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Introduction

This provides supplementary information for the main manuscript ”Wildfire Danger

Prediction and Understanding with Deep Learning”. The first section presents a list

with all the variables of the datacube as well as the details for all the pre-processing

done. The second section provides the details about the architectures of the different

models and the hyperparameters used in the experiments. The third section describes the

different Explainability Artificial Intelligence (xAI) techniques used. The fourth is about

the metrics used for evaluating the models and the fifth section describes the Fire Weather

Index (FWI). The three figure sections provide figures regarding some supplementary

analytics of the different fire drivers, more fire danger maps produced by the different

models and xAI plots for all the variables.

Text S1. Data Extraction and Processing

To create the final datacube, we gathered the following data:

• Daily weather data from ERA-5 Land (Muñoz-Sabater et al., 2021), for 6 hours

(00:00, 04:00, 08:00, 12:00, 16:00, 20:00) of 2 m temperature, 10 m wind u-component, 10

m wind v-component, total precipitation, 2 m dewpoint temperature and surface pressure

available in 9 km spatial resolution.

• Satellite variables from MODIS downloaded from Nasa’s portal https://modis

.gsfc.nasa.gov/data/, including Leaf Area Index (LAI) and Fraction of Photosyntheti-
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cally Active Radiation (Fpar), available in a 8-daily temporal and 500 m spatial resolution;

Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI),

available in a 16-daily temporal and 500 m spatial resolution; Evapotranspiration (ET)

available in a 8-daily temporal and 500 m spatial resolution and Day/Night Land Surface

Temperature (LST), available in a daily temporal and 1 km spatial resolution.

• Soil moisture index & Anomaly from EDO (European Drought Observatory)

(Cammalleri et al., 2017) available in a 10-daily temporal and 5 km spatial resolution.

• Roads distance extracted from WorldPop (Tatem, 2017) at 1 km spatial resolution.

• Waterway distance extracted from WorldPop at 1 km spatial resolution.

• Yearly population density extracted from WorldPop at 1 km spatial resolution.

• Land cover extracted from Copernicus Corine Land Cover (CLC) (Büttner, 2014)

for years 2006, 2012 and 2018, at 100 m spatial resolution.

• Elevation from Copernicus EU-DEM (Bashfield & Keim, 2011) at 30 m spatial

resolution.

• Daily Fire Weather Index from Copernicus https://cds.climate.copernicus

.eu/cdsapp#!/dataset/cems-fire-historical?tab=overview at 25km spatial resolu-

tion.

• Historical burned areas from EFFIS (San-Miguel-Ayanz et al., 2013) containing

burned areas larger than 30 hectares (ha). The burned areas are intersected with the

MODIS active fires product (Giglio et al., 2016) to recover the start date of the fire.
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After, we post-process the gathered data in order to create a 1 km × 1 km × 1 day

resolution datacube, that contains variables related to fire drivers as well as the output

for the problem.

• Weather Data. We combine 2 m dewpoint temperature (DT) and 2 m temperature

(T), to calculate relative humidity using the following equation:

100 ∗
exp 17.625∗DT

243.04+DT

exp 17.625∗T
243.04+T

(1)

We also combine 10 m wind u-component and 10 m wind v-component to compute wind

speed and direction. Then, we calculate the maximum, minimum and mean daily value

for all the variables (2 m temperature, 10 m wind u-component, 10 m wind v-component,

total precipitation, 2 m dewpoint temperature, surface pressure, relative humidity) based

on the hourly values. For the wind, we also produce separate daily values for 10 m wind

u-component, 10 m wind v-component, wind speed and direction calculated at the time of

the maximum wind speed. Moreover, as land pixels near the sea have no values, because of

the low native spatial resolution of the ERA-5 Land variables, we use nearest interpolation

to fill these spatial gaps. Finally, we use nearest interpolation to map the 9 km spatial

resolution to 1 km spatial resolution. We end up with 25 variables related to weather.

• LAI, Fpar, NDVI, EVI, ET. We use nearest interpolation to map these variables

to 1 km spatial resolution. Moreover, we forward-fill the values in time, to fill the temporal

gaps and let the variables have daily temporal resolution. These variables, together with

LST Day and Night are the 7 variables from MODIS.
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• Soil Moisture & Anomaly. We use nearest interpolation to map these variables

to 1 km spatial resolution and we forward-fill them in time, to fill the temporal gaps. We

end up with 2 variables.

• Roads Distance is 1 static variable that has no time dimension. No pre-processing

needed.

• Waterway Distance is 1 static variable that has no time dimension. No pre-

processing needed.

• Yearly population density. We collect each year’s population density covering

years 2009-2020. As year 2021 is still not available, we use year’s 2020 value as a proxy

for year 2021. We end up with 13 static (no time dimension) variables, each one depicting

each year’s population density.

• Land Cover. CLC comes in 100 m spatial resolution. In order to downscale it to

1 km spatial resolution, we use two separate approaches. First, we compute the majority

class between all the spatially resolved 100 m pixels lying in the 1 km spatially resolved

grid cell. Second, we create 10 variables, each one related to one out of 10 classes of

interest, which are based on the predefined subclasses of Corine: 0 (Artificial surfaces)

: continuous urban fabric, industrial or commercial units, road and rail networks and

associated land, port areas, airports, mineral extraction sites, dump sites, construction

sites, green urban areas, sport and leisure facilities

1 (Discontinuous urban fabric): discontinuous urban fabric 2 (Arable land) : non-

irrigated arable land, permanently irrigated land, rice fields

3 (Permanent crops): vineyards, fruit trees and berry plantations
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4 (Pastures): pastures

5 (General agriculture): annual crops associated with permanent crops, complex culti-

vation patterns, land principally occupied by agriculture with significant areas of natural

vegetation, agro-forestry areas

6 (Forest): broad-leaved forest, coniferous forest, mixed forest

7 (Miscellaneous vegetation): natural grassland, moors and heathland, sclerophyllous

vegetation, transitional woodland/shrub

8 (Miscellaneous No vegetation): beaches/dunes/sand, bare rock, sparsely vegetated

areas, burnt areas, glaciers and perpetual snow

9 (Water): inland marshes, peatbogs, salt marshes, salines, intertidal flats, water courses,

water bodies, coastal lagoons, estuaries, sea and ocean

In each 1 km spatially resolved cell, each of these variables has a value between 0 and 1,

which represents the fraction of the class presence in the pixel. We repeat this process

for each year that CLC is available. Thus, we end up with 33 static variables regarding

CLC.

• Elevation, Slope, Aspect, Roughness. After gathering the elevation, we upscale

it to 1 km spatial resolution by using mean aggregation. After having the 1 km spatially

resolved elevation at hand, we calculate slope, aspect and roughness at 1 km spatial

resolution, using GDAL https://gdal.org/. We end up with 4 topography variables.

• FWI. We use nearest interpolation to map the 1 value of FWI in a 1 km spatial

resolution.
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• Burned areas. The gathered shapefiles representing final burned areas, produced

by different ignitions need some pre-processing to identify the date of the ignition of the

fire and to combine several burned areas, that are produced by the same fire event, into

one. To this end, we associate burned areas product to the active fires product. In order to

identify the date of the ignition, we create a 1 km buffer around the burned areas shapefiles

and we look for an active fire inside this area that has been produced within a week before

the date that EFFIS provides for the burned area. Moreover, to combine several burned

areas into one, we also use a buffer of 1 km and we do the following: We use as an anchor

a burned area and we calculate its ignition point following the procedure above. If this

ignition point is also lying inside buffered burned areas other than the anchor one and

these burned areas have a date within a week before the anchor one, we consider that

they belong to the same event as the anchor one. Having the ignition points and burned

areas at hand, we rasterize them in the same 1 km spatial grid of all the input variables.

We also produce a temporal variable that has no latitude or longitude dimension, that

contains the number of fires that ignited daily. We end up with 3 variables related to fire

events.

We end up with a total number of 90 variables.

The goal is to use input data available for the previous day of the prediction and

associate it with the daily burned areas. We shift backward the variables related to fire

events (burned areas, ignition points, number of fires, FWI). Moreover, we also shift

backward the meteorological data, as we assume that will be available through forecasts

for the day of prediction.
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Text S2. Deep Learning Architectures and Hyperparameters

As stated in the main manuscript we leveraged a Random Forest (RF) classifier

(Breiman, 2001), an XGBoost classifier (Chen & Guestrin, 2016), a Long-Short Term

Memory Neural Network (Hochreiter & Schmidhuber, 1997) and Convolutional Long-

Short Term Memory Neural Network (Shi et al., 2015) for treating the next day’s fire

danger forecasting problem.

Random Forest (RF) is a supervised ML algorithm, which consist of an ensemble of a

large number of individual decision trees. We use RF as an ML baseline for comparison

with more sophisticated DL architectures.

Extreme Gradient Boosting (XGBoost) is also a supervised decision tree ensemble learn-

ing algorithm. The difference between RF and XGBoost lies in how the different trees

are built and combine. Gradient boosting comes from the idea of boosting a single weak

model by combining it with a number of other weak models in order to generate a final

stronger model. Thus, Gradient boosting decision trees iteratively train an ensemble of

shallow decision trees, with each iteration using the error residuals of the previous model

to fit the next model. The final prediction is a weighted sum of all of the tree predic-

tions. XGBoost is a scalable and highly accurate implementation of gradient boosting

that pushes the limits of computing power for boosted tree algorithms.

LSTM is a type of Recurrent Neural Networks, which are capable of modelling sequences

of data. LSTM is constructed by a memory cell, an input gate, an output gate and a forget

gate. The memory cell is responsible for remembering values over time intervals, while

the other gates manipulate the flow of information of the cell. As fire danger forecasting

July 7, 2022, 12:04pm



: X - 9

is a problem where values of the variables in the past contribute to the final prediction,

LSTM is exploited for its ability to model these temporal dependencies.

For the spatio-temporal dataset we train a Convolutional Long-Short Term Memory

(ConvLSTM) Neural Network. ConvLSTM is a type of Neural Networks used for mod-

elling sequences of images. A ConvLSTM layer is actually a Recurrent layer, but the

internal matrix multiplications are replaced by convolution operations (Krizhevsky et al.,

2012). ConvLSTM is used for its ability to model both the temporal and spatial depen-

dencies between the input variables.

The hyperparameters of the RF model are chosen based on the best F1-score in the

validation set. The final RF consists of 100 trees, with a maximum depth of 10, the

minimum number of samples required to split is 2 and the minimum number of samples

required to be at a leaf node is 1.

The hyperparameters of XGBoost are chosen based on the best F1-score in the validation

set. The final XGBoost consists of 500 trees, with a maximum depth of 1, minimum split

loss 0, learning rate set to 0.3, minimum sum of instance weight (hessian) needed in a

child 2 and subsample ratio of columns when constructing each tree set to 0.5.

For the Deep Learning (DL) models, all linear layers, but the last, are followed by a

dropout with probability p = 0.5 and the ReLU activation function. The data is min-max

scaled before serving as input. We fill with the temporal aggregate of the time-series

the nulls existing in the inputs of the LSTM, while the nulls existing in the inputs of

the ConvLSTM are filled with a spatial average of the relative day in the time-series. If

the value still remains null, we fill it with -1. The DL models are trained for 30 epochs
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with the binary cross-entropy loss with ℓ2-norm regularization, the Adam optimizer and

a batch size of 256.

Regarding the LSTM’s architecture, a normalization layer is followed by a an LSTM

layer with 64 neurons, which is followed by two linear hidden layers with 32 and 16

neurons, respectively, and an output 2-class softmax layer. The final model is trained

with a 0.001 weight decay and 0.0025 learning rate, that is divided by 10 every 15 epochs.

Regarding the spatio-temporal dataset, a normalization layer is followed by a ConvL-

STM layer with 32 filters and 3× 3 kernels. This is followed by a convolutional layer with

32 filters and 3× 3 kernels, padding of 1, and stride of 1 and a 2× 2 max-pooling layer.

Then two linear layers are added with 64 and 32 neurons, respectively, before the final

2-class softmax layer. The model is trained with a 0.01 weight decay and 0.0001 learning

rate, that is divided by 10 after 15 epochs.

Text S3. Evaluation Metrics

For classification tasks, a prediction is defined as true positive (TP) when both the

predicted label and ground truth are positive; as true negative (TN) when both the

predicted label and ground truth are negative; as false positive (FP) when the predicted

label is positive but the ground truth is negative; as false negative (FN) when the predicted

label is negative but the ground truth is positive. In our case, a true positive means that

the pixel of interest was burnt the given day and the prediction of the model was that

it will get burnt. True negative means that the pixel of interest was not burnt the given

day and the prediction of the model was that it will not get burnt. False positive means

that the pixel of interest was not burnt the given day, but the prediction of the model
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was that it will get burnt. False negative means that the pixel of interest was burnt the

given day, but the prediction of the model was that it will not get burnt.

Precision is the ratio between true positives and all predicted positives (true positives

+ false positives). That means that it measures how many of the pixels that predicted

by the model that will get burnt, actually got burnt. Mathematically:

TP

TP + FP
(2)

Recall is the ratio between true positives and all actual positives (true positives + false

negatives). That means that it measures how many of the pixels that actually got burnt

burnt were predicted correctly by the model. Mathematically:

TP

TP + FN
(3)

F1-score is the harmonic mean between precision and recall and is used in problems

where both of them are important, as in our case. Mathematically F1-score can be

expressed as:

2 ∗ Precision ∗Recall

Precision+Recall
(4)

When it comes to classification problems, we can measure the performance of the algo-

rithm with the Receiver Operating Characteristics (ROC) Curve and the Area Under the

Receiver Operating Characteristics Curve (AUROC).

ROC curve is created by plotting the true positive rate (TPR) against the false pos-

itive rate (FPR) at various threshold settings. The true positive rate is also known as

sensitivity, recall (see S2). The false positive rate is also known as probability of false
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alarm and can be calculated as:

TN

TN + FP
(5)

In our case, we plot the ROC Curve for all ML models and FWI. So we compute the

Recall and false positive rate for various thresholds and present them in a ROC curve.

AUROC represents the degree or measure of separability between two classes. It gives

us information on how well the model can distinguish between the classes. Higher the

AUROC, the better the model is at predicting 0 classes as 0 and 1 classes as 1. An

excellent model has AUC near to the 1 which means it has a good measure of separability.

A poor model has an AUC near 0 which means it has the worst measure of separability.

And when AUC is 0.5, it means the model has no class separation capacity whatsoever.

In our case, the higher the AUROC, the better the model is at giving higher values to the

cells that burnt and lower values to the cells that did not burn.

Text S4. Explainability Methods

Machine learning models are becoming very difficult to understand. Given that, many

methods exist in the field of XAI under different learning paradigms. Here we briefly

describe the theory behind the methods we used to interpret the predictions of the models.

The xAI computations for SHAP and IG were carried out using the pytorch package

captum (Kokhlikyan et al., 2020), while for PDPs we directly coded a suitable version of

the algorithm.

Shapley Values (SHAP). Shapley Value sampling theory solves the problem of

attributing the output of an arbitrary machine learning model to its input features
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(Lundberg & Lee, 2017). The Shapley value is a solution concept from cooperative game

theory, which has found numerous applications in machine learning.

In XAI, the Shapley value is used to measure the contributions of input features to the

output of a machine learning model at the instance level. Given a specific data point, the

goal is to decompose the model prediction and assign Shapley values to individual features

of the instance. Let N = {1, . . . , n} be the finite set of players (or covariates in our case),

each non-empty subset S ⊆ N is called a coalition (optimal set of covariates) and N itself

the grand coalition. A transferable utility (TU) game is defined by the pair (N, v) where

v : 2N → R is a mapping called the characteristic function or the coalition function of

the game assigning a real number to each coalition and satisfying v(∅) = 0. The Shapley

value is a single-valued solution concept for cooperative games. The ith component of the

single solution vector satisfying this solution concept for any cooperative game (N, v) is

given by

ϕSh
i =

1

|Π(N)|
∑

π∈Π(N)

[v(Pπ
i ∪ {i})− v(Pπ

i )]︸ ︷︷ ︸, (6)

that is, the average of all player’s marginal contribution in permutation π. Therefore,

the Shapley value of a player is the average marginal contribution of the player to the

value of the predecessor set over every possible permutation of the player set.

The Shapley values of feature values are explanatory attributions to the input features.

The problem is that the computation of Shapley values requires an exponential number

of characteristic function evaluations (i.e. number of machine learning models to train),

resulting in exponential time complexity. This is prohibitive in a machine learning context
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when each evaluation can correspond to training a machine learning model. For this

reason, a wide variety of Shapley value approximations have been proposed. We denote

with ϕ̂Sh
i an approximated Shapley value for player i ∈ N. The pioneering Shapley value-

based universal explanation method SHAP (Lundberg & Lee, 2017) used in this work

proposes a linear time approximation of the Shapley values. Their main insight is the

computation of Shapley values by approximately solving an optimization problem:

wS =
|N| − 1(|N|

|S|

)
|S|(|N| − |S|)

, minϕ̂Sh
0 ,...,ϕ̂Sh

n

∑
S⊆N

wS

(
ϕ̂Sh
0 +

∑
i∈S ϕ̂

Sh
i − v(S)

)
(7)

s.t. ϕ̂Sh
0 = v(∅), ϕ̂Sh

0 +
∑

i∈N ϕ̂Sh
i = v(N). (8)

where N = {1, . . . , n} be the finite set of players (covariates), each non-empty subset

S ⊆ N is a coalition (optimal set of covariates), N itself the grand coalition, and ϕ(N, v) ∈

RN is the solution vector to the cooperative game (N, v).

The definition of weights in 7 and the objective function implies the evaluation of

v(·) for 2n coalitions. This complex problem has been addressed by subsampling the

coalitions (Lundberg & Lee, 2017). Note that wS is higher when coalitions are large or

small.

The above method is implemented in captum package (Lundberg & Lee, 2017;

Kokhlikyan et al., 2020), which we used to explain and interpret the predicted fire danger.

To compute the SHAP each input is masked through the time dimension and, thus, the

whole 10-day time series is considered to be a single variable to whom we associate a

SHAP value. The neutral or baseline instance is computed by averaging the values of all

the negative (i.e. non-burned) pixels per channel in the train set. The importance of the
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variables is calculated based on the average of the absolute values of the Shapley and the

variables are ranked in order of decreasing importance. The SHAP values are have been

produced for all covariates for all fire events in the test set. Additional SHAP are shown

in Fig. S3 (a).

Partial Dependency Plots (PDPs). Machine learning models typically take a high

dimensional vector as input. Thus, it becomes difficult to disentangle the contribution

of each predictor and understand how changes in a given covariate affect the predicted

output. A way to estimate the dependence of the model on each input feature separately

consists in calculating the marginal learned distribution (Molnar et al., 2020). If the

model predicts ŷt = p̂(Et|xt′<t) = F (xt′<t) where xt′<t = (x1
t′<t, x

2
t′<t, . . . , x

d
t′<t), being d

the number of features, then the PDP of a given covariate xk
t′<t is:

PDP (xk
t′<t) =

∫
p̂(Et|xt′<t)dP(Xs ̸=k) ≃

1

n

N∑
i=1

F (xk
t′<t, x

s ̸=k
i ,t′<t) (9)

where the integral is over the distribution P(Xs ̸=k) of all the other features except k, and

it is approximated by averaging over a finite number of samples. Repeating the process

for all the d covariates one obtains as much univariate approximations of the model as

the number of features. Then, the PDPs tell us whether the relationship between ŷt

and a feature xk
t′<t is linear or more complex. They also serve as a first guidance for

understanding how the model behaves in different regimes, i.e. when we vary the input

feature values. A main drawback of this approach is that it is rigorously valid only if all the

covariates are independent. In presence of correlations the PDP as defined above simply

ignores all the interactions. More refined versions that correct for this behaviour have
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been introduced but they are typically much more costly from a computational point

of view (see however (Molnar et al., 2020) and references therein). In all plots we use

time-average values of the covariates on the x-axis in order to obtain a two-dimensional

projection of the dependency. For estimating the PDPs we used a random subsample of

1500 points extracted from the test set including both fire and non-fire events. Additional

PDPs are shown in Fig. S3 (b).

Integrated Gradients (IGs). Given the fact that DL models are differentiable, many

XAI techniques are based on the gradients of the model with respect to the input. The

main problem of using directly vanilla gradients as an estimate of feature importance

comes from the fact that the activation functions of the models can easily saturate and

once flat regions are reached then the gradients go to zero even for relevant inputs. To

correct for this and other misbehaviour and to impose specific desirable properties of

feature attributions, a cumulative gradient estimation has been introduced (Sundararajan

et al., 2017):

IG(xk
t′<t) = (xk

t′<t − xk
t′<t)×

∫ 1

0

∂F [x+ α(x− x)]

∂xk
t′<t

(10)

≃ (xk
t′<t − xk

t′<t)×
n∑
1

1

n
×

∂F [x+ k
n
(x− x)]

∂xk
t′<t

(11)

with k = 1, . . . , n abd where x represents a baseline input, generally the instance for

which the model is least active. Besides obeying sensitivity to input feature changes and

implementation invariance, IGs also satisfy the following completeness property:
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F (xt′<t)− F (xt′<t) =
d∑

s=1

IG(xs
t′<t) (12)

which tells us that the attributions as given by IGs equal the difference between the

output of the model at x and the output at the baseline x. Given the above formulas,

we can get an IG per feature per time step and thus have additional information on

the temporal evolution of the importance of each covariate. This gives us additional

information we could not immediately obtain through SHAP or PDPs. In all plots we

show the average and standard deviation for all the fire events in the test set. We show

the remaining IGs in Fig. S3 (c).

Text S5. Fire Weather Index

FWI is an empirical index that relies on meteorological forecasts (temperature, relative

humidity, wind speed and 24-hour total precipitation) to derive fire danger predictions.

It consists of different components that account for the effects of fuel moisture and wind

on fire ignition and spread. The final outcome is the mapping of fire danger in 6 classes

from very low to extreme, with extreme fire danger represented by values larger than 50

in Europe.

FWI consists of six components. The three primary components (Fine Fuel Moisture

Code, Duff Moisture Code and Drought Code) depend on temperature, total precipitation

and relative humidity and follow daily the moisture contents of forest fuel. The three

moisture codes plus the wind are linked in pairs to form the two intermediate components

(Initial Spread Index and Adjusted Duff Moisture Code). These two intermediate layers

represent the rate of spread and amount of available fuel to be burnt. Finally, the last
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component (Fire Weather Index) is a combination of Initial Spread Index and Adjusted

Duff Moisture Code and represents the intensity of the spreading fire. Each of these

components are calculated with simple mathematical equations.
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Figure S1. Interactions between the values of the variables of the test set. Each cell, except for

the diagonal ones, represent the scatter plots between each pair of all the dynamic attributes. The

cells in the diagonal represent the distributions of the variables, which are also presented in the

main manuscript. Positives (burned pixels) are coloured in orange, while negatives (non-burned

pixels) are coloured in green.
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Figure S2. Maps produced by the four different models used in the main text (ConvLSTM,

LSTM, RF, FWI) for 5 consecutive days of August 2021.
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(b)

(a)

(c)

Figure S3. a) SHAP for variables missing from main text plot. Dots are coloured based on

the scaled value of the relevant variable. b) PDP line plots (mean and standard deviation) for

variables missing from main text. Values on the x axis are averaged over time and reported in

the original units. c) The 10-day evolution of IGs (mean and standard deviation) over all burned

pixels. July 7, 2022, 12:04pm
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