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Why do we trust science?

Scientific claims should not be credible because of their
originators’ authority but by the transparency and
replicability of their supporting evidence.
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Reproduction ≠ Replication

World→Data→Results→Conclusions

Replication can not be automated, but reproducibility can
and should be automated.
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“Insanity is doing the same thing over and over
again and expecting different results.”

– Albert Einstein (disputed)

As it turns out, doing the
same thing

is pretty complicated.
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Why do I mistrust supplementary code?

Four different problems are all to common:

1. Multiple inconsistent versions of code and data

2. Copy-and-paste errors
3. Ambiguous order of code execution
4. Broken dependencies
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Lessons from software engeniering

Four solutions:
1. Version control
2. Dynamic document creation
3. Dependency tracking
4. Software management

Peikert, A., & Brandmaier, A. M. (2021). A Reproducible Data Analysis Workflow. Quantitative and Computational

Methods in Behavioral Sciences, 1, Article e3763. https://doi.org/10.5964/qcmb.3763
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Specify Everything

The relations between
code, data, results and their environment
need to be unambiguously specified.
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Why should I care?

Productivity:
▶ reuse
▶ easier collaboration
▶ avoid trouble (during review, questions after

publication, etc.)
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Why should I care?

Good scientific practice:
▶ reproducibility is a precondition for replication
▶ increases transparency and (longterm) accessibility
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Lessons from software engeniering
Four solutions:

1. Version control
2. Dynamic document creation
3. Dependency tracking
4. Software management
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Tools for R Users

In the R universe and beyond, the most flexible tools are:
▶ Dynamic document creation = RMarkdown*
▶ Version control = Git**
▶ Dependency tracking = Make**
▶ Software management = Docker**

* RMarkdown supports more then 40 languages e.g.:
Python, Julia, SAS, Scala & Octave

** Language agnostic
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RMarkdown—Literate Programming

Text and code are mixed
in a single source document
that can be dynamically compiled
into various representations:
▶ (APA conformable) manuscripts
▶ presentations
▶ websites
▶ books
▶ posters
▶ CV
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Git/GitHub—Version Control

Version control is a system that records changes to a set
of files over time so that you can recall specific versions
later.

It guarantees that code and data are exactly the same
version as used for publication.

15



Make—Dependency Tracking

Make is a “recipe” language that describes how files
depend on each other and how to resolve these
dependencies.

spaghetti_arrabiata.pdf: spagetti_arrabiata.Rmd arrabiata_sauce.csv pasta.csv
Rscript -e 'rmarkdown::render("spaghetti_arrabiata.Rmd")'

pasta.csv: cook_pasta.R
Rscript -e 'source("cook_pasta.R")'

arrabiata_sauce.csv: cook_sauce.R canned_tomatoes.csv
Rscript -e 'source("cook_sauce.R")'
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Docker—Containerization

Docker is a lightweight virtual computer.
Dockerfiles are “recipes” that describe what to install on
that virtual computer:

FROM rocker/verse:3.6.1
ARG BUILD_DATE=2019-11-11
RUN install2.r --error --skipinstalled\

here lavaan
WORKDIR /home/rstudio
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Advantages

Unambiguous

Standardized Portable Automated
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Simplifying the tools

These tools require extensive training and need much
time to configure correctly.

The R package ’repro’ abstracts away the concrete
technical implementation:
repro:

packages:
- ggplot2
- aaronpeikert/repro@adb5fa569

scripts:
- R/clean.R

data:
mycars: data/mtcars.csvrepro:

The function repro::automate() automatically infers Docker-
and Makefile.
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Disadvantages

▶ requires complex software infrastructure
▶ depends on for-profit services
▶ diverges from the standard manuscript workflow
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Your melange may vary
Different requirements regarding:
archivation + number of machines
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Your melange may vary
Different programming languages:
▶ Python
▶ R
▶ Julia
▶ Matlab
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Focus: Computing infrastructure

Dependency tracking + software management
=

distributed computation

on
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Focus: Computing infrastructure

Dependency tracking + software management
=

distributed computation
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HPC—Container

▶ repro supports Singularity as a Docker alternative
▶ developing environment matches HPC environment

exactly
▶ full freedome to use any software, even when not

supported by HPC admin
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HPC—Dependency tracking

making dependencies between tasks explicit enables:
▶ intelligent caching
▶ automatic parralelization
▶ dynamic job scheduling

Make is well supported by several job schedulers.

Pure R solutions like the packages targets + futureverse
offer even more convinience and are compatible with
repro
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Focus: Modularity

▶ repro is a modular system

▶ potential integration of other workflows
▶ “Lego system of reproducibility tools”
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Focus: Longterm Archive

All software is bundled into the container, therefore all we
need is:
▶ container software
▶ storage infrastructure

What happens when Docker and co. are not supported
anymore?
Containers can be converted into a full system image
ensuring support for decades.
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Thank you

30



Questions?
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