
Automating Reproducibility
Challenges and what it takes to meet them

Aaron Peikert1,2,
Andreas M. Brandmaier1,2, Maximilian S. Ernst1

1Center for Lifespan Psychology—Max Planck Institute for Human Development,
Berlin, Germany

2Max Planck UCL Centre for Computational Psychiatry and Ageing Research,
Berlin, Germany and London, UK

12.05.2022 Max Planck Institute for Evolutionary
Biology

Slides: https://github.com/aaronpeikert/repro-talk

https://github.com/aaronpeikert/
https://github.com/aaronpeikert/repro-talk/releases

Why do we trust science?

Scientific claims should not be credible because of their
originators’ authority but by the transparency and
replicability of their supporting evidence.

2

Reproduction ≠ Replication

World→Data→Results→Conclusions

Replication can not be automated, but reproducibility can
and should be automated.

3

Reproduction ≠ Replication

World→Data→Results→Conclusions

Replication

Reproduction
Replication can not be automated, but reproducibility can

and should be automated.

3

Reproduction ≠ Replication

Data→Results

Reproduction

Replication can not be automated, but reproducibility can
and should be automated.

3

“Insanity is doing the same thing over and over
again and expecting different results.”

– Albert Einstein (disputed)

As it turns out, doing the
same thing

is pretty complicated.

4

“Insanity is doing the same thing over and over
again and expecting different results.”

– Albert Einstein (disputed)

As it turns out, doing the
same thing

is pretty complicated.

4

Why do I mistrust supplementary code?

Four different problems are all to common:

1. Multiple inconsistent versions of code and data

2. Copy-and-paste errors
3. Ambiguous order of code execution
4. Broken dependencies

6

Why do I mistrust supplementary code?

Four different problems are all to common:

1. Multiple inconsistent versions of code and data
2. Copy-and-paste errors

3. Ambiguous order of code execution
4. Broken dependencies

6

Why do I mistrust supplementary code?

Four different problems are all to common:

1. Multiple inconsistent versions of code and data
2. Copy-and-paste errors
3. Ambiguous order of code execution

4. Broken dependencies

6

Why do I mistrust supplementary code?

Four different problems are all to common:

1. Multiple inconsistent versions of code and data
2. Copy-and-paste errors
3. Ambiguous order of code execution
4. Broken dependencies

6

Lessons from software engeniering

Four solutions:
1. Version control
2. Dynamic document creation
3. Dependency tracking
4. Software management

Peikert, A., & Brandmaier, A. M. (2021). A Reproducible Data Analysis Workflow. Quantitative and Computational

Methods in Behavioral Sciences, 1, Article e3763. https://doi.org/10.5964/qcmb.3763

7

Specify Everything

The relations between
code, data, results and their environment
need to be unambiguously specified.

8

Why should I care?

Productivity:
▶ reuse
▶ easier collaboration
▶ avoid trouble (during review, questions after

publication, etc.)

9

Why should I care?

Good scientific practice:
▶ reproducibility is a precondition for replication
▶ increases transparency and (longterm) accessibility

9

Lessons from software engeniering
Four solutions:

1. Version control
2. Dynamic document creation
3. Dependency tracking
4. Software management

ot
he

r m
ac

hi
ne

s

time
10

Tools for R Users

In the R universe and beyond, the most flexible tools are:
▶ Dynamic document creation = RMarkdown*
▶ Version control = Git**
▶ Dependency tracking = Make**
▶ Software management = Docker**

* RMarkdown supports more then 40 languages e.g.:
Python, Julia, SAS, Scala & Octave

** Language agnostic

11

RMarkdown—Literate Programming

Text and code are mixed
in a single source document
that can be dynamically compiled
into various representations:
▶ (APA conformable) manuscripts
▶ presentations
▶ websites
▶ books
▶ posters
▶ CV

12

Git/GitHub—Version Control

Version control is a system that records changes to a set
of files over time so that you can recall specific versions
later.

It guarantees that code and data are exactly the same
version as used for publication.

15

Make—Dependency Tracking

Make is a “recipe” language that describes how files
depend on each other and how to resolve these
dependencies.

spaghetti_arrabiata.pdf: spagetti_arrabiata.Rmd arrabiata_sauce.csv pasta.csv
Rscript -e 'rmarkdown::render("spaghetti_arrabiata.Rmd")'

pasta.csv: cook_pasta.R
Rscript -e 'source("cook_pasta.R")'

arrabiata_sauce.csv: cook_sauce.R canned_tomatoes.csv
Rscript -e 'source("cook_sauce.R")'

16

Docker—Containerization

Docker is a lightweight virtual computer.
Dockerfiles are “recipes” that describe what to install on
that virtual computer:

FROM rocker/verse:3.6.1
ARG BUILD_DATE=2019-11-11
RUN install2.r --error --skipinstalled\

here lavaan
WORKDIR /home/rstudio

17

Docker
documents software

environment

R Markdown
generates dynamic

documents

Git
tracks

versions

Make
manages

dependencies

data/

iris_prepped.csv
...

iris.csv

LICENSE.md

Dockerfile

Makefile

manuscript.pdf

R/

manuscript.Rmd

...

...

prepare_data.R

reproducible.Rproj

.git/

.gitignore

T
im

e

B depends on A

=
BA

Virtual Linux

Operating system

LaTex

Packages

R version

Some
software

manuscript.pdf

Some text.

Petal.Length

P
et

al
.W

id
th

From Peikert & Brandmaier (2019) under CC-BY4.0

Advantages

Unambiguous

Standardized Portable Automated

19

Advantages

Unambiguous Standardized

Portable Automated

19

Advantages

Unambiguous Standardized Portable

Automated

19

Advantages

Unambiguous Standardized Portable Automated

19

Simplifying the tools

These tools require extensive training and need much
time to configure correctly.

The R package ’repro’ abstracts away the concrete
technical implementation:
repro:

packages:
- ggplot2
- aaronpeikert/repro@adb5fa569

scripts:
- R/clean.R

data:
mycars: data/mtcars.csvrepro:

The function repro::automate() automatically infers Docker-
and Makefile.

20

Simplifying the tools

These tools require extensive training and need much
time to configure correctly.
The R package ’repro’ abstracts away the concrete
technical implementation:
repro:

packages:
- ggplot2
- aaronpeikert/repro@adb5fa569

scripts:
- R/clean.R

data:
mycars: data/mtcars.csvrepro:

The function repro::automate() automatically infers Docker-
and Makefile.

20

Disadvantages

▶ requires complex software infrastructure
▶ depends on for-profit services
▶ diverges from the standard manuscript workflow

21

Your melange may vary
Different requirements regarding:
archivation + number of machines

22

Your melange may vary
Different programming languages:
▶ Python
▶ R
▶ Julia
▶ Matlab

22

Docker
documents software

environment

R Markdown
generates dynamic

documents

Git
tracks

versions

Make
manages

dependencies

data/

iris_prepped.csv
...

iris.csv

LICENSE.md

Dockerfile

Makefile

manuscript.pdf

R/

manuscript.Rmd

...

...

prepare_data.R

reproducible.Rproj

.git/

.gitignore

T
im

e

B depends on A

=
BA

Virtual Linux

Operating system

LaTex

Packages

R version

Some
software

manuscript.pdf

Some text.

Petal.Length

P
et

al
.W

id
th

From Peikert & Brandmaier (2019) under CC-BY4.0

Focus: Computing infrastructure

Dependency tracking + software management
=

distributed computation

on

24

Focus: Computing infrastructure

Dependency tracking + software management
=

distributed computation
Dependency tracking enables intelligent task scheduling

Software management guarantees compatible software
environment

on

24

Focus: Computing infrastructure

Dependency tracking + software management
=

distributed computation
on

Cloud Computing infrastructure

24

Focus: Computing infrastructure

Dependency tracking + software management
=

distributed computation
on

High Performance Computing cluster (HPC)

24

HPC—Container

▶ repro supports Singularity as a Docker alternative
▶ developing environment matches HPC environment

exactly
▶ full freedome to use any software, even when not

supported by HPC admin

25

HPC—Dependency tracking

making dependencies between tasks explicit enables:
▶ intelligent caching
▶ automatic parralelization
▶ dynamic job scheduling

Make is well supported by several job schedulers.

Pure R solutions like the packages targets + futureverse
offer even more convinience and are compatible with
repro

26

Focus: Modularity

▶ repro is a modular system

▶ potential integration of other workflows
▶ “Lego system of reproducibility tools”

27

Focus: Modularity

▶ repro is a modular system
▶ potential integration of other workflows

▶ “Lego system of reproducibility tools”

27

Focus: Modularity

▶ repro is a modular system
▶ potential integration of other workflows
▶ “Lego system of reproducibility tools”

27

Focus: Longterm Archive

All software is bundled into the container, therefore all we
need is:
▶ container software
▶ storage infrastructure

What happens when Docker and co. are not supported
anymore?
Containers can be converted into a full system image
ensuring support for decades.

28

Focus: Longterm Archive

All software is bundled into the container, therefore all we
need is:
▶ container software
▶ storage infrastructure

What happens when Docker and co. are not supported
anymore?
Containers can be converted into a full system image
ensuring support for decades.

28

References

Slides:
https://github.com/aaronpeikert/repro-talk
Package:
https://github.com/aaronpeikert/repro-thesis
Workflow:
https://doi.org/10.31234/osf.io/8xzqy

29

https://github.com/aaronpeikert/repro-talk
https://github.com/aaronpeikert/repro-thesis
https://doi.org/10.31234/osf.io/8xzqy

Thank you

30

Questions?

30

