2209.07250v1 [csIR] 15 Sep 2022

arXiv

Answering Count Questions with Structured Answers from Text

Shrestha Ghosh®?*, Simon Razniewski¢ and Gerhard Weikum®

“Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbruecken, 66125, Germany

bSaarland University, Saarland Informatics Campus, Saarbruecken, 66125, Germany

ARTICLE INFO ABSTRACT

Keywords:

Question Answering
Count Queries
Explainable Al

In this work we address the challenging case of answering count queries in web search, such as
“number of songs by John Lennon”. Prior methods merely answer these with a single, and some-
times puzzling number or return a ranked list of text snippets with different numbers. This paper
proposes a methodology for answering count queries with inference, contextualization and explana-

tory evidence. Unlike previous systems, our method infers final answers from multiple observa-
tions, supports semantic qualifiers for the counts, and provides evidence by enumerating represen-
tative instances. Experiments with a wide variety of queries, including existing benchmark show
the benefits of our method, and the influence of specific parameter settings. Our code, data and an
interactive system demonstration are publicly available at https://github.com/ghoshs/CoQEx and
https://nlcounger.mpi-inf.mpg.de/.

1. Introduction

Motivation and Problem. Question answering (QA) and
web search with telegraphic queries have been greatly ad-
vanced over the last decade (Balog, 2018; Diefenbach et al.,
2018; Huang et al., 2020; Usbeck et al., 2019). Neverthe-
less, queries that can have multiple correct answers due to
variance in semantic qualifiers (“top 10 albums”, “singles
albums”, “remastered albums”) and alternative representa-
tions through instances remain underexplored and pose open
challenges. This paper addresses the class of count queries,
to return the number of instances that have a certain property.

Examples are:

® How many songs did John Lennon write for the Beatles?
® How many languages are spoken in Indonesia?

e How many unicorn companies are there?

Count queries are frequent in search engine logs as well

as QA benchmarks (Rajpurkar et al., 2016; Kwiatkowski et al.

2019; Dubey et al., 2019; Voorhees, 2001). If the required
data is in a structured knowledge base (KB) such as Wiki-
data (Vrandeci¢ and Krotzsch, 2014), then answering is rel-
atively straightforward. However, KBs are limited not only
by their sparsity, but also by the lack of direct links between
instances and explicit counts when both are present (Ghosh
et al., 2020). Besides, evaluating the additional condition
“for the Beatles” (i.e., a subset of his songs) is beyond their
scope. In Figure 1, 160 is the output to a SPARQL query
which counts the number of songs by Lennon performed by
The Beatles'. The query translation, here performed by an
expert user, is a challenge in itself, which is beyond the scope
of this work. Nevertheless, for a user who is unaware of the

*Corresponding author
%9 ghoshs@mpi-inf.mpg.de (S. Ghosh); srazniewempi-inf.mpg.de (S.
Razniewski); weikum@mpi-inf.mpg.de (G. Weikum)
ORCID(S):
Thttps://w.wiki/4xvq

composer duo Lennon-McCartney, would hardly doubt the
output of 160 songs to the SPARQL query, which contains
songs jointly written by Lennon with his co-band member.

Search engines are the commercial state-of-the-art that
are exposed to real-life user queries. They handle popular
cases reasonably well, but also fail on semantically refined
requests (e.g., “for the Beatles”), merely returning either a
number without explanatory evidence or multiple candidate
answers with high variance (Figure 1). We also see incor-
rect spans being highlighted “22 songs” in the fourth snip-
pet, which is actually a count of songs written by George
Harrison.

Answering count queries from web contents thus poses
several challenges:

1. Aggregation and inference: Returning just a single
number from the highest-ranked page can easily go
wrong. Instead, joint inference over a set of candi-
dates, with an awareness of the distribution and other
signals, is necessary for a high-confidence answer.

2. Contextualization: Counts in texts often come with
contexts on the relevant instance set. For example,
John Lennon co-wrote about 180 songs for the Bea-
tles, 150 as a solo artist, etc. For correct answers it
is crucial to capture context from the underlying web
pages and properly evaluate these kinds of semantic
qualifiers.

3. Explanatory Evidence: A numeric answer alone, such
as “180” for the Beatles songs by Lennon, is often un-
satisfactory. The user may even perceive this as non-
credible, and think that it is too high as she may have
only popular songs in mind. It is, therefore, crucial to
provide users with explanatory evidence.

Contribution. This paper presents CoQEx, Count Question
answering with Explanatory evidence, which answers count
queries via three components: 1) answer inference ii) answer
contextualization and, iii) answer explanation.

Ghosh et al.: Preprint submitted to Elsevier

Page 1 of 16

https://github.com/ghoshs/CoQEx
https://nlcounqer.mpi-inf.mpg.de/
https://w.wiki/4XVq

Answering Count Questions with Structured Answers from Text

How many songs did John Lennon Q
write for the Beatles? —

User QA System

Open-domain QA

A httpsz//faroutmagazine.co.uk » every-song-john-lennon-wrote-for-beatles-playlist
A playlist of every song John Lennon wrote for The Beatles

Below, we're paying tribute to John Lennon's contribution to the Fab Four's back catalogue and

revisiting every song he wrote for The Beatles. There's a lot of them <73 to be
tellin [@ nttps://www.chicagotribune.com > news > ct-x 02

' THE BEATLES BOX SCORE: JOHN OUTHITS PAUL - Chicago Tribune

Lennon wrote 61 songscredited to "Lennon-McCartney" entirely by himself, and McCartney composed

each one

11990-05-15-9002

d a hand in composing 84.55 of the 209 songs recorded by the

43 on his own. All told, Len
https://mccartney.com > 2p=18

How Many Songs Did Paul McCartney And John Lennon Write ...

Paul needed John's anarchic, lateral thinking " This sometimes dysfunctional bond ended up seeing the

pair release almost200 songs under "Lennon-McCartney,” per NPR. However, it's not to say that they
List of songs recorded by the Beatles - Wikipedia

their primary songwriters were the partnership of John lennon and paul mccartney, who composed
most of the group's songs; lead guitarist george harrison wrote 22 songs, including "while my guitar

W https gently weeps", "something” and "here comes the sun", while drummer ringo starr wrote two songs
List of songs recorded by John Lennon - Wikipedia

Yoko Ono and John Lennon performing in December 1971 John Lennon (1940-1980) was an English

musician who gained prominence as a member of the Beatles. His songwriting partnership with

bandmate Paul McCartney is one of the most celebrated in music history. After their break-up, Lennon

recorded over 150 songs as a solo artist

| N

CoQEx KB-QA yS GO

select knowledge

Knowledge Bases

i
160

Answer Inference B

Representative Context 73 songs

Synonyms 61 Beatles tracks

Subgroups 23 vocals

Incomparable 150 solo songs, 180 jointly credited
Instances Hey Jude, Imagine, Let it Be

Figure 1: User experience with the state-of-the-art and proposed methodology for count

question answering.

Given a full-fledged question or telegraphic query and
relevant text passages, CoQEx applies joint inference to com-
pute a high-confidence answer for the count itself. It pro-
vides contextualization of the returned count answer, through
semantic qualifiers into equivalent or subclass categories,
and extracts a set of representative instances as explanatory
evidence, exemplifying the returned number for enhanced
credibility and user comprehension.

Contributions of this work are:

1. introducing the problem of count query answering with
explanatory evidence;

2. developing a method for inferring high-confidence counts
from noisy candidate sets;

3. developing techniques to provide answer contextual-
ization and explanations;

4. evaluating CoQEXx against state-of-the-art baselines on
a variety of test queries;

5. releasing an annotated data resource with Sk count
queries and 200k text passages, available at https://
github.com/ghoshs/CoQEx.

Previous publication. The present manuscript substantially
extends a short paper by Ghosh et al. (2022) by a thorough
analysis of the problem of count question answering. In par-
ticular, we analyse the characteristic of real count queries,
and dissect the difficulty and tractability of each of the sub-
problems. The major extensions to the short paper are:

1. We substantially expanded the task data, and, based
on novel annotation, provide an in-depth analysis of
count query characteristics in Section 5.2. In particu-
lar, we group queries by complexity (in reach for to-
day’s structured approaches, in reach for textual ap-
proaches, out of reach), and analyze baseline and sys-
tem performance for each of them (Tables 3 and 5 in
7.2 and 7.5). We also analyze the domains and sta-
bility properties of count queries (Figures 3 and 4),
and added another related dataset (NaturalQuestions)
to corroborate the findings from our newly-built Co-
QuAD dataset. Our findings include that our proposed
system is resilient to harder query types, with compa-
rable precision at moderate loss of coverage/recall.

2. We provide a novel analysis of count contextualization
across different QA paradigms in Section 7.3, finding
that KB-QA and search engines struggle with this for
principled and/or pragmatic reasons, thus further mo-
tivating our answer contextualization step.

3. We provide a full component analysis on our CoQEx
system in Section 8, specifically through Table 8 and
Figures 5, 6 and 7. A main takeaway is how signifi-
cant thresholding choices are in answer inference and
answer explanation, compared with a lower impact of
the pre-training choice and consolidation strategy. For
answer contextualization, we observe that synonyms
are easier to discern than subgroups and incompara-
bles.

4. We provide provide a discussion in Section 9 which
highlights open challenges for future work, specifi-

Ghosh et al.: Preprint submitted to Elsevier

Page 2 of 16

https://github.com/ghoshs/CoQEx
https://github.com/ghoshs/CoQEx

Answering Count Questions with Structured Answers from Text

cally, how count contexts and instance explanations
coexist and contribute to better user comprehension.
We also examine insightful case studies which show
the potential of CoQEx in explaining count queries
through hierarchical count contexts and instances.

2. Related Work

Where structured data is available in KBs, structured QA
is the method of choice for count question answering, and
previous work of Ghosh et al. (2020) has looked at iden-
tifying count information inside KBs. However, for many
topics, no relevant count information can be found in KBs.
For example, Wikidata contains 217 songs attributed to John
Lennon?, but is incomplete in indicating whether these writ-
ten for the Beatles or otherwise. In the KB-QA domain, sys-
tems like QAnswer developed by Diefenbach et al. (2019)

more complex with “84.55 of 209 songs” being ranked first
followed by varying counts such as “/8 Beatles songs” (co-
written with McCartney) and “6/” (written separately). Be-
cause of the lack of consolidation, the onus is on the user to
decide whether there are multiple correct answers across text
segments.

In Mirza et al. (2018), itis reported that 5%-10% of queries
in popular QA datasets are count queries. Current text-based
QA systems and datasets largely ignore consolidation over
multiple documents, since the target is to produce a single
answer span or document. QA systems are tested on reading
comprehension datatsets, the most popular being SQuAD (Ra-
jpurkar et al., 2016), CoQA (Reddy et al., 2019) and more
recent being DROP (Dua et al., 2019), on open domain QA
datatsets such as Natural Questions (Kwiatkowski et al., 2019),
TriviaQA (Joshi et al., 2017) and on KBs with datasets such
as LC-QuAD 2.0 (Dubey et al., 2019), WebQuestions (Be-

tackle count queries by aggregating instances using the SPARQL rant et al., 2013) and QALD Usbeck et al. (2018). Read-

count modifier. This is liable to incorrect answers, when in-
stance relations are incomplete. Attempts have also been
made to improve recall by hybrid QA over text and KB, yet
without specific consideration of counts (Lu et al., 2019; Xu
et al., 2016).

State-of-the-art systems typically approach QA via the
machine reading paradigm (Karpukhin et al., 2020; Joshi
et al., 2020; Sanh et al., 2019; Chen et al., 2017; Dua et al.,
2019), where the systems find the best answer in a given
passage. The retriever-reader approach in open-domain QA
uses several text segments to return either a single best an-
swer (Chen et al., 2017; Wang et al., 2018) or a ranked list
of documents with the best answer per document (Karpukhin
et al., 2020). The DPR system by Karpukhin et al. (2020)°
returns “approximately 180" from its rank-1 text passage to
both, the simple John Lennon query, and the refined variant
with “... for the Beatles”. The other top-10 snippets include
false results such as “five” and contradictory information
such as “180 jointly credited” (as if Lennon had not writ-
ten any songs alone). Thus, QA systems are not robust (yet)
and lack explanatory evidence beyond merely returning the
top-ranked text snippet.

Attempts have also been made to improve recall by hy-
brid QA over text and KB, yet without specific considera-
tion of counts (Lu et al., 2019; Xu et al., 2016; Saha Roy
and Anand, 2020). Search engines can answer simple count
queries from their underlying KBs, if present, a trait which
we exploit to create our CoQuAD dataset (Section 5). But
more often they return informative text snippets, similar to
QA-over-text systems. The basic Lennon query has a highest-
ranked Google snippet with “more than 150 when given the
telegraphic input “number of songs by John Lennon” and
“almost 200” when given the full-fledged question “how
many songs did John Lennon write”. For the latter case,
the top-ranked snippet talks about the composer duo “John
Lennon and Paul McCartney”. When refining the query
by qualifiers, this already puzzling situation becomes even

2hi’.tps://wAwiki/4XVq
3http: //qa.cs.washington.edu:2020

ing comprehension and open domain QA datasets are an-
notated with answer spans, while the datasets for KB-QA
come with a single or a list of answers, but no further con-
text. Multi-document-multi-hop reasoning datasets, in turn,
focus on chaining evidence (Dua et al., 2019; Bauer et al.,
2018).

The evaluation metrics for reading-comprehension style
benchmarks typically employ strict matching requirements,
like measuring accuracy, F1-score and exact match Zeng et al.
(2020). On a question level, these metrics measure the token-
level overlap, which does not transfer well to count queries,
especially counts which do not have one authoritative answer
and are an inference over multiple documents. We propose
relaxed metrics for evaluation in Section 6.

It is recognized that just literally answering questions is
often not sufficient for use cases. One line of work, Kacupaj
et al. (2020), tackles this by returning comprehensive answer
in full sentences, using templates. Another line, Krishna
et al. (2021), concerns long form question answering, where
the QA model retrieves multiple relevant documents to gen-
erate a whole answer paragraph. The ELI5 dataset by Fan
et al. (2019) contains diverse open-ended queries with sup-
porting information from relevant web sources. While the
setting is related, long form QA is concerned with generat-
ing textual answers evidenced on multiple documents, while
we focus on answering count queries by consolidating counts
and grounding them in instances.

3. Design Space and Architecture

Traditional open domain QA architectures involve query
analysis, document retrieval and answer extraction, where
named-entity recognition (NER) is an important component
for recognizing named entities of the answer type (Zhu et al.,
2021), with the Text REtrieval Conference (TREC) QA tracks
leading the research in fact-based question answering (Voorhees,
2001). Current research employs deep learning with the ben-
efit of achieving end-to-end trainable systems. In this direc-
tion we discussed open-domain QA systems in the reader-

Ghosh et al.: Preprint submitted to Elsevier

Page 3 of 16

https://w.wiki/4XVq
http://qa.cs.washington.edu:2020

Answering Count Questions with Structured Answers from Text

Train

i CoQuAD Answer Inference [4o median 180
5 Answer Spans Counts
2. Candidate Count Count —
5L Generation Extraction Consolidation
b
2
Qv
;i; CNPs tive Prediction
£ Extraction
£] Count-modified noun phrases (CNP)
2 2 CNP,, CNP,_ 180 songs
58 Answer Category Synonyms: 200 co-written, 150 tracks
§ -
&3 Contextualization Classification Subgroups: 61 solo, 23 vocals

7

Train %07 SQuAD Answer Explanation Enumerating
instances
Hey Jude

Imagine

Let it Be

Relevant text .
segments |, Candidate M. NER Instances
Generation

Instance Ranked
Consolidation |Instances

Figure 2: System overview of CoQEx from Ghosh et al. (2022).

retriever paradigm, KB-QA which translates natural language
questions to structured queries finally executed over a KB to

return the answer and the hybrid QA setting which uses a

mix of structured KBs and texts to answer natural language

questions.

We approach count query answering by a combination
of per-document answer span prediction, context extraction,
and consolidation of counts and instances across documents.
Figure 2 gives the overview of CoQEx. We consider as input
a query that asks for the count of named entities that stand
in relation with a subject, for instance full queries like “How
many songs did John Lennon write for the Beatles”, or a
keyword query like “songs by lennon”.

We further assume that relevant documents or passages

are given. This could be the result of a standard keyword/neural

embedding-based IR procedure over a larger (locally indexed)
background corpus, like Wikipedia or the Web. We explain
the methodology of CoQEx in the next section.

4. Methodology

CoQEx extracts counts and instances (entity-mentions)
from the text segments to subsequently i) consolidate the
counts to present the best answer, ii) present contextualiza-
tion as a means to semantically qualifying the predicted count,
and iii) ground the count in instances. We denote the set of
relevant text segments for a query by D.

4.1. Answer Inference

In order to generate count candidates, we use the popu-
lar SpanBERT model from Joshi et al. (2020), trained on the
CoQUuAD train split. Span prediction models return general
text spans, which may contain worded answers (“five chil-
dren”, Conf = 0.8), modifier words and other context (“17
regional languages”, Conf = 0.75), where Conf is the con-
fidence score of the model. These answer spans have two
components - the count itself and qualifiers, which we sepa-
rate with the help of fixed rules and the CogComp Quantifier
by (Roy et al., 2015).

Algorithm 1 shows the outline for answer inference. We
run all relevant documents, D for a given query though the
span prediction model to get the candidate spans comprised
of the answer span, c.Span, and model confidence, c.Conf,

(Line 3-4). If the span is non-empty and confidence of the
model is higher than a threshold, €, then we extract integer
count from the span using the ExtractCount function (Line
5-6). If the integer extraction in non-empty, we save the span,
the extracted integer and the model confidence (Lines 7-9).

The EXTRACTCOUNT() sequentially applies rule-specific
conversions before applying CogComp Quantifier to achieve
maximum recall. The function first applying type conver-
sion (int(“177)—17, float(“17.0”)—17.0), followed by a
dictionary based look-up for worded to integer conversion
(“seventeen”—17) and lastly the CogComp Quantifier, pro-
ceeding only when the previous conversion yields empty re-
sults. The counts are further cleaned by removing fractions
€ (0, 1), since counts are whole numbers.

If there is at least one count extracted from the relevant
document set, we consolidate the counts using either of the
proposed consolidation methods defined in the Consolidate
function (Lines 10-13), else the answer inference is empty
(Line 15).

To consolidate the resulting candidate counts into a pre-

diction C,,,,4, we compare four methods:

1. Most confident: The candidate given the highest con-
fidence by the neural model. This is commonly used
in textual QA (Chen et al., 2017; Wang et al., 2018).

2. Most frequent: A natural alternative is to rank answers
by frequency, and prefer the ones returned most often.

While most confident may be susceptible to single out-
liers, most frequent breaks down in cases where there are few
answer candidates. But unlike textual answers, numbers al-
low further statistical aggregation:

3. Median: The midpoint in the ordered list of candi-
dates.

4. Weighted Median: The median can be further adapted
by weighing each candidate with the model’s score.

For example, for the candidate set { 150 9, 160, g, 180 4,
1809 4,210 3} (confidences as subscripts), most confident
would output 150, most frequent and median would return
180, and the weighted median 160.

4.2. Answer Contextualization

The answer candidates from the previous module often
contain nouns with phrasal modifiers, such as 17 regional
languages. We call these count-modified noun phrases (CNPs).
These CNPs stand in some relation with the predicted count
from the answer inference module as explained in Algorithm 2.
The representative CNP, CNP,,, which best accompanies
the predicted count is first chosen and then compared with
the remaining CNPs. Since answer inference uses a consoli-
dation strategy, we select the CNP with count equal to C,,,,;
having the highest confidence as CNP,, (Line 2).

The remaining CNPs are categorized as follows:

1. Synonyms: CNPs, whose meaning is highly similar to

CNP,,,, and accompanying count is within a specified

Ghosh et al.: Preprint submitted to Elsevier

Page 4 of 16

Answering Count Questions with Structured Answers from Text

Algorithm 1 Extracting answer inference

Algorithm 2 CNP Category Classifier

Input: Count query, g,
set of relevant text segments, D,
span prediction model, SPANPREDICTION,
span selection threshold, 6,
count extraction function, EXTRACTCOUNT,
consolidation function, CONSOLIDATE.
Output: Answer Inference, C,,.4,
List of count span and extracted integer tuples, C.
: C «{}
: WeightedC « {}
: ford € Ddo
¢ < SPANPREDICTION(d, q)

1 > Passed to contextualization
2
3
4:
5: if c.Span # None and c.Conf > 6 then
6
7
8
9

> Counts with confidence

i « EXTRACTCOUNT(c.Span)

if i # None then

L C« CuU(c,i

s WeightedC < WeightedC U (i, c.Span)
10: if WeightedC # {} then

11: WeightedC < SORTASCENDING(WeightedC)

12: > Return the weighted median of the counts. <
13: Cprea < CONSOLIDATE(WeightedC)
14: else

15: L Cprea < Null
16: return C,,,.;, C

threshold, a, of the predicted count (Lines 6-7), where
a is between 0% and 100%, O being most restrictive..

2. Subgroups: CNPs which are semantically more spe-
cific than CNP,,,, and are expected to count only a
subset of the instances counted by CNP,,,, such that

the accompanying count is lower than the synonyms

set (Lines 8-9).

3. Incomparables: CNPs which count instances of a com-
pletely different type indicated by negative cosine sim-
ilarity (Lines 4-5) or an accompanying count higher
than the synonyms (Line 11).

We assign these categories based on (textual) semantic re-
latedness of the phrasal modifier, and numeric proximity of
the count. For example, “regional languages” is likely a
subgroup of “700 languages”, especially if it occurs with
counts (23,17,42). “tongue” is likely a synonym, espe-
cially if it occurs with counts (530, 810, 600). “Speakers”
is most likely incomparable, especially if it co-occurs with
counts in the millions. CNPs with embedding-cosine simi-
larity (Reimers and Gurevych, 2019) less than zero are cat-
egorized as incomparable, while from the remainder, those
with a count within +a are considered synonyms, lower count
CNPs are categorized as subgroups, and higher count CNPs
as incomparable.

For instance, for the query “How many languages are
spoken in Indonesia”, with a prediction 700, estimated 700
languages would be the CNP,,,, {700 languages, 750 di-
alects} would be classified as synonyms, {27 major regional

Input: Answer Inference, Cp,4,

synonym threshold, «,

list of count spans and extracted integer tuples, C
(from Algorithm 1)
Output: Representative CNP, CNPrep,

List of CNP categories, Categories

—

: Synonyms, Subgroups, Incomparables < {},{},{}
: CNP,,, < argmax{c.Conf | i = C),.4,(c,i) € C}
c

[\

rep
3: for (c,i) € C\ (CNP,,,, Cppq) do

4: if COSINESIM(c.Span, CNPp,,,.Span) <= 0 then
5: Incomparables < Incomparables U ¢

6: elseif i € C,,,; + a then
7 \ Synonyms < Synonym U c

8 elseif i < C,,,; — aC,,, then

9: - Subgroups < Subgroups U c

10: else

11: | | Incomparables < Incomparables U c

12: return CNP,, , Synonyms, Subgroups, Incomparables

rep’

Table 1
CNPs with their categories for a query and confidence scores
as subscripts.

Query How many languages are spoken in Indonesia?
CNPge, estimated 700 languages g,

Synonyms 700 languages,;), about 750 dialects, ;,

Subgroups 27 major regional languages, ¢, 5 official languages s,
Incomparables 2000 ethnic groups 4, 85 million native speakers s,

languages, 5 official languages} as subgroups and {2000
ethnic groups, 85 million native speakers} as incomparables
(Table 1).

4.3. Answer Explanation

Beyond classifying count answer contexts, showing rel-
evant sample instances is an important step towards explain-
ability. To this end, we aim to identify entities that are among
the ones counted in the query using Algorithm 3.

Let I denote the inverted dictionary of instances where
I[i] contains the text IDs and confidence scores of the in-
stance i. We collect the answers from a QA model to create
a more precision-oriented candidate space. We again use the
SpanBERT model (fine-tuned on SQuAD 2.0 dataset) to ob-
tain candidates (tuples comprising answer span, c.Span, and
the model confidence, c.Conf) from every document (Lines
4-5), this time with a modified query, replacing “how many”
in the query with “which” (or adding it), so as to not con-
fuse the model on the answer type (Line 1). If the span
is non-empty and has a confidence higher than threshold,
0, we extract named entities from the span (Lines 7-8) us-
ing an off-the-shelf NER. We create an inverted index of
these instances, keeping track of the text segment it belongs
to and the span prediction (Lines 9-10). The instances are
then scored globally using either of the following alternative
consolidation scoring approaches defined in the CONSCORE
function in Lines 11-12. The instances are then ranked in

Ghosh et al.: Preprint submitted to Elsevier

Page 5 of 16

Answering Count Questions with Structured Answers from Text

decreasing order of their consolidated scores (Line 13).

The alternatives for instance consolidation are as follows.
We normalize the consolidation scores for comparison across
instances and strategies. All consolidation strategies lie be-
tween [0, 1].

1. QA w/o Consolidation. In the spirit of conventional
QA, where results come from a single document, we
return instances from the document with the most con-
fident answer span.

2. QA + Context Frequency. The instances are ranked by
their frequency, S[i] = %.
3. QA + Summed Confidence. We rank the instances

based on the summed confidence of all answer spans
2oern -Conf

that contain them, S[i] = Vi

4. QA + Type Compatibility. Here instances are ranked
by their compatibility with the query’s answer type,
extracted via the dependency parse tree. We obtain the
answer type by extracting the first noun token and any
of its preceding adjectives from the dependency parse
tree of the query. We form a hypothesis “(instance)
is a (answer type)” and use the probability of its en-
tailment from the parent sentence in the context from
which the instance was extracted to measure type com-
patibility. We use Liu et al. (2019) to obtain entail-
ment scores, which are again summed over all contain-

Zaoern Ent(id.c.q)

[1[i]]
Here, the function Ent takes the instance i, the answer

spans ¢ to determine the parent sentence in the text
segment d, and query ¢ to determine the answer type
for the hypothesis.

ing answer spans, such that, S[i] =

5. The CoQuAD Dataset
5.1. Dataset construction

Query collection. Existing QA datasets only incidentally
contain count queries; we leverage search engine autocom-
plete suggestions to automatically compile count queries that
reflect real user queries (Sullivan, 2020). We provide the
Google search engine with iterative query prefixes of the
form “How many x”, where X € {a,aa,...,zzz}, similarto
the candidate generation from patterns used in Romero et al.
(2019), and collect all autocomplete suggestions via SERP
API*. We keep those with at least one named-entity (to avoid
too general queries).

Algorithm 3 Extracting answer explanations

Input: Count query, g,
set of relevant text segments, D,
span predictor model, SPANPREDICTION,
candidate selection threshold, 6,
named-entity recognizer, NER,
instance consolidation function, CONSCORE
Output: A ranked list of instances Ip 104

1: ¢ < q.replace(“how many”, “which”)

2. T« {} > Inverted dictionary of instances.
3.8 « {} > Consolidated score for instances.
4: ford € D do

5: ¢ < SPANPREDICTION(d, q')

6: > Get all instances from the span. <
7: if c.Span # None and c.Conf > 6 then

8: I, < NER(c.Span)

o: fori e I, do
10: | I[i] « I[ilu(d,c)
11: fori € I do
12: | S[i] < CONSCORE(I[i], D)
13: Ipankea < SORTDESCENDING(/, key = lambda i

N),

14: return I, ...

We further clean the dataset by removing queries where
no counts could be extracted from the text answers and ap-
plying simple heuristics to remove queries dealing with mea-
surements. We achieve this by using the CogComp Qualifier
which serves a dual purpose. We use it to normalize the text
answers to integer counts and identify empty extractions or
non-entity answer types when any word representing mea-
surement is returned as units of the identified quantity.

This gives us the ground truth for 5k snippet obtained
from either KG or from featured snippets. There also ex-
ists 4k count queries with no directly available ground truth
which we retain in the dataset for evaluation purposes. We
manually annotate a sample of 100 queries from those with-
out automated ground truth.

Text Segment Annotation. We next scrape the top-50 snip-
pets per query from Bing, and obtain text segment ground
truth by labelling answer spans returned by the count extrac-
tor Roy et al. (2015) as positive when the count lies within
+10% from the ground truth. There are around 800 queries
with no positive snippets, which we do not discard, so the
system is not forced to generate an answer. In the end we
have 5162 count queries with automated ground truth, and
an average of 40 annotated text segments per query.

Ground Truth Counts. We automatically obtain count ground Evaluation Data. We use 80% of the count queries with

truth by collecting structured answers from the same search
engine. Executing each query on Google, we scrape knowl-
edge graph (KG) answers and featured snippets, using an off-
the-shelf QA extraction model (Sanh et al., 2019) to obtain
best answers from the latter.

4ht‘cps ://serpapi.com

automated ground truth for training and 20% for test and de-
velopment. We report our evaluations on the hand annotated
subset of 322 CoQuAD queries which consists both the test
data, with the automated ground truths and, queries without
any direct answers. We manually annotate the queries with
categories, counts, and count contexts. We also track the ef-
fect of time, availability of instances and count contexts on

Ghosh et al.: Preprint submitted to Elsevier

Page 6 of 16

https://serpapi.com

Answering Count Questions with Structured Answers from Text

B percentage

17.5 A

15.0 A

12.5 4

10.0

7.5 4

5.0 1

2.54

0.0 -
SE20 2052222852853 0PeTeeEQ
= o S % 35 S 05 o c < S 2 0= 3TF c
=] Q- wes B o925 5 ED O s © & 3 T & 3
T E@EB3ILUEOagE8FRcPs 3523320006
NEnze25v5328Y § 233"FLcE
m.ggé"ﬁ'g g a © K] a <
o © = o 9 o]
£ 30 & E o 3 5
© e T c 5
9] = ®

topics

Figure 3: Distribution of topics in CoQuAD.

KG Featured snippet No direct answer
o 60 40 60
g
2 40 40
S 20
g 20 20
0 0 0

stable
stable
stable

near-continous
low-votatile
near-continous
low-votatile
near-continous
low-votatile

Figure 4: Time variance of CoQuAD queries by answer source.

these queries. 142 queries that would benefit from instance
explanations have at least top-5 prominent manually anno-
tated instances for evaluating answer explanations.

5.2. Query Analysis

Dedicated count question answering is a novel topic for
question answering, and as such, we first aim to gain insights
into the nature of typical count queries. Our analysis is di-
vided into four questions.

1. What ground truths are available for these queries?
2. What are the modes of count answers?

3. What domains do these queries cover, and how topi-
cally stable are they?

4. What are their syntactic characteristics?

We look into the evaluation data of 322 CoQuAD queries
to answer these questions unless specified otherwise.

Nature of ground truth.

When we automate the ground truth extraction process,
we realize that there exists structure to the results provided
by the search engines as illustrated in Figure 5. Answers to
a small minority of roughly 2% of the queries come from
the internal KG. These KG-answerable queries have well-
structured outputs. In the case of count queries the answers

returned are counts and the path to the KG answer is also
displayed to the user.

The majority of the ground truth labels, (54% of all Co-
QuAD queries), are extracted from the top snippet. These
snippets rank at the top of the search results, identified as
featured snippets and are accompanied by an answer span,
highlighted within the text or as a heading of the snippet.
We refer to such queries as snippet-answerable, and provide
two examples in Figure 5.

The queries which yield no automated ground truths (44%
of all CoQuAD queries) come under the No direct answer
category. As illustrated in Figure 5, these queries only re-
turn ranked page snippets, due to the lack of any KG answer
or featured snippet.

Of the automated ground truth labels, the vast majority
come from featured Google snippets, while only 2% come
directly from the Google KG. These labels are thus comple-
mented by a more balanced manual annotation, where we
manually labelled 50 questions that were KG answerable,
172 that were snippet-answerable, and 100 without any au-
tomated ground truth.

Answer modes. We have identified three modes how QA
systems can answer count queries - via counts, CNPs and
instances.

Since all KG-answerable and snippet-answerable queries
have ground truth counts, we focus on the CNPs and in-
stances. If we go by the conventional method of QA without
any consolidation, and analyse the paths returned by KG an-
swerable queries and the featured snippets, we find that KG-
answerable queries are usually simply related and have rare
occurrences of any semantic qualifiers (equivalent to CNPs)
with 0 occurrences in the CoQuAD annotated queries, fea-
tured snippets on the other hand contain CNPs in 61% of
the cases. Instances come up in 90% of the KG-answerable
count queries and in only 20% of the snippet-answerable
count queries.

We then proceed by annotating the CoQuAD queries with
binary variables indicating whether semantic qualifiers and
instance explanations are necessary. For instance, the query
“how many novels did jane austen complete?” would ben-
efit from instances or CNPs which differentiate her finished
and unfinished works or at least hint at the fact.

We found that indeed helpful semantic qualifiers for KG-
answerable queries is necessary in around 8% of the queries.
In snippet-answerable queries and queries with no direct an-
swers, semantic qualifiers are desirable in more than 81.3%
of the cases. As far as instance explanations are concerned,
they are desirable in all KG-answerable queries and in 80.8%
of the snippet-answerable queries. We already see a gap be-
tween the desired explanatory evidence and what is available
when no consolidation is performed. In Section 9, we fur-
ther report on these answer modes in light of the predictions
made by CoQEx to see whether this gap can be reduced.

Domain and stability. We assigned high-level topics to
the the queries. An expert annotator goes through each of
the 322 queries, introducing a new topic label if none of the

Ghosh et al.: Preprint submitted to Elsevier

Page 7 of 16

Answering Count Questions with Structured Answers from Text

KG-answerable how many children does angelina jolie have

Angelina Jolie / Children / Count

No direct answer how many mayors in new york state

https://en.wikipedia.org » wiki » List_of_mayors_of N

List of mayors of New York City - Wikipedia

The mayor of New York City is the chief executive of the Government of New York City, as
stipulated by New York City's charter. The current officeholder ..

Colonial mayors - Pre-consolidation mayors - Post-consolidation mayors

https://en.wikipedia.org » wiki » Mayor_of_New_York.

Mayor of New York City - Wikipedia
The mayor of New York City, officially Mayor of the City of New York, is head of the executive
branch of the government of New York City and the chief ...

Snippet-answerable

»out 10.800.000 results (0,64 seconds
how many languages are spoken in brazil

228 languages
There are about 228 languages spoken in Brazil. These include Portuguese and 11 other foreign or
immigrant languages, as well as 217 indigenous languages. In the following article, you can learn more
about what languages people speak in Brazil. 13 Dec 2021
https:/iwww.alphatrad.com » News » Business News
What are the most widely spoken languages in Brazil?

© About featured s sts + Ml Feedback

how many songs did John lennon write

bout 11.200.000 results (0,66 second:s

Below, we're paying tribute to John Lennon's contribution to the Fab Four's back catalogue
and revisiting every song he wrote for The Beatles. There's a lot of them — 73 to be exact
— with each one telling a story about Lennon at that time. 14 nov 202

https://faroutmagazine.co.uk » every-song-john-lennon-w.

A playlist of every song John Lennon wrote for The Beatles

@ About featured snippets + B Feedback

Figure 5: Nature of groundtruths extracted. KG-answerable queries show the path (entity and relation) and aggregate used
(Count). Snippet-answerable queries have a featured snippet with a highlighted answer displayed at the top of the snippet (228
languages) or within the snippet which then can be extracted by any off-the-shelf extractive QA models. No direct answer type
of queries do not have any automated ground truth as the results returned only ranked.

previous ones make a good match. We found that queries
in CoQuAD cover a range of topics, notably organizations
(18.6%), entertainment (16.4%), demography (10.5%), liter-
ature (6.8%), industry and infrastructure (12.7%) (see Fig-
ure 3).

A second important dimension concerns their temporal
stability. Queries whose result continuously changes are nat-
urally much harder to deal with, especially if fluctuations
are big. We find that 30% of query results are fully sta-
ble (a company’s founders, casts in produced movies), 20%
are low-volatile (lakes in a region, band members of an es-
tablished but active band), 50% are near-continuous (em-
ployment numbers, COVID cases). In Figure 4 we break
it down by answer source (KG, featured snippet, no direct
and no direct answers), and we see that the majority of the
KG answerable queries is stable (64%) and near-continuous
for the rest. Featured snippet can be used to answer all time-
variant queries, though near-continuous queries are a major-
ity (46.5%). Near-continuous queries form an overwhelming
majority (66%) where search-engines do not provide any di-
rect answers. Only about 13% of queries with no direct an-
swers are stable, which means that search-engines can han-
dle such queries with little to no-variance.

Syntactic properties. We identify different query compo-
nents, namely the named entities, the relation, the type of
the entities being counted (conventionally referred to as the
type of the answer entity), and remaining context as a bag
of words. As discussed in the methodology (Section 4), we
use the types for checking compatibility of the instances as
answer explanations. We apply basic natural language pro-
cessing” to get the components.

5We use SpaCy’s en_core_web_sm model.

e Named entity: was extracted using NER and from to-
kens with a propoer noun tagged POS label.

e Relation: was identified when a token had a POS tag
= verb and the token was the root of the dependency
parse tree.

e Answer types: is meant to identify the type of the counted
entities by extracting the first noun from the depen-
dency parse tree with any of it’s preceding adjectives.

e Context: was all remaining keyword tokens, i.e., ex-
cluding conjunctions, determiners, auxiliary verbs, pro-
nouns, punctuation.

Most queries count entities in a simple relation to one
named entity, i.e., the avg. query length is 6.40 words, with
an average of 1.08 named entities per query. We found that
95% of the 322 queries returned non-empty answer types,
with more than 200 unique phrases, for instance, sibling,
movie, employee, nfl stadium, real estate agent, czech player.
The queries spanned over 49 different relations.

Our research data is made publicly available®.

6. Experimental Setup

While we can use regular IR metrics of precision and re-
call for evaluating answer explanations (Mean Average Pre-
cision@k, Recall @k, Hit@k and MRR) and accuracy of clas-
sification for evaluating count context categories, we need a
new metric for counts. This is because counts come with a
natural order and distance function (e.g., 507 may be a good
answer when the ground truth is 503, but not when it is 234),

6https://github.com/ghoshs/CoQEx

Ghosh et al.: Preprint submitted to Elsevier

Page 8 of 16

https://github.com/ghoshs/CoQEx

Answering Count Questions with Structured Answers from Text

for which exact String match or embedding distance is not a
suitable metric.

6.1. Evaluation Metrics
We report the following evaluation metrics for measur-
ing count inference.

1. Relaxed Precision (RP) is the fraction of answered
queries where the prediction lies within +10% of the
ground truth and is reported as a percentage.

2. Coverage (Cov) measures the fraction of queries that
a systems returns an answer for and is reported as a
percentage.

3. Relaxed Precision-Coverage trade-off (P/C) is the har-
monic mean of the relaxed precision and coverage val-
ues, reported as a percentage.

4. Proximity € [0, 1], which is the ratio of the minimum
of the predicted and the gold answer to the maximum
of the two, averaged over all queries.

Since we deal with non-canonicalized surface forms of
instances, we maintained a list of aliases, obtained from Wiki-
data, for the annotated prominent instances. An instance is
relevant if its length-normalized Levenshtein distance Navarro
(2001) from any of the aliases is less than 0.1. We evaluate
answer explanations on the following metrics:

1. Mean Average Precision (MAP) is the fraction of re-

trieved entities that are relevant, averaged over the queries.

2. Average Recall (AR) is the fraction of ground truth
entities retrieved, averaged over the queries.

3. Hit@k is the percentage of queries with at least 1 rel-
evant answer in the top-k.

4. Mean Reciprocal Rank (MRR) is the inverse of the

rank of the first relevant result averaged across all queries.

The CNPs are evaluated based on the accuracy of the
classified labels of Synonyms, Subgroups and Incompara-
bles, measured as the ratio of correct predictions to the total
predictions in each class.

6.2. Baselines
We compare our proposed system with two complemen-
tary paradigms.

1. Knowledge-base question answering: QAnswer (Diefen-

bach et al., 2019).

2. Commercial search engine QA: Google Search Direct
Answers (GoogleSDA). In other words, we scrape the
structured results from the result page of the Google
Search engine.

For fairness to QAnswer, which specifically deals with
count queries by aggregating on top of the SPARQL query,

we queried the system’ twice - the original count query (for
the count answer) and a modified variant as in Section 4.3,
i.e., replacing “how many” with “which”. We then post-
processed the results to extract count and instances. For eval-
uating instances by GoogleSDA, we post-processed knowl-
edge graph and featured snippet of the search engine result
page, keeping items from list-like structures as instances ranked
in their order of appearance.

6.3. Datasets

In order to test the generalizability of CoQEx we present
the results on count queries from multiple datasets in addi-
tion to CoQuAD:

1. 100 count queries from an existing dataset LCQuAD
(Dubey et al., 2019),

2. A manually curated dataset of 100 challenging count
queries called Stresstest, and

3. 84 count queries found in the Natural Questions (Kwiatkowski

et al., 2019) dataset. These queries are similar in na-
ture to our CoQuAD queries (sample of real user queries
from Google), but not subject to our own scraping and
filtering, and thus provide a corroboration signal for
our larger CoQuAD dataset.

6.4. Implementation Details

The candidate generation steps for answer inference and
explanation uses two instances of a span prediction model Joshi
et al. (2020). The model for answer inference is trained on
CoQuAD for 2 epochs, at a learning rate of 3e™ using an
Adam optimizer. An input datapoint for training consists of
a query, a text segment and a text span containing the count
answer (empty if no answer). We train over 3 seeds and re-
port the average score on the test data. For getting the in-
stances from the answer spans, we use the pre-trained SpaCy
NER model®. The model for answer explanation is trained
on SQuAD 2.0.

7. Results

7.1. Baseline Comparison on Answer Inference

Table 2 shows the answer inference performance of Co-
QEX against the baselines on different datasets. We improve
upon Ghosh et al. (2022) by using a refined count extrac-
tor and also report the performance on a new dataset. The
RP-Coverage trade-off metric highlights the advantages pro-
vided by CoQEXx.

In both CoQuAD and Natural Questions datasets Google-
SDA has a an RP above 90%, albeit for very low coverage,
whereas QAnswer has a high coverage, more than 96% in
all datasets with poor RP. CoQEx not only provides a high
coverage, but also a decent RP, with the improved version in-
creasing RP by 10% on CoQuAD. Except on the LCQuAD
dataset, CoQEx provides a better trade-off than the baselines.

TQAnswer
swagger-ui.html
8https://spacy.io on the en_core_web_sm model.

API at https://ganswer-corel.univ-st-etienne.fr/

Ghosh et al.: Preprint submitted to Elsevier

Page 9 of 16

https://qanswer-core1.univ-st-etienne.fr/swagger-ui.html
https://qanswer-core1.univ-st-etienne.fr/swagger-ui.html
https://spacy.io

Answering Count Questions with Structured Answers from Text

Table 2

Comparing baselines on answer inference results (in percentages), where RP= relaxed
precision, Cov=coverage and P/C=relaxed precision-coverage trade-off.

System CoQuAD LCQuAD_,,,.; Stresstest NaturalQuestions

RP Cov P/C|RP Cov P/C|RP Cov P/C|RP Cov P/C

QAnswer (Diefenbach et al., 2019) | 6.6 96.2 124 | 450 96.1 61.3 | 9.0 100 165 | 125 988 221

GoogleSDA 93.2 183 306 | 444 8.6 144 | 79.3 29.0 424 | 944 226 364

CoQEx 377 847 522 | 136 493 213 | 436 916 59.1 | 430 916 58.5
Table 3

Comparing answer inference results (in percentages) by GT source of CoQuAD queries:
KG-answerable, snippet-answerable and no direct answers (NDA). The number of queries
in each type in mentioned in brackets in the column header.

System KG (50) Snippet (172) NDA (100)

RP Cov P/C|RP Cov P/C|RP Cov P/C
QAnswer (Diefenbach et al., 2019) | 122 980 21.7 | 41 97.0 80 |82 940 151
GoogleSDA 100 100 100 | 75.0 23 4.5 40.0 5.0 8.8
CoQEx 23.1 980 374 | 453 858 593|319 763 45.0

On the LCQuAD dataset, designed specifically for KG
queries, it can be argued that as the LCQuAD queries are
created from question templates which in turn are generated
from SPARQL templates, the semantic gap between the nat-
ural language query and its KG counterpart is much lower.
This aids QAnswer and hinders natural language document
retrievers used in the other baselines. The fact that CoQEx
has the lowest coverage in LCQuAD among all datasets also
backs this hypothesis.

The manually created Stresstest dataset shows the poten-
tial of CoQEx in terms of coverage and RP, even though RP
of GoogleSDA is higher. Here results indicate that reliance
on structured KBs (QAnswer) is not sufficient for general
queries, and robust consolidation from crisper text segments
is necessary.

7.2. Effect of Query Types on Answer Inference
In Table 3, we analyse how QA systems perform on the
answer inference when a query is KG-answerable, snippet-
answerable and when a query is not directly answerable. The
difficulty in answering the queries increases with each type.
We observe that the baselines achieve their best perfor-
mance on KG-answerable queries. While QAnswer has a

baselines, especially in the KB-QA setting because by nature
of the baselines, they return answers with little to no context.

Semantic qualifiers are still common in GoogleSDA fea-
tured snippets, coming up in 61% of queries. While seman-
tic qualifiers can be expressed in KG answers (“volcanic is-
lands in Hawaii”’=>islands—Hawaii— volcanoes), this rarely
shows up in GoogleSDA for two reasons, i) KG answers are
provided for short (single entity) and simple queries (rela-
tions with no semantic qualifiers) and ii) KG answers are
provided for very popular queried entity and qualifier.

Unlike the hybrid mode in GoogleSDA which returns re-
sults from both a KB and texts, QAnswer is fully KB-based,
and SPARQL query understanding is challenging. If we only
consider the top-1 SPARQL query we get detailed interpre-
tation of the natural language query but the result is homo-
geneous. For example in the query “how many territories
does canada have”, territories is interpreted as located in
the administrative territorial entity and in the query “how
many poems did emily dickinson write”, write is interpreted
as author.

The relations and answer types used in the top-k SPARQL
queries can provide insights into existing contextualization
in KB-QA as follows. If a subsequent query returns the same

high coverage, the RP metric is quite low, even for KG-answerablget of answers and has similar interpretation, then we have

queries. GoogleSDA has by design 100% precision in KG-
answerable queries. While its coverage goes down drasti-
cally with increasing difficulty levels of the queries, barely
above 5%, the RP remains respectable. CoQEx maintains a
decent balance between coverage and RP values in all three
scenarios.

Since, CoQEx considers only text, it loses to GoogleSDA
in KG-answerable queries by a margin, but is still better than
QAnswer. In snippet-answerable queries and queries with
no direct answers, CoQEx provides a much better P/C trade-
off than the baselines.

7.3. Evaluating Answer Contexualizations
For evaluating count contextualizations, we cannot di-
rectly compare CNPs acquired through CoQEx with the other

Synonyms and when a subsequent query returns an overlap-
ping set of answers such that one query returns subset of the
other, we have Subgroups.

When we look into the top-2 SPARQL queries we find
that only about 3% of the queries provide equivalent answers.
These however, cannot be considered Synonyms by defini-
tion since they are always query equivalent reformulations.
Typical relations are spouse and sibling such that the refor-
mulations (?x, spouse, Entity) and (Entity, spouse, 7x) are
symmetric and the answer sets are identical but no additional
semantic context is obtained.

In only 5% of the queries, where one SPARQL query re-
turns the subset of the other, we find distinct relations indi-
cating subgroups. For example “albums” in the query, “how

Ghosh et al.: Preprint submitted to Elsevier

Page 10 of 16

Answering Count Questions with Structured Answers from Text

Table 4
MAP®@k, ARQ@k (R@k), Hit10 and MRR of CoQEx and baselines for the answer explana-
tions.
System ‘ MAP@1 MAPG@G5 MAP@10 ARO@1 ARG@5 AR@10 Hit@10 MRR
CoQuAD (142 queries)
QAnswer (Diefenbach et al., 2019) | 8.5 9.3 9.6 2.9 6.5 8.4 19.7 0.118
GoogleSDA 14.8 12.8 10.6 4.8 13.7 143 232 0.185
CoQEx 12.0 11.7 11.0 23 9.3 12.7 37.3 0.200
Natural Questions (84 queries)
QAnswer (Diefenbach et al., 2019) | 14.3 15.7 16.3 5.0 11.1 14.3 333 0.199
GoogleSDA 25.0 21.7 179 8.0 23.2 24.2 39.3 0.313
CoQEx 9.5 8.0 7.2 3.6 8.0 11.2 25.0 0.143
Table 5

MAPQ@k, AR@k (R@k), Hit@10 and MRR for the answer explanations of CoQEx and
baselines on CoQuAD queries by their GT source.

System ‘ MAP@1 MAP@5 MAP@10 ARO@1 ARG@5 AR@10 Hit@10 MRR

KG (50 queries)

QAnswer (Diefenbach et al., 2019) | 20.0 21.3 22.0 6.1 14.2 18.5 38.0 0.250

GoogleSDA 42.0 36.4 30.0 13.5 38.9 40.7 66.0 0.526

CoQEx 14.0 13.7 12.9 3.8 13.0 18.4 42.0 0.233

Snippet (92 queries)

QAnswer (Diefenbach et al., 2019) | 2.2 2.8 2.9 1.2 2.4 3.0 9.8 0.046

GoogleSDA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CoQEx 10.9 10.6 10.0 1.5 7.3 9.7 34.8 0.182
many elton john albums are there” is interpreted as albumin Taple 6

the first query and studio album in the second and “mvps”
in “how many mvps does kobe bryant have” is interpreted
as NBA Most Valuable Player Award in the first query and
most valuable player award in the second.

7.4. Baseline Comparison on Answer Explanation

The results on instance-annotated CoQuAD and natural
Questions dataset are in Table 4. We see that GoogleSDA
is the best across datasets in terms of MAP and AR. CoQEx
comes close in the CoQuAD dataset but performs worse than
both baselines in the Natural Questions dataset. Instance ex-
planations when readily available in KGs can be extracted
with a single query. Texts prove useful when KG is incom-
plete or the SPARQL translation is not capture the user in-
tent. We test this hypothesis in the next sub-section.

We identify some challenges which can be tackled to
improve instance explanations from text. The low preci-
sion scores of CoQEx can be attributed to i) noise due to
non-entity terms recognized as entities ii) alternate human-
readable surface forms like the “European Union” as the
group with which “South Korea” has a foreign trade agree-
ment with instead of the specific group name “European
Free Trade Association”, iii) entities satisfying a more gen-
eral criteria, for instance returning other airports from Viet-
nam when asked for airports in Ho Chi Minh City, iii) lo-
cal or generalized surface forms, for instance “Himalayan
rivers” referring to the group of rivers in India originating
from the Himalayan mountain range instead of specifically
naming the rivers. These errors are specific to texts and are
difficult to overcome without human annotation.

7.5. Answer Explanation by Query Type

We analyse the system performances on answer expla-
nation by the query answerability: KG-answerable, snippet-
answerable in Table 5. Our hypothesis is that the baselines

User preference for different explanation modes (in percent-
ages).

Explanation Type | Bare Count Explanation Both None
CNPs 13.3 50.0 333 34
Instances 3.3 73.3 234 0.0
Snippet 0.0 80.0 20.0 0.0
All 10.0 63.3 234 33

Table 7

Extrinsic user study on annotator precision (in percentage).
Class Only Count +Instances +CNPs +Snippet All
Correct 73 63 78 75 88
Incorrect | 28 45 40 53 45
Both 55 56 63 66 71

perform very well on answer explanations when the queries
are KG-answerable. The performance values support this
since we observe that GoogleSDA provides the best preci-
sion, recall and MRR sores, followed by QAnswer for the
KG-answerable queries. Given that CoQEx only uses text
information, it still finds relevant instances achieving a 14%
MAP at rank 1.

In the case of snippet-answerable queries, the dependence
of the baselines on KGs becomes clear. CoQEx performs
the best followed by QAnswer and GoogleSDA. It should be
noted that GoogleSDA might return list pages in the search
result, such that if we were to scrape the contents of the list
page, we would likely find correct instances. However, we
limit ourselves to instances found on the result page itself,
either as an answer from its KG or in the form of direct an-
swers (featured snippets).

Ghosh et al.: Preprint submitted to Elsevier

Page 11 of 16

Answering Count Questions with Structured Answers from Text

] ————— —— SpandERT
SpanBERT-

Table 8

Intrinsic evaluation of the Answer Inference on consolidation
alternatives. The model is SpanBERT+CoQuAD with span
prediction threshold=0.5

o s
Threshols

Figure 6: Performance of fine-tuned models on answer infer-
ence metrics, Relaxed Precision (RP), Coverage (Cov) and Re-
laxed Precision-Coverage trade-off (P/C) across different span
selection thresholds.

7.6. User Studies

To further verify the user perception of our enhanced
answers, and their extrinsic utility, we performed two user
studies.

User study 1: Intrinsic answer assessment. We asked
120 MTurk users for pairwise preferences between answer
pages that reported bare counts, and counts enhanced by ei-
ther of the explanation types. The preference of different ex-
planation types are shown in Table 6. 50% of participants
preferred interfaces with CNPs, 80% with a snippet, 73%
with instances, 63% preferred an interface with all three en-
abled. While snippets are already in use in search engines,
the results indicate that CNPs and instances are considered
valuable, too.

User study 2: Extrinsic utility for assessing system an-
swer correctness. We also validated the merit of explana-
tions extrinsically. We took 5 queries with correct count re-
sults, 5 with incorrect results, and presented the system out-
put under the 5 explanation settings to 500 users. The users’
task was to judge the count as correct or not based on the
explanations present. The measured precision scores are in
Table 7. All explanation had a positive effect on overall an-
notator precision, especially for incorrect counts.

8. Component analysis of CoQEx

We evaluate the CoQEx components to determine the
best configurations for answer inference, consolidation and
explanation.

8.1. Span Prediction Model for Answer Inference

We test the candidate generator for count spans on Span-
BERT (Joshi et al., 2020) finetuned on i) CoQuAD and, ii)
the popular general QA dataset SQuAD (Rajpurkar et al.,
2016) on different span selection thresholds in Figure 6. Span
selection works such that counts coming from spans with a
model confidence above the threshold is used for aggrega-
tion. As is expected, the precision goes up while the cov-
erage decreases as the thresholds are set higher, since the
model becomes more conservative on high confidence pre-
dictions. A threshold of 0.5 gives the best precision-coverage
trade-off.

Fine-tuning on SQuAD gives higher precision scores at
thresholds greater than 0.4. However, this difference, which

Consolidation Relaxed Precision (%) Coverage (%) Proximity
Median 35.4 84.7 0.611
Most Confident 37.0 84.7 0.600
Most Frequent 37.7 84.7 0.611
Weighted Median | 37.7 84.7 0.620

goes up to 3% max, is a trade-off to the higher coverage of
CoQuAD gives, between 5%-8% higher, resulting in overall
more correctly answered queries. Here, we average the met-
rics over all consolidation strategies (Most Frequent. Me-
dian and Weighted Median) and compare the consolidation
schemes next.

8.2. Best Consolidation for Answer Inference

When selecting a consolidation strategy, we compare the
Relaxed Precision and Proximity metrics, since coverage is
same for all strategies (see Table 8). The confident strat-
egy, which in essence performs no consolidation has lower
Proximity than all consolidation strategies, beating only the
median consolidation strategy in Relaxed precision, where
the confident strategy leads by 1.6%.

The weighted median is the winning indicating that using
model confidence as weights boosts performance. The naive
frequent strategy comes very close to the weighted median
scheme, both in terms of RP, where it is equal, and Proximity
(behind by 0.09). Thus, for queries backed by less variant
data, frequent is good enough, but to have an edge in more
variant data weighted median is the way to go.

8.3. Accuracy of Answer Contextualization

The accuracy of the CNP categories is directly depen-
dent on the quality of the prediction. Since in this experi-
ment we only want to test the accuracy of the CNP category
classifier, we restrict ourselves to CNPs from correct predic-
tions (RP=1). We assess the classification accuracy of CNPs
for a manually labelled sample of 601 CNPs for 106 queries.

While a strict synonym threshold of @ = 0% (CNPs equal
to predicted count with cosine similarity > 0), ensures a high
accuracy of 82.1% for Synonyms, which only decreases with
increasing @ down to 69.1% for a« = 100%, the accuracy of
Subgroups is initially low (34.4%), but increases with higher
levels of «, peaking at « = 60% and then decreases. This
happens because as « increases, more incorrect CNPs are
classified as Synonyms.

While the Subgroups may benefit at lower @ values when
CNPs with counts a bit further away from the predicted count
are correctly classified as Synonyms, at higher « the CNPs
with very low counts are still mis-classified as Subgroups
if they have a high semantic similarity to the representative
CNP.

The number of Incomparable CNPs decreases with in-
creasing «, which gives a higher accuracy but at the cost of
incorrect Synonyms and Subgroups. A weighted optimum is
reached at « = 30%, where the accuracy of the Synonyms

Ghosh et al.: Preprint submitted to Elsevier

Page 12 of 16

Answering Count Questions with Structured Answers from Text

10.0

MAP (in %age)
Mverage Recall (in %age)

— 10

15 25
- 20

Table 9

Number of queries with at least 1 contributing snippet under
different settings and number of contexts per query satisfying
the setting.

0.0 02 04 06 08 0.0 0z 04 06 0.8
Threshold Thresheld

Figure 7: MAP and Average recall across threshold values and
ranks. The values are averaged over consolidation alternatives.

Setting #Queries #snippets/query
Counts Candidates 279 5.8

Correct Counts 106 6.0

Relevant CNPs 106 6.0

Instance Candidates 307 15.7

Relevant Instances 39 3.9

Counts & Instance Candidates 151 2.8

Correct Counts + Relevant Instances | 3 1

—— QA + Context Frequency
QA + Summed Confidence
QA + Type Compatibility

—— QA wfo Consolidation

—— QA + Context Frequency
QA + Summed Confidence
QA + Type Compatibility
— QAwfo Consolidation

map
Average Recall
@

25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200

Figure 8: MAP and Average Recall of different consolidation
strategies at ranks 1, 5 and 10 when span selection thresh-
old=0.2.

does not degrade much (79.6%), and the accuracy of Sub-
groups and Incomparables is both above 60% (61.9% and
71.4% respectively).

8.4. Effect of Model Confidence on Answer
Explanation

We see the effect on MAP and average recall when we
threshold the answer spans from the span prediction model
by the model confidence in Figure 7. We observe that, while
the recall goes down in general with increasing model confi-
dence, except for recall at rank 1 which is more or less con-
stant for thresholds between 0.1 and 0.8, the precision drops
sharply when model is both less and more confident and has
two peaks at 0.2 and 0.7.

We can argue that the gradual drop in recall is because
the model predicts less number of high confidence spans.
The precision has a sharp increase initially when increas-
ing the model confidence threshold from O to 0.2, because at
threshold=0, we consider all predictions and this introduces
a lot of noise. Whereas, the drop in precision at thresholds
0.8 and higher is probably due to the model being penalized
for being too conservative and making sparse or no predic-
tions. Choosing a model confidence threshold of 0.2, creates
a balance between precision and recall values.

8.5. Best Consolidation for Answer Explanations
The MAP and AR scores of different consolidation strate-

gies are shown in Figure 8. Without consolidation, MAP and

average recall are comparable only at rank 1, after which the

gap between strategies with and without consolidation in-
creases sharply. All consolidation strategies perform simi-
larly in average recall and the discriminating factor is in the
MAP by rank. QA + Typed Compatibility is the best over-
all followed by QA + Summed Confidence. The naive QA +
context frequency performs worse at higher ranks implying
that the most frequent named-entities may not be the correct
explanations.

Thus we can say that consolidation is a determining fac-
tor in increasing performance, with different starting points
at rank 1, but converging at higher ranks. QA + Type Com-
patibility is the most stable across ranks, followed by other
consolidation strategies. With no consolidation, MAP de-
creases rapidly across ranks, unlike consolidation methods
where MAP is stable across ranks. The recall without any
consolidation very quickly stagnates at quite low values (3.3%).

9. Discussion

9.1. Distribution of CNPs and instances in snippets

In Section 5.2 we introduced the different answer modes
in count queries. An open question is how often these are
actually present in text sources. We distinguish four notable
cases CoQEx encounters in the snippets:

1. Instance candidates - 95.3% of the 322 manually anno-
tated CoQuAD queries have at least one snippet with
instance candidates with an average of 15.7 snippets
per query containing instance candidates.

2. Count candidates - 86.6% of the 322 queries have snip-
pets with count spans with an average of 5.8 snippets
per query containing count candidates.

3. Both instance and count candidates - 46.8% of the queries

have snippets containing both count and instance can-
didates with an average of 2.8 snippets per query.

4. Count candidates with semantic qualifiers (e.g., 7 of-
ficial languages and 30 regional languagues”) - 86.6%
of the queries have snippets with CNPs, with an aver-
age of 5.8 snippets per query containing CNPs.

Now that we have established that snippets are a good
source of candidates, we also report on the number of queries
and number of snippets per query which contain counts that
lead to correct predictions and relevant instances. These are

Ghosh et al.: Preprint submitted to Elsevier

Page 13 of 16

Answering Count Questions with Structured Answers from Text

Table 10

Example outputs of CoQEx with confidence scores of CNPs and aggregated scores of

instances in subscripts.

No. Query

Inference

CNPs

Top-5 Instances

1. how many songs did john | 73
lennon write for the beatles

CNP,e‘,: 73 songs gy
Synonyms: 61 Songs 77,
Subgroups: 22 songs ¢,
Incomparables: 189 songsg,)

songsg.ss), 229 songss)

229 original

x John Lennon’s, ;;,
X BeatI(‘es(Ojj)
v Maggie Mae sy

ken in indonesia

Synonyms: 653 languages g, estimated 700
languages;,, 700 living languagesq, 725
languages 1), 800 languages)

Subgroups: 300 different native languages, o,

2. how many main islands in | 8 CNP,,: eight principal islands o V'the Big Island g,
hawaii Synonyms: eight main islands,,), six major
islandsg,), 8 main islands), 8 largest s
3. how many languages are spo- | 709 CNP,,,: 709 living languages g 47, v'Malay-Indonesian, 7,

vIndonesian language,
v/Bahasa,;,
vIndonesian, 35,

4. how many osmond brothers are | 9
still alive

CNP,,,: nine Osmond siblings 9
Synonyms: nine siblingsg;, nine children s, 7
brothers ;;,, 9 of the Osmond siblings, g,

vAlan Osmond(o_xg)
v'Wayne Osmond'sg 75,
v'Merrill Osmond(ofm
v/Donny Osmond’s)

solomon have

5. how many wives did king | 700

CNP,EP: 700 wives o7
Synonyms: 500 wivess,), seven hundred wives
Subgroups: three of his wives, o), three children , 4

Incomparables: 700 hundred wivess), 1,000

v Moti Maris g g4,
x Memphis 55

6. how many inactive volcanoes | 5
are in hawaii

CNP,,: five active volcanoes, 7,
Synonyms: four active volcanoes s, five separate
volcanoes ;3

Incomparables: 169 potentially active volcanoes

v/Diamond Head,; o5,
v'Mauna Kea),
vHaleakala

summarized in Table 9. Using CoQEx we are able to iden-
tify relevant instances for 39 of our queries spread across
an average of 3.9 snippets per query. Relevant CNPs and
counts could be identified in more than 30% of the count
queries with counts spread across an average of 6 snippets

per query.

9.2. Coexistence of counts and instances
In CoQEX the tasks concerning counts and instances are
separately tackled and a natural question arises as to how

counts and instances are spread across the snippets and whether

they frequently coexist in the same document, like (“He wrote
73 songs, for example Let it Be, ...”). Frequent coexistence
would be very beneficial for the approach, since it would
allow focusing on identifying snippets that solve both sub-
problems at once.

If we count the queries which contain at least onl snip-
pet with both counts and instance candidates we find that
around 46.8% (151) queries satisfy this and even the num-
ber of queries where correct counts and relevant instances
co-occur is only 3 (see table 9). The number of snippets
per query containing co-occurring counts and instances is
also less than 3. This indicating that relevant information is
spread across contexts making our task of inferring answer
and explanatory evidence from multiple sources a significant
contribution.

9.3. Case Study

We pick up some challenging and interesting count queries
which bring out the complexities of the problem and also
showcase the capabilities of our system. The queries are col-
lected in Table 10.

The first query is our running example “how many songs
did john lennon write for the beatles” where the informa-
tion need is for songs by Lennon with an additional con-
dition that these are for the Beatles band. The complexity
of this question comes through the snippets which indicate
that other band members (George Harrison, and Paul Mc-
Cartney) also wrote songs and that there are songs co-written
by the band members.

CoQEx returns 73 as the answer inference and count con-
textualizations i) “22 songs” which belongs to Subgroups
category, since it comes from a snippet talking about lead
guitarist george harrison wrote 22 songs, i) “61 songs” clas-
sified as a synonym comes from a competing source which

says that “Lennon wrote 61 songs credited to Lennon-McCartney

all by himself™ iii) “229 songs”, classified as Incomparable,
comes from a snippet about all the songs The Beatles as a
band has written.

Finding instances are much harder, with the top-5 in-
stances being false positives (names of the band members)
with composition credits varying vastly across songs and
albums. CoQEXx identifies one joint composition “Maggie
Mae” and one album “A Hard Day’s Night” whose title track
and majority of the album songs are written by Lennon, but
is not very confident, scoring it very low (0.01).

The second query, “how many main islands in hawaii”,
is looking specifically for the main Hawaiian islands. The
CNPs returned by CoQEx, express the different interpreta-
tions of “main” as being more popular (“major”) or being
ordered in terms of size (“largest”). CoQEX is also able to
corroborate this with correct instances.

The third query, “how many languages are spoken in in-
donesia” seems relatively simple with a popular entity “In-

Ghosh et al.: Preprint submitted to Elsevier

Page 14 of 16

Answering Count Questions with Structured Answers from Text

donesia”, well-defined predicate “spoken in” and an answer
type “language”, but is a great example of high variance an-
swers. The presence of the modifier “estimated” and multi-
ple close numbers (653, 700, 709) in the CNPs highlight the
fact that it may not be possible to have one true answer.

The fourth query, “how many osmund brothers are still
alive” is a query from the CoQuAD dataset, where instances
in the snippets are more prevalent than counts. The CNPs “9
siblings” counts all brothers (8) and a sister, and “7 brothers”
CNP belongs to snippet of the form “Melvin Wayne Osmund
has 7 brothers”, where the eighth brother is instantiated. Co-
QEX gets correct instances except for “Marie” who is the Os-
mund sister. Since all of the Osmund siblings were famous
musicians, they pop up across relevant snippets.

The fifth query, “how many wives did king solomon have”
is interesting since KGs have two instances of Solomon’s
wives, which would lead a user to believe that 2 is the correct
answer. However, multiple snippets confirm that the number
is 700 and also provides a relevant instance “Moti Maris”
which is not present in the current KGs.

The sixth query, “how many inactive volcanoes in hawaii”
is another interesting query which highlights the misunder-
standing of document retrievers of inactive volcanoes as ac-

tive, since all snippets returned deal with active volcano counts.

Here, the instances are important, since those returned fall
in the dormant or extinct categories of volcanoes.

Preliminary access to the system demonstrator is avail-
able at https://nlcounger.mpi-inf.mpg.de/, where users can
query pre-fetched snippets used in the CoQuAD dataset or
make limited live queries dealing with counts.

10. Conclusion and Future Work

We address the gap in distribution-aware prediction, as-
similating semantic qualifiers from web contents and pro-
viding explanations through instances for the class of count

queries. We systematically analysed count queries, their preva-

lence, structure and how current state-of-the-art answer them.
We provide a thorough analysis of our system components
and how CoQEx compares to the baselines in different query
settings. A thorough discussion on tackled and open chal-
lenges are provided in the discussion section (Section 9) with
observations and case studies.

Improving explanation by instances has a major scope
for improvement, by incorporating KB knowledge (for im-
proving precision) or scraping list pages from search results
(for improving recall). In Section 7 we indicate ad-hoc mech-
anism to identify existing contextualizations in present KB-
QA systems. This can be further expanded independently or
CNPs from text could be useful in identifying relevant se-
mantic qualifiers in the KB.

To foster further research, we release all datasets’ and
provide access to the system demonstrator'? to make queries
and see results through an interactive interface.

9https://github.com/ghoshs/CoQEx
10https://nlcounqer.mpi-inf.mpg.de/

References

K. Balog, Entity-Oriented Search, The Information Retrieval Series,
Springer, 2018.

D. Diefenbach, V. Lépez, K. D. Singh, P. Maret, Core techniques of question
answering systems over knowledge bases: a survey (2018).

Z.Huang, S. Xu, M. Hu, X. Wang, J. Qiu, Y. Fu, Y. Zhao, Y. Peng, C. Wang,
Recent trends in deep learning based open-domain textual question an-
swering systems, in: IEEE Access, 2020.

R. Usbeck, M. Roder, M. Hoffmann, F. Conrads, J. Huthmann, A. N.
Ngomo, C. Demmler, C. Unger, Benchmarking question answering sys-
tems, in: SWJ, 2019.

P. Rajpurkar, J. Zhang, K. Lopyrev, P. Liang, SQuAD: 100,000+ questions
for machine comprehension of text, in: EMNLP, 2016.

T. Kwiatkowski, et al., Natural questions: A benchmark for question an-
swering research, in: TACL, 2019.

M. Dubey, D. Banerjee, A. Abdelkawi, J. Lehmann, LC-QuAD 2.0: A large
dataset for complex question answering over Wikidata and DBpedia, in:
ISWC, 2019.

E. M. Voorhees, Overview of the trec 2001 question answering track, in:
TREC, 2001.

D. Vrandecié, M. Krotzsch, Wikidata: a free collaborative knowledgebase
(2014).

S. Ghosh, S. Razniewski, G. Weikum, Uncovering hidden semantics of set
information in knowledge bases, in: JWS, 2020.

S. Ghosh, S. Razniewski, G. Weikum, Answering count queries with ex-
planatory evidence, arXiv preprint arXiv:2204.05039 (2022).

D. Diefenbach, P. H. Migliatti, O. Qawasmeh, V. Lully, K. Singh, P. Maret,
QAnswer: A question answering prototype bridging the gap between a
considerable part of the LOD cloud and end-users, in: WWW, 2019.

X. Lu, S. Pramanik, R. Saha Roy, A. Abujabal, Y. Wang, G. Weikum, An-
swering complex questions by joining multi-document evidence with
quasi knowledge graphs, in: SIGIR, 2019.

K. Xu, Y. Feng, S. Huang, D. Zhao, Hybrid question answering over knowl-
edge base and free text, in: COLING, 2016.

V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, W.-t.
Yih, Dense passage retrieval for open-domain question answering, in:
EMNLP, 2020.

M.Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, O. Levy, SpanBERT:
Improving pre-training by representing and predicting spans, in: TACL,
2020.

V. Sanh, L. Debut, J. Chaumond, T. Wolf, DistilBERT, a distilled version
of bert: smaller, faster, cheaper and lighter, in: EMC2, 2019.

D. Chen, A. Fisch, J. Weston, A. Bordes, Reading Wikipedia to answer
open-domain questions, in: ACL, 2017.

D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, M. Gardner, DROP:
A reading comprehension benchmark requiring discrete reasoning over
paragraphs, in: NAACL-HLT, 2019.

S. Wang, M. Yu, J. Jiang, W. Zhang, X. Guo, S. Chang, Z. Wang, T. Klinger,
G. Tesauro, M. Campbell, Evidence aggregation for answer re-ranking
in open-domain question answering, in: ICLR, 2018.

R. Saha Roy, A. Anand, Question answering over curated and open web
sources, in: SIGIR, 2020.

P. Mirza, S. Razniewski, F. Darari, G. Weikum, Enriching knowledge bases
with counting quantifiers, in: ISWC, 2018.

S. Reddy, D. Chen, C. D. Manning, CoQA: A conversational question an-
swering challenge, in: TACL, 2019.

M. Joshi, E. Choi, D. Weld, L. Zettlemoyer, TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading comprehension, in: ACL,
2017.

J. Berant, A. Chou, R. Frostig, P. Liang, Semantic parsing on Freebase from
question-answer pairs, in: EMNLP, 2013.

R. Usbeck, R. Gusmita, M. Saleem, A.-C. Ngonga Ngomo, 9th challenge
on question answering over linked data (QALD-9), in: ISWC, 2018.

L. Bauer, Y. Wang, M. Bansal, Commonsense for generative multi-hop
question answering tasks, in: EMNLP, 2018.

C. Zeng, S. Li, Q. Li, J. Hu, J. Hu, A survey on machine reading compre-
hension—tasks, evaluation metrics and benchmark datasets, Applied
Sciences 10 (2020) 7640.

Ghosh et al.: Preprint submitted to Elsevier

Page 15 of 16

https://nlcounqer.mpi-inf.mpg.de/
https://github.com/ghoshs/CoQEx

Answering Count Questions with Structured Answers from Text

E. Kacupaj, H. Zafar, J. Lehmann, M. Maleshkova, VQuAnDa: Verbaliza-
tion question answering dataset, in: ESWC, 2020.

K. Krishna, A. Roy, M. Iyyer, Hurdles to progress in long-form question
answering, in: NAACL, 2021.

A. Fan, Y. Jernite, E. Perez, D. Grangier, J. Weston, M. Auli, Eli5: Long
form question answering, in: ACL, 2019.

F. Zhu, W. Lei, C. Wang, J. Zheng, S. Poria, T.-S. Chua, Retrieving and
reading: A comprehensive survey on open-domain question answering,
in: arXiv, 2021.

S. Roy, T. Vieira, D. Roth, Reasoning about quantities in natural language,
in: TACL, 2015.

N. Reimers, 1. Gurevych, Sentence-bert: Sentence embeddings using

siamese bert-networks, in: EMNLP, 2019.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, V. Stoyanov, ROBERTa: A robustly optimized bert pre-
training approach, in: arXiv, 2019.

D. Sullivan, How google autocomplete predictions are gen-
erated, 2020. URL: https://blog.google/products/search/
how-google-autocomplete-predictions-work/.

J. Romero, S. Razniewski, K. Pal, J. Z. Pan, A. Sakhadeo, G. Weikum,
Commonsense properties from query logs and question answering fo-
rums, in: CIKM, 2019.

G. Navarro, A guided tour to approximate string matching (2001).

Ghosh et al.: Preprint submitted to Elsevier

Page 16 of 16

https://blog.google/products/search/how-google-autocomplete-predictions-work/
https://blog.google/products/search/how-google-autocomplete-predictions-work/

