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Ion-atom-atom three-body recombination in cold hydrogen and deuterium plasmas
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We present a detailed study about ion-atom-atom three-body recombination in hydrogen and deuterium
plasmas based on classical trajectory calculations in hyperspherical coordinates. Our results, due to the pre-
dominant role of the long-range charged-induced dipole interaction, indicate that H,™ and D," are the main
reaction products in the case of hydrogen and deuterium plasmas, respectively. In addition, we find a more steep
energy-dependent reaction rate when the collision energy surpasses the dissociation energy of the molecular ion,
thus entering a new dynamical regime dominated by short-range interactions.
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I. INTRODUCTION

Three-body recombination is the chemical process in
which three atoms collide to form a molecule as a product
state. These reactions are relevant in many different areas
of physics and chemistry. For instance, in ultracold gases
they play a decisive role on the stability of a quantum gas
[1-7]; in hybrid atom-ion traps, they lead to new charged
products [8—11]; in chemical physics, they are necessary to
understand the formation of van der Waals molecules [12-20];
in astrophysics, they are responsible for the formation of H,
one of the most important coolants regarding star formation
[21,22]. In the same vein, in plasmas, where ions, electrons,
and neutral atoms live together, three-body recombination of
electrons and protons, e + ¢ + HY — H + e, plays a vital
role as one of the main mechanisms of plasma recombination
[23-25].

Among different three-body processes, ion-atom-atom
three-body recombination is especially interesting since it
involves two possible product states: (i) molecular ion forma-
tion, A + A + AT — A," 4+ A and (ii) molecular formation,
A +A + At — A, + AT [26]. Recently, this reaction has
been studied by applying a classical trajectory method in
hyperspherical coordinates [7,27,28], finding a threshold law
[10] showing the dominance of molecular ion formation con-
cerning neutral molecules [8,29] at low collision energies.
These have been experimentally confirmed in hybrid atom-ion
traps experiments [11,30]. However, in the plasma physics
front, despite the presence of ions and neutrals, the study of
ion-atom-atom three-body recombination has received little
theoretical and experimental attention, barring the work of
Kirsti¢ et al. [31].

This paper presents a first-principles calculation of the
ion-atom-atom three-body recombination rate in hydrogen
and deuterium plasmas in a wide range of temperatures rel-
evant to cold plasma physics. As a result, this work can be
viewed as extending our previous work on ion-atom-atom
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three-body recombination, going into the high-energy regime,
where short-range physics starts to play a role. A clas-
sical trajectory method in hyperspherical coordinates is
employed, based on ideas pioneered by Smith [32]. Monte
Carlo sampling of trajectories is used to calculate the opac-
ity function—the reaction probability as a function of the
collision energy and impact parameter—and the three-body
recombination cross section, which is conducive to calculating
the recombination rate. The study led to the expected prepon-
derance of molecular ion formation to the detriment of neutral
molecules, although molecules are formed in the whole range
of temperatures under consideration. These results are further
discussed in the framework of tokamak physics, particularly
its implications regarding the ultimate divertor detachment
stage.

II. THEORETICAL TREATMENTS
AND COMPUTATIONAL DETAILS

Consider a system of three particles (see Fig. 1) with
masses my; and positions 7; (i = 1, 2, 3) interacting via the po-
tential V (77, 72, 73) = U (r12) + U (r3) + U (r31), where r;; =
|#; — 7;|. The Hamiltonian governing the particles’ motion
reads as

AR R

. V_'7_.7_. B 1
2y T 2m, 2m3+ (F1, P2, 13) (D

where p; are the momentum vectors of the ith particle. To
more conveniently solve Hamilton’s equations and study the
classical scattering of the three particles, the problem is
treated in Jacobi coordinates,

p1 =71 — 7,
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where M = mj + my + m3 is the total mass of the system
and pcy, is the three-body center-of-mass vector. As the total
linear momentum is conserved, the degrees of freedom of the
center of mass are neglected and the Hamiltonian from Eq. (1)
is expressed as

PP
H =
2412 243,12

+ V (51, £2). 3)

Here, w12 = mumy/(my + ma), w312 = mz(m +mp)/M
and ﬁl, 132 indicate the conjugated momenta of p; and p,
respectively. V (91, p2) is the interaction potential expressed
in terms of Jacobi coordinates.

Solving Hamilton’s equations of motion for the three-body
problem as a function of Jacobi coordinates allows the char-
acterization of the system in three-dimensional (3D) space.
Alternatively, it is desirable to study the dynamics of the
same system in a six-dimensional (6D) space, where it can
be mapped into a single particle. This is made possible by the
pioneering work of Smith [32], which allows the construction
of 6D position and momenta vectors. Hyperspherical coordi-
nates are employed for the representation of the 6D vectors
and a definition of the impact parameter in 6D space follows.
That is, the impact parameter b is defined as a component of
the position vector lying in the hyperplane perpendicular to
the initial momentum ﬁo and is obtained as a result of the
Gram-Schmidt orthogonalization procedure.

Thus, an expression for the classical cross section, as a pre-
requisite for the recombination rate relation, is obtained after
averaging out the hyperangular degrees of freedom [7,28],

Urec(Ec') = /P(EC, E)b4dbd§2b

2 pbma(Ec)
- P(E., b)b*db, @)
3 Jo

where E, is the collision energy and dQ2,=
sin® (@) sin? (%) sin(a)dafdabdabda? is the solid angle
element associated with vector b. The function P(E,, b) is the
so-called opacity function and it defines the probability
that a particular trajectory at collision energy E,. and
impact parameter b leads to a recombination event. bpax
represents the largest impact parameter for which three-body
recombination events occur, i.e., P(E., b) = 0 for b > bpx.
Finally, the energy-dependent three-body recombination rate

is introduced as
2E,
k3(E.) = " Orec(Ec). (5)

Therefore, after starting with a given set of initial con-
ditions gy, R, E and ﬁo, the method relies on mapping the
conditions in 3D space to solve Hamilton’s equations in Jacobi
coordinates. Following that, the resulting momenta and posi-
tions are mapped back into the 6D space where the classical
three-body cross section is defined by Eq. (4).

The integral in Eq. (4) is evaluated by employing the
Monte Carlo integration method [27]: The initial hyperan-
gles determining the orientation of vectors Py and b in 6D
space are randomly sampled from their appropriate angular
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FIG. 1. Jacobi coordinates for the three-body problem, where the
third particle is charged, and Rcm, indicates the center of mass of
particles 1 and 2.

distribution functions in 6D and the opacity function P(E,, l;)
is subsequently averaged over the hyperangles. This is
achieved by running n, trajectories and counting the number
of trajectories n, that lead to recombination events. Thus,

P(E:, b) ~

)

n.(Ec, b) + vu(Ee, b) [ (Ec, b) — n(E., b)
nI(Ech) nI(EC9b) nt(EC7b)

(6)
where the latter term in Eq. (6) is the statistical error associ-
ated with the Monte Carlo method.

Hamilton’s equations are solved using the odel13 solver
in MATLAB, with absolute and relative tolerances of 10~
and 107", respectively. The conservation of the total energy
and of the magnitude of the total angular momentum vector
during collisions is ensured to at least four and six significant
digits, respectively. Last but not least, the initial magnitude of
the hyperradius (gy) is generated randomly from the interval
[Ro — 50, Ry + 50] ag, where Ry = 40 aq and ag is the Bohr
radius. Ry is chosen so the three particles are initially found in
an uniform rectilinear state of motion.

The number of partial waves contributing to the scattering
observables can be used as a measure of the validity for the
classical trajectory method. By knowledge of the long range
of the interaction potential (V;) and by solving E. = V;(R*)
for a given kinetic energy E.. Therefore, R* is the distance
where V; shows a maximum, and the largest / value can
be approximated, which determines the number of partial
waves contributing to the scattering. For atom-ion collisions,
the long range of the interaction potential reads as (in atomic
units):

o (+1

VilR) = =722 IR

)

where / is the angular momentum quantum number associated
to the relative motion, « is the polarizability of the atom, and
w is the reduced mass of the colliding pair. Figure 2 shows
the magnitude of the maximum [ value (/;,,x) as a function of
collision energy E., where we observe that at least ten partial
waves contribute to the observables at the lowest collision
energy we consider later in this paper (E. = 100K). As a
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FIG. 2. Maximum number of partial waves (/,x) versus collision
energy (E.) as calculated for a Langevin impact parameter. The
concept figure in the inset is illustrative of the maximum contributing
partial wave to an ion-atom collision.

result, quantum mechanical effects are potentially washed out
for the range of collision energies explored in this paper, and
a classical approach is adequate.

III. RESULTS AND DISCUSSION

Three-body recombination processes involving hydrogen
and deuterium species are considered simultaneously through-
out this section.

The pairwise additive approximation is used to describe
the overall potential of the three-body systems under study.
A similar approach has been proven successful in cold chem-

Waals molecular formation [19]. Here, atom-atom interac-
tions are modeled by a Lennard-Jones potential: U(r) =
Ci/r'2 — Cs/r®, with Cs = 6.499 a.u. [34] and dissociation
energy DM =36118.11 cm™! (DP> = 36748.38 cm™! for
deuterium) [35] that correlates with the X 12g electronic
state. lon-atom interactions are described by the model po-
tential U (r) = Cg/r® — C4/r* that correlates with the X 22;

.
electronic state with dissociation energy DZIZ = 21379.35

cm_l(D?; =21711.64cm™! for deuterium) [35] and Cs =
/2, where « denotes the static dipole polarizability of hy-
drogen (¢ = 9/2 a.u. [36]).

The energy-dependent ion-atom-atom three-body recom-
bination rates k3(E.) are depicted in Fig. 3, where a factor
of 1/4 has been included to account for the different spin
states of the interaction [31]. Notably, k3(E;) is almost two
orders of magnitude larger for the formation of the molecu-
lar ion compared to that of the molecule, which is expected
given the stronger nature of interactions for the former. Two
power-law behaviors are identified for each species formation,
and the change in trend is established around the dissociation
energy D, of the molecule or molecular ion products. The
same behavior was noted for the formation of van der Waals
molecules X-RG (where RG is a rare gas atom) through three-
body recombination [19]. Here, Mirahmadi and Pérez-Rios
showed that the change in trend could be attributed to an
interplay between the contributions of the X-RG potential’s
short- and long-range tails to the molecule formation, depend-
ing on the energy of the system. Based on this, we distinguish
low-energy and high-energy regimes in Fig. 3, with a steeper
trend characterizing the high-energy region. In that respect,
the long-range tail of the potential plays an important part in
the formation of molecules at low collision energies, and the
opposite is true for the short-range tail.

A power law for the molecular ion recombination rate at
low energies was inferred from Fig. 3, yielding

istry [11,30,33], ion mobility experiments [29], and van der ks ~ EL._3/ 4, (8)
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FIG. 3. Energy-dependent ion-atom-atom three-body recombination rates for the hydrogen and deuterium plasmas. The black symbols
depict the rate of molecular ion formation, whereas the red symbols describe the formation of molecules. The error bars attached to each
symbol account for one standard deviation error as customary in Monte Carlo simulations [see Eq. (6)]. The vertical lines in the left panel
represent the dissociation energies of H,* and H,, whereas, in the right panel, the vertical lines represent the same observable for D,* and D,.
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FIG. 4. Thermally averaged ion-atom-atom three-body recombination rates for hydrogen (right panel) and deuterium plasmas (left panel).
The black symbols depict the rate of molecular ion formation, whereas the red symbols describe the formation of molecules. The shades
account for one standard deviation error as customary in Monte Carlo simulations [see Eq. (6)].

In fact, this low-energy power law behavior for the forma-
tion of molecular ions through three-body recombination was
devised in multiple other systems [28] and was also derived by
Smirnov in 1967, who treated three-body recombination as a
two-step chemical process [37].

In a different vein, the rate for molecule formation follows
a less steep trend and is defined by the following power law:

ky ~ EZ9%, )

which is very close to the expected behavior for a three-
body recombination process dominated by a potential ocr .
However, any of the interatomic potentials included in our
calculations show this long-range behavior.

Furthermore, it is worth investigating the thermal averaged
three-body recombination rate at temperatures 2000 K < 7' <
20000 K. The thermal average is obtained via integrating the
energy-dependent three-body recombination rate in Eq. (5)
over the appropriate Maxwell-Boltzmann distribution of col-
lision energies,

k3(T)

o0
/ ky(E.)E?eE/®TgE, (10)
0

- 2(kgT)?
where kp is the Boltzmann constant. The changes in the
thermal-averaged rates with temperature for the molecule and
molecular ion species are presented in Fig. 4. Comparing
the data in Fig. 4 to those in Fig. 3, it is first noticeable
how the trends follow different power laws. This is expected
given the effect of thermal averaging on the contribution of
different collision energies at a given temperature 7. Hence,
the bending at the dissociation energy washes out and be-
comes recognizable to a smaller degree, while the power laws
describing the trends shift to higher exponent values.

The effect of the mass of the participating species on the
dynamics of the recombination process is beautifully exposed
by the three-body approach we adopt and is majorly defined
by Eq. (5). Precisely, Fig. 4 reveals a factor of +/2 difference

between the magnitudes of the rates for hydrogen and deu-
terium, which agrees with the prediction of Eq. (5).

In fusion divertor plasmas, in the detachment diver-
tor regimen, where T ~ 1eV, k3(T)~ 10732cm®/s (see
Fig. 4), and assuming a gas density p ~ 10" cm™> [38], the
collisional rate

T = ks(T)p?, (11)

is ~0.01 s~!. Therefore, ion-atom-atom three-body recom-
bination may not play a relevant role in volumentric plasma
recombination processes. However, ion-atom-atom three-
body recombination has a smoother temperature dependence
than the most prominent three-body recombination process in
volumetric recombination: ¢ + ¢ + Hf — H+eore+e +
D* — D + e, which goes like 7 ~%/? [39]. Therefore, at higher
plasma temperatures, ion-atom-atom three-body recombina-
tion may start to play a relevant role in the plasma dynamics.

IV. SUMMARY AND CONCLUSIONS

This paper presents a first-principles calculation of the ion-
atom-atom three-body recombination rate in deuterium and
hydrogen plasmas. Our approach is based on a classical trajec-
tory calculation in hyperspherical coordinates, supported by
the large number of partial waves contributing to the atom-ion
scattering. The main result is the formation of molecular ions,
i.e.,, Hy™ and D, in cold hydrogen and deuterium plasmas,
respectively, to the detriment of neutral species. Furthermore,
we find a specific change of trend in the three-body recom-
bination rate as a function of collision energy around the
dissociation energy of the molecular ion, which correlates
with the role of short-range physics in the reaction dynamics.

The collisional rate associated with three-body recom-
bination is ~0.01 s~! in typical fusion divertor plasmas
conditions, which is a relatively slow process compared with
other volumetric recombination mechanisms. However, the
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situation may change at higher temperatures since ion-atom-
atom three-body recombination shows a weaker temperature
dependence than other three-body volumetric recombination
processes. Finally, it is worth mentioning that the current
approach could be extended to treat more involved three-body
processes like H,™ +H + H — H3* + H, which may play a
significant role in plasma physics.
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