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Abstract: Simple scalar-singlet extensions of the Standard Model with a (sponta-

neously broken) Z2 symmetry allow for a strong first order electroweak phase transi-

tion, as sought in order to realize electroweak baryogenesis. However they generically

also lead to the emergence of phenomenologically problematic domain walls. Here

we present a framework with a real scalar singlet that features a different thermal

history that avoids this problem by never restoring the Z2 symmetry in the early uni-

verse. This is accomplished by considering D > 4 operators that emerge on general

grounds, understanding the model as the low energy tail of a more complete theory,

like for example in composite Higgs scenarios. Sticking to the latter framework, we

present a concrete SO(6)/SO(5) composite realization of the idea. To this end, we

additionally provide a complete classification of the structure of the Higgs potential

(and the Yukawa couplings) in SO(6)/SO(5) models with fermions in the 1,6,15 or

20′ of SO(6).
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1 Introduction

Understanding how a baryon-asymmetric universe, as we observe it, could have

emerged is one of the most important issues in particle physics and cosmology. In

fact, this seems to require an extension of the Standard Model (SM) of Particle

Physics, which fails to fulfill (quantitatively) two of the three Sakharov criteria [1]

for generating the baryon asymmetry, namely a deviation from thermal equilibrium

and the presence of substantial CP violation.

Extensions of the SM with a scalar singlet η are promising candidates for baryo-

genesis at the electroweak scale, by inducing a strong first order electroweak phase

transition (EWPhT), providing the out-of-equilibrium situation, and allowing for

additional sources of CP violation. A particularly well studied class of models en-

visages a real scalar with a Z2 : η → −η symmetry (similar to what emerges in

non-minimal composite Higgs models [2, 3]) – which makes η contribute to the dark

matter abundance, while being protected from collider constraints. Such setups have

been shown to allow for a sufficiently strong EWPhT to preserve an adequate baryon

asymmetry [3–13].

A generic challenge in this setting is however the appearance of topological de-

fects, associated to the spontaneous breaking of the Z2 symmetry after η acquires a

vacuum expectation value (vev) |〈η〉| ≡ vη in the thermal evolution of the universe.

– 1 –



Patches with 〈η〉 = +vη and 〈η〉 = −vη would get equally populated, which would

on the one hand produce potentially dangerous domain walls at the boundaries [14],

and on the other lead to a cancellation between produced baryon and antibaryon

excesses (see, e.g., [3]), requiring additional model building.

Here we show how a minimal change in the scalar potential can solve these issues

via a thermal history in which the Z2 was never a symmetry of the ground state.1

In fact, adding higher powers of the scalar-singlet field to the potential can allow for

Z2 symmetry non-restoration (SNR) at high temperatures, as we will show below.

Such higher dimensional operators are expected to be generated in the presence of

new physics addressing other problems of the SM, such as the hierarchy problem or

the flavor puzzle.

After having studied the idea in this effective field theory (EFT) extension of the

SM in Section 2, in Section 3 we will provide an explicit realization in the form of a

composite Higgs (CH) scenario with SO(6)/SO(5) breaking pattern [2], where we will

unveil parameter space that had not been considered before. More generally, we will

present a comprehensive survey of the Higgs potential in such next-to-minimal CH

models (nMCHMs) for various fermion embeddings and explore their peculiarities,

both in general and with respect to the question of generating the sought form of

the potential for Z2 SNR. In Section 4 we will then match the most promising CH

setup to the IR EFT and explore the CH parameter space that leads to a viable

SNR. We conclude in Section 5 and provide the Yukawa couplings emerging in the

various combinations of SO(6) representations in Appendix A for completeness.

2 Z2 Non-Restoration at High Temperature in Singlet EFT

In the following, we outline a simple Higgs + singlet scenario which exhibits Z2

SNR at high temperature. While present at T = 0, the Z2 symmetry under which

the singlet is odd starts out as broken at high T , so as to avoid the formation of

topological defects associated with the spontaneous breaking of a discrete symmetry.

Therefore, in our envisaged thermal history, the Universe undergoes only one phase

transition, which breaks electroweak (EW) symmetry and restores the Z2 symmetry.

If strongly first–order (SFO), this EWPhT can fulfill Sakharov’s third condition,

leading to EW baryogenesis (EWBG), provided there is enough CP violation.

As shown later on, with the given particle content such a scenario cannot be

realized at the renormalizable level. However, it can be minimally achieved by ex-

tending the renormalizable potential with a dimension–6 singlet–only sextic term.2

1An alternative approach would be to add a small amount of explicit Z2 breaking [3, 15].
2We note that higher-dimensional operators have beend studied extensively in scalar-singlet

extensions, however not in the context of the phase transition but rather for injecting additional

CP violation [9, 16]. Once lifted to an EFT, there is then no reason to not consider other D = 6

operators (which also appear generically in CH realizations [2, 3]), as done here.
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Denoting by h (η) the background value of the Higgs (singlet) scalar, the T = 0 tree

level potential reads:

Vtree(h, η) =
µ2
h

2
h2 +

λh
4
h4 +

µ2
η

2
η2 +

λη
4
η4 +

λhη
2
h2η2 +

η6

Λ2
. (2.1)

For the temperature–dependent part of the potential, we work in the high–temperature

expansion and retain only the leading T 2 contributions:

VT (h, η, T ) =
T 2

2
(chh

2 + cηη
2) +

5T 2

4Λ2
η4, (2.2)

which are added to Eq. (2.1) to obtain the full potential, denoted as

V (h, η, T ) ≡ Vtree(h, η) + VT (h, η, T ). (2.3)

Taking into account the leading corrections coming from the top quark and the gauge

and scalar sectors, the ch,η coefficients are given by:

ch =
1

48

(
9g2

2 + 3g2
1 + 12y2

t + 24λh + 4λhη
)
, cη =

λhη
3

+
λη
4
. (2.4)

With or without the dimension–6 η6 term, the necessary and sufficient condition for

Z2 SNR at high temperatures is to have a negative cη. This way, for sufficiently

high T , the coefficient of the η2 term becomes negative, i.e. µ2
η + cηT

2 < 0, which

destabilizes the origin and sets the global minimum of the potential at (h, η) = (0, w).

In the renormalizable case, corresponding to Λ→∞, one needs λη > 0 in order to

avoid a runaway direction in the potential, which means that Z2 SNR requires λhη <

0, cf. Eq. (2.4). At the same time, in order to achieve the desired thermal history

of the Universe, we require the coexistence (at intermediate temperatures) of two

minima, the Z2–breaking (0, w) and EW minimum (v, 0), which become degenerate

at the critical temperature Tc. The existence of the (0, w) minimum at T = Tc
implies that the second derivative of the potential along the h direction is positive

at h = 0, i.e.

Vhh(0, w(Tc), Tc) = µ2
h + chT

2
c + λhηw(Tc)

2 > 0. (2.5)

Furthermore, since the potential contains only h2 and h4 terms, the existence of the

EW minimum at T = Tc implies that the origin is unstable along the h direction,

namely

Vhh(0, 0, Tc) = µ2
h + chT

2
c < 0. (2.6)

From the two conditions from Eqs. (2.5) and (2.6), it follows that λhη > 0, which is in

contradiction with the SNR condition λhη < 0. Therefore, as pointed out previously,

Z2 SNR cannot be achieved at the renormalizable level in the Higgs + Z2–odd singlet

scenario.

Including the S6 term, the conditions from Eqs. (2.5) and (2.6) still have to

be fulfilled, which means the requirement λhη > 0 remains. Now, the only way of
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obtaining cη < 0 is to have a negative λη (as we assume from here on), which becomes

viable due to the introduction of the η6 term. The role of the latter is to ensure that

the potential remains bounded from below along the η direction, and it turns out to

be sufficient for accommodating Z2 SNR. This is the motivation behind considering

the T = 0 potential from Eq. (2.1).

Before performing a numerical analysis of the thermal history induced by the

full potential in Eq. (2.3), we present its main analytical features, namely its (T–

dependent) critical points. The one at the origin, i.e. at (h, η) = (0, 0), starts as a

saddle point at high–T , and later on can turn into a (local) maximum or remain a

saddle point. The EW minimum at (v, 0) develops as soon as

v2(T ) = −µ
2
h + chT

2

λh
(2.7)

becomes positive, leading to a real v(T ). Along the η direction, the presence of the

η6 terms leads to the existence of two critical points at (0, w±), with

w2
±(T ) =

Λ2

12

(
−λη − 5

T 2

Λ2
±
√
λ2
η − 24

µ2
η

Λ2
+ 4

T 2

Λ2
(λη − 2λhη) + 25

T 4

Λ4

)
. (2.8)

The critical point at (0, w+) starts as the Z2–breaking global minimum at high–T ,

and can either remain a minimum till T = 0 or turn into a saddle point. As long

as w−(T )2 > 0, (0, w−) exists as a critical point and is either a maximum or a

saddle point. Finally, there are two more possible critical points at (vb− , wb−) and

(vb+ , wb+), with both vb± 6= 0 and wb± 6= 0. At temperatures where it is real, the

former is a saddle point and acts as a barrier between the EW and Z2–breaking

minima, rendering the EWPhT strongly first order, whereas the latter develops as

a local minimum as soon as (0, w+) becomes a saddle point. Due to being rather

involved, we choose not to show the analytical expressions of vb± and wb± .

In an initial stage of our numerical analysis, we visualize the various constraints

that we impose on our model. We first make sure that, at high T , the Universe

starts in the Z2–breaking minimum at (0, w+). For this, we require the origin to be

destabilised at T = Λ along the η direction:

Vηη(0, 0, T = Λ) = µ2
η + cηΛ

2 < 0, (2.9)

which ensures that the origin is not a minimum,3 leaving (0, w+) as the only mini-

mum at T = Λ. We remark that here the initial condition of only populating that

Z2-breaking vacuum at high energies and not the opposite (0,−w+) could emerge

3Alternatively, one can envisage the origin as being a local miminum and (0, w+) a global

minimum at high T , with a barrier separating them. However, in such a case, the Z2–breaking

minimum remains the global minimum all the way to T = 0, leaving EW symmetry unbroken,

which is clearly an excluded scenario.
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Figure 1. Visualization of the constraints that we impose in our analysis. In both panels

the singlet mass has been set to mη = 75 GeV, whereas in the left (right) panel we fix

λhη = 0.1 (Λ = 1.5 TeV) and vary λη and Λ (λη and λhη). See text for the explanation of

the legend.

dynamically due to inflation blowing up the corresponding patch, making it the full

(visible) universe today. Other, disconnected, patches of (0,−w+) vacuum would

exist, but – while the full universe would thus be baryon-symmetric – the local uni-

verse would develop an asymmetry. A more detailed and general analysis of such

dynamics is left for future work. Secondly, we impose that the desired thermal his-

tory of the Universe is achieved, namely that EWPhT (0, w+) → (v, 0) is the only

PhT in our model, with Tc being the critical temperature at which the two minima

become degenerate. Thirdly, in order to make sure that the EWPhT completes, we

conservatively require that, below T = 50 GeV, the only remaining minimum is the

EW minimum. Lastly, we always choose the singlet mass to be more than half the

Higgs mass, mη >
mh

2
, so as to kinematically close the dangerous h → ηη decay

channel, which is tightly constrained by Higgs decay width measurements [17, 18].

The graphical representation of these constraints is shown in Fig. 1, where in the

left (right) panel we fix λhη = 0.1, mη = 75 GeV and vary λη and Λ (fix mη = 75 GeV,

Λ = 1.5 TeV and vary λhη and λη). The coloured regions are excluded by the

constraints listed above, with the allowed region remaining white. It is interesting to

note from the figure that, in our scenario, all the free parameters lie within bounded

intervals. Most notably, the value of the scale of New Physics Λ is bounded from

above, demonstrating the crucial role of the D = 6 operator.
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Figure 2. Values of the parameters for which a one–step (S)FOEWPhT occurs. The

cutoff of the dimension–6 operator has been set to Λ = 1.5 TeV.

In a second stage of our numerical analysis, we fix Λ = 1.5 TeV and then scan over

the remaining three free parameters, λη, λhη, and mη, at the same time imposing the

constraints discussed previously. For each viable parameter point, we then calculate

the critical temperature Tc corresponding to the (0, w+) → (v, 0) FOEWPhT, and

evaluate the EWPhT strength as ξ = v(Tc)/Tc. We show the results of our scan

in the scatter plots in Fig. 2 and find that a SFOEWPhT (with ξ > 1.3), vital

for EWBG, can be accommodated. We see that relatively small (absolute) values

of the quartic and portal couplings are preferred to arrive at the desired thermal

history, as opposed to the Z2 symmetry–restoring scenario from Ref. [19], which

favors O(1) values.4 Qualitatively speaking, the singlet quartic in the Z2–restoring

case gets pushed to higher values by imposing that the EW minimum is deeper than

the Z2–breaking one at T = 0:

−
µ4
η

λη
> −µ

4
h

λh
⇒ λη > λh

µ4
η

µ4
h

. (2.10)

However, imposing the same condition in our Z2 SNR case gives an upper bound on

the absolute value of λη,

|λη|3 < const× λhv
4

Λ4
, (2.11)

which follows from the depth of the two minima scaling (for negative λη) as

− V (v, 0, 0) ∼ λhv
4, −V (0, w+, 0) ∼ |λη|w4

+ ∼ |λη|
3 Λ4. (2.12)

Furthermore, the singlet is predicted to be rather light, with mass below ∼ 85 GeV.

Lastly, in Figs 3 and 4, we show the thermal history of the Universe for a bench-

mark point given by λη = −0.15, λhη = 0.1, mη = 75 GeV, and Λ = 1.5 TeV. At

4Small portal couplings could also be interesting for potential realizations of dark matter in the

singlet-extended SM.
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Figure 3. Thermal evolution of the potential for a benchmark point with λη = −0.15,

λhη = 0.1, and mη = 75 GeV. The green dots denote local and global minima, whereas the

red dots represent saddle points. The cutoff of the dimension–6 operator has been set to

Λ = 1.5 TeV.

very high temperatures, the Universe starts in a EW–symmetric phase with broken

Z2 symmetry (upper left panel in Fig. 3). As the plasma cools down, the EW min-

imum starts to develop, and is separated from the EW–symmetric minimum by a

barrier (upper central panel). Once the critical temperature is attained and the two

minima become degenerate (upper right panel), bubbles of the EW–broken phase

start to nucleate and the SFOEWPhT proceeds. At a certain temperature below

Tc, the false vacuum at (0, w+) turns into a saddle point, and the local minimum at

(vb+ , wb+) starts to develop 5 in its place (lower left panel). Later on, at even lower

temperatures, the local minimum at (vb+ , wb+) and the barrier disappear (lower cen-

tral panel), leaving the EW minimum as the only minimum all the way to T = 0

(lower right panel).

The thermal history of our model is plotted and confronted with the standard

Z2-restoring case in Fig. 4. Here, we show the T -dependent evolution of the dou-

blet and singlet vevs for the mentioned benchmark (solid lines), and compare it

to the conventional case where higher-dimensional operators are neglected (dashed

5This opens up the curious possibility of the minimum at (vb+ , wb+) appearing before the

(0, w+)→ (v, 0) phase transition completes, which would result in nucleation and collision of bub-

bles of the broken EW phase in a time–varying background. However, investigating such a scenario

is beyond the scope of the present work.
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Figure 4. Thermal evolution of the doublet and singlet vevs in our model for the bench-

mark point with λη = −0.15, λhη = 0.1, mη = 75 GeV, and Λ = 1.5 TeV (solid lines), com-

pared to the conventional case where higher-dimensional operators are neglected (dashed

lines), assuming the same critical temperature Tc ' 90 GeV. The latter features the char-

acteristic two-step breaking pattern, with Z2 breaking at TZ2 > Tc. The region where the

validity of the considered EFT starts to break down (T > Λ) is visualized by faint lines.

lines), assuming the same critical temperature Tc ' 90 GeV. The latter features the

characteristic two-step breaking pattern, with potentially dangerous Z2 breaking at

TZ2 > Tc, which can be avoided in the case at hand which features a saturating finite

w+ at high temperatures.

3 SO(6)/SO(5) Composite Higgs Realization

Here, we present a minimal UV completion of the EFT discussed above in the form of

a SO(6)/SO(5) CH model. The extended scalar sector of this nMCHM [2] contains in

fact a pseudoscalar pseudo Nambu-Goldstone boson (pNGB) singlet S in addition to

the pNGB EW Higgs doublet H. Following the partial-compositeness (PC) paradigm

[20–23], elementary (SM-like) quarks qL, qR are coupled to the composite fermionic

resonances via linear mixings that explicitly break the global SO(6) symmetry and

induce a potential V (H,S) for the scalars, which sensitively depends on the choice

of SO(6) representations for the composite matter sector. A main result of this

section will be a comprehensive overview of the form of this potential, being a crucial

ingredient for EWBG, for the various possible SO(6) representations of the composite

fermions in the SO(6)/SO(5) CH, complementing and systematically completing the

results available in the literature [2, 19, 24–26].
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While EWBG can work in the nMCHM, in the literature so far a specific thermal

history with a two-step breaking pattern of (0, 0) → (0, w) → (v, 0) in scalar field

space was investigated [3, 19, 25, 26], realized in a part of the parameter space of the

nMCHM. Since, as explained before, such a transition pattern could be problematic,

here we will focus on an alternative region, that can allow for the distinct thermal

history lined out in Section 2 (which would also be interesting on its own right,

beyond the question of emerging topological defects). This space will emerge just

by allowing for negative λη and considering D > 4 operators in the Higgs potential,

that automatically appear in the CH framework.

In order to identify setups that feature the structure of couplings envisaged

in Section 2, we employ a spurion analysis where we formally restore the SO(6)-

invariance in the linear mixings by uplifting the elementary fermions to transform

under the full SO(6) symmetry, even though they actually correspond to incomplete

SO(6) multiplets. The spurious symmetry can then be used to constrain the form of

the scalar potential.

3.1 General Setup

We start by specifying the CH framework.6 Schematically, the Lagrangian below

the compositeness scale Λc, where the substructure of the scalars would be revealed,

reads (after integrating out the heavy resonances)

LCH ⊃ LH,Skin + LYukawa + LWZW − V (H,S) . (3.1)

Here, LH,Skin denotes the kinetic term for the scalars, LYukawa contain the light-fermion

Yukawa couplings originating from PC, and LWZW are Wess-Zumino-Witten (WZW)

couplings of the singlet to gauge bosons (which will play no role in the following).

The relevant terms, and in particular the Higgs potential V (H,S), will be discussed

below. We are especially interested in D = 6 corrections to the latter to support the

SNR scenario of Section 2. For this purpose, we will analyze several different PC

scenarios. We will concentrate on the top sector qL = (tL, bL), qR = tR in particular,

but an equivalent analysis can be done for all other quarks. Furthermore, we neglect

the gauge boson contribution (which is usually much smaller).

We denote the 15 generators of SO(6) as TA = {T Ā, T̂ r6 }, with T Ā = {T aL, T aR, T i5}
being the 10 generators of SO(5), where T aL, T

a
R correspond to the SU(2)L, SU(2)R

subgroups, respectively. On the other hand, T̂ r6 are the 5 broken generators of

SO(6)/SO(5), containing a SU(2)L×SU(2)R bi-doublet (r = 1, . . . , 4) and a singlet

6For a more complete introduction on SO(6)/SO(5) CH models, see, e.g., [2, 3, 19, 24–28].
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(r = 5). They can be written as [25, 28]

[
T aL
]
IJ

= − ı
2

[
1

2
εabc (δbIδcJ − δbJδcI) + (δaIδ4J − δaJδ4I)

]
[
T aR
]
IJ

= − ı
2

[
1

2
εabc (δbIδcJ − δbJδcI)− (δaIδ4J − δaJδ4I)

]
[
T i5
]
IJ

= − ı√
2

(δiIδ5J − δiJδ5I)[
T̂ r6
]
IJ

= − ı√
2

(δrIδ6J − δrJδ6I) ,

(3.2)

where a = 1, 2, 3, i = 1, . . . , 4, r = 1, . . . , 5 and I, J = 1, . . . , 6. Note that we will

need an additional U(1)X to reproduce the correct hypercharge Y = X + T 3
R for the

SM gauge group. The Goldstone matrix, encoding the dynamics of the pNGBs, is

defined as

U
[
~Π
]

= exp

(
ı

√
2

f
ΠrT̂

r
6

)
(3.3)

with Πr the five Goldstone modes and f = Λc/(4π) the pseudo-Goldstone decay

constant. Under g ∈ SO(6), the Goldstone matrix transforms as (see, e.g., [29])

U
[
~Π
]
→ g · U

[
~Π
]
· ĥT

[
~Π; g

]
, ĥ =

(
ĥ5 0

0 1

)
, ĥ5 ∈ SO(5) , (3.4)

providing the non-linear realization of the SO(6)-symmetry of the Π-fields that trans-

form in the fundamental representation of SO(5). Using the generators T aL, we can

perform a SU(2)L gauge transformation such that

~Π =
(
Π1,Π2,Π3,Π4,Π5

)T SU(2)L→
(
0, 0, 0,Π4,Π5

)T
, (3.5)

where three Higgs degrees of freedom are eaten by the EW gauge bosons. However,

using this parametrization would lead to a rather involved kinetic term involving

trigonometric functions of Π4 and Π5 so we further redefine [2, 25]

h

f
=

Π4√
Π2

4 + Π2
5

sin

√
Π2

4 + Π2
5

f
,

S

f
=

Π5√
Π2

4 + Π2
5

sin

√
Π2

4 + Π2
5

f
(3.6)

which is hereafter simply referred to as unitary gauge. This leads to the Goldstone

matrix

U =


I3×3

1− h2

f2+f
√
f2−h2−S2

− hS

f2+f
√
f2−h2−S2

h
f

− hS

f2+f
√
f2−h2−S2

1− S2

f2+f
√
f2−h2−S2

S
f

−h
f

−S
f

1
f

√
f 2 − h2 − S2

 (3.7)
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and the composite sector kinetic term [24]

LH,Skin =
f 2

4
Tr(dµd

µ) = (DµH)†DµH+
1

2
(∂µS)2 +

1

2f 2

[
∂µ(H†H) +

1

2
∂µS

2

]2

+O
(

1

f 4

)
,

(3.8)

where dµ is the broken generator part of the Maurer-Cartan form ωµ = U−1DµU =

dµ Ā T
Ā + eµA T

A ≡ dµ + eµ, and we rewrote the pNGB Higgs as a complex SU(2)

doublet with H = 1√
2
(0, h)T in unitary gauge.

3.2 Fermion Embeddings and Scalar Potential

Regarding the fermions, the simplest option for the right-handed SM quarks is to

embed tR in a singlet of SO(6) (being either partially or fully composite), for which

the potential only receives contributions from the spurions corresponding to the

left-handed SM quarks, qL, see below. Concerning higher representations, the spino-

rial 4 is not considered in general, as it does not obey custodial symmetry for the

Zb̄b couplings [19]. On the other hand 10-representations are neglected because

they fail to produce a singlet potential as they do not break the SO(2)S ⊂ SO(6)

subgroup [19], while the 20 and 20′′ representations do not yield valid SM quark

embeddings at all. Therefore, we consider combinations of qL ∈ (6,15,20′) and

tR ∈ (1,6,15,20′) [19, 25, 26].

The 6 decomposes under SO(6)×U(1)X → SO(5)×U(1)X → SO(4)×U(1)X →
SU(2)× U(1)Y as

62/3 → 52/3 ⊕ 12/3

→
[
42/3 ⊕ 12/3

]
⊕ 12/3

→
[(

27/6 ⊕ 21/6

)
⊕ 12/3

]
⊕ 12/3.

As there is only one 21/6, the QL embedding in SO(6) is unique, while tR resides in

a superposition of the two 12/3, parameterized by the angle θ6R:

Q6
L =

1√
2

(
(Q4

L)
T

0 0
)T

, t6R =
(
0 0 0 0 tRe

ıφ6R cos θ6R tR sin θ6R

)T
, (3.9)

where Q4
L =

(
ıbL bL ıtL −tL

)T
. In the following we employ φ6R = ±π/2, in agree-

ment with a CP-conserving top coupling [27]. For our purposes, we want to avoid

θ6R = ±π/4, for which the singlet stays a pure Goldstone. The angle θ6R = ±π/2 on

the other hand yields a Z2 symmetry with the singlet being odd, making it a dark

matter candidate [27], but we will not explore this direction further here.
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The 15 decomposes as

152/3 → 102/3 ⊕ 52/3

→
[
32/3 ⊕ 3′2/3 ⊕ 42/3

]
⊕
[
42/3 ⊕ 12/3

]
→
[
32/3 ⊕

(
15/3 ⊕ 12/3 ⊕ 1−1/3

)
⊕
(
27/6 ⊕ 21/6

)]
⊕
[(

27/6 ⊕ 21/6

)
⊕ 12/3

]
.

Thus, qL can be embedded in the 10 (A) or the 5 (B) of SO(5),

Q15A
L = (Q4

L)jT
j
5 , Q15B

L = ı(Q4
L)jT̂

j
6 . (3.10)

A general embedding would be given by

Q15
L = cos θ15Le

ıφ15LQ15A
L + sin θ15LQ

15B
L , (3.11)

however, since 15B is heavily constrained by Zbb̄ couplings [25] it is dropped below,

corresponding to θ15L = 0. Similarly, the tR can be embedded as

t15
R = cos θ15Re

ıφ15RT 3
RtR + sin θ15RT̂

5
6 tR. (3.12)

Finally, the 20′ decomposes as

20′2/3 → 142/3 ⊕ 52/3 ⊕ 12/3

→
[
92/3 ⊕ 42/3 ⊕ 12/3

]
⊕
[
42/3 ⊕ 12/3

]
⊕ 12/3

→
[(

35/3 ⊕ 32/3 ⊕ 3−1/3

)
⊕
(
27/6 ⊕ 21/6

)
⊕12/3

]
⊕
[(

27/6 ⊕ 21/6

)
⊕12/3

]
⊕ 12/3 ,

and we can write Q20′
L as a superposition of the embeddings in a 14 (A) and a 5 (B)

of SO(5),

Q
20′A
L =

1

2

 04×4 Q4
L 04×1

(Q4
L)
T

0 0

01×4 0 0

 , Q
20′B
L =

1

2

 04×4 04×1 Q
4
L

01×4 0 0

(Q4
L)
T

0 0

 , (3.13)

with a general realization given by

Q20′

L = cos θ20Le
ıφ20LQ

20′A
L + sin θ20LQ

20′B
L . (3.14)

While the 20′B leads again to large corrections to Zbb̄ [26], for most models considered,

sticking to Q
20′A
L would not lead to a phenomenologically viable model and we will

keep the superposition, see below. Finally, tR can be embedded in a superposition

of the 14 (A), 5 (B) and 1 (C) representations,

t
20′A
R =

1

2
√

5

(
−I4×4tR 04×2

02×4 2(I2×2 + σ3)tR

)
, t

20′B
R =

1√
2

(
04×4 04×2

02×4 σ
1tR

)
,

t
20′C
R =

1√
30

(
−I5×5tR 05×1

01×5 5tR

)
, (3.15)

where σa are the Pauli matrices, leading to

t20′

R = cos θ20R1e
ıφ20R1t

20′A
R + sin θ20R1 cos θ20R2e

ıφ20R2t
20′B
R + sin θ20R1 sin θ20R2t

20′C
R .

(3.16)
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3.2.1 Warm-Up: (20′,1) Minimally Extended SILH

As a first explicit example, we will evaluate the fermion couplings and the pNGB

potential for the (20′,1) model with the QL in a 20′ of SO(6) and a fully composite tR
singlet, allowing a viable EW symmetry breaking (EWSB) from leading (LO) order in

the PC expansion [24]. Compared to the analyses available in the literature, here and

below we will take into account higher orders in the scalar potential, which are crucial

to reveal regions of parameter space allowing for the novel SNR thermal history.

While we will follow the parametrization given above, the analysis is consistent with

[24], which we will further comment on later. We can rewrite the general embedding

in a 20′ of Eq. (3.14) as

Q20′

L = cos θ20Le
iφ20LQ

20′A
L + sin θ20LQ

20′B
L

= Λ1
LbL + Λ2

LtL = Λα
LqLα , (3.17)

where, abbreviating cθ ≡ cos θ20L and sθ ≡ sin θ20L,

Λ1
L =

1

2



ıeiφ20Lcθ ısθ
04×4 eiφ20Lcθ sθ

0 0

0 0

ıeiφ20Lcθ e
iφ20Lcθ 0 0

ısθ sθ 0 0 02×2


,

Λ2
L =

1

2



0 0

04×4 0 0

ıeiφ20Lcθ ısθ
−eiφ20Lcθ −sθ

0 0 ıeiφ20Lcθ −eiφ20Lcθ
0 0 ısθ −sθ 02×2


, (3.18)

provide the SO(6) embeddings of the left-handed bottom and top sector, respectively.

As mentioned in the beginning of this section, we assume PC for the coupling

of the SM to the composite sector, i.e. we couple the multiplets above to composite

fermion resonances ΨT,t linearly. For the following discussion, and in particular for

the construction of the pNGB Higgs potential, it is useful to lift the SM fermions to

(spurious) SO(6) multiplets by assigning the embedding matrices Λi
L transformation

properties under the full SO(6) global symmetry in an intermediate step, making

them so-called spurions of SO(6). This allows to construct the Lagrangian with the

help of the spurions from symmetry principles, i.e. an SO(6) symmetry explicitly

broken only by setting the spurions back to their actual background values of (3.18)

in the end. Moreover, it is convenient to construct the SO(6)-Lagrangian in terms

of SO(5) objects as per the CCWZ construction [29–31]: Using the transformation
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properties of U in (3.4), we can construct the dressed embedding matrices,

(Λ′αL )66 = (UT )6I(U
T )6J(Λα

L)IJ , (3.19)

(Λ′αL )a6 = (UT )aI(U
T )6J(Λα

L)IJ , (3.20)

(Λ′αL )ab = (UT )aI(U
T )bJ(Λα

L)IJ , (3.21)

where a, b = 1, . . . , 5, obtaining SO(5)-singlets, fiveplets and 14-plets7, and the reso-

nances can be split similarly. We then build a formally SO(5) and thus, by virtue of

U , SO(6) invariant Langrangian, only broken by the spurions aqcuiring their back-

ground values. The PC Lagrangian then reads [26]

LPC = −yLf
(
a(Ψ̄T ′

R )66(Λ′αL )66 + b(Ψ̄T ′
R )6a(Λ′αL )a6 + c(Ψ̄T ′

R )ab(Λ′αL )ba
)
qLα +h.c. , (3.22)

where a, b, c are O(1) numbers.

To arrive at the low energy Yukawa Lagrangian LYukawa, one could integrate out

the resonances, yielding form factors, as considered e.g. in [25, 26]. Alternatively, as

explained, one can just construct SO(5) invariants from only the SM fields, spurions

and the Goldstone matrix to obtain LYukawa, where the heavy field contributions are

absorbed. The Yukawa Lagrangian then reads (up to O(1) proportionality factors

that will drop out in (3.24) below)

LYukawa =yLf t̄R(Λ′αL )66qLα + h.c.

=yL t̄R
1

f

(
−h
√
f 2 − h2 − S2 sin θ20L + ıhS cos θ20L

)
tL + h.c.

=−
√

2yL q̄LH
ctR sin θ20L

(
1− |H|

2

f 2
− S2

2f 2
+O

(
1

f 4

))
− ı
√

2yL cos θ20L
S

f
q̄LH

ctR + h.c. . (3.23)

To make S a real, CP-odd scalar, guaranteeing a Z2-symmetric form of the potential,

we chose φ20L = −π/2 in the second row and in the last row Hc = ıσ2H
∗ = 1√

2
(h, 0)T

in unitary gauge. We identify yt ≡
√

2yL sin θ20L as the (LO) SM top-Higgs coupling

and εQ ≡ cot θ20L as the mixing parameter of the embedding, such that, in agreement

with [24],

LYukawa =
yt√

2
t̄R

1

f

(
−h
√
f 2 − h2 − S2 + ıεQhS

)
tL + h.c. . (3.24)

Summarizing the results so far in the latter parametrization (including the other

terms of Eq. (3.1)) and generalizing them to three quark families (i, j = 1, ..3) we

7The bottom-spurion singlet vanishes in this configuration, related to the bottom quark being

still massless. To account for a bottom mass, the embedding Q20′

L would have to be modified,

c.f. [29], which would however not change our analysis notably.
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obtain the effective Lagrangian for the model at hand, up to D = 6 (see also [24])

LD≤6

(20′,1)
⊃(DµH)†DµH+

1

2
(∂µS)2 +

1

2f 2

[
∂µ|H|2 +

1

2
∂µS

2

]2

−
∑

qR=uR,dR

(yq)ij q̄
i
LHq

j
R

(
1 + iεiQ

S

f
− 1

f 2
(|H|2 + S2/2)

)
+ h.c.

+
S

16π2f

[
nBBµνB̃

µν+nWW
IµνW̃ I

µν+nGG
aµνG̃a

µν

]
− V (H,S) ,

(3.25)

where H → Hc for qR = uR in the second line. The first term in the last line

corresponds to the WZW Lagragian, with the anomaly coefficients fixed by the coset

(with nW = nB, nG = 0 for SO(6)/SO(5) [2]). These couplings supplement the SM-

fermion loops mediating the same transitions, if coupled to S. We will now turn to

the evaluation of the scalar potential V (H,S).

We can finally construct the potential by using that it is proportional to explicit

SO(6) breaking effects, parameterized by the spurions Λα
L. Therefore, as mentioned

before, we just build formally SO(6) invariant terms consisting of the dressed spuri-

ons. Setting them to their background values of (3.18) will then lead to the actual

scalar potential. Moreover, to ensure that the terms also respect the SM gauge

group, we need an even number of spurions (saturating the SM index). Assuming a

one-scale-one-coupling framework as described, e.g., in [24, 29, 32], we can determine

the scaling of any potential term by dimensional analysis,

V ∝ NC
m4
∗

g2
∗

(
~g2
∗

16π2

)#Loops(yL/RΛ

g∗

)#spurions(
h

f

)#h(
S

f

)#S

, (3.26)

where m∗ = g∗f is the resonance mass scale, with g∗ the coupling of the composite

sector, and NC counts the QCD color multiplicity.

The (one-loop) invariants at LO in yL read (setting ~ = 1)

cs2
NCm

4
∗

16π2

y2
L

g2
∗

(Λ′αL )66(Λ′α†L )66 = cs2
NCg

2
∗y

2
L

16π2

(
h2
(
f 2 − h2 − S2

)
s2
θ + h2S2c2

θ

)
, (3.27)

cf2
NCm

4
∗

16π2

y2
L

g2
∗

(Λ′αL )a6(Λ′α†L )a6 = cf2
NCg

2
∗y

2
L

16π2

(
f 4s2

θ +
f 2

4
h2(c2

θ − 7s2
θ) + h4s2

θ

− h2S2(c2
θ − s2

θ) + f 2S2(c2
θ − s2

θ)
)
,

where the parameters ci ∼ O(1) encode the high energy dynamics and we chose a

writing easily comparable with the εQ parametrization used in Ref. [24].8 This results

8Note that the 14-plet is not included as, due to U being unitary, it does not induce linearly

independent terms.
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in the LO potential

V (h, S) =
NCg

2
∗y

2
L

16π2

(
h2f 2

[
cs2s

2
θ +

cf2

4

(
c2
θ − 7s2

θ

)]
− h4s2

θ (cs2 − cf2)

+ h2S2
[
(cs2 − cf2)

(
c2
θ − s2

θ

)]
+ S2f 2cf2

(
c2
θ − s2

θ

) )
. (3.28)

We can in turn identify the Higgs mass and quartic-coupling, µ and λ, which allows

us to replace the UV parameters ci below by connecting them to physical values at

low energies. Note that no quartic S interaction is induced at LO in the spurion

expansion. Minimizing with respect to h and S yields the T = 0 vevs

〈h〉 ≡ v =
f

2
√

2

√
4s2

θcs2 + cf2 (c2
θ − 7s2

θ)

s2
θ (cs2 − cf2)

=

√
−µ2

λ
, 〈S〉 = 0 (3.29)

where we already wrote v in terms of µ and λ. Employing |H| = h/
√

2 (in unitary

gauge) finally leads to

V (H,S) = µ2 |H|2 + λ |H|4 + λf 2

(
1− 2

v2

f 2

)(
ε2Q − 1

ε2Q − 3

)
S2

− 1

2
(ε2Q − 1)λS2 |H|2 .

(3.30)

Note that, having reverted to the εQ parametrization, our result agrees with the one

of Ref. [24]. For ε2Q = 1, the singlet becomes an exact Goldstone boson, making it

massless and not entering the scalar potential.

Higher orders in the potential

To explore if we can obtain a S6 (and S4) term in the model at hand, required for

Z2 SNR, in the following we inspect the invariants arising at higher order in spurion

insertions (i.e., higher order in yL). At next-to-leading order (NLO) and NNLO, in

addition to naive powers of LO terms, we need to consider the new structures9

c̃f4
NCm

4
∗

16π2

y4
L

g4
∗

(Λ′αL )a6(Λ′β†L )a6(Λ′βL )b6(Λ′α†L )b6 ,

csfsf
NCm

4
∗

16π2

y4
L

g4
∗

(Λ′αL )66(Λ′β†L )66(Λ′βL )b6(Λ′α†L )b6 ,

c̃f6
NCm

4
∗

16π2

y6
L

g6
∗

(Λ′αL )a6(Λ′β†L )a6(Λ′βL )b6(Λ′γ†L )b6(Λ′γL )c6(Λ′α†L )c6 , (3.31)

9We denote the coefficients of terms with n powers of the singlet and m powers of the SO(5)

fundamental by a subscript snfm. For untilded coefficients, multiplets with adjacent indices are

SU(2)L contracted, while tilded ones correspond to the other possible contraction.
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as well as corresponding combinations. For simplicity, we present here only the

leading contributions for each operator. The resulting potential reads

16π2

NCm4
∗
V [h, S] = µ̃hh

2 + µ̃SS
2 + λ̃h4h

4 + λ̃h2S2h
2S2 + λ̃S4S

4

+ λ̃h6h
6 + λ̃h4S2h

4S2 + λ̃h2S4h
2S4 + λ̃S6S

6 +O((h, S)8) (3.32)

µ̃h =
y2
L

g2
∗

1

f 2

[
s2
θcs2 +

(
c2
θ − 7s2

θ

) cf2

4

]
µ̃S =

y2
L

g2
∗

1

f 2

(
c2
θ − s2

θ

)
cf2

λ̃h4 = −y
2
L

g2
∗

1

f 4
s2
θ (cs2 − cf2)

λ̃h2S2 =
y2
L

g2
∗

1

f 4

(
c2
θ − s2

θ

)
(cs2 − cf2)

λ̃S4 =
y4
L

g4
∗

1

2f 4

(
c2
θ − s2

θ

)2
(2cf4 + c̃f4)

λ̃h6 =
y4
L

g4
∗

1

4f 6
s2
θ

[
− 8s2

θcs4 −
(
c2
θ − 11s2

θ

)
cs2f2

+ 2
(
c2
θ − 7s2

θ

)
cf4 + 2

(
c2
θ − 5sθ

)
c̃f4 −

(
c2
θ − 9sθ

)
csfsf

]
λ̃h4S2 =

y4
L

g4
∗

1

4f 6

(
c2
θ − s2

θ

) [
8s2

θcs4 +
(
c2
θ − 15s2

θ

)
cs2f2

− 2
(
c2
θ − 11s2

θ

)
cf4 − 2

(
c2
θ − 7s2

θ

)
c̃f4 +

(
c2
θ − 11s2

θ

)
csfsf

]
λ̃h2S4 =

y4
L

g4
∗

1

2f 6

(
c2
θ − s2

θ

)2
(2cs2f2 − 4cf4 − 2c̃f4 + csfsf)

λ̃S6 =
y6
L

g6
∗

1

4f 6

(
c2
θ − s2

θ

)3
(4cf6 + 2c̃f2f4 + c̃f6) ,

extending the results of [24], where we chose again a form that allows for easy trans-

lation to the εQ parametrization. We thus find that the S4 and S6 terms are indeed

generated at orders (yL/g∗)
4 and (yL/g∗)

6, respectively. However, this significant

suppression is in tension with a straightforward realization of the SNR scenario and

in particular lead to a too large EFT suppression Λ, see Section 2 and Section 4

below. We thus turn to an exploration of the other embeddings mentioned earlier to

analyze if the suppression can get lifted.

3.2.2 Survey of Different Embeddings

In this section we will follow the procedure of Section 3.2.1 to calculate the potential

for various fermion embeddings, aiming to carve out differences in the hierarchies of
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couplings. Note that in the general case we get contributions from the tR-spurions,

too. We will thus distinguish between yL and yR-type spurions with

yt ∝
yRyL
g∗

, (3.33)

as per the definition of LYukawa, see Appendix A, where the Yukawa terms for the

realizations chosen below are given.

In Table 1-4 we provide an overview of the spurion-order at which the different

terms in the potential appear for various viable combinations of qL and tR embed-

dings. We only take into account embeddings featuring no explicit CP-breaking,

i.e. that only generate even powers of the pseudoscalar S in the potential, which

basically fixes our choices for the angles φi below. In LYukawa, a non-zero top mass

as well as a CP-violation (CPv) inducing term ∝ ıSht̄γ5t need to arise, the latter

due to the last Sakharov criterion, constraining the viable embeddings further.10 To

minimize corrections to Zbb̄, we restrict ourselves to 15AL (θ15L = 0) and assume

〈S〉|T=0 = 0 (c.f. [25]). A similar argument could be made for the 20′L [26], which we

however only apply for the (20′AL,20′R) since elsewhere it is in severe conflict with

the more general constraints above (generating no top mass). Note that wherever

we display only a limit θL/R = 0, going to finite values of the angle does not change

the hierarchy of the terms, except for the (20′L,6R) where one particular choice –

discussed below – leads to a vanishing S-potential. Finally, we will assess whether

the respective models fit the SNR scenario of Section 2.

We start in Table 1 with the models where the tR is realized as a composite

singlet. Here, only QL in a 20′L yields a viable setup, with the results already

discussed in Section 3.2.1. They are summarized here again for completeness with a

slightly different ordering, using φ20L = −π/2, while θ20L 6= {0,
π

2
} ensures a nonzero

top-quark mass and the presence of CPv (and similarly for the following tables).

For the 6L, no singlet potential is generated as the embedding does not break the

singlet shift symmetry, whereas for the 15L the top quark remains massless. For

the (20′L,1R) model, as discussed before, the singlet sextic (quartic) interaction is

generated at order (yL/g∗)
6 ((yL/g∗)

4), making it challenging to realize the Z2 SNR

scenario with natural O(1) dimensionless coefficients. We finally note that both the

renormalizable scalar portal as well as the pure (D ≤ 4) Higgs terms arise at LO in

spurions.

Next, we consider the models with a 6R embedding in Table 2. For the (6L,6R)

case, φ6R = −π/2 ensures a CP-conserving potential. Despite the fact that no CPv

inducing term arises for (15L,6R), we still write down (in gray font) the model for

10In the EFT of Section 2, with η a pseudoscalar, the necessary CP violation could be injected

via a (D= 6) ıS2ht̄γ5t operator [9]. We note that, even though the CH model features in general

only a (spontaneously broken) CP symmetry and no additional Z2, regarding the discussed thermal

evolution both setups are equivalent.
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θ15L = 0, and φ6R − φ15L = π/2. The (20′L,6R) fulfills all conditions for φ20L =

−π/2, φ6R = π/2. For simplicity, we choose θ6R = 0, as it generates a larger mass

term for small θ20L than the other naive limit θ6R = π/2, see Appendix A. Although

this is not obvious from the table, for θ6R = π/4 and θ20L = π/4, the singlet becomes

a true Goldstone boson in the (20′L,6R) model, as is the case for the (6L,6R). For

all other cases, as before the Sn terms arise at the nth order in spurions. On the

other hand, besides for the (20′L,6R), the renormalizable portal and the Higgs quartic

coupling emerge only at NLO in spurions, and are thus generically suppressed, while

the Higgs mass term arises at LO. The latter hierarchy is relevant for the fine-tuning

of the model, see e.g. [33–35].

The models with a 15R are displayed in Table 3. As the 15R-spurions also do not

break SO(2)S, the (6L,15R) does not generate a singlet potential. The (15AL,15R)

with φ15L = φ15R = 0 fulfills all basic conditions, whereas for the (20′L,15R) we need

to choose θ15R = 0, φ20L = −π/2. In the latter case, small θ20L , which is favoured

from the Zbb-constraint, leads to a small top mass and comparatively large CPv-

inducing term, see Appendix A. Once more, the S4(S6) terms arise only at NLO

(NNLO) in spurions, while for the (20′L,15R) interestingly both the Higgs mass and

quartic coupling arise at the same order.

We finally move to the 20′R models, displayed in Table 4, which will turn out to be

the most interesting for us. Out of all the models, the one that fits the SNR scenario

best is the (20′AL,20′R). Here, while we need a 20′BR contribution to generate the

top mass, determined by yt ∝ yLy
∗
R sin θ20R1, and 20′AR to generate the CPv-inducing

operator, an additional 20′CR contribution would not change the order of operators

(yet modify their correlation, see below). Accordingly, we initially focus on θ20L = 0,

θ20R2 = 0, φ20R1 = π/2, φ20R2 = 0.

The same considerations lead to focusing on the (15AL,20′ABR) setup, while for

the (6L,20′R), both 20′ABR and 20′BCR would work equally fine. Therefore, we display

only θ20R2 = 0 models in the table. For the Yukawa terms we employ φ20R1−φ15L = π,

φ20R2−φ15L = π/2 (φ20R1 = π, φ20R2 = −π/2) in the former (latter) case. Note that

here, the 6L and 15AL models predict opposite signs for the h4 and h2S2 terms and

thus do not fulfill the conditions for the Z2 SNR scenario of Section 2.

This can be remedied by allowing nonzero θR2, where we can fulfill the constraints

on signs and magnitude of the couplings for points within θ20R2 ∈ (0.70, 1.50) ∪
(1.64, 2.45) for θ20R1 ∈ (1.11, 1.50) ∪ (1.11, 1.50)+π and θ20R2 ∈ (0.70, 1.50)+π ∪
(1.64, 2.45)+π for θ20R1 ∈ (0.70, 1.11) ∪ (0.70, 1.11)+π.

Coming back to our model of choice, the (20′AL,20′ABR), we can easily create the

sought pattern of couplings to realize the Z2 SNR scenario, where the S6 (S4) terms

arise already at NLO (LO) in spurions, which allows for non-negligible contributions.

Also the fact that the Higgs quartic coupling arises at LO in spurions is interesting re-

garding the naturalness of the setup. We will provide a more quantitative evaluation

of this model in the next section.
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Table 1. V (h, S) terms obtained via our spurion analysis for tR a SO(6) singlet. Only

leading terms are shown and each entry should be multiplied by Ncm
4
∗/16π2, while every h

or S comes with a factor 1/f and every yL,R with a 1/g∗. The coefficients ci of the various

invariants are just numbered consecutively. Parameters that contribute in the same way

in the given approximation were collected into single ci and we abbreviate c2θ = cos 2θ20L ,

s2
θ = sin2 θ20L .

1R

6L

h2

No S-pot

h4

h6

S2

S4

S6

h2S2

h2S4

h4S2

15AL

h2

No top mass

h4

h6

S2

S4

S6

h2S2

h2S4

h4S2

20′L

h2 y2
L

(
s2
θc1 + 1

4 (4c2θ − 3) c2

)
h4 −y2

Ls
2
θ (c1 − c2)

h6 1
4y

4
Ls

2
θ

(
−c4 + 2c5 + 2c6 − c7 − 2s2

θ (4c3 − 6c4 + 8c5 + 6c6 − 5c7)
)

S2 y2
Lc2θc2

S4 1
2y

4
Lc

2
2θ (2c5 + c6)

S6 1
4y

6
Lc

3
2θ4c8

h2S2 y2
Lc2θ (c1 − c2)

h2S4 −1
2y

4
Lc

2
2θ (−2c4 + 4c5 + 2c6 − c7)

h4S2 1
4y

4
Lc2θ

(
4s2
θ (2c3 − 4c4 + 6c5 + 4c6 − 3c7)− (−c4 + 2c5 + 2c6 − c7)

)
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Table 2. V (h, S) terms obtained via our spurion analysis for tR in a SO(6) sextuplet.

Only leading terms are shown and each entry should be multiplied by Ncm
4
∗/16π2, while

every h or S comes with a factor 1/f and every yL,R with a 1/g∗. The 15L model

does not generate a CPv-inducing term and is thus displayed in gray. Parameters that

contribute in the same way in the given approximation were collected into single ci and

we abbreviate c2θ = cos 2θ6R and s2
θ = sin2 θ6R in the first two blocks and c2θ = cos 2θ20L

and s2
θ = sin2 θ20L in the third, while the other angle is set to zero, respectively.

6R

6L

h2 1
2y

2
Lc1 − y2

Rs
2
θc2

h4 1
4y

4
Lc4 − 1

2y
2
Ly

2
Rs

2
θ (−2c3) + y4

Rs
4
θc5

h6 1
8

(
y6
Lc8 − 2y4

Ly
2
Rs

2
θc6 + 4y2

Ly
4
Rs

4
θc7 − 8y4

Rs
6
θc9

)
S2 y2

Rc2θc2

S4 y4
Rc

2
2θc5

S6 y6
Rc

3
2θc9

h2S2 1
2y

2
Rc2θ

(
−2y2

Lc3 − 4y2
Rs

2
θc5

)
h2S4 1

2y
4
Rc

2
2θ

(
y2
Lc7 − 6y2

Rs
2
θc9

)
h4S2 1

4y
2
Rc2θ

(
y4
Lc6 − 4y2

Ly
2
Rs

2
θc7 + 12y4

Rs
4
θc9

)

15AL

h2 1
4y

2
Lc1 − y2

Rs
2
θc2

h4 1
16y

4
L (c4 + c5)− 1

4y
2
Ly

2
Rs

2
θc3 + y4

Rs
4
θc6

h6 1
64

h6
(
16c9y

2
Ly4
Rs4θ − 4 (c7 + c8) y

4
Ly2
Rs2θ + (c10 + c11 − 8c12) y

6
L − 64c13y

6
Rs6θ

)
S2 y2

Lc1 + y2
Rc2θc2

S4 y2
Ly

2
Rc2θc3 + 1

2y
4
L (2c4 + c5) + y4

Rc
2
2θc6

S6 1
2

(
y4
Ly

2
Rc2θ (2c7 + c8) + y2

Ly
4
R(c4θ + 1)c9 + y6

L (2c10 + c11) + 2y6
Rc

3
2θc13

)
h2S2 1

4y
4
L (2c4 + c5) + 1

4y
2
Ly

2
R(3c2θ − 2)c3 − 2y4

Rs
2
θc2θc6

h2S4 1
8

(
2y4
Ly2
R(2c2θ − 1) (2c7 + c8) + 2y2

Ly4
Rc2θ(5c2θ − 4)c9 + 3y6

L (2c10 + c11)− 24y6
Rs2θc

2
2θc13

)
h4S2 1

16

(
y4
Ly2
R (c7(5c2θ − 4)c7 + (3c2θ − 2)c8) + 8y2

Ly4
Rs2θ(1− 2c2θ)c9 + y6

L (3c10 + 2c11) + 48y6
Rs4θc2θc13

)

20′L

h2 y2
L

(
s2
θc1 + 1

4 (4c2θ − 3) c2

)
h4 −y2

Ls
2
θ (c1 − c2)

h6 1
4s

2
θy

4
L

(
−2s2

θ (4c6 − 6c7 + 8c8 + 6c9 − 5c10)− (c7 − 2c8 − 2c9 + c10)
)

S2 y2
Lc2θc2 + y2

Rc3

S4 y2
Ly

2
Rc2θc5 + 1

2y
4
Lc

2
2θ (2c8 + c9) + y4

Rc11

S6 1
4

(
y6
Lc

3
2θ4c14 + y4

Ly
2
R(c4θ + 1)2c12 + 4y2

Ly
4
Rc2θc13 + 4y6

Rc15

)
h2S2 y2

Lc2θ (c1 − c2)

h2S4 1
2
y2
Lc2θ

(
y2
Lc2θ (2c7 − 4c8 − 2c9 + c10)− 2y2

R (2c4 + c5)
)

h4S2 1
4
y4
Lc2θ

(
4s2θ (2c6 − 4c7 + 6c8 + 4c9 − 3c10) + c7 − 2c8 − 2c9 + c10

)
+ y2

Ly2
Rs2θ (2c4 + c5)
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Table 3. V (h, S) terms obtained via our spurion analysis for tR in a 15 of SO(6). Only

leading terms are shown and each entry should be multiplied by Ncm
4
∗/16π2, while every

h or S comes with a factor 1/f and every yL,R with a 1/g∗. Parameters that contribute in

the same way in the given approximation were collected into single ci and we abbreviate

c2θ = cos 2θ15R (20L) and s2
θ = sin2 θ15R (20L) in the second (third) block, while the other

angle is set to zero, respectively. As discussed in the text, finite values of the angles

however do not change the order of terms, here and below.

15R

6L

h2

No S-potential

h4

h6

S2

S4

S6

h2S2

h2S4

h4S2

15AL

h2 1
4
y2
Lc1 + 1

8
y2
R (3c2θ − 1) c2

h4 1
64

(2y2
Ly

2
R ((3c2θ − 1)c3 − 4s2

θc4) + 4y4
L (c5 + c6) + y4

R(1− 3c2θ)
2c7)

h6 1
512

(
4y4
Ly2
R ((3c8 + 3c9 + 2c12 + 2c13) c2θ − c8 − c9 − 2c12 − 2c13)

+2y2
Ly4
R(3c2θ − 1) ((3c10 + 2c11) c2θ − c10 − 2c11) + 8 (c14 + c15 + c16) y

6
L + c17y

6
R(3c2θ − 1)3

)
S2 y2

Lc1

S4 y4
L

1
2

(2c5 + c6)

S6 1
4
y6
L (4c14 + 2c15 + c16)

h2S2 1
32
y2
L (8 (2c5 + c6) y2

L + (4c3 + c4) y2
R(3c2θ − 1))

h2S4 1
64

y4
L

(
12 (4c14 + 2c15 + c16) y

2
L + (8c8 + 4c9 + 2c12 + c13) y

2
R(3c2θ − 1)

)
h4S2 1

256
y2
L

(
y2
Ly2
R ((48c8 + 24c9 + 22c12 + 14c13) c2θ − 16c8 − 8c9 − 18c12 − 10c13)

+8 (6c14 + 4c15 + 3c16) y
4
L + (4c10 + c11) y

4
R(1− 3c2θ)

2
)

20′L

h2 y2
L

(
s2
θc1 + 1

4
(4c2θ − 3) c2

)
+ 1

4
y2
Rc3

h4 −y2
Ls

2
θ (c1 − c2)

h6 1
4
s2θ

(
y4
L

(
−2 (4c7 − 6c8 + 8c9 + 6c10 − 5c11) s

2
θ − c8 + 2c9 + 2c10 − c11

)
− y2

Ly2
R (c4 − c5)

)
S2 y2

Lc2θc2

S4 1
2
y4
Lc

2
2θ (2c9 + c10)

S6 1
4
y6
Lc

3
2θ4c12

h2S2 y2
Lc2θ (c1 − c2)

h2S4 1
2
y4
Lc

2
2θ (2c8 − 4c9 − 2c10 + c11)

h4S2 1
4
c2θ

(
y4
L

(
4 (2c7 − 4c8 + 6c9 + 4c10 − 3c11) s

2
θ + c8 − 2c9 − 2c10 + c11

)
+ y2

Ly2
R (c4 − c5)

)
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Table 4. V (h, S) terms obtained via our spurion analysis for tR in a 20′AB of SO(6)

(θ20R2 = 0). This configuration is chosen in order to reproduce a heavy top quark and

simultaneously a CPV-inducing term, combining viably with the 20′AL such as to generate

a S6 term at NLO and fitting our SNR criteria. Only leading terms are shown and

each entry should be multiplied by Ncm
4
∗/16π2, while every h or S comes with a factor

1/f and every yL,R with a 1/g∗. Parameters that contribute in the same way in the

given approximation were collected into single ci and we abbreviate c2θ = cos 2θ20R1 and

s2
θ = sin2 θ20R1 , while θ15L, θ20L = 0. The smaller left handed embeddings do not fit the

SNR coupling pattern in this choice of angles – for a discussion of nonzero θ20R2, which

does allow SNR also here, see main text.

20′
R

6L

h2 1
2y

2
Lc1 + 1

40y
2
R (11c2θ − 9) c3

h4 1
20y

2
Rc

2
θ (c2 − c3)

h6 1
800 c

2
θ

(
20y2Ly

2
R (−2c4) + y4R (11c2θ − 9) (c6 − 2c7)

)
S2 y2R

(
2s2θc2 + 1

5 (7c2θ − 3) c3
)

S4 y2R
1
5 (7c2θ − 3) (c2 − c3)

S6 4
25y

4
R (7c2θ − 3)

(
c6 − 2c7 + s2θ (5c5 − 6c6 + 7c7)

)
h2S2 y2R

2
5 (2c2θ − 3) (c2 − c3)

h2S4 1
10

y2
Ly2
R (7c2θ − 3) (−2c4)

+ 1
200

y4
R

(
− 64s2θ (25c5 − 29c6 + 33c7) + s22θ (320c5 − 461c6 + 602c7)− 56 (c6 − 2c7)

)
h4S2 1

5
y2
Ly2
R (2c2θ − 3) (−2c4) + 1

200
y4
R

(
2s2θ (5c5 − 28c6 + 51c7)− 2 (49c2θ − 51) (c6 − 2c7)

)

15AL

h2 1
4y

2
Lc1 + 1

40y
2
R (11c2θ − 9) c3

h4 1
20y

2
Rc

2
θ (c2 − c3)

h6 1
800y

2
Rc

2
θ

(
10y2Lc4 + y2R (11c2θ − 9) (c6 − 2c7)

)
S2 y2Lc1 + y2R

(
2s2θc2 + 1

5 (7c2θ − 3) c3
)

S4 1
5y

2
R (7c2θ − 3) (c2 − c3)

S6 1
25y

2
R (7c2θ − 3)

(
5c4y

2
L + y2R (2 (c2θ − 1) (−5c5 + 6c6 − 7c7) + 4 (c6 − 2c7))

)
h2S2 2

5y
2
R (2c2θ − 3) (c2 − c3)

h2S4 1
200

y2
R

(
10y2

L (23c2θ − 27) c4

+y2
Rs2θ

(
−64 (25c5 − 29c6 + 33c7) + s22θ (320c5 − 461c6 + 602c7)− 56 (c6 − 2c7)

))
h4S2 1

200
y2
R

(
5y2
L (9c2θ − 11) c4 − y2

R

(
2 (49c2θ − 51) (c6 − 2c7)− 2s22θ (5c5 − 28c6 + 51c7)

))

20′
AL

h2 y2L
1
4c2 + 1

40y
2
R (11c2θ − 9) c4

h4 1
20y

2
Rc

2
θ (c3 − c4)

h6 c2θ
(

1
80y

2
Ly

2
R (c7 − c8) + 1

800y
4
R (11c2θ − 9) (c17 − 2c18)

)
S2 y2Lc2 + 1

5y
2
R (5c3 − 3c4 + c2θ (−5c3 + 7c4))

S4 1
5y

2
R (7c2θ − 3) (c3 − c4)

S6 1
5y

2
Ly

2
R (7c2θ − 3) (c7 − c8)

− 2
25y

4
R (7c2θ − 3) (−5c16 + 4c17 − 3c18 + c2θ (5c16 − 6c17 + 7c18))

h2S2 y2L (c1 − c2) + 2
5y

2
R (2c2θ − 3) (c3 − c4)

h2S4
y4
L

1
2
(2c12 − 4c13 − 2c14 + c15)

− 1
20

y2
Ly2
R (−20c5 + 12c6 + 47c7 − 39c8 + 44c9 − 24c10 + c2θ (20c5 − 28c6 − 43c7 + 51c8 − 56c9 + 36c10))

+ 1
400

y4
R (64c2θ (25c16 − 29c17 + 33c18) + c4θ (−320c16 + 461c17 − 602c18)− 1280c16 + 1283c17 − 1286c18)

h4S2 1
4
y4
L (c12 − 2c13 − 2c14 + c15)

+ 1
40

y2
Ly2
R (c2θ (11c6 + 9c7 − 20c8 + 17c9 − 17c10)− 9c6 − 11c7 + 20c8 − 23c9 + 23c10)

+ 1
200

y4
R (−98c2θ (c17 − 2c18) + c4θ (−5c16 + 28c17 − 51c18) + 5c16 + 74c17 − 153c18)
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Figure 5. Values of various UV c–parameters that reproduce the IR parameters plotted

in Fig. 2. Here, we have chosen f = 800 GeV and g∗ = 4.

4 Matching the EFT to the UV Parameters and Discussion

We now turn to matching the parameters appearing in the potential of Eq. (2.1)

to the parameters of the (20′AL,20′ABR) model, as given in the bottom section of

Table 4. For simplicity, we set yL = yR = 1, but the yL,R dependence can be easily

restored through simple rescalings (here, for the D ≤ 4 operators, c1,2 are always

multiplied by y2
L, while c3,4 always come with y2

R).

The coefficients of the dimension–6 operators (h6, h4S2, h2S4, and S6) depend

on O(10) different c–parameters, which means we can treat the cutoff Λ defined in

Eq. (2.1) basically as a free parameter, within a certain range given by the yL,R/g∗
scaling, while the remaining three Wilson coefficients are assumed small enough to

not impact our analysis. Setting Λ ∼ 1.5 TeV, see Fig. 1, we now check to which O(1)

coefficient c̄4, appearing in the Lagrangian term ∼ Ncm
4
∗/16π2 (yL,R/g∗)

4 c̄4 S
6/f 6 (see

last block of Table 4), this would correspond. We compare this result to the case of a

scaling of ∼ Ncm
4
∗/16π2 (yL,R/g∗)

6 c̄6 S
6/f 6, holding for all other models considered.

Plugging in numerical values of f = 800 GeV and g∗ = 4, we find that c̄4 ∼ 10,

which is in reasonable agreement with a (sum of) O(1) number(s), while on the

other hand c̄6 ∼ 200 would be required. This makes obvious that, while in the latter

models the SNR setup is hardly envisagable, it could straightforwardly emerge for

the (20′AL,20′ABR).

The remaining five IR parameters, namely µ2
h, µ

2
η, λh λη, and λhη, depend on cθ

and four c’s, which allows us to express those as functions of the five IR couplings.

This exercise gives us an idea of the potential amount of tuning necessary to obtain

the potential in Eq. (2.1) from O(1) c–parameters. We begin by noting that cθ has
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a particularly simple expression, depending (weakly) only on the ratio of the singlet

and Higgs quartics:

c2
θ =

5

7

(
1− λη

56λh

)−1

. (4.1)

Given the small range of λη, cf. Fig 2, and the weak dependence of cθ on λη/λh, we

find a narrow range for the mixing angle, cθ ' 0.83−0.84. We have checked that this

value is safely within the range of values that can successfully generate the baryon

asymmetry in the Universe during the EWPhT [3] via the CPv-inducing Yukawa

term of (A.8).

As for the remaining four c–parameters, it turns out the values for the IR cou-

plings can be achieved with natural O(1) values of the UV parameters, as illustrated

in Fig. 5, which shows viable regions for various combinations of c’s. The origin of the

apparent strong correlation between c2, c3, and c4 can be straightforwardly traced

from the expression of the IR parameters for the the (20′AL,20′ABR) model. As cθ
can only vary within a narrow interval, fixing the Higgs quartic and mass squared

parameter to their SM values basically determines c2 and c3 in terms of c4 (cf. first

two rows of the bottom block of Table 4).

5 Conclusions

We explored a new thermal history in the singlet-extended SM with a spontaneously

broken Z2 symmetry, considering a general scalar potential. Taking into account

higher-dimensional terms in the real singlet, that emerge in UV completions of the

setup, we found the possibility of non-restoration of the Z2 symmetry in the early

universe. While allowing for a strong first order electroweak phase transition, as

required to realize EWBG, the problem of generating domain walls after Z2 breaking

(potentially separating patches with a vanishing total baryon number) is avoided.

After a detailed analysis of this singlet-extended EFT, taking into account var-

ious bounds to constrain the parameter space to a well defined viable region, we

turned to matching the setup to a motivated UV completion. We found this in the

form of a SO(6)/SO(5) nMCHM with a suitable embedding of the SM fermions in the

global symmetry. In particular, we provided a comprehensive overview of the scalar

potentials generated in all the different possible realizations of the fermion sector,

which is also relevant for the question of a viable EWSB (and scalar phenomenology)

in nMCHMs in general. Moreover, we provided explicit expressions for the emerging

Yukawa couplings in the different models, including CPv terms involving the Higgs

and the singlet, that allow to fulfill all Sakarov criteria for a viable baryogenesis.

Finally, identifying the (20′AL,20′R) variant as the most promising model, we

presented a numerical analysis and showed that the Z2 SNR setup emerges with

natural values of the model coefficients, matching all criteria identified in the EFT

analysis. It would be interesting to explore if the found thermal history could also
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emerge in other motivated models beyond the SM, like in the recently proposed

model of SU(6) Gauge-Higgs Grand Unification with an extra scalar singlet [36, 37],

or in further models with extended scalar sectors.
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A Yukawa Terms of Different Embeddings

We provide here the explicit results for the Yukawa couplings in the various models

considered. For simplicity, we abbreviate the dressed fermion multiplets as (Q′mL )ij =

(Λ′mαL )ij qLα, and similar for the right-handed fermions. We obtain

L(6,6)
Yukawa =

yLy
∗
R

g∗
f
(
Q̄′6L
)

6

(
t′6R
)

6
M1 + h.c. (A.1)

= − yLy
∗
R√

2g∗f
t̄L

[
h
√
f 2 − h2 − S2 sin (θ6R) + ihS cos (θ6R)

]
M1tR + h.c.

L(15,6)
Yukawa =

yLy
∗
R

g∗
f
(
Q̄′15
L

)
6a

(
t′6R
)
a
M5 + h.c. (A.2)

= −yLy
∗
R

2g∗f
t̄Lh cos (θ6R)M5tR + h.c.

L(20′,6)
Yukawa =

yLy
∗
R

g∗
f
[(
Q̄′20′

L

)
66

(
t′6R
)

6
M1 +

(
Q̄′20′

L

)
6a

(
t′6R
)
a
M5

]
+ h.c. (A.3)

=
yLy

∗
R

2g∗f 2
t̄L
[
−f 2h cos (θ20L)M5 + 2hS2 cos (θ20L) (M1 −M5)

+2ihS
√
f 2 − h2 − S2 sin (θ20L) (M1 −M5)

]
tR + h.c.

L(15,15)
Yukawa =

yLy
∗
R

g∗
f
(
Q̄′15
L

)
6a

(
t′15
R

)
a6
M5 + h.c. (A.4)

=
yLy

∗
R

4g∗f
t̄L

[√
2h
√
f 2 − h2 − S2 sin(θ15R) + ihS cos(θ15R)

]
M5tR + h.c.

L(20′,15)
Yukawa =

yLy
∗
R

g∗
f
(
Q̄′20′

L

)
6a

(
t′15
R

)
a6
M5 + h.c. (A.5)

=
yLy

∗
R

4g∗f
t̄L

[
h
√
f 2 − h2 − S2 sin (θ20L) + ihS cos (θ20L)

]
M5tR + h.c.
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L(6,20′)
Yukawa =

yLy
∗
R

g∗
f
[(
Q̄′6L
)

6

(
t′20′

R

)
66
M1 +

(
Q̄′6L
)
a

(
t′20′

R

)
a6
M5

]
+ h.c. (A.6)

=
yLy

∗
R

g∗f 2
t̄L

[
− f 2h

{( 1

2
√

10
eiφ20R1 cos (θ20R1) +

√
3

5
sin (θ20R1) sin (θ20R2)

)
M5

−
√

15

6
sin (θ20R1) sin (θ20R2)M1

}
+ hS

√
f 2 − h2 − S2eiφ20R2 cos (θ20R2) sin (θ20R1) (M5 −M1)

+
hS2

(√
2eiφ20R1 cos (θ20R1)−

√
3 sin (θ20R1) sin (θ20R2)

)
√

5
(M5 −M1)

−
h3
(√

2eiφ20R1 cos (θ20R1) + 4
√

3 sin (θ20R1) sin (θ20R2)
)

4
√

5
(M5 −M1)

]
tR

+ h.c.

here
= −yLy

∗
R

g∗f 2
t̄L

[
f 2h

cos (θ20R1)

2
√

10
M5 + i · hS

√
f 2 − h2 − S2 sin (θ20R1) (M5 −M1)

+

(√
2

5
hS3 − 1

2
√

10
h3

)
cos (θ20R1) (M5 −M1)

]
+ h.c.

L(15,20′)
Yukawa =

yLy
∗
R

g∗
f
(
Q̄′15′

L

)
6a

(
t′20′

R

)
a6
M5 + h.c.

= i
yLy

∗
R

4g∗f
t̄Le
−iφ15L

[√
2heiφ20R2 sin (θ20R1) cos (θ20R2)

√
f 2 − h2 − S2 (A.7)

+
√

5hSeiφ20R1 cos (θ20R1)

]
M5tR + h.c.

here
= −yLy

∗
R

4g∗f
t̄L

[√
2 sin (θ20R1) · h

√
f 2 − h2 − S2 + i

√
5 · hS cos (θ20R1)

]
tRM5 + h.c.

L(20′,20′)
Yukawa =

yLy
∗
R

g∗
f
[(
Q̄′20′

L

)
66

(
t′20′

R

)
66
M1 +

(
Q̄′20′

L

)
6a

(
t′20′

R

)
a6
M5

]
+ h.c. (A.8)

=
yLy

∗
R

g∗f 3
t̄L

[
− f 2h

√
f 2 − h2 − S2

sin (θ20R1)M5

2
√

2
− if 2hS

3 cos (θ20R1)M5

4
√

5

− hS2
√
f 2 − h2 − S2

√
2 sin (θ20R1) (M1 −M5)

+
i

2
√

5

(
h3S − 4hS3

)
cos (θ20R1) (M1 −M5)

]
tR + h.c. ,

where M1,M5 are the form factors associated to invariants from SO(5) singlets and

fiveplets. These expressions allow to explicitly see the generation of the top mass as

well as to estimate the size of CPv induced in terms of the mixing angles.
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