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The coupling of an angular jitter into the interferometric phase readout is summarized under the term
tilt-to-length (TTL) coupling. This noise is expected to be a major noise source in the intersatellite
interferometry for the Laser Interferometer Space Antenna (LISA) space mission. Despite efforts to reduce
it by satellite construction, some remaining TTL noise will need to be removed in postprocessing on Earth.
Therefore, such a procedure needs to be developed and validated to ensure the success of the LISA mission.
This paper shows a method to calibrate and subtract TTL noise that has no impact on LISA science
operations. This solution relies on noise minimization and uses the differential wavefront sensing (DWS)
measurements to estimate the TTL contribution. Our technique is applied after the laser frequency noise is
suppressed via the time-delay interferometry (TDI) postprocessing algorithm. We use a simulation to show
as a proof-of-principle that we can estimate the TTL coefficients to the required accuracy level based on the
current design configuration of LISA. We then use these estimates to subtract the TTL noise, ensuring that
any remaining TTL noise is below the current estimate of the other noise sources. We validate the procedure
on simulated data for different operating scenarios. Our work shows that it is indeed possible to estimate the
effect of TTL coupling and subtract it a posteriori from the TDI data streams.
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I. INTRODUCTION

LISA will be a space-based mission designed to detect
gravitational waves over a frequency range from 0.1 mHz to
1 Hz. LISA is a space mission led by the European Space
Agency and, at the time of writing, is transitioning to the
mission phase B with an expected launch in the 2030s. It will
consist of three spacecraft (SC) maintaining a nearly equi-
lateral triangular formation and orbiting around the Sun, with
arm-lengths of 2.5 million km [1]. Laser interferometers will
measure the distance between free-falling test masses (TMs)
hosted in each SC. These TMs will ideally be geodesic
end mirrors for a single interferometric arm. The optical
setup inside the SC is mainly composed of a telescope and
an optical bench (OB). The OB hosts the components
required for heterodyne readout of the relative distances.

The combination of each telescope, OB, and corresponding
TM form the moving optical sub-assembly (MOSA). This is
illustrated in Fig. 1. In contrast to ground-based detectors,
LISA’s arms will have varying lengths. Consequently, the
detector response will be highly affected by laser frequency
noise. To solve this problem, an algorithm called TDI [2]
is applied in postprocessing to synthesize virtual equal-
armlength interferometers.
In addition to laser frequency noise, other effects can

cause phase noise in the heterodyne interferometric read-
out. The TTL coupling, which is the coupling of an angular
jitter into the interferometric phase readout, is one of these.
This cross-coupling arises, for example, from misalign-
ments within the optical system. It is not reduced by TDI.
Unless mitigated otherwise, this noise source will affect
the science performance of LISA.
TTL in LISAwill be mitigated in several steps. Figure 2

shows the expected TDI output after each of these steps.
It is expressed in terms of the square root of the power
spectral density (PSD). As a first step, the overall misalign-
ment will be reduced as much as possible in the design and
construction phase. However, the required level of align-
ment of the optical components to completely mitigate TTL
is technically impossible. The expected level of alignment

*sarah.paczkowski@aei.mpg.de
†roberta.giusteri@aei.mpg.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW D 106, 042005 (2022)

2470-0010=2022=106(4)=042005(21) 042005-1 Published by the American Physical Society

https://orcid.org/0000-0002-3823-8343
https://orcid.org/0000-0001-9793-5037
https://orcid.org/0000-0003-4280-2979
https://orcid.org/0000-0002-2380-3186
https://orcid.org/0000-0001-5578-1471
https://orcid.org/0000-0003-1661-7868
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.042005&domain=pdf&date_stamp=2022-08-15
https://doi.org/10.1103/PhysRevD.106.042005
https://doi.org/10.1103/PhysRevD.106.042005
https://doi.org/10.1103/PhysRevD.106.042005
https://doi.org/10.1103/PhysRevD.106.042005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


achieved after integration, is indicated by the pink line.
Here we assume TTL at a level of 8.5 mm=rad for all
contributors (compare Sec. II for a detailed description) and
all other noise estimates according to the latest expectations
(compare Sec. III for details). A set of optical parallel plates
can be used to compensate for the alignment error. This set
is called the beam alignment mechanism and it is foreseen
to be integrated and adjusted on ground before launch.
Figure 2 depicts a prediction of the effect of this alignment
compensation in green. This prediction assumes now all
TTL contributors at the level of 2.3 mm=rad and all
other settings remain the same as in the scenario depicted
in pink. In addition, misalignment can also arise during
launch, transfer to orbit, and over time. The remaining
TTL noise needs to be subtracted in postprocessing on
ground via measurements of the angular jitters to fulfill the
requirement indicated by the dashed gray line in Fig. 2.

Indeed, this requirement is an overall constellation require-
ment. It results from combining the current requirement on
the TM-to-TM displacement noise:

ffiffiffiffiffiffiffiffiffi
Sreqdisp

q
ðfÞ ¼ 13.5

pmffiffiffiffiffiffi
Hz

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2 mHz

f

�
4

s
; ð1Þ

with the current requirement on the residual acceleration
noise on a single TM:
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via an analytic model of the TDI algorithm [3]. Equations (1)
and (2) are expressed in terms of the square root of the PSD
and f denotes the frequency dependency of the respective
requirement. Therefore, considering the current alignment
and jitter estimates, the target set by the LISA project is to
estimate the individual TTL contributors, currently expected
to be around 2.3 mm=rad,with an accuracy of�0.1mm=rad.
Assuming this accuracy level is reached, we obtain the black
trace, and all other settings remain the same as in the two other
scenarios. The black curve in Fig. 2 is dominated by
acceleration noise at frequencies up to a few mHz and by
other interferometric readout noises, at higher frequencies.
The residual TTL noise is a small contribution, and its level
will be discussed in Sec. IVA. The noise levels of Fig. 2 result
from a LISA simulation which will be described in Sec. III.
This paper demonstrates a proof-of-principle that we can

estimate the TTL coupling coefficients to the required
accuracy level based on the current design configuration
of LISA and subtract TTL noise to be below the current
estimate of the other noise sources. In Sec. II, we provide a
model for TTL of a LISAMOSA and the details of how we
estimate the TTL contribution. We use a simulator to test
and validate the estimation and subtraction of TTL noise.
This simulator and its configuration are described in
Sec. III. Next, Sec. IV, shows that we can estimate the
TTL coupling coefficients to the required accuracy level
and subtract TTL noise. This result is further validated for
different operating scenarios in Sec. V. We summarise our
results in Sec. VI. The limits and possible extensions of our
approach are summarized in Sec. VII.

II. TTL NOISE SUBTRACTION IN LISA

Let us consider geometric TTL coupling associated to a
TM as an example to start with. In this case, geometric TTL
coupling originates from the coupling of an arbitrary TM tilt,
α, into the optical path length. This effect is produced by an
offset betweenTMrotationpoint and the laser beam reflection
point, y. The change in path length, δp, can be approximated
to first order as: δp ≈ y · α (for α ≪ 1) [4,5]. Figure 3(a)

FIG. 2. The expected effect of TTL noise in the TDI X output
for different stages of the LISA development and operations.

FIG. 1. Sketch of nomenclature and LISA intersatellite laser
links. The test masses (TMs) are depicted by the yellow cubes
inside the moving optical subassemblies (MOSAs). The tele-
scopes are illustrated in orange. They are used to collect and send
the laser beams, drawn here as red arrows. For clarity, we do not
show the OBs and the interferometry on board the SC.
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depicts an example. Considering two angular degrees of
freedom of the TM, η (corresponding to pitch) and φ
(corresponding to yaw), the change in path length due to
TTLcoupling,δp, can bedescribed by the following equation
which is approximately linear in each degree of freedom:

δp ¼ Cη · ηþ Cφ · φ; ð3Þ

where Cη and Cφ are the respective coupling coefficients.
Within this paper, we consider accumulated TTL effects that
are mixed of geometric and nongeometric contributions. We,
therefore, extend this equation to include also nongeometric
effects. Equation (3) then reads the very same, only that δp is
not the optical pathlength change in the system, but instead
the total phase change converted to a length.

A. MOSA TTL noise

Let us now move to the LISA case. In LISA, the changes
in the distance between two TMs at the end of an arm result

from the combination of three interferometric signals. On
each MOSA, a TM interferometer detects the distance
variations between the TM and its local OB. These two
measurements are combined with the intersatellite inter-
ferometer (ISI) measurement of the changes in the distance
between the two OBs, which are 2.5 million km apart. Each
OB also incorporates a reference interferometer to compare
the two local laser beams aboard the same SC.
TTL coupling is a major source of noise in the TDI

output data streams, as visible from Fig. 2, and it is mainly
driven by the MOSA angular jitter relative to the inertial
reference, which is the incoming beam. Therefore, in this
publication, we will focus on TTL in the ISI. TTL in the
other interferometers is discussed in [6]. In the ISI, the
coupling between an angular offset and a lateral jitter into
the optical path length is not considered here because it is
significantly smaller with respect to the TTL we consider.
Figure 3(b) provides a simplified example of the TTL in the
ISI. Thus, following Eq. (3), TTL noise in the ISI on one
MOSA can be modeled by the equation below, which
applies to a generic MOSA ij, with i, j ¼ 1, 2, 3:

xTTLij
¼ Cijη · ηij þ Cijφ · φij; ð4Þ

where ηij and φij are the MOSA jitters relative to the
inertial space along k ¼ η;φ degrees of freedom, respec-
tively, and the coefficients Cijk are the associated coupling
factors. The MOSAs are mounted on a hinge to enable yaw
rotation. Under normal operating conditions, the remaining
pitch rotation is already small compared to the yaw but
this way of mounting should prevent the MOSA from
rolling with respect to the satellite. Therefore, along the
roll angle θ the MOSAs are assumed to be infinitely stiff in
this model. Thus, Eq. (4) models TTL noise as a linear
combination of the MOSA jitters and nonlinear terms are
assumed negligible. We can justify this because we can
linearize TTL around different working points.
In addition, we split the TTL coupling, measured in each

MOSA, into the effect associated with the incoming beam
on the respective MOSA (Rx) and the outgoing beam from
the far MOSA along the same arm (Tx), as represented by
the index l. The optical path length noise generated in the
distant MOSA needs to be delayed when measured in the
local MOSA according to the light travel time along this
link. This delay is denoted Dij. The index ij indicates here
the MOSA where the respective arm ends. For the case of
constant coupling coefficients, the delay is applied to the
respective jitter. Thus, Eq. (4) becomes:

xTTLij
¼ CijηRx · ηij þ CjiηTx ·Dijηji

þ CijφRx · φij þ CjiφTx ·Dijφji: ð5Þ

So, we can now define the associated TTL coefficients Cijkl

with i, j ¼ 1, 2, 3, k ¼ η;φ and l ¼ Rx;Tx.

FIG. 3. (a) Example of geometric TTL coupling. In the
presence of an offset y of the incident laser beam, the angular
jitter of the TM, α, produces a change in the optical path length,
δp. (b) An example of geometric TTL coupling in LISA. The
angular jitter of the MOSA, α couples with an off-axis laser beam
emitted (offset y) from the distant SC. The effect of this is a
change in the optical path length, δp. In this simplified example
the rotation point coincides with the MOSA center of mass.
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The model of the induced noise is based upon Eq. (5).
However, the true MOSA jitters will not be known, but
only the measured jitters will be available. Here, we
model these as the true jitters with additive sensing noise.
Indeed, the angular measurements in the ISI will be done via
the differential wavefront sensing (DWS) technique [7].
Accordingly, the angles result from comparing the tilt of the
wavefront of the local laser beam and the beam originating at
the far satellite. The DWS measurement is calibrated to
deliver angles in inertial space frame, that means the
calibration accounts for the magnification of the telescope,
for example. Therefore, we call the ηij measurement when
the sensing noise, nDWS, is included as follows:

ηDWS
ij ¼ ηij þ nDWS: ð6Þ

And similarly for φDWS
ij . Consequently, Eq. (5) reads:

x̂TTLij
¼ CijηRx · ηDWS

ij þ CjiηTx ·Dijη
DWS
ji

þ CijφRx · φDWS
ij þ CjiφTx ·Dijφ

DWS
ji ; ð7Þ

where, compared to the model of Eq. (5), the ^ symbol
indicates TTL noise as estimated from the measured jitters.
In Fig. 1 we can see that LISA has 6 such MOSAs, two on
each satellite. From Eq. (7) we see that we have 4 TTL
coefficients to consider for each of these which results in a
total of 24 TTL coefficients.
As mentioned in the previous section, laser frequency

noise will dominate the relative distance measurements
of the LISA ISI by several orders of magnitude. Thus,
estimation of the TTL coupling coefficients is only
possible after suppressing the laser frequency noise. The
postprocessing algorithm which achieves this in LISA is
called TDI [2,8]. A key feature of the TDI algorithm is

that it time-shifts and combines the interferometric mea-
surements on board different satellites of the LISA con-
stellation. We will summarize some key information about
TDI here which is essential for understanding the approach.
Let us consider a generic signal ΨðtÞ that needs to be time-
shifted, or in other words delayed, by the light travel time
along the respective arm, Lij, at a certain moment in time.
We then write [2]:

DijΨðtÞ ¼ Ψðt − LijðtÞÞ: ð8Þ
When a measurement has to be delayed two times, it
results in:

DpqDijΨðtÞ ¼ Ψðt − LpqðtÞ − Lijðt − LpqðtÞÞÞ
≃Ψðt − LpqðtÞ − LijðtÞ þ _LijðtÞLpqðtÞÞ: ð9Þ

To cancel laser frequency noise to first order of SC
separation velocity, _Lij, the so-called 2nd generation
Michelson TDI combinations (TDI 2.0) are applied to
the data [2]. Here we report the expression for the TDI 2.0
output X which reflects the two round trips illustrated and
combined as in Fig. 4:

X ¼ TDIXðη̄13; η̄31; η̄12; η̄21Þ
¼ ð1 −D12D21 −D12D21D13D31

þD13D31D12D21D12D21Þ · ðη̄13 þD13η̄31Þ
− ð1 −D13D31 −D13D31D12D21

þD12D21D13D31D13D31Þ · ðη̄12 þD12η̄21Þ ð10Þ

where the input measurements, η̄ij, are intermediate variables
in the TDI algorithm [8]. Then, the remaining laser frequency

SC 1

SC 2 SC 3

SC 1

SC 2 SC 3

MOSA 12 MOSA 13

MOSA  23

MOSA  21

MOSA  32

MOSA  31

MOSA 12 MOSA 13

MOSA  23

MOSA  21

MOSA  32

MOSA  31

-

FIG. 4. Visualization of the two synthetic optical paths which are constructed and combined, via the “-” sign, in TDI 2.0
postprocessing to form the X combination [9].
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noise is suppressed viaTDI as inEq. (10) and thegravitational
wave signal can be extracted. In addition to X, we consider
two more TDI combinations, Y and Z, centered around SC 2
and SC 3, respectively. Their expressions can be obtained
from Eq. (10) by cyclic permutation of the indices.
As stated above, besides the other noises of the system,

we need to propagate through TDI the TTL noise generated
by our model in Eq. (7). This will be described in detail
in Sec. II B. A more detailed description, including an
analytical model for TTL noise coupling in TDI X, is given
in [6,10]. In essence, the TDI algorithm will propagate and
combine the 24 coupling coefficients. In other words, it will
not be possible to estimate just a single coefficient, but we
always have to deal with the combined impact of several
coupling factors. In addition, as visible from Fig. 4, in TDI
X all coupling coefficients related to MOSA 23 and MOSA
32 have no impact. Indeed, only the TTL noise caused by
the jitter of MOSA 21, 12, 13, and 31 in η and φwill appear
in this combination. This is illustrated in Fig. 4. Therefore,
we can only access 16 of the 24 TTL coupling coefficients
with X alone. The same also applies to the Y and Z
combinations. Accordingly, to estimate all 24 coefficients,
we combine X, Y, and Z.
The details of the coefficient estimation procedure will

be discussed in the next paragraph.

B. TTL coefficient estimation and noise subtraction

Even though we cannot estimate the TTL coupling
coefficients individually, the linearity of the TTL model
and TDI expressions allows us to model the contribution of
TTL noise to the TDI outputs as the sum of 24 contribu-
tions. This is the key idea of the TTL model we use

for subtraction in this work. Indeed, on the timescale
considered for the TTL coefficient estimation (24 hours,
see Sec. III), the changes in the SC separation are at a level
of 0.035%,1 and thus, they are assumed negligible. In other
words, _LijðtÞ ≃ 0 and Eq. (9) becomes:

DpqDijΨðtÞ ≃Ψðt − Lpq − LijÞ: ð11Þ

As a consequence, multiple delays are linear functions of Lij

and theTDI expressions are linear inLij aswell [seeEq. (10)].
Under this assumption, the delay operators commute. This
linear approach is computationally more efficient than using
the full expression and fits naturally to the timescale under
consideration in this proof-of-principle activity.
After we have seen that we can indeed linearize TDI for

our purpose, let us now describe the linear TTL in TDI
model. Again, this model uses the 24 contributors and we
proceed as follows: We calculate each of the TTL con-
tributions by replacing a single coefficient with a scale
factor β while the remaining 23 coefficients are equal to 0.
For example, for the case of i ¼ 1, j ¼ 2, k ¼ η and
l ¼ Rx, we consider the coefficient C12ηRx, and then Eq. (7)
would read:

x̂TTLC12ηRx
¼ β · ηDWS

12 þ 0 ·D12η
DWS
21

þ 0 · φDWS
12 þ 0 ·D12φ

DWS
21 : ð12Þ

Then Eq. (12) is propagated through TDI as in Eq. (10)
to yield the three TTL contributions in TDI for the
coefficient C12ηRx. For this example coefficient, we thus
have for X, Y and Z:

TDIXðx̂TTLC12ηRx
Þ ¼ XTTL

C12ηRx
¼ −ððD13D31 − 1Þ · ðD12D13D21D31 − 1ÞÞ · ηDWS

12 · C12ηRx;

TDIYðx̂TTLC12ηRx
Þ ¼ YTTL

C12ηRx
¼ ðD21ðD23D32 − 1Þ · ðD12D21D23D32 − 1ÞÞ · ηDWS

12 · C12ηRx;

TDIZðx̂TTLC12ηRx
Þ ¼ ZTTL

C12ηRx
¼ 0: ð13Þ

The same procedure is repeated for all 24 coefficients.
Thus, we can write:

TDIXðx̂TTLCijkl
Þ ¼ XTTL

Cijkl
;

TDIYðx̂TTLCijkl
Þ ¼ YTTL

Cijkl
;

TDIZðx̂TTLCijkl
Þ ¼ ZTTL

Cijkl
; ð14Þ

with i; j ¼ 1; 2; 3, k ¼ η;φ and l ¼ Rx;Tx. Note that
the contributions in Eq. (13) and Eq. (14) contain the
scale factor β and not the corresponding coefficient value.
Accordingly, there is a total of 3 × 24 ¼ 72 precomputed
TTL in TDI terms. Since only four of the six MOSAs
contribute to each of the three Michelson TDI outputs X, Y,
Z, only 16 of the 24 TTL coefficient contributions are
different from 0 in each X, Y, and Z. Since two links are
common to each pair of two TDI combinations, a different
set of 8 coefficients is shared between X and Y, Y and Z,
X and Z, respectively. Consequently, each coefficient
appears in two TDI combinations. In this proof-of-principle
activity, we focus on the nominal operation mode with all
arms active. To minimize the correlation between X, Y,

1We obtain a maximum change in arm length of around
875 km in a day, considering five years of flight and trailing
orbits. The calculation is based upon [11].
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and Z, an alternative set of TDI combinations can be used
for the coefficient estimation. These are the so-called A, E,
and T channels which are linear combinations of X, Y,
and Z [12] as follows:

A ¼ 1ffiffiffi
2

p ðZ − XÞ;

E ¼ 1ffiffiffi
6

p ðX − 2 · Y þ ZÞ;

T ¼ 1ffiffiffi
3

p ðX þ Y þ ZÞ: ð15Þ

Therefore, to estimate the coefficients, we combine all the
measurement data available, which corresponds here to
TDI A, E, and T and use all precomputed TTL in TDI terms
as of Eq. (14). The minimization is performed using
the discrete Fourier transform of the data and the cost
function reads:

X
f

�
abs

�
Ã−

X24
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CijklÃ
TTL
Cijkl

�
2

þabs

�
Ẽ−

X24
m¼1

CijklẼTTL
Cijkl

�
2

þabs

�
T̃−

X24
m¼1

CijklT̃TTL
Cijkl

�
2
�
; ð16Þ

where sum over f is a sum over frequencies and ∼ indicates
the discrete Fourier transform. The index m is counting all
possible combinations of i, j, k, l from m ¼ 1 ¼ 12ηRx
until m ¼ 24 ¼ 32φTx. The frequency range used is
from 1 × 10−3 Hz to 0.1175 Hz with the exception of
the frequency bins around the nulls at 0.03, 0.06, and
0.09 Hz (see Fig. 7). In addition, we use a current estimate
of the expected remaining noise after the application of
TDI without the TTL noise contribution to whiten the
data. Details on this estimate are given in Appendix A.
This estimate is fixed in the method presented here and is
not part of the minimization. This simple whitening
procedure justifies the choice of the frequency domain
over the time domain. An MCMC (Markov Chain Monte-
Carlo) algorithm [13,14] is applied, which also allows us
to estimate the covariance between the resulting TTL
coefficients.
In summary, to mitigate the remaining TTL noise in

postprocessing, we start with a linear model of the expected
contribution. We then estimate the 24 coupling coefficients
and subtract the time series, which result from combining
the coefficients with the precomputed terms, from the
TDI time series. Let us point out more explicitly that
both time series are subject to the same delays because both
have been propagated through Eq. (10). In the following
sections, we want to test and validate this procedure on
simulated data. In the case of simulated data, the true
coefficients, Cijkl, are known. This allows us to compare
the estimated values with the true values and compare to

the required accuracy of 0.1 mm=rad. Let us define the
deviation, δCijkl, as the difference between the estimated
(Ĉijkl) and true coefficients (Cijkl):

δCijkl ¼ Ĉijkl − Cijkl: ð17Þ

For instance, the expression of TDI X corrected using the
coefficients estimated from the MCMC reads:

XMCMC
corr ¼ X −

X24
m¼1

ĈijklXTTL
Cijkl

¼ X −
X24
m¼1

ðCijkl þ δCijklÞXTTL
Cijkl

: ð18Þ

Section IV shows the results on simulated LISA data.

III. SIMULATION SETUP

We use a simulator called LISASim, which estimates
optical phases to simulate the LISA constellation. The
simulator uses beam equations expressed in displacement
to compute the various interferometer outputs. It is an open-
loop simulator and thus has the structural form of input
noise mapped to measurements. LISASim includes the
essential noise sources for this analysis, and their levels rely
on the current LISA noise budget (see Appendix B).
The simulator also implements TTL coupling in the TM
interferometer and ISI. TTL noise in the TM interferometer
is set to 0 for all datasets studied in this paper. For the ISI,
TTL noise is simulated with all 24 coefficients having
the same constant value of 2.3 mm=rad. This choice
approaches a worst-case scenario with all coefficients
having the same common amplitude. This TTL coupling
coefficient is a sum of several effects. It considers, e.g., the
currently budgeted misalignments of the telescope and the
optical bench. Additionally, it includes, for example, also
wavefront error coupling in the Tx coefficients as described
by [15,16], plus a margin for each coefficient. The value of
2.3 mm=rad is estimated after the beam alignment mecha-
nism was used to reduce the total effect (as depicted in
green in Fig. 2). As described in Sec. II A, the MOSA
angular measurements are generated with the additive
sensing noise and TTL noise is computed as in Eq. (7).
The simulator further assumes a fixed, nonrotating con-
stellation but takes different arm lengths into account.
Furthermore, we also assume perfectly timestamped data
across the constellation, which means we have perfect and
synchronized clocks. The TDI data streams are calculated
from the simulated data in a second step. This means, we
mimic the downlink in such a way that the TDI compu-
tation uses only the available telemetry. However, the
simulation neglects the estimation of the arm lengths from
the telemetry data. For more details see [17]. Instead, we
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assume perfect knowledge of the arm lengths. The simu-
lation, as well as the subsequent data analysis, use the
MATLABTM toolbox LTPDA [18].
A detailed schematic of both the simulation and data

analysis process is reported in Fig. 5 to put the previously
explained procedure into context. As visible in the upper
section, the TTL coupling coefficients and various noise
sources can be simulated. Then, the interferometer mea-
surements for each MOSA, also containing the noise terms
as configured, are generated as part of the telemetry. In the
same diagram, we show the angular measurements of
the ISI separately in the second column on the right
because these measurements are key to the TTL removal.
The subtraction procedure described in Sec. II B is shown
below the dashed line in Fig. 5. As visible on the left side,

TDI X, Y, and Z are computed using the arm delays. In
parallel, 24 TTL contributions are computed as linear
combinations of measured and delayed DWS data, as in
Eq. (7). Then, we apply the TDI algorithm to the TTL
contributions only to get 72 data streams as in Eq. (14). Next,
we apply Eq. (15) to then obtain the 24 TTL coefficients,
Cijkl, by minimizing the difference as in Eq. (16).
We perform the TTL coefficient estimation on one-day-

long simulated datasets. Indeed, we expect that within
a timescale of 24 hours, fixed coupling coefficients are
sufficient to minimize TTL noise below the current
estimate of the other noise sources. The simulator is set
to generate data at 12 or 16 Hz, which are then down-
sampled to 0.5 Hz to produce telemetry data. LISA will
implement a phase-locking scheme to keep the beat notes

FIG. 5. Schematic of the simulation and data analysis steps. Refer to the text for an explanation of the symbols.
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of the ISI in the measurement band of the photoreceivers
over the mission [19]. In practice, the primary laser is locked
to a frequency reference, and all others are transponder-
locked to the primary. Each laser may serve as the primary
laser. Different schemes to lock the other five lasers to a
primary laser are possible in LISA. The simulator imple-
ments these approximately. The locking is performed via the
interferometer outputs. Thus, the locking will link the signal
content between the interferometers. This is illustrated in
Appendix C. Note that in this simulator, this applies only to
the longitudinal measurements. However, the nominal con-
figuration of the simulator considers six independent lasers
which are assumed to be stabilized to the level reported in the
Appendix B. Despite that no impact of the locking con-
figuration on the TDI output could be found, a dedicated
test of the coefficient estimation with different locking
schemes will be presented in Sec. V B.

IV. RESULTS

As reported in Sec. III, the simulated data reflects
the configuration based on the current design of
the mission. The results presented here thus consider the
24 TTL coefficients having the same constant value
(2.3 mm=rad) and assume no phase-locking scheme is
implemented. The MCMC results for the coefficient values
and the associated errors, meaning the standard deviation,
are presented in Table I. The percentage error, computed as
the ratio between the error and the estimated value con-
verted to a percentage, is included in the table. The table
also displays the deviation to the true value as the difference
between estimated and true value. As visible, the estimate
of all coefficients is within the allocated 0.1 mm=rad
accuracy. Let us define the RMS (root mean square) value
of the deviation to the true values, δCijkl [see Eq. (17)], over
the 24 coefficients, as:

RMS ¼ 1ffiffiffiffiffi
24

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X24
m¼1

δC2
ijkl

vuut : ð19Þ

For the results of this section, we obtain an RMS value
of ð0.035� 0.007Þ mm=rad.
It is important to remark that the results shown here

correspond to a single noise realization. Therefore, we
repeated this test with different noise realizations. Within
1σ, we find the deviation to be at or below 0.1 mm=rad
for more than 98% of the coefficient results. The values
in Table I are therefore representative. Other possible
influences will be discussed in more detail in Sec. V.
These results and the test cases discussed are very similar to
the case of using X, Y, and Z in the minimization.
The variances and covariances of the results of Table I

are shown in Fig. 6. We note three kinds of interdepen-
dencies between the coefficients: two coefficients on the
same SC are anticorrelated and this is more prominent

along φ, see for example C12φTx and C13φRx. Another
anticorrelation is between the respective _Rx and _Tx
component, as in the case of C12φTx and C12φRx. The third
kind is a correlation between two _Rx or _Tx components
on the same SC, as C13φTx and C12φTx for instance. To
summarize, the interdependency of coefficients is driven
by the relative levels of SC and MOSA jitter and the fact
that two MOSAs share the same SC. More detailed
investigations will follow. Since the current results are
reported with standard deviations, they do not take into
account the different kinds of correlation between the
coefficients.
While the coefficient estimation shown in Table I rep-

resents an important result, it is crucial to prove that we can
reduce the TTL noise in TDI. The evidence of this is
presented in Fig. 7. The results for TDI Y and TDI Z are
very similar to TDI X and are not reported here for clarity.
In Fig. 7 the uncorrected TDI X data is indicated by the
black line. Let us point out that because this measurement
combines interferometric measurements, with sensing
noises as given in Appendix B, TDI X is subject to
longitudinal sensing noise but it is free of DWS sensing
noise. The TTL noise contribution after TDI given by
the true values (2.3 mm=rad) is shown in red. To obtain
this data, we first calculate the TTL contribution from all

TABLE I. Coefficient values estimated by the MCMC method.
The expected value for all the 24 coefficients is 2.3 mm=rad.

Coefficient
Value

[mm=rad]
Error

[mm=rad]
% Error

[ ]
Deviation
[mm=rad]

C12ηRx 2.2456 0.0237 1.057 −0.0544� 0.0237
C13ηRx 2.2988 0.0250 1.089 −0.0012� 0.0250
C23ηRx 2.3166 0.0254 1.097 0.0166� 0.0254
C21ηRx 2.3397 0.0251 1.072 0.0397� 0.0251
C31ηRx 2.2676 0.0249 1.097 −0.0324� 0.0249
C32ηRx 2.3267 0.0244 1.048 0.0268� 0.0244
C12φRx 2.3219 0.0386 1.661 0.0219� 0.0386
C13φRx 2.3017 0.0374 1.625 0.0017� 0.0374
C23φRx 2.2457 0.0371 1.65 −0.0542� 0.0371
C21φRx 2.2349 0.0340 1.52 −0.0651� 0.0340
C31φRx 2.2530 0.0367 1.631 −0.047� 0.037
C32φRx 2.2711 0.0373 1.644 −0.0289� 0.0373
C12ηTx 2.3037 0.0257 1.115 0.0037� 0.0257
C13ηTx 2.2861 0.0241 1.054 −0.0139� 0.0241
C23ηTx 2.2752 0.0267 1.174 −0.0248� 0.0267
C21ηTx 2.2572 0.0260 1.153 −0.0428� 0.0260
C31ηTx 2.3020 0.0248 1.08 0.002� 0.025
C32ηTx 2.2831 0.0254 1.113 −0.0169� 0.0254
C12φTx 2.2636 0.0379 1.676 −0.0364� 0.0379
C13φTx 2.2333 0.0373 1.67 −0.0666� 0.0373
C23φTx 2.3140 0.0362 1.565 0.014� 0.036
C21φTx 2.3430 0.0346 1.476 0.043� 0.035
C31φTx 2.2923 0.0375 1.636 −0.0077� 0.0375
C32φTx 2.3350 0.0376 1.612 0.035� 0.038
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MOSAs as the sum of Eq. (7), evaluated for each of the
six MOSAs. Then, we apply TDI as given in Eq. (10).
The cyan curve is physically the result of subtracting the
red curve from the black curve in time domain and then

taking the square root of the PSD. However, here it is
computed in a different way: First, we calculate the TTL
contribution in TDI using the true coefficients values and
the precomputed TTL in TDI terms [Eq. (14)]. Next, we
take the difference of TDI X and the time series from the
last step, similarly to Eq. (18). The cyan curve is then the
square root of the PSD of this difference. Similarly, with
the blue crosses, the subtraction of TTL using the MCMC
results collected in Table I is shown. In this plot, the blue
crosses are simply markers and do not reflect the uncer-
tainties from Table I. To conclude, the TTL coefficients are
estimated to the required accuracy and reduce TTL noise to
the level achieved when the true values are used for the
subtraction. More specifically, the difference between TDI
corrected with true and estimated coefficient values, which
is depicted in green in Fig. 7, is significantly below the
remaining noise in TDI. To calculate this difference, we
define:

Xtrue
corr ¼ X −

X24
m¼1

CijklXTTL
Cijkl

; ð20Þ

FIG. 6. Estimated variances and covariances of the results shown in Table I. This plot was produced using the CHAIN CONSUMER
PYTHON package [20].

FIG. 7. TTL subtraction from TDI X (black) in terms of the
square root of the PSD. The noise after subtraction using the
estimated values (blue crosses) is comparable to the subtraction
result assuming perfect knowledge of the simulated values
(cyan). The difference between TDI X corrected with true and
estimated coefficient values, δXcorr, is depicted in green.
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which denotes TDI X corrected using the true coefficient
values. Therefore, the difference, δXcorr, results from
subtracting Eq. (18) from Eq. (20):

δXcorr ¼ Xtrue
corr − XMCMC

corr ¼
X24
m¼1

δCijklXTTL
Cijkl

; ð21Þ

with again XTTL
Cijkl

as the precomputed TTL in TDI contri-

bution. Applying TDI to the TTL contributors as from
Eqs. (6) and (7), we can define:

TDIXðnDWSÞ ¼ XnDWS
; TDIXðkijÞ ¼ Xkij ; ð22Þ

where k is again the rotation angle (k ¼ η;φ). This allows
us to write Eq. (21) as:

δXcorr ¼
X24
m¼1

δCijklðXkij þ XnDWSÞ: ð23Þ

As displayed in Eq. (23), this residual noise level is a result
of the deviation of the estimated coefficient, δCijkl, multi-

plied with the jitter, Xkij , plus the sensing noise, XnDWS
.

A. Residual TTL noise

Since the simulated coupling coefficients are not per-
fectly recovered and the DWS sensing noise is added in
the TTL estimation, we expect a remaining noise after
subtracting TTL from the TDI outputs. The estimate of this
residual noise and the consequent comparison to the other
simulated noise sources is possible via the following
sequence of steps:
(1) Generate a “noisy” set of data with all noise sources

active, as in Sec. III, TTL noise included;
(2) Estimate TTL coefficients as in Sec. II B;
(3) Generate a set of data with only TTL noise active

and use the DWS measurements [see Eq. (6)]
simulated in Step 1;

(4) Subtract TTL from the dataset generated in Step 3
using TTL coefficient estimates of Step 2 and DWS
measurements from Step 1.

The data presented in Sec. IV corresponds to the noisy
dataset here. Thus, the MCMC results shown in Table I are
used to subtract TTL as in Step 4. Figure 8 shows the results
of this procedure. Here, the black line shows the TDI X
output of the noisy dataset. It is the same as the black line in
Fig. 7. X̌, shown in green in Fig. 8, represents the TDI X
output in the configuration where TTL is the only noise
source simulated (as in Step 3). As such, X̌ is a measure-
ment of the true TTL coupling. The dashed red line (X̌TTL)
indicates the respective TTL contribution in TDI, as the
sum of 24 contributions as of Eq. (14), each of which is
multiplied with the respective true coefficient. As a result,
DWS sensing noise is included in the TTL estimation,

X̌TTL, but not in X̌. Differently to Fig. 7, the TTL
contribution, X̌TTL, is slightly above the TDI X̌ output of
the respective dataset at frequencies below 0.2 mHz. This is
due to the additional DWS sensing noise.
The residual TTL noise resulting from Step 4, meaning

the result of subtracting the dashed red line from the green
line, is depicted in magenta. We perform this subtraction
using the estimated coefficient values reported in Table I
and not the respective uncertainties. For comparison, we
copied the two noise levels after TTL subtraction from
Fig. 7. Again, the cyan line is the noise obtained when the
true coefficient values are used to subtract TTL from the
noisy dataset (simulated in Step 1), and it is compared with
the noise level marked with the blue crosses, which is
achieved when the MCMC results are used in the sub-
traction (as in Step 2). Let us now derive an expression
for the magenta trace. Therefore, we indicate the dataset
where TTL was the only noise source simulated with
the symbol ˇ . Then, we have the correction as described
in Step 4:

X̌corr ¼ X̌ −
X24
m¼1

ðCijkl þ δCijklÞX̌TTL
Cijkl

: ð24Þ

Using Eq. (22), we have for X̌corr:

X̌corr ¼ X̌ −
X24
m¼1

ðCijkl þ δCijklÞ
�
X̌kij þ X̌nDWS

�

¼
X24
m¼1

CijklðX̌kijÞ−
X24
m¼1

ðCijkl þ δCijklÞ
�
X̌kij þ X̌nDWS

�

¼ −
X24
m¼1

δCijkl

�
X̌kij þ X̌nDWS

�
−
X24
m¼1

CijklX̌
nDWS

: ð25Þ

Compared to Eq. (23), there is an additional termP
24
m¼1 CijklX̌

nDWS
which explains the difference between

the green trace in Fig. 7 and the magenta trace in Fig. 8.

FIG. 8. Residual TTL noise after subtraction in terms of the
square root of the PSD. This plot shows that the residual TTL
noise, X̌corr, is significantly below the current estimate of the
other noise sources. The full details are given in the text.
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The level of residual TTL noise is a few percent, in power,
of the noisy TDI X data corrected with the true values (cyan
trace in Fig. 8) at 0.01 Hz. Finally, it is visible in Fig. 8 that
the remaining TTL noise is significantly below the other
simulated noise sources. To be more explicit, the difference
between the cyan and the magenta curve is due to the other
noise sources except TTL present in the noisy dataset.
These are mainly the residual acceleration noise on the
TMs and other sensing noise sources in the interferometers.

V. DISCUSSION

This section explores how the accuracy in coefficient
estimation depends on different noise levels and settings.
Additionally, we want to investigate if the subtraction of
TTL is still effective for these scenarios. We thus validate
our procedure with one noise realization in the simulator
for each case investigated. For clarity, we will only report
the RMS accuracy over the 24 coefficients, as defined in
Eq. (19). The noise levels taken into consideration are
slight variations to the current design configuration (see
Appendix B).

A. TTL coefficient values with drift

For our first investigation, we consider that the true TTL
coefficients drift during a day. We then apply our meth-
odology described in Sec. II B, which assumes constant
coefficients values for the duration of the investigation.
Thus, we aim to quantify the induced bias from this
simplifying assumption to coefficient estimation. Based
on current LISA modeling, we simulate a drift in the
coupling coefficients of 0.15 mm=rad/day. So, the expected
average value for each term will be ð2.3þ 0.075Þ mm=rad,
which is half of the drift in a day. Figure 9 shows that the
subtraction of TTL noise with the estimated constant
coefficients is effective also when the simulated TTL
coefficients actually drift in time. The RMS of the deviation

of the coefficient values, as defined in Eq. (19), for this
configuration is depicted in black in the lower panel of
Fig. 10. As visible, the RMS coefficient accuracy satisfies
the requirement of 0.1 mm=rad.

B. Laser locking configurations

The previous results showed that the TTL coefficients
could be recovered with 0.1 mm=rad accuracy with the
nominal configuration and the assumed drift. This test with
drift did not consider laser locking. However, there are
several ways to offset frequency-lock the six lasers on
LISA. A possible realization is called a locking configu-
ration. Here, we will focus on the three configurations
shown in [19], but there exist more which are under study.
To test the impact of the locking configurations on the
accuracy of the estimated TTL coefficients and the sub-
traction efficiency, a dataset as in Sec. VA is simulated for
each of the locking schemes A, B, C of [19] and then the 24
coefficients are estimated. Consequently, the expected 24
coefficient values would be 2.375 mm=rad. The results are
collected in Fig. 10. As visible in the upper panel, TTL
noise is subtracted to the level achieved when the simulated
coefficient values are used in all the locking schemes taken
into consideration, including the “unlocked” configura-
tion with free-running lasers, which reflects the results of

FIG. 9. TTL subtraction with drift in coefficient values in terms
of the square root of the PSD. As visible, TTL noise (red) can be
subtracted from TDI X (black) using the estimated values (blue
crosses) at a level comparable to the case where perfect knowl-
edge of the simulated values is assumed (cyan).

FIG. 10. Upper: TTL subtraction using the estimated coeffi-
cient values (crosses) is compatible to the subtraction using the
true values (lines) for the different locking configurations tested.
For comparison, TDI X (thick light blue curve) and TTL
contribution to TDI (dash-dot blue trace) for the A locking
configuration are also shown. Lower: RMS deviation estimated
for the locking configurations as in the upper panel and without
locking. The crosses indicate the RMS value of the deviation
computed over the 24 coefficients and the error bar is the result
from propagating the error of each coefficient deviation into
the RMS.
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Sec. VA. The RMS coefficient accuracy is below the
requirement of 0.1 mm=rad in all cases, as shown in the
lower panel of Fig. 10.

C. Random coefficient values with drift
and random signs

In the previous test, the analysis was performed consid-
ering the same value for all the TTL coefficients and a
single noise realization. To test the robustness of the
subtraction procedure, we simulate 100 datasets with
random coefficient values and signs. In more detail, we
multiply a random value between −1 and 1, as generated
from a uniform distribution, with 2.3 mm=rad. In addition,
all the 24 coefficients are assumed to experience the same
drift of (0.15 mm=rad=day). This test is done with the
unlocked configuration only, although the performance is
not expected to change based on the previous results.
Figure 11 shows the histograms of the true coefficient
values used in the 100 simulations. The TTL subtraction
achieved using data from an example run is shown in
the upper panel of Fig. 12. We observe a less dominant
contribution of TTL to TDI above 4 mHz compared to the
case of Fig. 7, for example. This is explained by the
amplitude of the true coefficient values generated in this
dataset, whose absolute values are smaller than the nominal
value of 2.3mm=rad. Nevertheless, the coefficient estima-
tion allows for an effective subtraction of TTL noise in TDI.
The example run is representative of the 100 datasets in the
sense that its RMS deviation is comparable to the RMS
deviation of the other runs. This is shown in the lower panel
of Fig. 12 which depicts the RMS deviation for each run.
As visible, the achieved accuracy is within the requirement
of 0.1 mm=rad for all the simulated datasets. For compari-
son, the result of Sec. VA, namely from taking the nominal
values with constant drift for all the coefficients, is added in
black. We show the histogram of the RMS deviation of the
100 runs on the right. The mean of the RMS deviation
is ð0.040� 0.001Þ mm=rad.

D. Varying TTL noise level

The nominal configuration assumes that all the 24
coefficients have the same value of 2.3 mm=rad. In this
section, we explore a possible impact on the coefficient
accuracy and the subtraction efficiency arising from all the
coefficients having the same value but this value is now
different to the nominal one. More specifically, we consider
two example cases: The first case assumes low TTL noise
(Cijkl ¼ 1 mm=rad), and the second case deals with excep-
tionally high TTL noise (Cijkl ¼ 10 mm=rad). For this
investigation, the configuration with free-running lasers is
implemented in the simulator. The results of this test are
summarized in Fig. 13. We show the estimated contribution
of TTL noise to TDI X, as dashed lines, for three selected
example values for all of the 24 TTL coefficients. The solid
traces represent the subtraction of these contributions from
raw TDI X (not shown for clarity) using the true coefficient
values. The subtraction using the estimated coefficient
values is indicated with the crosses. For comparison, the
figure includes the results from setting all TTL coefficients
to 2.3 mm=rad (black trace), corresponding to the nominal
configuration as of Sec. IV.
As expected, the TTL contribution in Fig. 13 scales with

the TTL coefficient level across the investigated frequency
band. In all cases, the subtraction using the estimated
coefficients is comparable to the result using the true
coefficients. We note that the subtraction result for the
case of TTL ¼ 10 mm=rad remains above the subtraction
result of the other two cases. This is because according to
our linear model using the satellite telemetry [see Eq. (6)],

FIG. 11. Histograms of the true coefficient values in mm=rad
used in the 100 simulations.

FIG. 12. Upper: TTL subtraction with random coefficient
values, constant drift and random signs for the run #10 in terms
of the square root of the PSD. The true values are reported in the
box next to the figure with units of mm=rad. Lower: Left: RMS
deviation for each of the 100 simulated datasets. For comparison,
the result of in Sec. VA is added in black. Lower panel: Right:
histogram of the RMS deviations.
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the TTL coefficient multiplies the jitter and the additive
sensing noise. Since we are looking at the subtraction result
between TDI X and the estimated TTL contributions, the
jitter is common to both and therefore subtracts. However,
the angular sensing noise is only part of the estimated TTL
contribution. Therefore, in this case, it provides an addition
to the longitudinal interferometer sensing noise, which was
found to limit the result after the subtraction of TTL.
However, the lower panel of Fig. 13 demonstrates that the
average accuracy is within the required level. Nonetheless,
it seems to decrease toward higher TTL coefficient values.

E. Varying MOSA-φ angular jitter level

In this section, we investigate a possible change in
coefficient accuracy when we simulate other levels of
MOSA-φ jitter than the nominal one (see Appendix B),
while the SC-φ jitter remains constant. Thus, we only vary
a part of the jitter displayed in Eq. (4). In this test, we set the
MOSA-φ jitter levels at 0.01 Hz to three different values:
1, 5, and 10 nrad=

ffiffiffiffiffiffi
Hz

p
. This test is performed with the

unlocked configuration and the nominal constant value of
2.3 mm=rad for all 24 coefficients. We present the results in
Fig. 14 and maintain the style of Fig. 13. Indeed, the black
trace and dots are the same nominal results in both
of these plots. Similar to the results of Sec. V D and as
expected, the TTL contribution scales with the level of
MOSA-φ jitter. As visible in the upper panel of Fig. 14, the
subtraction of TTL noise is effective in all cases, and the
average accuracy of the respective estimated coefficients
fulfills the requirement, as shown in the lower panel. In
particular, the accuracy increases with larger MOSA-φ
jitter until 5 nrad=

ffiffiffiffiffiffi
Hz

p
since this jitter can be considered as

a part of the signal for TTL coefficient estimation. One of
the limiting factors on the accuracy is the DWS noise.

F. Varying DWS sensing noise level

As discussed in Sec. IVA, the DWS sensing noise is a
driver of both the parameter estimation accuracy and the
efficiency of the subtraction. Therefore, we explore it in
more detail in this section. As in Sec. V D, this exploration
neglects phase-locking and uses the nominal constant value
for all 24 TTL coefficients.
In the upper panel of Fig. 15 we show the subtraction

results for some DWS levels above and below the nominal
one (see Appendix B). We express these levels in terms of
the square root of the PSD and relative to the inertial space.
This time, we do not show the full spectra as in previous
figures but the square root of the averaged PSD around
0.01 Hz. More specifically, this average is applied to TDI X
corrected with true (Xtrue

corr) and estimated values (XMCMC
corr ).

For comparison, we include the requirement on TDI X as in
Fig. 2 averaged around the same frequency. As visible, for
DWS noise levels from 0 to approximately 0.3 nradHz−1=2,
the subtraction result reaches the same noise level around
30 pm=

ffiffiffiffiffiffi
Hz

p
to within the errors. This noise level is

reached both in the case of using the true and the estimated
coefficients. No difference between the corresponding data
points is discernible.
For the DWS sensing noise levels between 0.5 and

1 nradHz−1=2, we note that the noise level of the corrected
data is above the 30 pm=

ffiffiffiffiffiffi
Hz

p
. Accordingly, the subtraction

is less effective in this range due to the increased DWS
sensing noise. Here, no difference between the coefficients
used for the correction can be identified. In other words, the
cyan and blue data points agree very well. This implies that

FIG. 14. Upper: TTL contribution to TDI X and corrected
spectra for the example cases of MOSA-φ jitter. Lower: RMS
deviation for the example cases of MOSA-φ jitter.

FIG. 13. Upper: TTL contribution to TDI X and corrected
spectra for example cases of TTL noise at different levels as
indicated in the legend with units of mm=rad for all 24
coefficients. Lower: RMS deviation for the different TTL levels
as in the upper panel.
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the limit of the subtraction is the sensing noise here and not
the coefficient estimation. Let us now consider the DWS
sensing noise levels from 1.5 to 2.67 nradHz−1=2. Here we
see that the noise level of the corrected data is increasing,
and so is the discrepancy between the correction using the
true and the estimated values. It seems likely that the noise
level is lower when the estimated coefficients are used
because the minimization yields the optimal coefficients
to minimize the total noise and thus overestimates the
TTL contribution. Further investigations will be done to
explore this behavior. To conclude, we find that the
subtraction is very effective for DWS sensing noise below
0.5 nradHz−1=2, where the TDI output is reduced to
approximately 30 pmHz−1=2 compared to a reduction
only to 65 pmHz−1=2 for the case of DWS equal to
2.67 nradHz−1=2 which exceeds the requirement.
In the lower panel of Fig. 15, we show the RMS accuracy

of the estimated coefficient values. It is within the required
accuracy of 0.1 mm=rad, indicated by the dashed line, for
DWS noise levels from 0 to approximately 0.8 nradHz−1=2.
However, when the nominal DWS noise increases by a
factor of five or more, the RMS deviation is above the
requirement. The reason for this lies in the level of DWS
noise itself which is added in TTL estimation, according to

Eq. (6). The violation of the requirement is more evident
when DWS noise reaches 2.67 nradHz−1=2 where the
parameter estimation becomes troublesome.

VI. CONCLUSIONS

TTL noise is expected to be a major noise source in
the LISA ISI. While it shall be minimized by the design,
construction, and integration of the SC and via the beam
alignment mechanism, the remaining noise has to be
subtracted in postprocessing. In this paper, we have shown
a possible solution that does not reduce the science
measurement time of the observatory. This solution relies
on noise minimization and uses the DWS measurements to
estimate the TTL contribution.
We used a LISA simulator to validate the noise mini-

mization approach. This simulator includes the relevant
noise sources for this analysis and their levels are based on
the current knowledge (see Appendix B). Accordingly, we
report results obtained from specific noise models and
realizations. When we apply our approach to the thus
simulated data, we can estimate the TTL coefficients with
an accuracy of better than �0.1 mm=rad. This allows us to
subtract the induced TTL noise such that the remainder is
below the current estimate of the other noise sources. We
identified correlation among the 24 TTL coefficients of our
model. It is driven by the relative levels of SC and MOSA
jitter and the fact that twoMOSAs share the same SC. More
detailed investigations will follow.
We generated data with different noise level settings and

applied the same procedure to validate it more profoundly.
In the first test, we assumed a constant drift over one day.
The second test considered the frequency locking of the six
lasers of the constellation. In a third test, we checked the
procedure on 100 datasets where all 24 TTL coefficients
had different random values and signs. These 100 datasets
revealed no systematic problems with the procedure. The
RMS of the deviations to the true TTL coefficient level is
below the required accuracy of 0.1 mm=rad for all datasets.
We could validate the TTL subtraction for an example. Two
other tests showed that the TTL coefficient level and the
angular jitters were driving the TTL contribution level.
In particular, while an increase in the MOSA-φ jitter level
simplified the estimation of the TTL contribution, an
increase of the TTL coefficient values also introduced
more angular sensing noise and thus did rather decrease the
RMS TTL coefficient estimation accuracy. In the last test,
we varied the angular sensing noise. We found an RMS
accuracy below 0.1 mm=rad with the DWS sensing noise
increased by up to a factor of 4. We found that the DWS
noise either directly or via increased TTL coefficient
amplitudes, can decrease the accuracy of the estimated
coefficients when it becomes significantly larger than
expected. However, all of these five tests increased the
confidence in the noise minimization procedure.

FIG. 15. Upper: Square root of the PSD averaged around
0.01 Hz of TDI X corrected with true (Xtrue

corr) and estimated
values (XMCMC

corr ) for different DWS noise levels. The dashed line
indicates the requirement on TDI X after TTL subtraction
averaged around 0.01 Hz. Lower: RMS deviation for the same
DWS levels as in the upper panel. The case of the nominal
configuration with DWS noise of 0.2 nradHz−1=2 is depicted in
black. The results are compared to the required accuracy
indicated by the dashed line.
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VII. OUTLOOK

Possible limits of this approach. Evidently, this approach
only works as long as the TTL noise is the dominating
noise source in the TDI output in a given frequency range.
If the optical bench and telescope construction and MOSA
assembly exceeded expectations, TTL noise would already
be minimized in hardware to a level that makes it indis-
tinguishable from the other noises in the TDI outputs. In
this case, the presented approach would be obsolete. If
other noise sources dominated, the determination of the
TTL coefficients would be difficult until these other noise
sources would have been eliminated.
An additional limitation is that we currently use a model

of the expected noise without TTL to whiten the data during
the estimation process. Should a usable noise model not be
available, this process could be adapted to use iterative
whitening, starting with a guess at the noise model and then
taking the model parameters from the minimization.
The third category of limitations of this method concerns

the availability of data. In the examples presented, we have
used approximately 24 hrs of uninterrupted data without
glitches or any nonstationarities. We would expect to find a
degradation of the reported performance in case of data
gaps and nonstationary noise behavior. This could be even
worse in the extreme case of a lost arm when only one of
the three Michelson combinations could be formed. In this
case, we would no longer obtain the reported results since
we combine all three Michelson combinations to estimate
the coefficients. Even though we would not need to
estimate 24 coefficients in this case because those related
to the nonoperating arm would be irrelevant, the efficiency
of the subtraction procedure might be limited due to the
coefficient correlations. These questions could not be
studied in detail in this mission phase yet.
Additionally, with significantly higher drifts, we expect

that the TTL estimation model will also need to include a
model of the drift. On the contrary, should the true drift be
significantly below the current estimates, we could apply
the linear model to an extended period of data. Without
additional interruptions, we expect a longer duration to
increase the accuracy of the estimated coefficients.
Possible improvements of this approach. Apart from

addressing the above limitations where possible, let us
mention that if the noise shapes confirm this, extending
the frequency range used for the fit to higher frequencies is
possible. One likely issue will be the presence of gravita-
tional wave signals, especially the galactic binary fore-
ground, but more investigation is needed. Individual
gravitational wave signals should not be affected in their
amplitude or frequency by this TTL subtraction procedure,
nor should they deteriorate the efficiency of the subtraction.
Detailed investigations are planned as future work. In
addition, using the TDI cross spectra, XY, YZ, and XZ
could be investigated. Another combination of interest could
be the ζ combination [21], as well as other more recent

combinations [22], which can be used to characterize TTL
noise in the absence of strong gravitational wave signals. We
will explore other combinations in a further publication.
Moreover, in this proof-of-principle activity, we have

studied the TTL coefficient estimation and the noise
subtraction for 24 hrs of data, intending to enable quick
alerts for gravitational wave sources or routine performance
monitoring. In the future, this method could also be applied
iteratively, which means as part of a global fit, which
identifies all gravitational wave signal content.
Possible design of in-orbit calibration maneuvers. The

current thinking is to develop a calibration maneuver as a
backup solution in the event of difficulties with the
approach presented so far. Such maneuvers have also been
performed on LISA’s technology demonstrator mission
LISA Pathfinder [4,23,24]. Center-of-mass maneuvers on
a different satellite mission with intersatellite interferom-
etry have been used to characterize TTL coupling, see [25].
However, many aspects would have to be considered in the
design of such a calibration maneuver for LISA, which is
also discussed in [10]. One aspect concerns the available
torque authorities on the SC and the MOSA, see [26]. This
work could be extended by considering the closed-loop
control and its transfer function. In addition, the depend-
ency of the DWS noise on the angular offsets and the TDI
transfer function should be considered. That means avoid-
ing frequencies at the dips around multiples of 0.03 Hz
(see for example Fig. 2) to obtain a good signal-to-noise
ratio. Moreover, we recommend carefully checking for
cross-couplings to other degrees of freedom, for example,
via stiffnesses or actuation cross-talks.
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APPENDIX A: ANALYTICAL MODELS OF A, E
AND T AND SIMULATION VALIDATION

As described in Sec. II B, we whiten the noise using a
current estimate of the expected noise in TDI without the
TTL contribution. This means we set TTL noise to 0 in this
calculation. The analytic model of such a predicted noise
in TDI A, E, and T derives from symbolic time-domain
beam equations. More specifically, we calculate TDI for six
unequal but static LISA links, assuming only the main
noise sources present and no signals. These noise sources
are the sensing noise of each interferometer and the residual
acceleration noise on a single TM. Additionally, the fiber
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noise is included. This is the noise arising from the optical
fibers between the two OBs on the same SC. In the last step
of the calculation, we set all of the noise sources mentioned
above to the noise levels as specified in Appendix B. The
resulting models for unequal arms are used in the analysis,

and are shown in Figs. 16–18, but the corresponding
expressions are too long to reproduce here. However, they
are rather similar to the case of assuming the same length
for all the arms. Therefore, we reproduce the expressions
for equal arms here:

SAðfÞ ¼ SEðfÞ
¼ ð2D8 þ 4D7 þ 8D6 − 4D5 − 24D4 − 12D3 − 8D2 þ 12Dþ 2D̄8 þ 4D̄7 þ 8D̄6 − 4D̄5

− 24D̄4 − 12D̄3 − 8D̄2 þ 12D̄þ 44Þ · Sacc þ ðD7 þ 4D6 −D5 − 8D4 − 3D3 − 4D2

þ 3Dþ D̄7 þ 4D̄6 − D̄5 − 8D̄4 − 3D̄3 − 4D̄2 þ 3D̄þ 16Þ · Ss þ ðD8=2þD7 þ 2D6 −D5 − 6D4 − 3D3

− 2D2 þ 3Dþ D̄8=2þ D̄7 þ 2D̄6 − D̄5 − 6D̄4 − 3D̄3 − 2D̄2 þ 3D̄þ 11Þ · Se
þ ðD7 þ 4D6 −D5 − 8D4 − 3D3 − 4D2 þ 3Dþ D̄7 þ 4D̄6 − D̄5 − 8D̄4 − 3D̄3

− 4D̄2 þ 3D̄þ 16Þ · St þ ð2D6 −D8=2 − 2D4 − 2D2 − D̄8=2þ 2D̄6 − 2D̄4 − 2D̄2 þ 5Þ · Sμ; ðA1Þ

STðfÞ ¼ ð2D8 − 8D7 þ 8D6 þ 8D5 − 24D4 þ 24D3 − 8D2 − 24Dþ 2D̄8 − 8D̄7 þ 8D̄6 þ 8D̄5

− 24D̄4 þ 24D̄3 − 8D̄2 − 24D̄þ 44Þ · Sacc þ ð4D6 − 2D7 þ 2D5 − 8D4 þ 6D3 − 4D2

− 6D − 2D̄7 þ 4D̄6 þ 2D̄5 − 8D̄4 þ 6D̄3 − 4D̄2 − 6D̄þ 16Þ · Ss þ ðD8=2 − 2D7 þ 2D6 þ 2D5 − 6D4 þ 6D3

− 2D2 − 6Dþ D̄8=2 − 2D̄7 þ 2D̄6 þ 2D̄5 − 6D̄4 þ 6D̄3 − 2D̄2 − 6D̄þ 11Þ · Se
þ ð4D6 − 2D7 þ 2D5 − 8D4 þ 6D3 − 4D2 − 6D − 2D̄7 þ 4D̄6 þ 2D̄5 − 8D̄4 þ 6D̄3

− 4D̄2 − 6D̄þ 16Þ · St þ ð2D6 −D8=2 − 2D4 − 2D2 − D̄8=2þ 2D̄6 − 2D̄4 − 2D̄2 þ 5Þ · Sμ; ðA2Þ

where D̄ indicates the complex conjugate of the delay operator D which here is assumed to be the same for all the arms.
More explicity, D is a complex quantity and here it is equal to expð−i2πfL=cÞ with L as the length of a LISA arm. The
terms Sacc, Ss, Se, St and Sμ indicate respectively the single TM acceleration noise, the sensing noise in the ISI, TM and
reference interferometer and the fiber noise expressed in PSD terms. Accordingly, SAðfÞ, SEðfÞ and STðfÞ are the PSD of A,
E and T.
Figures 16–18 show an example comparison between the data (nominal configuration, see Appendix B) and the

analytical model for unequal arms in terms of the square root of the PSD. The data is shown after TTL has been subtracted
using the true coefficient values and is therefore consistent with the model of TDI A, E, and T, which assumes no TTL
present. As visible, the data agree with the model in all cases.

FIG. 16. Comparison between data and model for A combi-
nation after TTL subtraction using true coefficient values.

FIG. 17. Comparison between data and model for E combina-
tion after TTL subtraction using true coefficient values.
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APPENDIX B: NOMINAL CONFIGURATION
SETTINGS

Table II provides a list of the most important parameters
that describe the presented nominal configuration, as used
for the results of Fig. 7. For each noise entry, we report the
respective value at 0.01 Hz, expressed in terms of the
square root of the PSD and the parameters of the frequency
shape. We implement the noise sources using a pole/zero
model object in LTPDA [18]. The LTPDA AO constructor
takes a defined pole/zero model and generates random
noise with the prescribed spectral shape. The process is
based on an algorithm described in [27].

APPENDIX C: EXAMPLE PROPAGATION
OF TTL COUPLING

In this section, we illustrate the propagation of the
TTL-induced phase change. For this purpose, we simulate
a single pulse with the shape of a sine wave to occur in
MOSA 31 along the φ degree of freedom. The pulse has an
amplitude of 1 μm, a frequency of 1 Hz, and lasts for 1 s.
Let us begin with a broader view in Sec. C 1. Simulation

results for a single pulse in a more realistic noise configu-
ration will be shown and described in Sec. C 2.

1. Overview of TTL noise propagation

Figure 19 provides a strongly simplified sketch of the
TTL propagation and subtraction. For simplicity, we
assume that all other MOSAs and all 3 SC are perfectly
quiet. Moreover, we ignore the sign of the interferometer
measurements and all other noise sources except TTL.
Most importantly, ignoring laser frequency noise allows the
TTL noise to be directly discernible in the ISI measure-
ments, while in reality, laser frequency noise dominates.
Moreover, we do not consider the impact of a closed-loop
satellite control scheme and its reactions to this pulse for

FIG. 18. Comparison between data and model for T combina-
tion after TTL subtraction using true coefficient values.

TABLE II. Simulation parameters for the nominal
configuration.

Parameter Value

SC jitter η
(w.r.t. inertial space) 5 nrad=

ffiffiffiffiffiffi
Hz

p

SC jitter φ
(w.r.t. inertial space) 5 nrad=

ffiffiffiffiffiffi
Hz

p

SC jitter θ
(w.r.t. inertial space) 5 nrad=

ffiffiffiffiffiffi
Hz

p

Frequency shape Gain: ð0.8 × 10−3=1 × 10−8Þ2
Poles: f1 × 10−8; 1 × 10−8; 1g
Zeros: f0.8 × 10−3; 0.8 × 10−3g

MOSA jitter η (w.r.t. SC) 1 nrad=
ffiffiffiffiffiffi
Hz

p
MOSA jitter φ (w.r.t. SC) 2 nrad=

ffiffiffiffiffiffi
Hz

p
Frequency shape Gain: ð0.8 × 10−3=1 × 10−8Þ2

Poles: f1 × 10−8; 1 × 10−8; 1g
Zeros: f0.8 × 10−3; 0.8 × 10−3g

DWS sensing noise
along η;φ (at the QPRa) 70 nrad=

ffiffiffiffiffiffi
Hz

p

Magnification factor 335
Frequency shape Gain: ð2 × 10−3=1 × 10−6Þ2

Poles: f1 × 10−6; 1 × 10−6; 8; 8g
Zeros: [2 × 10−31=

ffiffiffi
2

p
]b

(Table continued)

TABLE II. (Continued)

Parameter Value

TM force noise 4.6 fN=
ffiffiffiffiffiffi
Hz

p
Frequency shape Gain: ð3 × 10−4=5 × 10−6Þ

Poles: f5 × 10−6; 1g
Zeros: f3 × 10−4g

ISI sensing noise 6.35 pm=
ffiffiffiffiffiffi
Hz

p
Frequency shape Gain: ð2 × 10−3=1 × 10−6Þ2

Poles: f1 × 10−6; 1 × 10−6; 8; 8g
Zeros: [2 × 10−31=

ffiffiffi
2

p
]

TM IFOc sensing noise 1.42 pm=
ffiffiffiffiffiffi
Hz

p
Frequency shape Gain: ð2 × 10−3=1 × 10−6Þ2

Poles: f1 × 10−6; 1 × 10−6; 8; 8g
Zeros: f2 × 10−3; 2 × 10−3g

Reference IFO sensing
noise 3.32 pm=

ffiffiffiffiffiffi
Hz

p

Frequency shape Gain: ð2 × 10−3=1 × 10−6Þ2
Poles: f1 × 10−6; 1 × 10−6; 8; 8g

Zeros: [2 × 10−31=
ffiffiffi
2

p
]

Fiber noise 3 pm=
ffiffiffiffiffiffi
Hz

p
Frequency shape White noise

Laser frequency noise 300Hz=
ffiffiffiffiffiffi
Hz

p
Frequency shape Gain: ð2 × 10−3=2 × 10−5Þ2

Poles: f2 × 10−5; 2 × 10−5; 9; 9g
Zeros: f2 × 10−3; 2 × 10−3g

aQuadrant Photo-Receiver.
bThe second argument in the [ brackets is the quality factor of

the zero.
cInterferometer.
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simplicity. In addition, the phase-locking is assumed to
work perfectly. This diagram only considers the output of
TDI X as an example but the coefficient estimation uses A,
E and T (as described in Sec. II B).
In Fig. 19, we begin on the top left with a single pulse on

MOSA 31 along φ at a time t0. This true rotation is then
measured, as explained in the top right box. Indeed, the
DWS φ channel measures this rotation. In addition, the
rotation leads to TTL noise in the longitudinal measure-
ments. This happens simultaneously with the original
rotation for the Rx TTL and one light travel time along
the arm later in the remote SC for the Tx TTL. In this
example, we assume, for simplicity, the TTL Rx component
to be larger than the TTL Tx component. The longitudinal

ISI measurements are, however, also subject to phase-
locking. The ISI measurements will look differently depend-
ing on the MOSA jittering and the respective locking
scheme. Here, we show locking scheme A as an example.
So far, we have illustrated what will happen inside

the LISA satellites. Note that, on Earth, only the DWS
measurement of the rotation and the longitudinal interfer-
ometer measurements will be available, not the true rotation
itself. The box in the center of the picture illustrates the
downlink of the data.
On Earth, there will be several steps of data processing.

Let us begin with the processing of the DWS measure-
ments. In the first of these steps, we estimate the TTL
contribution from the measured φ jitter. In this example,

FIG. 19. Schematic overview of TTL noise propagation, coefficient estimation and TTL subtraction. The solid lines indicate the
longitudinal interferometer measurements, while the dashed lines refer to the DWS measurements. The combined or otherwise
processed measurements are drawn as dash-dot lines. A full description including the underlying assumptions is given in the text.
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when only MOSA 31 is rotating, we obtain two phase noise
contributions converted to a length from Eq. (12). The other
22 terms will be vanishing. Next, we apply TDI to each of
these 24 contributions to obtain 24 precomputed TTL in
TDI terms. Similarly, TDI is applied to the longitudinal
measurements. TDI introduces the same type of echos in
both cases due to the applied delays. Since TDI also
removes the echos type 1 introduced by the phase-locking,
the resulting time series of TDI X and TTL in TDI X show
the same echos at the same times. For this particular
example, we find echos at times t0 þ 1 delay, t0 þ 3 delays,
t0 þ 5 delays, t0 þ 7 delays. Here, a delay equals the light
travel time between two SC, which we assume is identical
for all arms.
After the data processing, the TTL coefficients can be

estimated by minimizing the difference between TDI X and
the sum of all TTL in TDI X terms. In a more realistic
scenario, the implementation described in Sec. II B can be
used. In principle, the TTL coefficients can also be obtained
from alternative methods, leaving the remainder of the
procedure unaffected.
Let us proceed with the TTL subtraction, which is

illustrated in the box on the bottom right. The TTL
contribution in TDI now results from combining the
estimated coefficients with the precomputed TTL in TDI
terms and then summing up all the 24 terms. We note that
the echos have the same amplitude as the TDI X data in this
case of correctly estimated coefficients. The TDI X is
directly obtained from the data processing step. TTL is
finally removed by subtracting these two time series. Since
no other MOSA or SC is jittering in this example, the
difference between the two is vanishing.

2. Simulation of TTL noise propagation

In the previous paragraph, we have given a broader
overview of the propagation of our example pulse in
MOSA 31. In this section, we will explain the echos of this
pulse due to the phase-locking in a more realistic noise
configuration and present the corresponding simulation
results.
We use the simulation configuration described in

Appendix B with three exceptions to help the visualization.
One of these is that the laser frequency noise is ignored for
this test which makes the TTL in the intersatellite interfer-
ometers discernible. Another difference is that the amplitude
of the TTL coefficients is 3 mm=rad for the Rx coefficients
and 2 mm=rad for the Tx coefficients. With this change, we
can distinguish by eye the propagation of the injected pulse
along the Rx and Tx paths. In the nominal configuration, we
assume no laser locking, but here we choose the locking
scheme A (see Sec. V B and [19]) to show how the locking
results in the propagation of the pulse.
For clarity, this locking scheme is depicted in Fig. 20. In

this scheme, the local laser with respect to MOSA 32 is
frequency stabilized using a cavity and acts as the primary

laser. The other lasers are transponder-locked to this one
using the ISI and reference interferometer signals. This is
illustrated by the green arrows in Fig. 20. For example,
laser 23 is locked using the ISI 23 to laser 32. For the
locking, only the longitudinal measurements are used and
therefore, the locking does not link the jitter of one MOSA
to the angular measurements on other MOSAs. Figure 21
shows the ISI outputs for this simulation. Since the
simulator assumes perfect locking, the ISI 13 and 23
measurements are zero and therefore not shown. We can
see the original pulse at the injection time (∼382 s) in the
ISI 31 output. Since the local MOSA 31 jitter multiplies the
Rx coefficient, the pulse amplitude is the largest of the four.
Delayed by the light travel time along the arm, the pulse
appears in the form of three echos in several ISI measure-
ments. More specifically, it reappears first in ISI 12 since

SC 1

SC 2 SC 3

MOSA 12 MOSA 13

MOSA  23

MOSA  21

MOSA  32

MOSA  31

FIG. 20. Illustration of locking scheme A. The laser 32 is used
as the primary laser. The arrows marked in green indicate the
interferometric measurements used to transponder-lock the other
five lasers.

FIG. 21. ISI outputs after removal of linear trend and converted
to meter for the simulation of a pulse as described in the text. We
can see the original pulse in the ISI 31 output and the echos due to
the locking scheme.
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laser 12 is locked to laser 13 and laser 13 is locked to laser
31 via the ISI 13, which measures the pulse delayed by
the light travel time. The amplitude of this echo is smaller
than the amplitude of the original pulse since it results
from multiplying the initial pulse by the Tx coefficient.
Since the pulse is imprinted onto the beam from SC 1 to
SC 2, we find a delayed echo in ISI 21 output. Similarly, an
echo is discernible in ISI 31 at the same time. However,
these measurements are not used for locking; consequently,
the pulse does not propagate further. Figure 22 shows
the TDI X time series for this pulse test in blue. The total
TTL contribution, XTTL, computed using the true coeffi-
cient values, is shown as the dashed red line. Their
difference is shown in black, denoted as Xtrue

corr. We conclude
that the subtraction is also effective in the presence of such
MOSA pulses.
To understand the occurrence of the pulse and its

echos in the TTL in TDI time series of Fig. 22 for example,
let us evaluate Eq. (7) for the case of the example pulse
occurring on MOSA 31 along φ while neglecting the other

jitters. We then have to consider only the following TTL
contributions:

x̂TTL31
¼ C31φRx · φDWS

31

x̂TTL13
¼ C31φTx ·D13φ

DWS
31 : ðC1Þ

These two terms then contribute to the intermediate TDI
variables η̄13 and η̄31. From Eqs. (10) and (14), we find that:

XTTL ¼ TDIXðx̂TTL31
; x̂TTL13

Þ
¼ ð1 −D12D21 −D12D21D13D31

þD13D31D12D21D12D21Þ · ðx̂TTL13
þD13x̂TTL31

Þ
∝ ð1 −D12D21 −D12D21D13D31

þD13D31D12D21D12D21Þ ·D13φ
DWS
31 : ðC2Þ

Therefore, the propagation of TTL through TDI results into
the original pulse in MOSA 31 delayed by the light travel
time along the arm 13, followed by three echos which occur
at the time according to the multiple delays applied as in
Eq. (C2). An effect of the locking is that the pulse is also
discernible in ISI 12 and 21 (see Fig. 21) and thus also
contributes to η̄12 and η̄21. However, these echos cancel as
part of the TDI algorithm and thus do not have to be
considered to explain the TTL after the application of TDI
as shown in Fig. 22. In this example test, TDI Y and Z differ
from TDI X. More specifically, while MOSA 31 does not
contribute to the TTL in TDI Y, TDI Z contains 5 pulses. In
general, the number of pulses discernible in each of TDI X,
Y and Z depends on which of the six MOSA is jittering.
Moreover, this visualization might look different if the
laser locking efficiency were simulated more realistically,
similarly if the simulated DWS measurements were
affected by the locking. However, this is beyond the scope
of this publication.
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