linguistic studies

about sentence processing. However, recent evidence shows the basic units during

reading, i.e., the items in the mental lexicon, are not always words, but could also be

sub-word and supra-word units. To recognize these units, human readers require a

cognitive mechanism to learn and detect them. In this paper, we assume eye fixations

during reading reveal the locations of the cognitive units, and that the cognitive units

are analogous with the text units discovered by unsupervised segmentation models. We

predict eye fixations by model-segmented units on both English and Dutch text. The

results show themodel-segmented units predict eye fixations better than word units. This

finding suggests that the predictive performance of model-segmented units indicates

their plausibility as cognitive units. The Less-is-Better (LiB) model, which finds the units

that minimize both long-term and working memory load, offers advantages both in terms

of prediction score and efficiency among alternative models. Our results also suggest

that modeling the least-effort principle for the management of long-term and working

memory can lead to inferring cognitive units. Overall, the study supports the theory that

the mental lexicon stores not only words but also smaller and larger units, suggests that

fixation locations during reading depend on these units, and shows that unsupervised

segmentation models can discover these units.

Keywords: text segmentation, eyemovement, unsupervised learning, reading units, mental lexicon, computational

cognition, cognitive unit

1. INTRODUCTION

Language researchers may easily agree that an utterance comprises a sequence of “units,” but it is
not easy to come to an agreement on what these units are. The units can be words, phonemes,
morphemes, phrases, etc. from a linguistic perspective (Jackendoff, 2002); or unigrams, bigrams,
trigrams, etc. from a statistical perspective (Manning and Schütze, 1999). In this paper, we take a
cognitive perspective and aim to identify the cognitive units that play the role of building blocks in
human language processing.

Words seem to be the most generally accepted units, perhaps because the spaces in written
European languages steer us toward implicitly assuming that individual words are the most
distinctive elements of sentences. Pollatsek and Rayner (1989) summarized ten key questions
for the cognitive science of reading; nearly half of them are about words. Another case in point
is that there are many models of visual word recognition, such as the Interactive Activation
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model (McClelland and Rumelhart, 1981), the Triangle model
(Plaut et al., 1996), and the Dual Route Cascaded model
(Coltheart et al., 2001). Even when considering sentence-level
processing, researchers tend to take words as the basic units in
their studies; this is the case for the classical studies relevant to
the garden-path model which describes how the reader analyzes
the grammatical structure of sentence from the serial input of
words (Frazier and Rayner, 1982; Frazier, 1987), for the E-Z
reader model which explains how the attributes of words guide
eye movements during reading (Reichle et al., 1998), and for
the discovery of the N400 component in brain activity which
responds to semantically anomalous words (Kutas and Hillyard,
1980). Word units are also assumed for more recent studies such
as those that map brain activity to processing of each word of
a sequence (Brennan et al., 2012; Ding et al., 2016; Brennan
and Hale, 2019) as well as studies that compare the statistical
attributes of words in sentences with the cognitive and neural
response to the words (Mahowald et al., 2013; Frank et al., 2015;
Frank and Willems, 2017).

Though words are often used as psycholinguistic units,
morphemes, which are defined as the smallest meaning-bearing
units in a language (Chomsky, 1953), are usually the basic
units in linguistic analysis. The central role of morphemes
in linguistics also influenced some psycholinguists to consider
the mental operations of morphologically complex words. In
a recent review, Leminen et al. (2019) analyzed more than
100 neuroimaging studies of inflected words (e.g., walk-ed),
derived words (e.g., dark-ness), and compounds (e.g., walk-
man). As they summarized, most studies of the processing of
derivational/inflectional morphology agree that such complex
words are decomposed during processing; but studies of the
processing of compound words show inconsistent results: some
support the access of constituent morpheme units (Koester and
Schiller, 2011; Fiorentino et al., 2014), some support the access of
whole-word units (Stites et al., 2016), and some support mixed
access of both (MacGregor and Shtyrov, 2013; Kaczer et al., 2015;
Yang et al., 2020a).

In addition to subword units, the cognitive system can also
make use of supra-word units. Some studies provide indications
that supra-words such as frequent phrases and idioms (e.g.,
“I don’t know") are stored in our long-term mental lexicon
(Jackendoff, 2002; Bannard and Matthews, 2008; Arnon and
Snider, 2010), implying that supra-words can be processed
directly. Baayen (2007) has argued that the mental lexicon
involves storage (of the wholes) and computation (of the
combinatorial rules), and that they counterbalance each other.
Yang et al. (2020a) also considered the counterbalancing, arguing
that storing more supra-words in our mental lexicon could
reduce the cognitive load of computation since larger units (e.g.,
“I am|going to" vs. “I|am|going|to") result in fewer processing
steps (e.g., two retrievals + one combination vs. four retrievals +
three combinations). Taken together, this diverse evidence shows
that cognitive units exist at various linguistic levels, and that
cognitive units have a wide range of possible lengths.

The flexibility of cognitive units implies that there is no clear
or uniform perceptual salience of the units during reading, since
a cognitive unit may be a sub-word or a supra-word that is not

surrounded by two dividers (i.e., spaces), let alone the fact that
in some writing systems (e.g., Chinese) there are no dividers for
words. However, readers must be able to segment language input
into cognitive units in order to access the meaning of the units
and understand the input. Thus, our cognitive system must have
a mechanism to quickly locate the cognitive units in language
input for subsequent recognition. In fact, our eye movements
in daily tasks may indicate the existence of this mechanism,
since eye movements include many fixations which land neither
randomly nor uniformly, but primarily on the targets of salience,
information, or interest in the scene we see (Buswell, 1935;
Henderson, 2011). So it is with reading: eye movements are
controlled to skip some words, especially when the words are
high-frequency function words (Rayner et al., 1982).

The flexibility of cognitive units also implies that it is hard
for language learners to decide on the basis of perceptual cues
whether or not a particular morpheme, word, or arbitrary string
is a cognitive unit. Humans must have the ability to learn the
cognitive units from their own experience, or inmachine learning
terms: unsupervised. To understand the human ability to learn
and to identify the cognitive units, we need a model that is
unsupervised and cognitively plausible. We here introduce the
Less-is-Better (LiB) model (Yang et al., 2020b) as a candidate.

The LiBmodel is inspired by one intrinsic aspect of our nature:
the principle of least effort. George Kingsley Zipf, who proposed
the principle, explained it as “[the human agent] will strive to
solve his problems in such a way as to minimize the total work
that he must expend in solving both his immediate problems
and his probable future problems.” (Zipf, 1949, p. 1). Limiting
ourselves to purely cognitive tasks, we here interpret his words as:

a. To reduce the number of processing units in both current and

prospective working memory.

The cognitive load refers to the demand not only on working
memory, but also on long-term memory (see Figure 1A below),
so we here extend the principle of least effort to:

b. To reduce the number of stored units in long-term memory.

The LiBmodel regards the cognitive units as the language chunks
that require the least effort during language processing, and the
above two goals can be operationalized as: a. to reduce the number
of unit tokens in all potential texts, and b. to reduce the number of
unit types in long-termmemory (mental lexicon). There is a trade-
off between the two goals. The former goal will prefer combining
adjacent chunks into larger chunks, such as phrases, to reduce
the number of tokens. If this process would be unrestricted, it
would lead to units being so large as to represent the entire text
with only one unit token. This would result in an extremely large
lexicon memory that will not generalize to future use, as its units
are unlikely to recur. To prevent this from happening, the latter
goal will remove low-frequency chunk types from memory. The
two goals counterbalance each other during learning and make
the result in line with the least-effort requirement.

The current study aims to evaluate how similar the units
segmented by unsupervised word segmentation models are

Frontiers in Artificial Intelligence | www.frontiersin.org 2 February 2022 | Volume 5 | Article 731615

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Yang et al. Text Segmentation Predicts Eye Fixations

FIGURE 1 | Illustration of the LiB model: (A) information flow in the LiB model; (B) the mechanisms in the text segmentation module; (C) the mechanisms in the

lexicon update module.

to cognitive units. Although we lack a gold standard for
cognitive units, eye movements during reading, specifically the
eye fixations, may provide information about them. Taking words
as units of analysis of eye-tracking data, studies have reported
that fixation positions frequently fall at (or close to) the center
of a word when the word is fixated only once (Rayner et al.,
1996; Li et al., 2011; Paterson et al., 2015), but some words are
fixated more than once (Rayner andMcConkie, 1976; Hyönä and
Olson, 1995; Kliegl et al., 2004; Cop et al., 2017), while some
short words are not fixated upon (Kerr, 1992; Brysbaert and Vitu,
1998). Taking multiword sequences as units of analysis of eye-
tracking data, formulaic sequences (e.g., “as a matter of fact") get
fewer fixations than non-formulaic sequences (e.g., “it’s a well-
known fact”) (Underwood et al., 2004). In light of these empirical
findings, we hypothesize that eye fixations are a proxy to the
location of the cognitive building blocks of the text, that is, the
cognitive units.

Our main goal in the current study is not to predict or explain
eye fixations, but to validate the model as a cognitive model
by quantifying its ability to predict eye fixations. The current
model aims to be as simple as possible by using only unannotated
text. Therefore, in this study, we will not include properties that
can improve fixation prediction but are outside the scope of the
model (e.g., semantics).

We use the units segmented by LiB in a corpus to predict the
locations of the eye fixations in the same or a different corpus.
If the LiB units indeed predict eye fixations, this suggests both
that the LiB units are similar to the cognitive units and that the
cognitive units are located by the eye fixations. In other words,

cognitive units may be considered a latent factor driving both
eye fixations and the discovery of units by LiB, and the extent to
which the LiB units predict eye fixations reflects their plausibility
as cognitive units. Then we evaluate the similarity between the
LiB units and the hypothesized cognitive units during human
reading by comparing the eye fixations predicted by LiB with the
observed eye fixations extracted from an eye-movement corpus.
As the design and the training of the model are independent
of the eye movements (i.e., the model is not fitted on the eye-
tracking data), any overlap found betweenmodel predictions and
eye movements is caused by properties of the model itself and not
by spurious patterns discovered in the eye-movement data.

Two other segmentation models are also evaluated for
comparison: Chunk-Based Learner (McCauley and Christiansen,
2017), and Adaptor Grammar (Goldwater et al., 2009). We also
compare to two word-based baselines: one that assumes the
cognitive units are equal to words, and one that assumes the
cognitive units are determined by the word length. The models
are introduced in more detail below. In the comparisons, we
will demonstrate that the segmentation models outperform the
baselines, and show the advantages of LiB in various aspects.

2. METHODS

2.1. The Less-is-Better Model
The information workflow of the LiB model consists of an
interaction loop between the text segmentation module (blue
box with solid line; Figure 1A) and the lexicon update module
(orange box with dotted line; Figure 1A). We briefly characterize
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the model; more detail is given in Yang et al. (2020b). The
model has a lexicon L which is an ordered set of unit types u.
In each epoch, the segmentation module (Figure 1B) segments
the input, which is a sequence of symbols (s1, s2, . . . , sn) (in the
current simulations, symbols are characters, excluding spaces)
into a sequence of a minimal number of unit tokens (u1, . . . , uN),
where each u token is a subsequence of the input; u =

(si, . . . , sj), and each u is in the current L. The update module
(Figure 1C) then updates L according to the output (u1, . . . , uN),
meaning that some new unit types are created and added to L
to decrease the number of tokens in future inputs, and some
current unit types are removed to decrease the number of
types in L.

To reduce the number of u tokens during the segmentation,
if u types of different sizes in L match the current input, the
largest u type has the priority to be selected as the u token
(Larger-first selection; Figure 1B). Then LiB evaluates the u token
by segmenting the following input and counting the segmented
tokens. LiB segments the current input as if the largest u type
does not exist (counterfact) so the second-largest u type will
also be evaluated. In case the largest u type causes more u
tokens in the input than the second-largest u type, the largest
u type is evaluated as Bad (otherwise as Good) and the second-
largest u type is selected instead (Counterfactual evaluation;
Figure 1B).

L is empty at the beginning, and all the symbols s1, . . . , sn
in the input are unknown to the model. Those symbols will be
memorized as the first batch of new u types in L. Adjacent u
tokens in the input can become a larger u token by concatenation
of the two original tokens, and the adjacent larger u tokens
can become an even larger u token. LiB randomly samples
the combinations of segmented u tokens and memorizes the
sampled combinations as new u types (Memorizing; Figure 1C).
These new u types go to L immediately and can be used for
further segmentations and combinations, so LiB learns online.
The sampling strategy achieves similar results as tracking the
frequencies of each u type and dropping the low-frequency ones,
since the u types with higher frequencies are more likely to
be sampled. However, compared to frequency tracking, LiB’s
sampling strategy consumes markedly less resources of memory
and operation.

Although no statistical information of the u types is recorded,
LiB indicates a u type’s likelihood of being a cognitive unit
by the type’s rank in the Lexicon. A newly memorized u type
is appended to the end of L, which means it has the lowest
likelihood of being a cognitive unit, because the new u type
might merely be an accidental concatenation of two u tokens.
Besides the memorizing order, the order of L also depends
on Chunk evaluation: after the evaluation, a Good u is moved
forward and a Bad u is moved backward in L (Re-ranking;
Figure 1C).

The Re-ranking pushes the chunks u that were evaluated
as Bad as well as very infrequent chunks (that never had the
opportunity to be evaluated) backward in L. This means the
end of L contains not just newly memorized u but also junk u
(infrequent u and Bad u). To clean up only the junk u, all u at the
end of L enter a probationary period. In case a u was evaluated as

Good during the probation, its probation is canceled; otherwise,
the chunk is removed from L. By such a mechanism (Forgetting;
Figure 1C) LiB can reduce the number of u types and keep a small
size L.

2.2. Other Models for Evaluation
Firstly we introduce a frequentist computational model named
Chunk-Based Learner (CBL; McCauley and Christiansen, 2019),
which aims to simulate human incremental language acquisition.
CBL also has its cognitive basis: frequency-based learning. In
detail, CBL processes naturalistic linguistic input as sequences of
chunks. Initially, each word is a chunk. Then CBL calculates the
backward transitional probabilities (BTPs) between the chunks.
If the BTP of a chunk-pair rises above the average of all tracked
BTPs, the chunk-pair will be grouped as a new chunk and be
replaced by the new chunk in further processes. CBL in this
way implements the incremental learning of multi-word units.
Some words will not be combined into larger chunks, and thus
the lexicon of CBL will contain both word units and multi-
word units.

Bayesian models can be seen as an alternative to frequentist
models, and the “Bayesian coding hypothesis" also argues that
humans behave Bayesian (Knill and Pouget, 2004). Adaptor
Grammar (AG; Johnson et al., 2007) is a word segmentation
model based on a Bayesian framework. Like the other models
we compare, it aims to segment the tokens from the input in an
unsupervised way. The AGmodel represents each input sequence
from the corpus as a multi-level tree structure with a predefined
number of levels. Although different trees can represent the same
sequence, AG assumes there is an optimal tree. The Hierarchical
Dirichlet Process, which is a nonparametric Bayesian approach
to group the observed data hierarchically (Teh et al., 2006),
is used to find the optimal trees that fit the input sequences.
Not with standing AG is usually used for word segmentation,
syllabification, and other linguistic applications (Johnson et al.,
2007; Johnson, 2008; Johnson and Goldwater, 2009; Zhai
et al., 2014), in the current study we investigate whether the
unsupervised nature of the model can help to discover the
cognitive units.

Besides the segmentation models that can generate non-word
units, we set two baselines that are completely word-based. The
first baseline (Word-by-Word) simply assumes that the cognitive
units are equal to words. As we mentioned above, words are
the commonly accepted units in many studies so it is worth
investigating whether words or the model-produced cognitive
units can better predict eye fixations.

Another baseline (Only-Length) implements the assumption
that the number of fixations on a word is determined by the
length of the word. Different from the Word-by-Word baseline,
the Only-Length baseline uses the knowledge of observed
eye fixations. Only-Length groups the words with the same
number of letters together and shuffles the numbers of fixations
within each group. Only the distributions related to the word
lengths persist in this baseline so the prediction will not be
influenced by frequency, morphology, position, or other non-
length information.
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TABLE 1 | The corpora statistics after preprocessing.

Language Corpus Sentences Word tokens Word types

English
GECO 13,491 57,170 5,316

COCA (sample) 1,745,060 9,451,421 140,553

Dutch
GECO 13,407 60,836 5,859

SoNaR (books) 3,308,337 22,802,170 272,865

2.3. Eye Fixation Data
The eye fixation data is extracted from the Ghent Eye-Tracking
Corpus (GECO) corpus1 (Cop et al., 2017). GECO contains three
sets of eye-tracking data: 14 English monolinguals reading the
English novel The Mysterious Affair at Styles by Christie (2008)
(monolingual set); nineteen Dutch (L1)–English (L2) bilinguals
reading the same novel (L2 set); and the same bilinguals reading
the Dutch translation of the novel (title in Dutch: De zaak Styles)
(L1 set). The English monolingual group read the full English
novel and the bilingual group read either the first half of the
novels in English and the second half in Dutch, or vice versa. For
the evaluation in the current study, we discard the L2 set since it
is not native-language reading.

The GECO datasets provide two types of eye fixation data:
first-pass fixation count and total fixation count. The first-pass
fixation includes only the initial reading (until any fixation on
another word) within each word and the total fixation includes
also the re-reading (after regression) within each word. Most of
the regressions reflect post-lexical language processing (Reichle
et al., 2009), and others may reflect oculomotor error or difficulty
associated with the identification of words (Vitu and McConkie,
2000). These processes are beyond the scope of the segmentation
models we evaluated, since the segmented cognitive units are for
planning what to process rather than post-hoc adaptation. That
being so, we evaluate only the first-pass fixation count.

2.4. Corpora
Both the English and the Dutch GECO corpora are used for
model training in the current study. Since the material presented
to the participants are in multiple lines, and the last word in a line
and the first word in the next line are too far apart to be perceived
as a cognitive unit, we break any sentence that appears across
different lines into separate sequences. Two other corpora also
serve as training material but only in the generalizability test of
the models. One of them is Corpus of Contemporary American
English (COCA; Davies, 2008). We used a sample dataset of
COCA which is free for the public2. Although the sample dataset
is only a small part of the complete COCA corpus, it is more than
100 times larger than the English material in GECO. The other
additional training corpus is SoNaR (Oostdijk et al., 2013), a 500-
million-word reference corpus of contemporary written Dutch
from a wide variety of text types. The complete corpus is very
large so we selected the book subset of SoNaR. The corpus sizes
are shown in Table 1.

1https://expsy.ugent.be/downloads/geco/.
2https://www.corpusdata.org/coca/samples/coca-samples-db.zip.

The text from all corpora was converted to lowercase.
Dutch characters with accents (diacritical characters) were
replaced by their unaccented counterparts (e.g., ë → e). All
punctuation (except the apostrophe as a part of possessive)
was used as a divider between the input sequences and then
were replaced by a space. Finally, all sentences have a space
added at the end to make sure that all word tokens end with
a space.

2.5. Evaluation
To evaluate the units segmented by the different models against
the eye fixation counts on each word from GECO, we predict
the eye fixation count from the segmentation models and from
the word-based baselines, and then compare the predicted eye
fixation counts per word with the observed eye fixation counts.

For the segmentation models, the eye fixation counts are
predicted in the following procedure:

1. Training the models:

• The LiB model: In each training epoch, a 200-sentence
batch is randomly extracted from the corpus text (batch-
based update in LiB reduces the computing cost) and then
fed into the model. When training on GECO, which is
rather small, the batch extraction is with replacement and
the training stops when the number of input encoding
bits3 no longer decreases. When training on the large-scale
corpus, the batch extraction is without replacement, and the
training will stop when there is no training material left.
The hyperparameter settings in the current study follow the
previous LiB study (Yang et al., 2020b) except the setting of
probation period4.

• The CBL model: Different from LiB and AG which regard
the input as a sequence of characters, CBL regards the
input as a sequence of words, so it preprocesses the input
into words based on the spaces. There is no change in
the training stage of the original code of McCauley and
Christiansen’s (2019) implementation5.

• The AG model: The simplest grammar tree in AG starts
with characters, then processes words, and then sentences.
Themodel tends to under-segment without an intermediate
level of collocations (Johnson and Goldwater, 2009), so
the AG grammar tree used in the current study is:
character(s)→word, word(s)→ collocation, collocation(s)
→ sentence. Besides the design of the grammar tree, we
also follow the hyperparameter settings of Johnson and
Goldwater’s (2009) experiment6.

3The metric is the product of log2 |lexicon| (the cost of storing unit types) and
1

average chunk length (the cost of computing unit tokens).
4To simplify the model, we removed a regularizer that only memorizes the chunk

tokens that appear more than twice in a single epoch in the LiB model described

by Yang et al. (2020b). We reduced the probation period to an arbitrary value of 3,

since the original setting will cause the lexicon to grow too fast after removing the

regularizer.
5https://github.com/ray306/LiB-predicts-eye-fixations/tree/main/other_models/

cbl_modified.py.
6https://github.com/ray306/LiB-predicts-eye-fixations/tree/main/other_models/

AdapterGrammar/ag_geco/Makefile.
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2. Segmenting the text into units:

• The LiB model: Each sequence of the GECO corpus is
fed to the trained model to be segmented into the units
existing in the trained lexicon. The segmentation is guided
by Larger-first selection and Counterfactual evaluation. No
new cognitive units will be memorized in this stage.

• The CBL model: The original implementation simulates
children’s incremental learning so the lexicon is empty at
the start of training. This means a group of words may be a
unit at the end of segmenting the GECO corpus but not at
the beginning. To keep the segmentation consistent in the
test material, as in the other models, our implementation
of CBL learns the training corpus thoroughly and then
segments the test corpus again with a fixed lexicon.

• TheAGmodel: AG learns the parsing rules during training.
When the model applies the rules to the test corpus, each
sequence will be processed into a hierarchical structure
which contains the character level, the word level, the
collocation level, and the sentence level. We extracted the
units at the word level (the AG-word units) and at the
collocation level (the AG-collocation units).

3. Predicting the number of fixations on each word:
We assume that reading is based on the cognitive units and
the fixation positions are the centers of the cognitive units,
at least if the entire unit is within the perceptual span. We
ignore the perceptual span for now since we want to evaluate
the models totally free of prior limitations. We calculate the
predicted number of fixations on a word as the number
of cognitive units centered on the word. For example, the
predicted fixation position of the unit I have is between h and
a, so the predicted fixation number is zero on the word I (we
can also say I is skipped in this case) and one on the word have.
The predicted fixation number of the word neuroscience is two
if it is segmented into neuro and science.
To investigate the possible effect of perceptual span
limitations, we also evaluate LiB while considering the
perceptual span. We set different upper limits on the unit
length in the model and expect there to be a maximum length
that is optimal for the prediction of fixation counts and that
equals the perceptual span.

For the word-based baselines, the eye-fixation numbers are
predicted differently:

• The Word-by-Word baseline predicts exactly one fixation on
each word;

• The Only-Length baseline groups the words with the same
length together and randomly shuffles the observed number of
fixations on the words within each group. Hence, the predicted
number of fixations of a word is actually the observed number
of fixations of another word with the same length.

The last step in the evaluation is comparing the predicted number
of eye fixations with the observed number of eye fixations on
each word. The F1 metric (Equation 1) is commonly used for
evaluating a binary classification model based on the predictions
made for the positive class (Van Rijsbergen, 1979).

F1 =
True positive

True positive+ 0.5× (False positive+ False negative)
(1)

However, both the observed number and our predicted number
of eye fixations are not binary, in other words, the metric
must work for multi-label data. Because of the very imbalanced
distribution of the fixation counts, we choose weighted F1 as the
measure of prediction accuracy7. The weighted F1 calculates the
binary F1 metric, which is shown by Equation 1, for each label
(fixation count), and finds their average weighted by the number
of true instances for each label.

3. RESULTS

3.1. Qualitative Comparison
Firstly we provide some segmentation examples generated by
the different models (Table 2). In general, short and frequent
collocations tend to form individual units (e.g., to do), and
some of those collocations are not in a syntactic phrase (e.g., i
was); long words tend to be divided into subword units (e.g.,
uitnodigde segmented as uit|nodig|de). Each model has its own
characteristics: the CBL model learns no subword units; the AG-
word model always over-segments the text; the LiB units and the
AG-collocation units are generally similar.

3.2. Unit-Length Comparison
The segmentation examples show the models’ output are
markedly different from each other even though they are all
unsupervised models. To investigate in more detail how the
models’ outputs differ and relate to eye fixations, we first look
at the average of the unit token lengths of the models and the
observed eye fixations. The GECO dataset does not provide the
locations but only the number of eye fixations in any word, so
we do not know every interval between each two eye fixations.
Instead, we infer the locations of eye fixations from their counts
in each word and then calculate the lengths of the eye fixation
units by assuming eye fixations are located in the middle of the
units. Figure 2 shows that the average unit length of the observed
eye fixations is clearly longer than the average length of space-
delimited words, and is close to the average unit length of LiB.
Among the unsupervised models, only AG-word shows even
shorter unit length than the linguistic words. Moreover, Dutch
units are in general slightly longer than English units, except in
the AG models.

3.3. The Distributions of Predicted and
Actual Fixation Counts
Next, we predicted the number of eye fixations on each word
token from the segmentation of the models. We display the
joint distribution of the predictions and observed eye fixations
(Figure 3). The CBL model’s output has only very few subword
units (indicated by More, meaning more than one predicted
fixation on the word). In fact, CBL itself does not output
any subword units, but there are some hyphenated tokens in
GECO (e.g., forty-five), which are processed as multiple words

7https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html.
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TABLE 2 | Segmentation examples from different models in English and Dutch.

Language

Sample Model English Dutch

1

Input i was trying to make up my mind what to do was ik nog aan het overleggen wat ik zou gaan doen

LiB i was |trying to |make |up |my mind |what |to do was ik |nog |aan het |over|leggen |wat ik |zou gaan |doen

CBL i |was trying |to make |up |my mind |what |to do was |ik nog |aan |het overleggen |wat |ik zou gaan |doen

AG-word i |was |try|ing |to |make |up |my |mind |what |to |do was |ik |nog |aan |het |over|leg|gen |wat |ik |zou |gaan |doen

AG-collocation i was |trying to |make |up |my mind |what |to do was ik |nog |aan het |over|leggen |wat ik |zou gaan |doen

2

Input and it ended in his inviting me down to styles to spend my

leave there

en het eind van ’t liedje was dat hij mij uitnodigde mijn verlof

door te brengen op styles

LiB and it |ended |in his |invi|ting |me |down to |styles to |sp|end

|my |leave |there

en |het eind |van ’t |li|e|d|je was |dat hij mij |uitnodig|de |mijn

|verlof |door te brengen |op styles

CBL and |it ended |in |his inviting |me |down |to |styles to spend

|my |leave |there

en |het eind |van |’t liedje |was |dat hij |mij uitnodigde |mijn

verlof |door |te brengen |op styles

AG-word and |it |end|ed |in |his |invit|ing |me |down |to |styl|es to

|spend||my |leav|e |there

en |het |eind |van |’t |lie|d|je |was |dat |hij |mij |uit|nodig|de |mijn

|ver|lo|f |door |te breng|en |op |styles

AG-collocation and |it |ended |in his |inviting |me |down to |styles to |spend

my |leave |there

en |het eind van |’t |lied|je |was |dat |hij mij |uitnodig|de |mijn

|verlof |door |te brengen |op styles

FIGURE 2 | The average token lengths of the observed eye fixation units, the

model-segmented units, and linguistic words in English and Dutch texts. The

error bars represent 99% confidence intervals.

by the models while GECO (and so the evaluation) regards
them as single words. AG-word has only very few supraword
units (indicated by Skip, meaning no fixation at the word).
Compared to the distributions of other models’ predictions, the
distribution of LiB’s prediction is most similar to the distribution
of observed fixations on both the English and the Dutch dataset.
Furthermore, the surface area of the circle in the confusion
matrix (Figure 3) shows that One (exactly one fixation at the
word) predictions match the observed data most often for all
models, and that More predictions match the observed data
the least.

3.4. The F-Scores of Model Predictions
The unit lengths and fixation distributions displayed above
(Figures 2, 3) provide an overview of the differences between
the predicted eye fixations by the different models and the

observed eye fixations. Next, we quantitatively evaluate the
similarity between the predicted and observed eye fixations by
their weighted F1 scores.

Table 3 shows that three of the four segmentation models
outperform the word-based baselines in the eye-fixation
prediction tasks. The Only-Length baseline, which predicts by
only the word length, is better than the Word-by-Word baseline,
and close to the segmentation models. Out of the four models,
LiB and AG-collocation produce the best predictions and AG-
word produces the worst predictions, worse than the word-
based baselines.

3.5. The Effect of Unit-Length Limitation
Next, we evaluate LiB under different limitations of unit length,
which captures possible perceptual limitations. The sharp rise of
the prediction scores with increasing maximum length quickly
levels off (Figure 4). The prediction scores even slightly decrease
after the peaks: the optimal maximum unit lengths (indicated by
the arrows in Figure 4) are 16 for English (F1 = 53.84) and 13 for
Dutch (F1 = 53.16).

3.6. Training on Non-GECO Corpus
The eye fixation data are from the GECO corpora, which
are also the model training corpora for the results above. To
test the generalizability of the models, we evaluate the models
trained on the non-GECO large scale corpora and compare
the results with the models trained on the GECO corpora8.
Table 4 shows that training on the non-GECO corpora improves
the prediction of eye fixations compared to training on the
GECO corpora themselves. This is the case for both LiB
and CBL, although the predictions by LiB remain the most
accurate. CBL shows high time efficiency since its training
is based on words rather than characters (as in LiB and

8The training of the AG model on large scale corpus is not feasible because of its

very low time efficiency (more than 10 h on GECO).
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FIGURE 3 | Distributions of the counts of the (predicted) eye fixations on the English (A) and Dutch (B) corpora. Firstly we define three labels of the fixation counts

(“Skip”: 0, “One”: 1, and “More”: >1). The histograms present the distribution of three labels; specifically, the vertical histograms present the predictions of the models

and the horizontal histogram presents the observations in GECO. The scatter plots present the confusion matrix between the model predictions and the GECO

observations; the surface area of each circle indicates the item count of the matching instance.

AG). However, CBL, compared with LiB, shows a higher
relative increase in training time with the same increase of the
training materials. Moreover, CBL tracks the frequencies of all

words and the backward transitional probabilities of all word
pairs, which causes the sharp growth of the lexicon on the
large corpora.
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4. DISCUSSION

In this study we have shown how to predict eye fixations on
text by unsupervised segmented cognitive units. Conversely, we
evaluate these units by their predictions of eye fixations. In
particular, we tested three segmentation models: the LiB model,
the CBL model, and the AG model. We also compared them
with two word-based baselines: assuming that reading is word by

TABLE 3 | Evaluations of models/baselines in different languages.

Model English Dutch

LiB 53.06 51.87

CBL 52.20 50.04

AG-word 30.10 28.95

AG-collocation 53.35 51.45

Word-by-Word 38.32 38.68

Only-Length 50.82 50.57

All the scores are the weighted F1 metric between the predicted eye fixations and the

observed eye fixations.

Bold values indicate the highest score across models.

FIGURE 4 | The prediction scores with different LiB unit length limitations. The

blue/orange dotted lines indicate the peak scores and the corresponding

maximum unit length in the English/Dutch simulations, respectively.

word; and assuming that we can predict the number of fixations
on each word by the length of the word. Firstly, we found eye
fixations can be better explained by the cognitive-unit-based
models than by the word-based models, and both the LiB and
AGmodels predicted the fixations best among the cognitive-unit-
based models. Secondly, the predictions are robust between two
languages (English and Dutch). Lastly, we found the LiB and
CBL models can predict eye fixations on a different corpus, and
large-scale training material improves the prediction.

4.1. From Word-Based to
Cognitive-Unit-Based Reading Theories
The evaluations in the current paper show that eye fixations
during reading can be predicted by unsupervised text
segmentation models (Figure 4; Tables 3, 4). These results
suggest a cognitive-unit-based eye-movement planning in the
oculomotor system. Eye fixation during reading is not arbitrary
nor guided by purely orthographic cues such as spaces and
punctuations, so the reader’s oculomotor system must plan
the fixations by using both orthographic cues in the text and
top-down knowledge.

Traditional theories of fixation-planning regard words as
reading units. To explain the fixations which are not word by
word (fixating words more than once or skipping words), it is
usually assumed that a word’s lexical attributes (e.g., frequency,
predictability, and length) can help to decide whether to refixate
or skip the word. An example of such a theory is the E-Z reader
model (Reichle et al., 1998, 2009; Reichle and Sheridan, 2015),
which is one of the most popular eye movement models. It
assumes that our visual system can preview the text to the right of
the current fixation and make use of the lexical attributes of the
next word to plan the next fixation position.

Different from the traditional word-based theories, we regard
cognitive units as reading units and assume that most of the
first-pass fixations are at the center of each reading unit (we
here ignore the limitation of perceptual span for simplicity
and will get back to it later). Based on this assumption, the
fixation-planning task may be approximated as a cognitive-unit
segmentation task, just as we did in this study. The cognitive-
unit-based predictions (from the LiB, CBL, and AG models)
are generally better than the word-based predictions (Word-
by-Word and Only-Length) (Table 3). Word-by-Word assumes

TABLE 4 | Comparison of training times and F1 scores between different models and different training corpora.

Model Training corpus
English Dutch

Training time Lexicon size F1 score (%) Training time Lexicon size F1 score (%)

LiB
GECO 2 min 31 s 15,867 53.06 2 min 38 s 17,525 51.87

COCA/SoNaR 24 min 51 s 97,872 53.46 72 min 5 s 143,665 53.72

CBL
GECO 1 s 29,268 52.28 1 s 33,248 50.04

COCA/SoNaR 1 min 24 s 2,051,239 53.30 3 min 23 s 3,782,605 51.71

COCA/SoNaR means the training corpus is COCA for the English task and SoNaR for the Dutch task. The Lexicon size of CBL is the sum count of its stored unigrams and backward

transitional probabilities between the unigrams.

Bold values indicate the highest score across models.
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reading proceeds with one fixation per word, but the baseline’s
poor performance undermines this assumption. Only-Length
assumes that the number of fixations on a word is determined
solely by the word’s length. It scores higher than Word-by-Word
showing that longer words tend to be fixated more often (which
is already well known). Importantly, Only-Length predictions
are still worse than the cognitive-unit-based predictions, even
though its predictions use the distributions of observed eye
fixation, which the segmentation models are ignorant to. To
sum up, the cognitive-unit-based approaches can outperform the
word-based approaches with less information and even when
allowing for unrealistically long units (i.e., longer than the visual
span). Therefore, cognitive-unit-based reading can be seen as a
new, and arguably better candidate for explaining eye movement
during reading.

The evaluation results are also consistent between English and
Dutch (Figures 2–4; Tables 3, 4), which shows the validity of the
models and the theory of cognitive-unit-based eye movement are
not limited to a particular language. To collect more evidence
of whether they are indeed language-independent, it would be
interesting to run the same study on Chinese, where we may
find even better results because there are no perceptual cues
(spaces) that guide eye-movements in addition to the cognitive
units. However, there is currently no publicly available large-scale
Chinese eye-tracking corpus.

It must be noted that the perceptual span of our eyes is limited,
so a cognitive unit should get more fixations when it exceeds
the span. Perceptual span is not of concern to any segmentation
model, but we can examine perceptual span anyway by limiting
the unit length in the LiB model. If the maximum unit length
is shorter than the real perceptual span, the predicted fixation
location would be biased to the left for the cognitive units whose
length are between the limitation and the perceptual span; if the
maximum unit length is longer than the real perceptual span, the
prediction would be biased to the right for the cognitive units
whose length exceeds the perceptual span; the optimal maximum
unit length should reflect the best fixation prediction. The results
did show the best prediction scores when we limit the unit length
to 16 in the English prediction task and to 13 in the Dutch
prediction task (Figure 4), which is close to the finding that the
perceptual span extends to 14–15 letter spaces to the right of
fixation (Rayner, 1998).

This finding does not mean that there really is a maximum
unit length in cognition. The current study does not aim
to improve the prediction of eye fixations: the eye-fixation
prediction task in this study only serves to cognitively evaluate
the units segmented by the models. For this reason, we
needed to prevent any prior information about eye movements
(e.g., oculomotor constraints or linguistic knowledge) from
“contaminating” the eye-fixation prediction task, which is why
we did not include such prior knowledge in themodels. However,
in possible future work which explicitly aims to predict or
explain the eye fixations, we may include the constraints from
the physiological system and the linguistic attributes of reading
material in the linking hypothesis between segmentation and
eye-fixation. For example, the attention distribution in the
perceptual span is actually asymmetrical (Reilly and Radach,

2006), which causes the optimal viewing position and preferred
viewing location to be slightly to the left of the middle of a
token (Rayner, 1979; McConkie et al., 1988) rather than the exact
center as we assume in this study. If the fixation fails to land
on the ideal location in a token, it will trigger an immediate re-
fixation for correction (Nuthmann et al., 2005). Another example
is that high-level linguistic attributes of tokens can also influence
eye fixation by mediating the tokens’ predictability (Ehrlich and
Rayner, 1981; Balota et al., 1985; Warren and McConnell, 2007).

The concept of cognitive unit does have some connections
to models of eye movement control in reading. The E-Z reader
model assumes that the attention of reading shifts word by
word, so it is categorized as a “serial attention shift” (SAS)
model (Engbert et al., 2005; Reichle et al., 2009). An important
alternative model is the SWIFT model, which assumes that
parallel activation of multiple words over the fixated region is also
possible. This model is categorized as a “gradient by attention
guidance” (GAG) model (Engbert et al., 2005; Reichle et al.,
2009). Although E-Z reader and SWIFT are still word-based
models, so neither supports the processing of multi-word groups
as single units, the latter model shares with the LiBmodel the idea
that multiple words can be activated in parallel. Besides, human
processing of cognitive units may involve two stages (familiarity
detection and recognition; Yang et al., 2020a) which are similar
to the two stages (familiarity check and lexical access) assumed
by the E-Z reader model (Reichle et al., 2009).

4.2. Cognitive Units From Different
Models/Motivations
We have seen the advantage of cognitive-unit-based predictions
for explaining eye fixation during reading (Table 3). The question
then turns to which model best segments the cognitive units
from text, that is, which model more accurately predicts
the eye fixations. The answer is also in Table 3: LiB is on
par with AG-collocation, AG-word performs the worst, and
CBL is in between. Moreover, LiB (unlike AG-word and AG-
collocation) predicts longer fixation distances on Dutch than
on English, in accordance with the observed pattern (Figure 2).
The performance differences between the models may reflect
differences between how our cognition defines the units and how
the model defines the units.

The CBL model follows the notion that both children and
adults can learn multi-word sequences from words, and that
learning is based on the transitional probabilities (McCauley and
Christiansen, 2017). The units in CBL are words and multi-word
sequences, not subwords. However, McCauley and Christiansen
(2019) also admit that learning directly from individual words
is unrealistic for children. In addition, both CBL and LiB tend
to memorize frequent units, but only LiB also forgets the units
that are frequent but increase the numbers of types or tokens and
therefore violate the principle of least effort. Thus, in the current
study, the higher performance of LiB over CBL may be attributed
to the character-based learning and the principle of least effort.

The learning in AG takes another approach: it tries to infer
the optimal (in the Bayesian view) tree structures to represent the
given language material (Johnson, 2008). The model clusters the
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symbols in the corpus in a hierarchical way so its output units
are shown at the middle level(s) of the hierarchy (Johnson and
Goldwater, 2009). The similar performance of AG-collocation
and LiB (Table 3) arises in spite of their very different structures
and workflows. Although AG is based on Bayesian estimation
whereas LiB is based on cognitive assumptions, both models aim
to optimize the lexicon and the segmentation, and thereby learn
supra-word and subword units (Figure 3), which may result in
their similar performance. Another interesting phenomenon is
that the AG-collocation units show much better performance
than the AG-word units in the fixation prediction task (Table 3).
Since AG-word finds only very few supraword units and many
subword units (Figure 3), the higher performance of AG-
collocation and LiB suggests that language cognition prefers
larger units.

The motivation underlying the LiB model is the least-
effort principle: LiB regards the text chunks fitting the least-
effort requirement as the cognitive units during reading. This
motivation follows William of Ockham’s (1287–1347) law of
parsimony, which is also known as Occam’s razor. The law of
parsimony for cognition is applicable since cognitive resources
are limited. This motivation also follows Zipf ’s (1949) argument
that all human behavior can be systematized under the Principle
of Least Effort (PLE). Although neither Occam’s razor nor PLE
is tangible and quantifiable enough for a computational model,
LiB implements their philosophy by interpreting least effort (in
language processing) as less use of both working memory (the
number of cognitive unit tokens) and long-term memory (the
number of cognitive unit types).

The balance between working and long-term memory can be
seen as the balance between computation and storage, which is
still under debate. Chomsky and Halle (1968) believed complex
words are generated from simpler forms. Baayen (2007) criticized
this generative theory, because in that case the balance of
storage and computation is shifted totally to the maximization
of computation and the minimization of storage. He, in turn,
claimed the importance of storage, but did not provide a measure
of the two. Minimum description length (MDL; Rissanen, 1978)
fills the blank to some extent: MDL describes both storage
and computation by their required encoding bits and so MDL
unifies the two parts. Yang et al. (2020b) showed that LiB also
minimizes description length of a corpus compared to some
other models. MDL assigns storage and computation the same
weights. However, they are in different cognitive systems (long-
term memory vs. working memory) and may have different
cognitive processing costs. These costs may also depend on
individual differences. In the LiB model, these differences can be
reflected in hyperparameters.

Moreover, the cognitive units should be generalizable if
we want them to be practical. The reading experience of an
educated adult relies to a large extent on language materials. It is
meaningless if the language users learn the cognitive units from
some piece of language materials but cannot use them on new
material. Fortunately, a task-independent but large-scale corpus
can help to discover cognitive units that are at least as usable
as those from the task-specific corpus (Table 4). This finding
demonstrates the training generalizability of the segmentation

models and the external validity of the trained cognitive units.
Besides the better performance, it is also worth noting that
the time and memory costs of LiB on large training data
are reasonable because LiB only requires simple computations
(compared with Bayesian computation) and a small lexicon
(compared with tracking all unit frequencies or even bigram
transitional probabilities). The saving of time and storage suggest
that the LiB lexicon is in itself actively trying to optimize
toward a saturation point, or to converge toward a set of good
cognitive units.

4.3. Room for Improvement of Cognitive
Unit Discovery
The ability to predict eye fixations demonstrates the cognitive
reality of the concept cognitive unit, but cognitive units can do
more than predict the eye fixations. Those units by definition
are the building blocks of human language processing. They may
serve as better operational units in computational linguistics,
psycholinguistics, language education, translation, and so on. As
an example in computational linguistics, the corpus segmented
into LiB’s cognitive units shows more concise description and
lower N-gram language model perplexity than when words form
the units (Yang et al., 2020b). All in all, it is still worth seeking
ways to improve the discovery of cognitive units.

Although the hyperparameters for training LiB in the current
study had almost the same values as in a previous LiB study
(Yang et al., 2020b), which is unrelated to eye-fixation prediction
and thereby avoids the double-dipping issue, we still want
to decouple LiB from its hyperparameters to discover the
cognitive units shared by most users of a language or the
cognitive units that reflect the shared thoughts in multiple
languages. CBL is an exemplar of such decoupling because it has
no hyperparameters and its built-in parameter (the frequency
threshold for constructing a chunk) is adjusted according to the
running average of the chunk frequencies. We intend to also
make the hyperparameters adaptive in the future LiB model.
Alternatively, we may aim to make LiB into a dissipative system
(a system that can reach a steady state when it interacts with
the environment), more self-organized and insensitive to the
initial hyperparameters.

Decoupling LiB from its hyperparameters enhances the
generality of the model. On the opposite side, the model
can be tuned specifically to simulate the individual properties
of a human agent; for example, the unique lexicon of a
person with aphasia, or the change of a child’s mental lexicon
during language acquisition. Introducing more hyperparameters
related to individual cognitive differences may help to discover
idiosyncractic cognitive units. Possible relevant hyperparameters
could be the perceptual span and the balance between long-term
memory and working memory that we have discussed above, and
other empirical knowledge of physiology.

Lastly, we should note that the prediction scores of different
models vary within a narrow range. Also, altering training
material from GECO to 100 times larger corpora did not lead to
an F1-score improvement of more than two percentage points.
The reason for the apparent performance ceiling could be that
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the current LiB model, as well as the CBL model and the AG
model, discover only the frequent units. Some infrequent units
can also be cognitive units: for example, people may immediately
memorize the name of a never-heard city in a breaking news since
the name is salient in the context. The current LiB model is not
sensitive to such contextual semantic and pragmatic information.

5. CONCLUSION

The current study demonstrates the advantage of cognitive-
unit-based reading theories over traditional word-based reading
theories by using an eye-fixation prediction task. Among the
computational implementations of cognitive-unit-based reading
as unsupervised word segmentation, the LiB model shows good
performance and high efficiency, and indicates that least effort
in both working memory and long-term memory may play an
important role during language learning and processing. Overall,
the study supports the theory that the mental lexicon stores not
only words but also smaller and larger units, suggests that fixation
locations during reading depend on these units, and shows that
unsupervised segmentation models can discover these units.
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