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A homological model for Uqsl2 Verma modules
and their braid representations

JULES MARTEL

We extend Lawrence’s representations of the braid groups to relative homology mod-
ules and we show that they are free modules over a ring of Laurent polynomials. We
define homological operators and we show that they actually provide a representation
for an integral version for Uqsl.2/. We suggest an isomorphism between a given basis
of homological modules and the standard basis of tensor products of Verma modules
and we show it preserves the integral ring of coefficients, the action of Uqsl.2/, the
braid group representation and its grading. This recovers an integral version for
Kohno’s theorem relating absolute Lawrence representations with the quantum braid
representation on highest-weight vectors. This is an extension of the latter theorem as
we get rid of generic conditions on parameters, and as we recover the entire product
of Verma modules as a braid group and a Uqsl.2/–module.
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1 Introduction

We give two definitions for the braid group on n strands.
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1226 Jules Martel

Definition 1.1 Let n 2N.

� The braid group on n strands Bn is the group generated by n � 1 elements
satisfying the so-called “braid relations”

Bn D

�
�1; : : : ; �n�1

ˇ̌̌ �i�j D �j�i if ji � j j � 2

�i�iC1�i D �iC1�i�iC1 for i D 1; : : : ; n� 2

�
:

� The braid group on n strands is the mapping class group of the punctured disk Dn

(defined in Section 2),
Bn DMod.Dn/:

These two definitions provide two different directions to build representations: quantum
representations and homological representations. In this work we relate the two theories.
Quantum representations are built from the category of modules on a given quantum
group, which are purely algebraic tools, so their topological meaning is quite mysterious.
We study the quantum group arising from the quantized deformation of sl.2/, namely
Uqsl.2/, and the question of its topological content is then natural. The goal is to
relate Verma modules for Uqsl.2/ to homological modules, in the sense that we want
to preserve both the action of Uqsl.2/ and that of the braid group, and an integral
structure of coefficients.

1.1 Homological representations

In [18], R Lawrence builds graded homological representations of braid groups relying
on the fact that braids are associated with homeomorphisms of the punctured disk.
Indeed, this generalizes to configuration spaces of r points in the punctured disk,
denoted by Xr and defined in Definition 2.1. This becomes a linear representation
when lifted to homology, namely to modules denoted by Habs

r and defined precisely
in Definition 2.7. Lawrence builds a family of graded representations for the braid
groups over Habs

r (r 2 N is the grading) with local coefficients in a ring of Laurent
polynomials Rmax over the configuration space of points inside the punctured disk [18].
She developed this idea around 1990 in her thesis, at which time it was already for
the purpose of finding topological information in the Jones polynomial, an invariant
of knots defined out of quantum representations of braid groups. S Bigelow used her
ideas to recover a definition of the Jones polynomial from these homology modules
in [3]. This provides a formula for the Jones polynomial as a pairing between homology
classes, allowing it to be compared with homological invariants by Droz and Wagner [8]
and Manolescu [20], for instance.
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The value of Lawrence’s representations comes from D Krammer [17] and Bigelow’s [2]
work, showing their faithfulness at the second level of the grading, the one we refer to
as the BKL representation. It is the first known finite-dimensional and faithful linear
representation of braid groups. In [21], L Paoluzzi and L Paris show that the BKL
representation only recovers a subrepresentation of the entire homological representation
with coefficients in the ring of Laurent polynomials.

1.2 Quantum representations

On the quantum side, one can build braid representations over tensor products of Verma
modules for Uqsl.2/. Namely, let V be the Verma module of Uqsl.2/ (we suppress
the parameter it depends on in notation, for economy); for n 2N, the module V ˝n is
endowed with a quantum action of the braid group Bn. Let r 2N, Wn;r be the subspace
of V ˝n generated by vectors of subweight r and Yn;r be the one generated by the
highest-weight vectors of Wn;r . Spaces Wn;r and Yn;r are subrepresentations of Bn,
and V ˝n D

L
r2N Wn;r . All these definitions are rigorously given in Definition 5.8.

In [12], C Jackson and T Kerler establish explicitly an isomorphism between the
BKL representation Habs

2
and that on highest-weight vectors and subweights 2, de-

noted by Yn;2. In [16], T Kohno shows Lawrence’s representations are isomorphic to
those from KZ monodromy restricted to highest-weight vectors, themselves previously
shown to be isomorphic to the braid representations on highest-weight vectors Yn;r

by Drinfeld [7] and Kohno [14]. This establishes a direct and deep relation between
Lawrence’s representations and the Uqsl.2/ R–matrix that is summed up by Ito [11,
Theorem 4.5]. Homological and quantum representations depend on nC 1 variables.
One can treat them as parameters, or can take as a ground ring of coefficients Laurent
polynomials in these variables, denoted by Rmax in this work (considering integral
versions for quantum modules). Yet Kohno’s isomorphism (between Bn representations
Yn;r and Habs

r ) holds for a generic set of parameters (it is not a morphism on the ring
of Laurent polynomials, but on C when quantum parameters are evaluated at “generic”
values) and does not recover the whole product of Verma modules, but only the braid
group action over the Yn;r for r 2N. In [9], G Felder and C Wieczerkowski build an
action of the quantum group Uqsl.2/ on some module generated by topological objects
of the punctured disk — r–loops — together with a natural action of the braid groups
which commutes with the quantum one. The homological interpretations of this module
remain conjectures [9, Conjectures 6.1 and 6.2] as well as its links with Lawrence’s
theory. Finally, in [23], V Schechtman and A Varchenko obtain representations of
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quantum groups on some local system homology on configuration spaces of points.
We sum up the brief history of Lawrence’s representations in three results.

Theorem 1.2 (i) For all r 2N, Habs
r is a representation of Bn [18].

(ii) The representation Habs
2

is faithful [2; 17].

(iii) There exists an isomorphism of Bn–representations between Habs
r and the quan-

tum module Yn;r (by [12] for the case r D 2 and Kohno [15] for generic values
of the parameters q and ˛k).

1.3 Results of the paper

The present work extends Lawrence’s representations via relative homology; it clarifies
and generalizes their links with quantum representations of braid groups obtained on
tensor products of Uqsl.2/ Verma modules. Inspired by [9], we extend Lawrence
modules to relative homology modules, denoted by Hrel�

r and defined in Definition 2.7.
We endow these modules with a homological action of the quantum group U

L=2
q sl.2/

(an integral version for Uqsl.2/ defined in Section 5.1) via homological actions of its
generators (defined in Section 6.1), which leads to the following result:

Theorem 1.3 (Theorem 1 in Section 6.1.3) The module HD
L

r2N Hrel�
r over the

ring of Laurent polynomials Rmax is a representation of U
L=2
q sl.2/.

In Proposition 3.6, we show that modules Hrel�
r are free modules on the ring of Laurent

polynomials Rmax, and that a basis (said “integral”) is given by the family of multiarcs;
see Corollary 4.13. This helps us to recognize this U

L=2
q sl.2/ representation as a tensor

product of Verma modules, which we sum up in the following statement:

Theorem 1.4 (Theorem 2 in Section 6.2.3) For all n 2N, there exists a morphism
of U

L=2
q sl.2/–modules

V ˝n
!H

such that the standard integral basis of V ˝n is sent to the multiarcs basis. The integer n

corresponds to the number of punctures of the disk Dn used to define the configuration
space Xr .

Finally, we extend the natural Lawrence action of braid groups over these homological
modules and we show that it is the R–matrix representation obtained using U

L=2
q sl.2/

Verma modules.
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Theorem 1.5 (Theorem 3 in Section 6.3.2) For all n2N and all r 2N, the morphism

Wn;r !Hrel�
r

induced by the previous theorem is an isomorphism of Bn–representations , so the
morphism

V ˝n
!HD

M
r2N

Hrel�
r

from the previous theorem is a morphism of U
L=2
q sl.2/–modules and of Bn–modules.

We provide an integral basis for homology (ie basis as a module on an integral ring
of Laurent polynomials). The U

L=2
q sl.2/–action and the Bn–action preserve this

structure, as does the isomorphism to the tensor product of Verma modules. This
is an improvement over previous models, and has potential for topological quantum
invariants built from those braid representations that need parameters to be evaluated.
For instance, q being a root of unity is required to study several quantum invariants, and
was not recovered by the generic conditions of Kohno’s theorem (Theorem 1.2(iii)).

We show that the long exact sequence of relative homology becomes, in this model, a
short one,

0!Habs
r !Hrel�

r !Hr�1.X
�
r /! 0

(where X�r is as defined in Definition 2.7), so that Hrel�
r extend Lawrence’s repre-

sentations. This work thus allows an extension of Kohno’s theorem beyond highest-
weight vectors, and recovers homologically the entire tensor product of Uqsl.2/ Verma
modules. Lawrence’s representations are subrepresentations of it, so Kohno’s theorem
is a corollary of this work. Generic hypotheses are clarified and become algebraic
thanks to the fact that all isomorphisms preserve the integral structure of coefficients,
and the links between an integral basis (multiarcs) and the multifork basis from Kohno’s
theorem are explicit. All of this is summed up in Corollary 7.1 and Proposition 7.2 in
Section 7.1.

The obtained homological representations are a generalization of Lawrence’s repre-
sentations, so they are generically faithful. They allow a homological recovering of
several properties of the category of Uqsl.2/–modules.

We illustrate the weight structure of tensor product of Verma modules in the following
diagram, at level r of the grading:
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:::
:::

Wn;r Hrel�
r

Wn;rC1 Hrel�
rC1

:::
:::

FE

FE

FE

FE

FE

FE

Horizontal arrows correspond to isomorphisms of braid representations from Theorem
1.5, while vertical arrows correspond to the action of Uqsl.2/ generators E and F : the
quantum ones on the left side and the homological ones (homological definitions are
given in this work) on the right side, which rules the weight structure on Verma modules.
The direct sum of all spaces aligned vertically on the left gives the tensor product of
Verma modules V ˝n, while the one of all spaces aligned on the right corresponds
to the homological module H. The homological interpretation of Uqsl.2/ generators
follows, together with the ones of relations they satisfy and the R–matrix built using
these generators.

Plan of the paper

In Section 2 we define topological spaces and homology modules used to build homo-
logical representations. In Section 3 we give examples of homology classes in Hrel�

r ,
representing them by multiarcs diagrams, then we study the structure of the homology
complexes of interest. Namely, we prove the crucial Proposition 3.6, stating that
modules Hrel�

r are free over the ring of Laurent polynomials Rmax, and that these are
the only nonvanishing modules of the entire homology complex. In Section 4 we state
all the rules we need to do computation in Hrel�

r , and we use them to show that the family
of multiarcs is a basis of Hrel�

r as a module over Rmax in Corollary 4.13. In Section 5
we recall definitions and notation for quantum algebra. Namely, we define an integral
version (ie as a free Rmax–module) of Uqsl.2/, denoted by U

L=2
q sl.2/, and its version

for Verma modules. We then present the braid representations defined over a tensor
product of Verma modules, and how to get a finite-dimensional representation out of
them in Remark 5.13. Finally, the main results of this paper can be found in Section 6. In
Section 6.1 we define homological operators corresponding to generators of U

L=2
q sl.2/

and we prove Theorem 1, stating that this provides a representation of U
L=2
q sl.2/. In
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Section 6.2 we compute the homological action of U
L=2
q sl.2/ in the multiarcs basis

and we prove Theorem 2, saying that this homological representation is isomorphic to a
tensor product of Verma modules. In Section 6.3 we recall how to build a homological
action of braid groups over homological modules. Then we prove Theorem 3, saying
that the isomorphism of U

L=2
q sl.2/–modules relating homological modules with Verma

modules is also an isomorphism of Bn–representations and that it preserves their grading.
In Section 7.1 we show that Theorem 3 recovers Kohno’s theorem (Theorem 1.2(iii))
in an integral version and exhibits previous generic conditions on parameters required.
In Section 7.2 we give partially positive answers to Conjecture 6.2 of [9]. In the
appendix we recall definitions of homology theories we use, namely the locally finite
(Borel–Moore) version of singular homology and the local ring of coefficients setup.

Acknowledgments This work was achieved during the PhD of the author, which
was held in the Institut de Mathématiques de Toulouse, in Université Paul Sabatier,
Toulouse 3. The author thanks very much his advisor Francesco Costantino for asking
this problem and is very grateful for all discussions, fruitful remarks and help that
led to this paper. The author is also very grateful to the anonymous referees for their
relevant and significant remarks and corrections. The author thanks L-H Robert and E
Wagner for useful comments.

2 Configuration space and homology

Definition 2.1 Let r 2N, n2N, D be the unit disk and fw1; : : : ; wng 2Dn be points
lying on the real line in the interior of D. Let Dn DD n fw1; : : : ; wng be the unit disk
with n punctures. Let

Confr .Dn/ WD f.z1; : : : ; zr / 2 .Dn/
r
j zi ¤ zj for all i ¤ j g

be the configuration space of points in the punctured disk Dn. We define

(1) Xr .w1; : : : ; wn/D Confr .Dn/=Sr

to be the space of unordered configurations of r points inside Dn, where the permutation
group Sr acts by permutation on coordinates.

When no confusion arises in what follows, we omit the dependence on w1; : : : ; wn to
simplify notation. All the following computations rely on a choice of basepoint, which
we fix from now on.
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Notation (basepoint) Let �r D f�1; : : : ; �r g be the basepoint of Xr , chosen so that
�i 2 @Dn for all i with negative imaginary parts, and so that

<.w0/ <<.�r / <<.�r�1/ < � � �<<.�1/ <<.w1/:

We illustrate the disk with chosen points in the following figure:

� � �

�r �r�1� � � �1

w0

w1 w2 wn

We draw a square boundary for the disk, in order for the reader not to confuse it with
arcs we will be drawing inside.

We give a presentation of �1.Xr ; �
r / as a braid subgroup (the mixed braid group),

which can be deduced from the one given in the introduction of [24], and will be
explained with drawings.

Remark 2.2 The group �1.Xr ; �
r / is isomorphic to the subgroup of BrCn generated

by
h�1; : : : ; �r�1;Br;1; : : : ;Br;ni;

where the �i for i D 1; : : : ; r � 1 are standard generators of BrCn, and Br;k (for
k D 1; : : : ; n) is the pure braid

Br;k D �r � � � �rCk�2�
2
rCk�1�

�1
rCk�2 � � � �

�1
r :

To see the correspondence between loops in Xr and generators of the above braid
subgroup, we draw two examples.

Example 2.3 Two types of braid generators for �1.Xr ; �
r / are given in Remark 2.2,

which correspond to two types of loops generating �1.Xr ; �
r /. We give examples for

both kinds:

� The braid �1 corresponds to a loop swapping �r and �r�1 leaving other basepoint
coordinates fixed. This can be seen by drawing the movie of the loop in Figure 1.
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w1 wn

wn

: : :

: : :

w0

w0
w1

�r�1
�r

�1
: : :

�r�1
�r

�1
: : :

Figure 1: Generator �1.

� The braid Br;k for k 2 f1; : : : ; ng corresponds to �1 running once around wk be-
fore going back, keeping other basepoint coordinates fixed. The correspondence
in terms of standard braid generators can be seen by drawing the movie of this
loop in Figure 2.

Remark 2.4 In all of what follows and in the above example, braids representing
loops in Xr are read from top to bottom.

Using this setup, we define the local system of interest.

Definition 2.5 (local system Lr ) Let Lr .w1; : : : ; wn/ be the local system defined
by the algebra morphism

�r W ZŒ�1.Xr ; �
r /�! ZŒs˙1

i ; t˙1�iD1;:::;n; �i 7! t; Br;k 7! s2
k :

w1 wn

wn

: : :

: : :

w0

w0
w1

�r�1
�r

�1
: : :

�r�1
�r

�1
: : :

wk

wk

: : :

: : :

Figure 2: Generator Br;k .
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In what follows we will use the notation q˛k WD sk for all k D 1; : : : ; n. Using this
notation, the morphism becomes

�r W ZŒ�1.Xr ; �
r /�! ZŒq˙˛i ; t˙1�iD1;:::;n; �i 7! t; Br;k 7! q2˛k :

When no confusion is possible we will omit the dependence on .w1; : : : ; wn/ in the
notation for economy.

Remark 2.6 As this is a 1–dimensional local system, it is abelian in the sense that

�r .s1s1/D �r .s1/�r .s2/D �r .s2/�r .s1/

for s1; s2 2�1.Xr ; �
r /. Moreover, this local system corresponds to the maximal abelian

cover of Xr ; see [16, Section 2].

We will use homology modules with coefficients in this local system, so we fix notation
from now on.

Definition 2.7 Let w0 D �1 be the leftmost point on the boundary of the disk, we
define the set

X�r .w1; : : : ; wn/D
˚
fz1; : : : ; zr g 2Xr .w1; : : : ; wn/ j zi D w0 for some i

	
:

Let r 2 N and Rmax D ZŒq˙˛i ; t˙1�iD1;:::;n. We let Hlf designate the homology of
locally finite chains, and for homology with local coefficients in the ring Rmax we write

Habs
r WD Hlf

r .Xr ILr / and Hrel�
r WD Hlf

r .Xr ;X
�
r ILr /:

The second one is the homology of the pair .Xr ;X
�
r /. See the appendix for a summary

of these homology theories (locally finite/Borel–Moore, with local coefficients).

Remark 2.8 Every local system construction of homology classes (see the appendix)
depends on a choice of a lift of basepoint � , which we make here; namely, let y� be a
lift of � in the cover corresponding to the local system Lr . For a different choice �� 0
of lift, all the classes are multiplied by the same (invertible) monomial �r .y�! �� 0/ of
Rmax, namely the local coefficient of a path relating y� and �� 0.
We recall the signature and permutation of braids that will be needed.

Notation We will call signature of a braid the signature of the permutation induced
by the braid, and we will use the following notation for morphisms:

sign W Bn
perm
���!Sn

sign
��! f˙1g:
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3 Structure of the homology

3.1 Examples of classes

Definition 3.1 We define the set of partitions of n in r integers as

E0
n;r D

n
.k0; : : : ; kn�1/ 2Nn

ˇ̌X
ki D r

o
:

We now define two families of topological objects indexed by E0
n;r , which will corre-

spond to classes in Hrel�
r .

Notation We draw topological objects inside the punctured disk, without drawing
the boundary of the disk entirely, for easier reading. The gray color is used to draw
the punctured disk. Red arcs are going from a coordinate of the basepoint � of Xr

lying in its boundary to a dashed black arc. Dashed black arcs are oriented, from left
to right if nothing is specified and if no confusion arises. Finally, for all the following
objects, the red arcs will end up going like in the following picture inside the dashed
box, so that all families of red arcs are attached to the basepoint f�1; : : : ; �r g of Xr

(here r 0 D r � k0):

� � �

@Dn

k0 k1 kn�1

�r �r 0 �kn�1
�1

: : : : : : : : :
: : :

w0

w1 w2 wn�1 wn

Code sequences Let kD .k0; : : : ; kn�1/ 2E0
n;r we define the code sequence Uk D

U.k0; : : : ; kn�1/ to be the drawing

: : :k0 k1 kn�1w0

w1 w2 wn�1 wn

�r � � � �1

� � �

@Dn

The indices ki serve to illustrate the fact that ki configuration points are embedded in
the corresponding dashed segment, as we explain in what follows. We have attached to
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an index ki dashed arc a red arc, called a .ki/–handle. It is represented by a little red
tube, which is a simpler representation used to represent ki parallel red arcs, which are
called handles. We let U D fU.k0; : : : ; kn�1/gk2E0

n;r
. The definition of these objects

comes from [4].

Multiarcs By analogy, for k 2E0
n;r we define a multiarc A0

k
DA0.k0; : : : ; kn�1/ to

be the picture

� � �k0
k1

kn�2

kn�1

w0

w1 w2 wn�1 wn

�r � � � �1

� � �

@Dn

As for code sequences, there is a .ki/–handle arriving to a dashed arc indexed by ki ,
this will be used to define the associated homology class. We write the family of all
standard multiarcs as A0 D fA0.k0; : : : ; kn�1/gk2E0

n;r
. This family of objects is new

in the literature.

We provide a natural way to assign a class in Hrel�
r to these drawings. Let X be the

letter U or A0, to treat both cases at the same time. Let k2E0
n;r and, for all i D 1; : : : ; n,

let
�i W Ii!Dn

be the embedding of the dashed black arc number i of X.k0; : : : ; kn�1/ indexed
by ki�1, where Ii is a unit interval. Let �k be the standard (open) k simplex

�k
D f0< t1 < � � �< tk < 1g

for k 2N. For all i , we consider the map

�ki�1 W�ki�1 !Xki�1
; .t1; : : : ; tki�1

/ 7! f�i.t1/; : : : ; �i.tki�1
/g;

which is a singular locally finite .ki�1/–chain and moreover a cycle in Xki�1
. One

can think of the image of the simplex �ki�1 as the space of configurations of ki�1

Geometry & Topology, Volume 26 (2022)



A homological model for Uqsl2 Verma modules and their braid representations 1237

points inside the dashed arc. It provides a locally finite cycle, as going to a face
of the simplex corresponds to going to a collision between either two configuration
points, or a configuration point with a puncture. Namely, points in the boundary of
the simplex are removed points of the configuration space Xr ; these simplices are
closed submanifolds going to infinity, so that they are locally finite cycles; see the
appendix. There is a cycle associated with each dashed arc, so that, by considering
the product of maps .�k0 ; : : : ; �kn�1/ 2Confr .Dn/, which is naturally sent to Xr , one
generalizes this fact by associating an r–cycle of Xr with each object X.k0; : : : ; kn�1/;
see Remark 3.3. This shows how the union of dashed arcs defines a class in the
homology with coefficients in Z.

To get a class in the local system homology, one has to choose a lift of the chain to the
maximal abelian cover Lr associated with the morphism �r . The way to do so is using
the red handles of X.k0; : : : ; kn�1/, with which is naturally associated a path

hD fh1; : : : ; hr gW I !Xr

joining the basepoint � and the r–chain assigned to the union of the dashed arcs. At the
cover level yXr , there is a unique lift Oh of h that starts at y� . The lift of X.k0; : : : ; kn�1/

containing y�.1/ defines a cycle in Crel�
r , and we still call X.k0; : : : ; kn�1/ the associated

class in Hrel�
r as we will only use this class out of the original object.

Remark 3.2 If �i and �0i are two parametrizations of the dashed arc Dki�1 , then �i

and �0i are homotopic, as are the associated maps �ki�1 and �0ki�1 . Then the homology
classes associated with �ki�1 and �0ki�1 are equal and this guarantees that objects are
well defined.

Remark 3.3 If �k1 and �k2 correspond to chains with disjoint supports, there exists
an associated chain f�k1 ; �k2g 2Xk1Ck2

.

Remark 3.4 The map �k for any k factors through Confk.Dn/; namely, it is the
composition of a map to Confk.Dn/ and the quotient to Xr , as follows:

�k
W�k
! Confk.Dn/!Xk :

In what follows it will sometimes be more convenient to think about the image of �k

as a submanifold of Confk.Dn/ before considering the quotient by permutations.
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Example 3.5 By analogy, there is a natural class in Hrel�
r associated with the diagram

� � �

r � 1

w0

w1
w2

wn�1
wn

�r � � � �2 �1
@Dn

2Hrel�
r

When we draw a plain arc, it corresponds to the image of a 1–dimensional simplex with
one configuration point embedded, while a dashed arc indexed by r � 1 corresponds
to an .r�1/–simplex, so to r � 1 configuration points embedded. Red handles are
considered, defining a cycle with local coefficients as above.

3.2 Structural result

We now study the algebraic structure of Hrel�
r .

Proposition 3.6 For r 2 N, the module Hrel�
r is a free Rmax–module of dimension�

nCr�1
r

�
, generated by the family U of code sequences. Moreover , it is the only

nonvanishing module of the complex Hlf
�
.Xr ;X

�
r ILr /.

Proof Throughout the proof, the local ring of coefficients will remain Lr , so we
omit it in the notation. Let X R

r be the set fx1; : : : ;xr g 2 Xr such that x1; : : : ;xr

lie in the segment Œw0; wn/. Set X
R;�
r D X R

r \X�r . We use these simpler spaces
to compute the homology, thanks to the following lemma, which can be seen as a
Bigelow interpretation of the Salvetti retract complex associated with a hyperplanes
arrangement [22]. This method is adapted from [4, Lemma 3.1].

Lemma 3.7 (Bigelow’s trick) The map

Hlf
�
.X R

r ;X
R;�
r ILr /! Hlf

�
.Xr ;X

�
r ILr /(2)

induced by inclusion is an isomorphism.

Proof Let � > 0 and A� be the set of fx1; : : : ;xr g 2Xr such that jxi �xj j � � and
jxi �wk j � � for all distinct i; j D 1; : : : ; r and k D 1; : : : ; n. This family of compact
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sets yields a basis of compact sets for Xr , so it suffices to show that, for all sufficiently
small �, the map

H�.X
R
r ; .X

R
r nA�/[X R;�

r /!H�.Xr ; .Xr nA�/[X�r /

induced by inclusion is an isomorphism. This is sufficient by means of the inductive
limit over compact sets definition of Borel–Moore homology; see Remark A.3 in the
appendix.

Let D0n � Dn be a closed �
2

–neighborhood of the interval Œw0; wn/. Let X 0r be the
configuration space of r points in D0n, and X 0�r DX 0r\X�r be the ones with a coordinate
in w0. The map

(3) H�.X
0
r ; .X

0
r nA�/[X 0�r /!H�.Xr ; .Xr nA�/[X�r /

induced by inclusion is an isomorphism. To see this, note that the obvious homotopy
shrinking Xr to X 0r is a homotopy of the pairs involved. In other words, points in
Xr nA� corresponding to close points stay in it because the homotopy is a contraction.
We will refer to this process — proving that (3) is an isomorphism — as the compressing
trick later on.

Let V be the set of fx1; : : : ;xr g 2 Xr with either <.xi/ D <.xj / for some i; j 2

f1; : : : ; rg or <.xi/ D wk for some i 2 f1; : : : ; rg and k 2 f1; : : : ; ng. Let U D

X 0r nV. Note that V is a closed subset contained in X 0r nA�, which is the interior of
.X 0r nA�/[X 0�r . This shows that V satisfies the required hypothesis to perform the
excision of the pair, so the map

H�.U; .U nA�/[ .X
0�
r \U //!H�.X

0
r ; .X

0
r nA�/[X 0�r /

induced by inclusion is an isomorphism by the excision theorem.

Finally, there is an obvious vertical line deformation retraction that sends U to X R
r ,

taking fx1; : : : ;xr g to f<.x1/; : : : ;<.xr /g. This is again a contraction homotopy, so
U nA� is preserved and X 0r \U is sent to X

R;�
r . This retraction guarantees that the

map
H�.X

R
r ; .X

R
r nA�/[X R;�

r /!H�.U; .U nA�/[ .X
0�
r \U //

induced by inclusion is an isomorphism, and concludes the proof of Lemma 3.7.

To prove the proposition, it remains to compute the complex Hlf
�
.X R

r ;X
R;�
r ILr /. Let

AR
� 2 X R

r be the set of configurations fx1; : : : ;xr g of X R
r such that jxi � xj j � �
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and jxi �wk j � � for i; j D 1; : : : ; r and k D 1; : : : ; n. Let A
R;w0
� be AR

� with the
additional condition that jxi �w0j � � for i D 1; : : : ; r . We are going to show that, for
sufficiently small �, the complex

H�.X
R
r ; .X

R
r nAR

� /[X R;�
r ILr /

is isomorphic to the Borel–Moore one of a disjoint union of open simplexes defined by
code sequences. This will end the computation of Hlf

�
.X R

r ;X
R;�
r ILr / by definition

of Borel–Moore homology. To do so, first we note that the following spaces are
homotopically equivalent:

.X R
r nAR

� /[X R;�
r D

8̂̂<̂
:̂fx1; : : : ;xr g 2X R

r

ˇ̌̌̌
ˇ
jxi �xj j< � for i; j D 1; : : : ; r;

jxi �wk j< � for k D 1; : : : ; n;

or xi D w0

9>>=>>;
'

8̂̂<̂
:̂fx1; : : : ;xr g 2X R

r

ˇ̌̌̌
ˇ
jxi �xj j< � for i; j D 1; : : : ; r;

jxi �wk j< � for k D 1; : : : ; n;

or jxi �w0j< �

9>>=>>;
DX R

r nAR;w0
� :

This shows that

H�.X
R
r ; .X

R
r nAR

� /[X R;�
r ILr /'H�.X

R
r ;X

R
r nAR;w0

� ILr /:

Then one notes that X
R;�
r is closed in A

R;w0
� , so we can perform the excision and the

map

H�.X
R
r nX R;�

r ; .X R
r nAR;w0

� / nX R;�
r ILr /!H�.X

R
r ;X

R
r nAR;w0

� ILr /

induced by inclusion is an isomorphism. Let X R
r .w0/� X R

r be the space of config-
urations without any coordinate in w0. The space X R

r .w0/ is exactly the space of
configurations of r points in .w0; wn/ such that every coordinate is different from wk

for k D 0; : : : ; n. For sufficiently small �, we have shown that the two homologies

H�.X
R
r ; .X

R
r nAR

� /[X R;�
r ILr /'H�.X

R
r .w0/;X

R
r .w0/ nAR;w0

� ILr /

are isomorphic. Then, as the family of A
R;w0
� is a compact set basis for X R

r .w0/, we
end up with the homologies

Hlf
�
.X R

r ;X
R;�
r ILr /' Hlf

�
.X R

r .w0/ILr /
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being isomorphic. To conclude the computation we take Bigelow’s decomposition of
X R

r .w0/ using code sequences as follows and as was done in [4]. For k 2E0
n;r , the

set of all fx1; : : : ;xr g 2Xr such that x1; : : : ;xr 2 .w0; wn/ and

#
�
fx1; : : : ;xr g\ .wi ; wiC1/

�
D ki

for i D 0; : : : ; n� 1 is exactly U.k0; : : : ; kn�1/, and one notes that

X R
r .w0/D

G
k2E0

n;r

Uk:

From this disjoint union of open simplexes, we deduce that Hlf
r .X

R
r .w0/ILr / is the

direct sum of #E0
n;r D

�
nCr�1

r

�
copies of Rmax while all other Hlf

k
.X R

r .w0/ILr / for
k ¤ r vanish. The homology Hlf

�
.X R

r ;X
R;�
r ILr / has the same decomposition, which

concludes the proof.

Bigelow’s trick was initially used to show the following:

Proposition 3.8 [4, Lemma 3.1] The morphism

Hlf
�
.X R

r .w0/ILr /! Hlf
�
.Xr .w0/ILr /

induced by inclusion is an isomorphism of homologies.

From this and from the proof of Proposition 3.6, one gets the following corollary:

Corollary 3.9 � The morphism Hlf
�
.Xr .w0/ILr /!Hlf

�
.Xr ;X

�
r ILr / induced by

inclusion is an isomorphism.

� The family U D .Uk/k2E0
n;r

yields a basis of Hrel�
r as an Rmax–module.

We conclude this part with two remarks about the proof of Proposition 3.6.

Remark 3.10 � The proof of Proposition 3.6 is constructive in the sense that it
provides a process to express homology classes in the U–basis. This will be used
in the next sections.

� Throughout the proof of Proposition 3.6, the local system does not change; no
morphism of the latter is needed. The proof relies only on topological operations
such as excisions and homotopy equivalences. In some sense the proof is rigid
regarding the local ring of coefficients, and should be adaptable with another
one.
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4 Computation rules

4.1 Homology techniques

Remark 4.1 (handle rule) Let B be a singular locally finite r–cycle of Cr .Xr ;X
�
r ;Z/.

We’ve seen a process to choose a lift of B to the homology with local coefficients in Lr ,
using a handle which is a path joining � to x 2 B. Let ˛ and ˇ be two different paths
joining � and B. Let yB˛ and yBˇ be the lifts of B chosen using ˛ and ˇ, respectively.
By the handle rule, we have the relation, in Hrel�

r ,

yB˛ D �r .˛ˇ
�1/ yBˇ;

where �r is the representation of �1.Xr ; �
r / used to construct Lr in Definition 2.5.

This expresses how the local system coordinate of a homological class is translated
after a change of handle.

Remark 4.2 One must be careful while permuting red arcs of a multiarcs or code
sequence–like class (see Section 3.1). Indeed, as the parametrization of the underlying
simplex is ruled by the order of relating arcs to the basepoint, such a permutation of
red handles multiplies the class by its signature. We show one example:

We have the following equality between these two classes in Hrel�
2

:0B@
˛

wi

wj

1CAD sign.˛ˇ�1/�r .˛ˇ
�1/

0@
ˇ

wi wj

1A
with �r .˛ˇ

�1/D t�1q�2 j̨ and sign.˛ˇ�1/D�1. Indeed, we suppose that the drawing
is empty everywhere outside the parentheses besides the red handles ˛ and ˇ that join
the basepoint � in the boundary. We suppose also that ˛ and ˇ follow exactly the same
paths outside parentheses. This allows us to draw the braid ˛ˇ�1 in Figure 3.

wi wj
w0

a b

wi wjw0 a b

: : :

: : :

Figure 3: The braid ˛ˇ�1.
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The figure continues outside of the box but, as the path to the basepoint is the same
for ˛ and ˇ, the path of the upper box is the inverse of the lower one. As the local
system is abelian, the out box parts of the braid won’t contribute to �r .˛ˇ

�1/ (nor to
sign.˛ˇ�1/). Considering the definition of �r (Definition 2.5), one sees that the local
system coordinate of the above path is t�1q�2 j̨ and so is the one of ˛ˇ�1.

One should also notice that the signature of the braid is .�1/e.t/, where e.t/ is the
exponent of t in the local coefficient. This last remark is equivalent to the following
very useful remark for what follows:

sign.˛ˇ�1/�r .˛ˇ
�1/D �r .˛ˇ

�1/jtDt;

where t WD �t . This will be extensively used in all following computations.

We reformulate the compressing trick used in the proof of Proposition 3.6 in a local
version.

Proposition 4.3 (compressing trick) Let Dp � Dn (and D0
p � Dn, respectively)

be a topological punctured disk with punctures wn1
; : : : ; wnp

and ni 2 f1; : : : ; ng

for i D 1; : : : ;p (resp. D0
p contains also w0). Let Xr .Dp/ (resp. Xr .D

0
p/) be the

space of configuration of r points inside Dp (resp. D0
p). Let D0p (resp. D0

0
p) be an

�–neighborhood of a segment in Dp (resp. D0
p) joining the points wn1

; : : : ; wnp
(resp.

having an end in w0) and contained in the real axis , with � small enough to have
D0p �Dp. Then the morphisms

H�.Xr .D
0
p//!H�.Xr .Dp//

and
H�.Xr .D

00
p/;Xr .D

00
p/
�/!H�.Xr .D

0
p/;Xr .D

0
p/
�/

induced by inclusion are isomorphisms (the module Xr .D
00
p/
� stands for configurations

with one point inw0). All the homology modules are Borel–Moore ones (or equivalently
of locally finite chains) and considered with coefficients in the local system Lr restricted
to the space of interest , so we omit it in the notation.

Proof The proof is exactly the same as the one of (3) being an isomorphism, in the
proof of Lemma 3.7, but performed inside Dp (resp. D0

p).

Proposition 4.4 (combing process) Let M D M.D
k1

1
; : : : ;D

kd

d
/ be a class asso-

ciated with a drawing made of disjoint dashed arcs D1 indexed by k1, D2 indexed
by k2 and so on , all of them related to the basepoint � by red handles. Suppose the
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.k1/–handle reaches D
k1

1
in a point x. Let D

k1

1
DD�

1
[x DC

1
be a subdivision of the

arc D1 following its orientation. Let D be an arc joining x to some w 2 fw0; : : : ; wng

and such that D is disjoint from all the D
k1

i ’s. Let l 2 f0; : : : ; k1g, and M l be the class
obtained from M by modifying its drawing by

M l
DM..D�1 ?D/l ; .D�1 ?DC

1
/k1�l ;D

k2

2
; : : : ;D

kd

d
/;

so that the initial arc D1 is divided into two , one indexed by l and the other one by
k1 � l . Handles are preserved from M, except for the .k1/–handle , which is divided
into two: one .l/–handle joining .D�

1
? D/l in x and one .k1�l/–handle joining

..DC
1
?D/�1/k1�l in x. There is the homological relation

M D

k1X
lD0

M l :

(See Examples 4.5 and 4.6 of such combing, which should help the understanding of
the statement.)

Proof Suppose the class M DM.D
k1

1
/ is made of only one dashed arc. Let

�k1 W�k1 !Xk1
; .t1; : : : ; tk1

/ 7! f�.ti/ j i D 1; : : : ; k1g;

be the chain naturally associated with the index k1 dashed arc of the considered class,
where � is a parametrization of Dk1 . We subdivide the simplex: for l 2 f0; : : : ; k1g let
�k1;l be defined as

�k1;l D f.t1; : : : ; tk1
/ 2�k

j tl < �
�1.x/ < tlC1g;

whose image by �k1 corresponds to configurations for which the handle together with D

arrives between the images of tl and tlC1. Let �k1;l be the restriction of �k1 to �k1;l .
Let

ht W I !Dn

be an isotopy (rel endpoints) sending the arc Dk1 to the right one of Figure 4 (arcs
oriented from left to right).

!

D
k1

1

Figure 4: The isotopy ht .
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For all t in I, let �k1

t be the map

�
k1

t W�
k1 !Xk1

; .t1; : : : ; tk1
/ 7! fht ı�.ti/ j i D 1; : : : ; k1g;

and let �k1;l
t be the map

�
k1;l
t W�k1;l !Xk1

; .t1; : : : ; tk1
/ 7! fht ı�.ti/ j i D 1; : : : ; k1g;

namely the restriction to �k1;l . Let Œ�k1

t � and Œ�k1;l
t � be the corresponding chains. One

notes that �k1;l
0
D �k1;l and �k1

0
D �k1 . In terms of chains, we have, for all t 2 I,

Œ�
k1

t �D
X

l

Œ�
k1;l
t �I

this is because f�k1;l j l D 0; : : : ; k1g is a subdivision of �k1 . For t D 0, this chain is
Œ�k1 �, while, for t D 1, terms of the sum are Borel–Moore cycles homologous to M l .
This shows that Œ�k1 � and

P
l M l are homotopic, so the relation M D

Pk1

lD0
M l holds

in Hlf
r .Xr ;X

�
r ;Z/. Then the lifting process is unchanged as handles are preserved.

This proves the proposition for a class composed by one dashed arc, and it generalizes
to all classes with disjoint dashed arcs, as only the first component is involved in the
combing.

Two examples of combings that will be used many times follow next.

Example 4.5 (breaking a plain arc) By considering a path joining the red handle
to wi , one can check the relations between homology classes (all arcs oriented from
left to right)0BBB@

� � �

P�
1 P

C

1

w0

wiC1wi

1CCCAD
0BBB@

� � �

P�
1

P
w0

wiC1wi

1CCCAC
0BBB@

� � �
P�1

P
C

1

w0

wiC1wi

1CCCA

D

0BBB@
� � �w0

wiC1wi

1CCCAC
0BBB@

� � �w0

wiC1wi

1CCCA ;
where drawings are the same outside boxes. To obtain the second line we have applied
small isotopies without changing the homology class. One notes that, before the small
isotopies are applied, handles are unchanged.
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Example 4.6 (breaking a dashed arc) By considering a path joining the red handle
to wi one can check the relations between homology classes0BB@ k

w0 wjwi

1CCAD kX
lD0

0BBB@ l
k � l

w0

wiC1wi

1CCCA ;
where the drawings are the same outside boxes.

4.2 Diagram rules

We use homology techniques presented in the previous section to set diagram rules
between homology classes. These rules expressed with coefficients in the ring Rmax

involve quantum numbers that we introduce now.

Definition 4.7 Let i be a positive integer. We define elements of ZŒt˙1��Rmax,

.i/t WD .1C t C � � �C t i�1/D
1�t i

1�t
; .k/t ! WD

kY
iD1

.i/t ;
�k

l

�
t
WD

.k/t !

.k � l/t ! .l/t !
:

Notation In what follows we will use extensively the variable �t instead of t , so we
fix notation for it,

t WD �t:

Notation Since we work with Borel–Moore homology with local coefficients, one
can think of it as the complex

H�.Xr ; .Xr nA�/[X�r ILr /

for a small �, with A� defined as in the proof of Proposition 3.6. A dashed arc indexed
by k > 1 corresponds to an embedding of k points (a k–simplex) inside the arc.

As the order of points does not matter — working in Xr — one can think of the dashed
arc as in Figure 5.

D

wi

: : :

M1 M2 wj
Mk

k wjwi
Mk�1

Figure 5: Dashed arc model.
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On the left side, we see a standard piece of an element of U and, on the right side, one
can think of this element as the image of one point by the embedding

�k
! Œwi ; wj �;

where Mi is the image of ti , the i th coordinate of �k . The Mi are represented by gray
boxes to keep in mind that we work relatively to Xr nA�. Every point is lifted to the
maximal abelian cover ( yXr ) using the red handle reaching it. A first diffeomorphism
of Dn has been applied, allowing one to imagine this picture with wi facing wj . This
diffeomorphism does not change homology classes.

The above picture will be useful to deal with the proof of the following crucial homo-
logical relations, showing a first appearance of quantum numbers.

Lemma 4.8 Let k > 1 be an integer. The following equalities hold in Hrel�
�

:0B@ kwi wj

1CAD .kC 1/t

0B@ kC 1
wi wj

1CA ;
0B@ kwi wj

1CAD .kC 1/t�1

0B@ kC 1
wi wj

1CA ;
0B@ k
wi wj

1CAD .kC 1/t

0B@ kC 1
wi wj

1CA ;
0B@ k
wi wj

1CAD .kC 1/t�1

0B@ kC 1
wi wj

1CA ;
where we suppose that the classes are the same everywhere outside parentheses , with
red handles joining the same basepoints and following the same paths.

Proof We prove the first equality; the last three correspond to symmetric situations so
they are proved similarly. The idea of the proof is an application of the compressing
trick from Proposition 4.3, which consists in applying a homotopy compressing the disk
until points cannot approach each other vertically anymore without meeting. Namely,
let D be the disk depicted in the parentheses. While compressing D to an open �

2
–

neighborhood D0 of .wi ; wj /, the plain arc from the top will approach the dashed arc.

Geometry & Topology, Volume 26 (2022)



1248 Jules Martel

k wjwi
D

kC1X
iD1

: : : : : :

M1 Mi�1

wi

Mk

wj

Mi

M

Figure 6: Homological relation.

As we work in Borel–Moore homology, so relatively to Xr nA� for a small �, at some
points the point lying on the plain arc will cut the dashed arc to put its �–neighborhood
in. As there are k points lying on the dashed arc, there are kC 1 possibilities of cuts
(between .w0;M1/; .M1;M2/; : : : ; .Mk�1;Mk/ or .Mk ; wj /). The situation may be
summed up as the equality of Figure 6. In the figure, we distinguish the point M from
the plain arc coming between Mi�1 and Mi in the sum.

To be more precise, let �k be the chain

�k
!Xk

associated with the index k dashed arc. Let  W I !Dn be the one associated with the
plain one. Then

‰ D f ; �k
gW I ��k

!XkC1

is the chain associated with the left object of the equality we are studying. For i D

1; : : : ; kC 1, let �i be

�i D f.t; t1; : : : ; tk/ 2 I ��k
j ti�1 < t < tig

and ‰i be the restriction of ‰ to �i . In terms of chains we have

Œ‰�D
X

i

Œ‰i �;

as the set f�i j i D 1; : : : ; kC1g is a subdivision of I��k . Every�i is naturally home-
omorphic to the standard simplex �kC1, but it involves a permutation of coordinates
in the parametrization of the simplex

�i W .t; t1; : : : ; tk/ 7! .t1; : : : ; ti�1; t; ti ; : : : ; tk/;

where �i can be seen as an element of SkC1. By homotoping the plain arc to the
dashed one, one obtains a homotopy from ‰i to �kC1 ı �i for all i 2 f1; : : : ; kC 1g,
considered as chains of Confk.Dn/. Then

Œ‰�D

kC1X
iD1

sign.�i/Œ�
kC1�D

kC1X
iD1

.�1/i�1Œ�kC1�:
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D t i�1 : : :

M1

wi
: : :

Mi�1 Mk

wj: : : : : :

M1 Mi�1

wi

Mk

wj

Mi

M

M

Mi

Figure 7: Local system relation.

This shows that the relation

(4)

 
k

wi wj

!
D

kC1X
iD1

.�1/i�1

�
kC 1

wi wj

�
holds in H.Xr ;X

�
r ;Z/. This can be seen as Figure 6 without handles. (A drawing

without handles corresponds to an unlifted homology class.)

Now it’s just a matter of reorganizing the handles in the elements of the sum in
Figure 6 to get a dashed arc model. Using the handle rule, one can check that for
i 2 f1; : : : ; kC 1g we have the equality of Figure 7 in the local system homology.

To see this, we draw the braid associated with this change of handle in Figure 8, so one
verifies its local coordinate to be t i�1 (as i � 1 red strands are passing successively in
front of the i th one).

Again, in the picture, one has to imagine that the red handles are going back to the
basepoint before and after this box following the same paths so that these parts do not
contribute to the local system coefficient. Now we can conclude0B@ kwi wj

1CAD kC1X
iD1

.�1/i�1t i�1

0B@ .kC 1/
wi wj

1CA ;
where the term t i�1 comes from what we’ve just noted and .�1/i�1 comes from (4).
This concludes the proof of the equality we were looking for, remembering the notation
tD�t .

w0

w0

wi

wi

wj

wj

: : :
: : :

Figure 8: Handle rule.
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fz2 D w1g

fz1 D w2g

fz2 D w2g

fz1 D w1g

a

b c

d

Figure 9: The square corresponding to the left term.

We study one simple example for illustrating the above lemma.

Example 4.9 Let’s study the case k D 1 of the above lemma, which gives

(5)

0B@ w1 w2

1CAD .1� t/

0B@ 2
w1 w2

1CA :
Let’s first consider the case t D q˛1 D q˛2 D 1 consisting in working with Z–homology,
namely without considering the cover. As t D 1, the above relation becomes�

w1 w2

�
D 0:

The left term corresponds to an embedding of a square in Conf2.D2/ (considering
only two punctures w1 and w2 in the disk), itself defining a cycle in X2 and a class
in Hlf

2.X2IZ/. This square is represented in Figure 9, where points a, b, c and d are
respectively .w1; w1/, .w1; w2/, .w2; w2/ and .w2; w1/, and gray tubes are parts of
hyperplanes (equations written in the figure). The arrows recall the orientation of
embedded intervals.

The red dashed diagonal serves to help the reader figuring out how to decompose the
square as the gluing of two simplices. These two simplices are identified after taking
the quotient by the permutation group but with opposite orientations, which justifies
that this chain is zero, so it is as a homology class. Now we remove the conditions
t D q˛1 D q˛2 D 1, and we go back to (5). Now a, b, c, d and the hyperplanes from
Figure 9 are lifted to 4Conf2.D2/, the cover associated with �2. In Figure 10, the square
from Figure 9 is seen from another side, so as to make the hyperplane fz1D z2g appear.
More precisely, Figure 9 can be thought as a top view of Figure 10.
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fz1 D z2g

a

c

dd

Figure 10: The square corresponding to the left term.

The isotopy crashing the plain arc on the dashed arc in the proof of the above Lemma 4.8
corresponds to an isotopy crashing the dashed surface from Figure 10 on the ground
square (containing the hyperplane fz1 D z2g). Figure 11 shows a movie of such an
isotopy viewed from the top.

The red circle shows where the path corresponding to red handles arrives. The last step
of the movie shows the sum of two simplices glued from either side of the hyperplane
fz1D z2g. The red tube shows how the red handle path has to bypass this hyperplane (in-
volving the t coefficient). All this isotopy happens in 4Conf2.D2/. Working in X2, upper
and lower simplices are identified (with different lifts and orientation), so that in yX2 the
end of the isotopy as given in Figure 12 is a class in Habs

2
. This is the right term of (5).

From Lemma 4.8 we deduce several corollaries. A first straightforward consequence
of Lemma 4.8 is the following:

Corollary 4.10 Let k > 1 be an integer; the following equality holds in Hrel�
�

:0BB@ ...

k

wi wj

1CCAD .k/t!

0B@ k
wi wj

1CA :

! !

a

b c

d

Figure 11: The movie of the isotopy.
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.1� t/

Figure 12: The end of the isotopy considered in Habs
2 .

Proof The proof is by recursion on k. The recursion property is given by Lemma 4.8.

Lemma 4.8 also allows one to compute the fusion between two dashed arcs.

Corollary 4.11 For integers k; l > 1, there is the following relation between classes:0BB@ k

l

wi wj

1CCAD �kCl

l

�
t

0B@ .kC l/
wi wj

1CA :
Proof The two following equalities are direct consequences of Lemma 4.8:

.k/t! .l/t!

0BB@ k

l

wi wj

1CCAD
0BB@ ...

kCl

wi wj

1CCA

D .kCl/t!

0B@ kCl
wi wj

1CA :
One concludes using the integral equality

.kC l/t!D .k/t! .l/t!
�kCl

l

�
t

and simplification by .k/t! .l/t! .

4.3 Basis of multiarcs

We recall that A0 and U are respectively families of code sequences and of multiarcs,
and that U was shown to be a basis of Hrel�

r as an Rmax–module; see Corollary 3.9.
We prove a proposition relating multiarcs with code sequences.
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Proposition 4.12 Let k 2 E0
n;r . There is the following expression for the standard

multiarc in terms of code sequences:

A0.k0; : : : ; kn�1/

D

kn�1X
ln�1D0

kn�2Cln�1X
ln�2D0

� � �

k1Cl2X
l1D0

� n�2Y
iD0

�
ki C liC1

liC1

�
t
U.k 00; k

00
1 ; : : : ; k

00
n�2; k

0
n�1/

�
;

where k 0
0
D k0C l1, k 0

n�1
D kn�1� ln�1 and k 00i D kiC liC1� li for i D 1; : : : ; n�2.

Proof Let k2E0
n;r and A0 be its associated multiarcs. We treat one by one the dashed

arcs of A0, starting with the one ending at wn, then the one ending at wn�1, and so on.
The first step is the following:0BBBBBBB@

� � �

kn�1

kn�2

w0

wnwn�1
1CCCCCCCA

D

kn�1X
ln�1D0

0BBBBBBB@
� � �

ln�1

kn�2

k 0
n�1

w0
wnwn�1

1CCCCCCCA

D

kn�1X
ln�1D0

�
kn�2C ln�1

ln�1

�
t

0BBBBBBBB@
� � �

kn�2C ln�1

k 0
n�1

w0
wnwn�1

1CCCCCCCCA
with k 0

n�1
D kn�1 � ln�1. The first equality is a breaking of a dashed arc; see

Example 4.6. The second equality is a direct application of Corollary 4.11. The
end of the proof is an iteration of this process. The next step is the following, with
k 0

n�2
D kn�2C ln�1:
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0BBBBBBB@
� � �

k 0
n�2

k0
n�1

kn�3

w0

wnwn�2
1CCCCCCCA

D

k0
n�2X

ln�2D0

0BBBBBBB@
� � �

k00
n�2

k0
n�1

kn�3ln�2

w0

wn
1CCCCCCCA

D

k0
n�2X

ln�2D0

�
kn�3C ln�2

ln�2

�
t

0BBBBBBB@
� � �

k00
n�2

k0
n�1

kn�3C ln�2

w0

wn
1CCCCCCCA
;

where k 00
n�2
D k 0

n�2
� ln�2. A complete iteration of this process gives the formula of

the proposition.

By looking at the diagonal terms of the matrix expressing multiarcs in the code sequence
basis, one gets the following corollary:

Corollary 4.13 (basis of multiarcs) The family A0 of multiarcs is a basis of Hrel�
r as

an Rmax–module.

Proof Let E0
n;r be given the lexical order. This yields an order on the families A0 and U.

One can see from Proposition 4.12 that, with this order, the matrix expressing multiarcs
in the code sequence basis is upper-triangular. The determinant of this matrix is given
by the product of diagonal terms. The diagonal terms are the binomial in the sum of
the formula from Proposition 4.12 corresponding to li D 0 for all i 2 f1; : : : ; n�1g. In
these cases, the binomials are equal to 1, so the determinant of the matrix is 1. As U is
a basis and the change of basis determinant is invertible, the proof is complete.

The family of multiarcs will play a central role in this work as it is a basis of the
homology thanks to this last result.
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5 Quantum algebra

This section is independent from the previous ones. We fix notation for quantum algebra
objects that will be recovered by the above introduced homological modules.

The most standard definition of the quantum algebra Uqsl.2/ is as a vector space over
a rational field.

Definition 5.1 The algebra Uqsl.2/ is the algebra over Q.q/ generated by elements
E, F and K˙1, satisfying the relations

KEK�1
D q2E; KFK�1

D q�2F; ŒE;F �D
K�K�1

q� q�1
; KK�1

DK�1KD 1:

The algebra Uqsl.2/ is endowed with a coalgebra structure defined by � and � by

�.E/D 1˝ECE˝K; �.F /DK�1
˝F CF ˝ 1;

�.K/DK˝K; �.K�1/DK�1
˝K�1;

�.E/D �.F /D 0; �.K/D �.K�1/D 1;

and an antipode is defined by

S.E/DEK�1; S.F /D�KF; S.K/DK�1; S.K�1/DK:

This provides a Hopf algebra structure (neither commutative nor cocommutative), so
the category of modules over Uqsl.2/ is monoidal; namely, there is a natural action
over tensor products of modules given by the coproduct.

Remark 5.2 (specialization issue) The specialization process of the parameter q is
algebraically the following. Let � 2C be a complex number. By specialization of q to
the parameter � , one considers the morphism

eval WQ.q/!C; q 7! �;

and the complex vector space

U� DC˝eval Uqsl.2/:

By working with q as a variable, one can encounter problems — if � is not transcendental,
for instance. To define quantum topological invariants from Uqsl.2/–modules, we are
sometimes interested in q being a root of unity, for which the ground ring Q.q/ is not
appropriate.

The above remark justifies the definition of integral versions for Uqsl.2/, the aim of
next subsection.
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Definition 5.3 (integral version [5, Section 9.2]) Let R0 D ZŒq˙1� be the ring of
Laurent polynomials in the single variable q. An integral version for Uqsl.2/ is an
R0–subalgebra UR0

of Uqsl.2/ such that the natural map

UR0
˝R0

Q.q/! Uqsl.2/

is an isomorphism of Q.q/–algebras.

Then, for � 2C�, the specialization of UR0
to � means the vector space

U� DC˝eval UR0
with eval WR0!C:

We introduce another version of quantum numbers. We will relate them to those from
Definition 4.7 in Remark 6.1.

Definition 5.4 Let i be a positive integer. We define elements of ZŒq˙1�,

Œi �q WD
qi � q�i

q� q�1
; Œk�q! WD

kY
iD1

Œi �q;
hk

l

i
q
WD

Œk�q!

Œk � l �q! Œl �q!
:

5.1 An integral version

In this section, we define an integral version for Uqsl.2/ that will be central for the
present work. This integral version is similar to the one introduced by Lusztig [19].
The difference is that we consider only the divided powers of F as generators, not those
of E. This version is introduced in [10; 12] (with subtle differences in the definitions
of divided powers for F ). We follow the one of [12], so we first define the divided
powers, presenting a minor difference from the original ones of Lusztig. Let

F .n/ D
.q� q�1/n

Œn�q!
Fn:

Let R0 D ZŒq˙1� be the ring of integral Laurent polynomials in the variable q.

Definition 5.5 (half-integral algebra [10; 12]) Let U
L=2
q sl.2/ be the R0–subalgebra

of Uqsl.2/ generated by E, K˙1 and F .n/ for n2N�. We call it a half-integral version
for Uqsl.2/, the word “half” to illustrate that we consider only half the divided powers
as generators.
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Remark 5.6 (relations in U
L=2
q sl.2/ [12, (16)–(17)]) The relations among generators

involving divided powers are

KF .n/K�1
D q�2nF .n/;

ŒE;F .nC1/�D F .n/.q�nK� qnK�1/;

F .n/F .m/ D
hnCm

n

i
q
F .nCm/:

Together with the relations from Definition 5.1, they complete the presentation of
U

L=2
q sl.2/.

U
L=2
q sl.2/ inherits a Hopf algebra structure, making its category of modules monoidal.

The coproduct is given by

�.K/DK˝K;

�.E/DE˝KC 1˝E;

�.F .n//D

nX
jD0

q�j.n�j/Kj�nF .j/˝F .n�j/:

Proposition 5.7 The algebra U
L=2
q sl.2/ admits as an R0–basis the set

fKlEmF .n/ j l 2 Z; m; n 2Ng:

5.2 Verma modules and braiding

Now we define a special family of universal objects in the category of Uqsl.2/–modules,
we express their presentation in the special case of U

L=2
q sl.2/ and we give a braiding for

this family of modules. Namely, the Verma modules are infinite-dimensional modules
which have a universal (among quantum groups) definition, and which depend on a
parameter. Again, we work with this parameter as a variable with an integral ring,
letting R1 WD ZŒq˙1; s˙1�. In [12], they give an explicit presentation for the integral
Verma module of U

L=2
q sl.2/, which we recall here.

Definition 5.8 (Verma modules for U
L=2
q sl.2/ [12, (18)]) Let V s be the Verma

module of U
L=2
q sl.2/. It is the infinite R1–module, generated by vectors fv0; v1; : : : g,

and endowed with an action of U
L=2
q sl.2/, generators acting as

K � vj D sq�2jvj ;

E � vj D vj�1;

F .n/vj D

�hnCj

j

i
q

n�1Y
kD0

.sq�k�j
� s�1qjCk/

�
vjCn:
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Remark 5.9 (weight vectors) We will often make implicitly the change of variable
s WD q˛ and denote V s by V ˛. This choice is made to use a practical and usual
denomination for eigenvalues of the K–action (which is diagonal in the given basis).
Namely, we say that the vector vj is of weight ˛ � 2j , as K � vj D q˛�2jvj . The
notation with s shows an integral Laurent polynomials structure, strictly speaking.

Definition 5.10 (R–matrix [12, (21)]) Let sDq˛ and tDq˛
0

. The operator qH˝H=2

is
qH˝H=2

W V s
˝V t

! V s
˝V t ; vi ˝ vj 7! q.˛�2i/.˛0�2j/vi ˝ vj :

We define the R–matrix (see [13, Part 2] for general definitions)

R WD qH˝H=2
1X

nD0

qn.n�1/=2En
˝F .n/:

It is not yet a well-defined object as the sum is infinite, but it will be well defined as an
operator on Verma modules; see the following proposition (the sum always cuts off
when applied to tensor product of Verma vectors).

Proposition 5.11 [12, Theorem 7] Let V s and V t be Verma modules of U
L=2
q sl.2/

(with s D q˛ and t D q˛
0

). Let R be the operator

R WD q�˛˛
0=2T ıR;

where T is the twist defined by T .v˝w/D w˝ v. Then R provides a braiding for
U

L=2
q sl.2/ integral Verma modules. Namely, the morphism

Q WR1ŒBn�! EndR1;U
L=2
q sl.2/

.V s˝n
/; �i 7! 1˝i�1

˝R˝1˝n�i�2;

is an R1–algebra morphism. It provides a representation of Bn whose action commutes
with that of U

L=2
q sl.2/.

Remark 5.12 One can consider a braid action over V s1 ˝ � � � ˝ V sn , so that the
morphism Q is well defined but becomes multiplicative (ie an algebra morphism) only
when restricted to the pure braid group PBn, so as to be an endomorphism.

5.3 Finite-dimensional braid representations

Although braid group representations over products of Verma modules are infinite-
dimensional, we find finite-dimensional subrepresentations using the commutativity of
the braid action with the quantum structure.
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Remark 5.13 For r 2N:

� The subspace Wn;r DKer.K� snq�2r / of .V s/˝n provides a subrepresentation
of Bn.

� The subspace Yn;r DWn;r \Ker E �Wn;r provides a subrepresentation of Bn.

We usually call Wn;r the space of subweight r vectors, while Yn;r is called the space
of highest-weight vectors.

Using the definition of the coproduct, the following remark is easily checked:

Remark 5.14 (weight structure) The weight structure is determined by actions of
generators: the action of F .1/ sends an element in Wn;r to an element in Wn;rC1 while
the action of E sends an element in Wn;r to an element in Wn;r�1. Moreover, the
tensor product of Verma modules is graded by weights:

.V s/˝n
D

M
r2N

Wn;r :

Theorem 5.15 (irreducibility of highest-weight modules [12, Theorem 21]) The
Bn–representations Yn;r are irreducible over the fraction field Q.q; s/.

6 Homological model for U
L=2
q sl.2/ Verma modules

In this section we recover quantum algebra representations in homological modules.

6.1 Homological action of U
L=2
q sl.2/

We recall the scheme for the Verma module grading that is explained in Remark 5.14:

Wn;r Wn;rC1.

F .1/

E

The goal of this section is to construct homological operators E, K˙1 and F .k/ such
that they mimic the weight structure existing on quantum Verma modules. Namely, we
want homological operators to fit with the scheme

Hrel�
r Hrel�

rC1
.

F .1/

E
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The definitions for homological operators were inspired by [9]. In their article, the
authors define such operators acting upon a topological module built from configuration
space Xr . The fact that their module has a homological definition remains conjectural,
namely [9, Conjectures 6.1 and 6.2].

The following remark, relating the two types of quantum numbers we have introduced
in Definitions 4.7 and 5.4, will be useful for computations:

Remark 6.1 Let tD q�2; the following relations hold in ZŒq˙1�:

.i/t D q1�i Œi �q; .k/t!D q�k.k�1/=2Œk�q!;
�kCl

l

�
t
D q�kl

hkCl

l

i
q
:

6.1.1 Action of F .1/ and its divided powers We want the operator F .1/ to go from
Hrel�

r to Hrel�
rC1

; it has to increase by 1 the degree of a chain while passing from Xr

to XrC1 for the topological space. By extension, we will build operators F .k/ for
k > 1 going from Hrel�

r to Hrel�
rCk

. We define them using the family U shown to be an
Rmax–basis of the homology — it is not difficult to define the operator without a basis,
but it complicates notation.

Definition 6.2 (divided powers of F ) We define the family of homological operators

F .k/ WHrel�
r !Hrel�

rCk ;

U.k0; : : : ; kn�1/ 7! qk.1�k/=2qk
Pn

iD1 ˛i

0BBBBB@ � � �
k0 kn�1

w0 w1 wn

k
1CCCCCA :

Remark 6.3 � In terms of homology classes with coefficients in Z, involved by
the union of dashed arcs corresponding to a product of simplexes, the operator
F .k/ simply adds an index k dashed arc that goes once around the boundary in
counterclockwise direction.

� For the local coefficient definition, we chose to simplify the drawing by adding
a straight handle, but it costs a coefficient qk

Pn
iD1 ˛i that one can remove using

another more complicated family of handles. We will work with the simpler
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drawing and will add the coefficient ad hoc in the following computations, so
we define an intermediate operator

.F 0/.k/ WHrel�
r !Hrel�

rCk ; U.k0; : : : ; kn�1/ 7!

0BBBBB@ � � �
k0 kn�1

w0 w1 wn

k
1CCCCCA ;

such that F 0.k/ D qk.1�k/=2qk
Pn

iD1 ˛i F .k/.

The following proposition justifies the divided powers denomination:

Proposition 6.4 (divided powers of F ) There is the relation between elements of
HomRmax.Hrel�

r ;Hrel�
rCk

/,

.F .1//k D qk.k�1/=2.k/t! F .k/:

Let tD q�2; then
.F .1//k D Œk�q! F .k/:

Proof This is a direct consequence of the equality of classes0BBBBBBBBB@
w0 � � �k

1CCCCCCCCCA
D .k/t!

0BBBBBB@ w0

k
1CCCCCCA ;

which can be proved as Corollary 4.10, and whatever stands inside the circles. On
the right, there are k parallel arcs rounding along the boundary counterclockwise,
while on the left there is one dashed arc rounding along the boundary. This shows
that F 0k D .k/t! F 0.k/, and the first statement follows. To get the second equality, for
tD q�2 one uses directly Remark 6.1.

6.1.2 Actions of E and K To define the action of E 2 HomRmax.Hrel�
r ;Hrel�

r�1
/, we

need a way to remove one configuration point. This is the purpose of the morphisms
defined next:
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Definition 6.5 � Let  r be the homeomorphism

 r
WXr nX�r !X�rC1; Z 7!Z [w0; �r

7! f�1; : : : ; �r ; w0g:

�  r induces

 r
� W �1.Xr nX�r ; �

r /! �1.X
�
rC1; f�

r ; w0g/:

We provide a natural way to transport the basepoint on the right to �rC1, namely
we move w0 along @Dn through a path 'r defined as

'r
W I !XrC1; t 7! 'r .t/D f'1.t/; �r ; : : : ; �1g;

where '1 goes from �rC1 to w0 along @Dn in the clockwise direction, while
other coordinates remain fixed in �r .

� We then let ˆr be the composition of the above  r
� with the morphism induced

by the change of basepoint through conjugation by 'r ,

ˆr
W �1.Xr nX�r ; �

r /! �1.XrC1; �
rC1/:

In what follows we will often omit the indices r in 'r , �r and ˆr , to simplify notation
when no confusion is possible.

Lemma 6.6 The morphism ˆr lifted to the local system level ,

ˆr
WLr �Xr nX

�
r
!LrC1�X�

rC1
;

is an isomorphism of local systems.

Proof The underlying spaces are homeomorphic through  (addition of w0). Let �r

be the representation of �1.Xr ; �
r / providing the local system Lr . The diagram

�1.Xr nX�r ; �
r / �1.XrC1; �

rC1/

ZnC1 D
L

i2f1;:::;ngZhq
˛i i˚Zhti

L
i2f1;:::;ngZhq

˛i i˚Zhti

ˆr

�r �rC1

Id

is commutative, which proves the lemma. The commutation is easy to verify, thinking
of the representation of �1.Xr nX�r ; �

r / given in Remark 2.2. The morphism ˆr

simply adds a straight strand to the braid, without modifying its image by �r .
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Remark 6.7 We formulate the above Lemma 6.6 for homologies. In other words, the
choice of path ' in Definition 6.5 yields the isomorphism

ˆr
W Hlf

r .Xr nX�r ILr /! Hlf
r .X

�
rC1ILrC1/:

Let an element in Hlf
r .Xr nX�r ILr / be given by a pair .Œ��; h/, where Œ�� is the class

of a chain in Hlf
r .Xr nX�r IZ/ and h a path relating �r to � (the case of interest). Then

its image by ˆr is determined by the pair
�
Œf�;w0g�; fh; w0g ı '

r
�
. One must pay

attention to the fact that the isomorphism between homologies depends on the choice
of ', as does the operator E defined in Definition 6.9 below.

Remark 6.8 Recall that

Hr�1.Xr�1 nX�r�1ILr�1/DHr�1.Xr�1.w0/ILr�1/DHrel�
r�1;

where Xr .w0/ is the space of configurations of Xr without coordinate in w0. The first
equality is the fact that Xr�1 nX�

r�1
and Xr�1.w0/ are canonically homeomorphic.

The second one is Corollary 3.9.

From this identification one is able to define an operator E as in the following definition:

Definition 6.9 (action of E) Let E be the operator defined by

E WHrel�
r

@�
�!Hr�1.X

�
r ILr /

.ˆr /�1

�����!Hr�1.Xr�1 nX�r�1ILr�1/DHrel�
r�1 :

The arrow @� is the boundary map of the exact sequence of the pair .Xr ;X
�
r /. The

arrow .ˆr /�1 is the inverse isomorphism provided by Lemma 6.6 (see Remark 6.7)
and the last equality is the above Remark 6.8.

Remark 6.10 The definition of E is the boundary map of the relative exact sequence
of the pair involved; the rest are just isomorphic identifications of homology modules.
Namely, the operator E reads the part of the boundary that lies in X�r .

We give a first example of a computation with a standard code sequence.

Example 6.11 (action of E on a code sequence) Let kD .k0; : : : ; kn�1/ 2E0
n;r and

Uk be its associated standard code sequence. One can check that

E �Uk D U.k0� 1; : : : ; kn�1/:

Consider first U.k0; 0; : : : ; 0/ and let �k0 be the chain associated with the index k0

dashed arc. We recall our parametrization of the standard simplex,

�k0 D f0� t1 � � � � � tk0
� 1g;
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so that its only boundary part sent to configurations with one coordinate in w0 is
ft1 D 0g 2�k . We note that �k0 restricted to ft1 D 0g is �k0�1 (the chain associated
with same dashed arc but indexed by k0 � 1), by shifting left the parametrization:
.0; t2; : : : ; tk0

/ 7! .t2; : : : ; tk0
/ (which does not involve any permutation which could

change orientation). Consequently, one sees that the equality holds at the level of
homology over Z.

To deal with the handle rule lifting process, we note that only the leftmost configuration
point embedded in U.k0; : : : ; kn�1/ can join w0. This is saying that the only part of
the boundary of U.k0; : : : ; kn�1/ lying in X�r corresponds to the leftmost point being
in w0. No local coefficient appears while applying .ˆr /�1 (Lemma 6.6) thanks to the
fact that the handle joining the leftmost configuration point is the leftmost handle, and
it joins �r , namely the leftmost basepoint’s coordinate. Another way to see this is by
noting that the path following the leftmost handle, then going tow0 along Uk , then back
to �r along the boundary, can be homotoped to w0 without perturbing other handles.
In other words, composition (of the path corresponding to red handles) with the inverse
of the path 'r (Definition 6.5) does not involve any change of local coordinate.

The action of the operator K is a diagonal action encoding the value of r .

Definition 6.12 (action of K) For r 2N, the operator K is the diagonal action, over
Hrel�

r ,
K D q

P
i ˛i tr IdHrel�

r
:

We define the operator K�1 to be the inverse of K.

6.1.3 Homological Uqsl.2/ representation Let HD
L

r2N Hrel�
r ; the actions of

E, F .1/ and K are endomorphisms of H. We have the following proposition:

Proposition 6.13 The operators E, F .1/ and K satisfy the relations

KE D t�1 EK; KF .1/ D t F .1/K and ŒE;F .1/�DK�K�1:

Proof The first two relations are direct consequences of the facts that F .1/ increases r

by 1 and E decreases it by 1 and the (diagonal) definition of K. It remains to prove the
last one. The proof can be performed without considering a basis of H, although we do
it here using the basis of code sequences for easier reading. Let r 2N; we recall that
UD .Uk/k2E0

n;r
is a basis of Hrel�

r as an Rmax–module. Let kD .k0; : : : ; kn�1/2E0
n;r .
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First we compute the commutation between E and F 0 before renormalizing F 0 to F .1/.
The class F 0 � .Uk/ corresponds to

F 0.1/ �Uk D
� � �

k0 k1 kn�1
w0

w1 w2 wn�1 wn

�rC1 �2 �1

� � �
@Dn

Applying E to this class gives the part of its boundary lying in X�r . There are r C 1

points embedded in this class, r of them in the dashed arcs and the last one in the plain
arc. The part of the boundary lying in X�r is the sum of

� the leftmost point of dashed arcs going to w0 (ie given by one boundary compo-
nent from the simplex defined by the leftmost dashed arc, the image of ft1 D 0g,
where t1 is the first parameter of the latter simplex), and

� the two boundary parts corresponding to “back and front faces” parametrized by
the plain arc (the image of ft D 0g and ft D 1g, where t is the coordinate sent to
the plain arc).

This corresponds to the equality

E �

0BBBBBBB@
� � �k0 kn�1

w1 wn�1 wn

1CCCCCCCA

D

0BBBBBBB@
� � �k0� 1 kn�1

w1 wn�1 wn

1CCCCCCCA
CC �U.k0; : : : ; kn�1/;

Geometry & Topology, Volume 26 (2022)



1266 Jules Martel

where the coefficient C is the computation of the relative boundary part coming from
the plain arc. One sees that0BBBBBBB@

� � �k0� 1 kn�1

w1 wn�1 wn

1CCCCCCCA
D F 0 � .E �U.k0; : : : ; kn�1//

using Example 6.11. We also mention that this term is zero if k0 D 0. This gives

ŒE;F 0� �U.k0; : : : ; kn�1/D C �U.k0; : : : ; kn�1/;

so it remains to compute the coefficient C. The coefficient C is the difference C1�C2,
where C1 and C2 satisfy the equations0BBBBBBB@

� � �k0 kn�1

w1 wn�1 wn

1CCCCCCCA
D C1

0BBBBBBB@
� � �k0 kn�1

w1 wn�1 wn

1CCCCCCCA
;

0BBBBBBB@
� � �k0 kn�1

w1 wn�1 wn

1CCCCCCCA
D C2

0BBBBBBB@
� � �k0 kn�1

w1 wn�1 wn

1CCCCCCCA
:

This is by the same handle argument as in Example 6.11 (application of the path
'�1 from Definition 6.5). We compute these coefficients using the handle rule. The
coefficient C1 corresponds to the local system coefficient of the braid

w0

w0

w1

wn

wn�1

wn�1

wn

wn

k0 kn�1: : :

: : :
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while C2 corresponds to the same braid but with the red front strand passing in the
back. We emphasize that in the braid picture we got rid of parts of red handles lying
outside parentheses. Outside the parentheses, the paths consist in going to the basepoint
without crossing each other, staying in front of the wi , so that, above and below the
box, the contributions to the handle local system coefficient balance each other. Then
it is straightforward to compute the local system coefficient of these braids; we get

C1 D t
Pn�1

iD0 ki D tr ; C2 D t�r q�2
Pn

iD1 ˛i ;

so that

ŒE;F 0� �U.k0; : : : ; kn�1/D .tr
� t�r q�2

Pn
iD1 ˛i /�U.k0; : : : ; kn�1/:

We recall that
ŒE;F .1/�D q

P
˛i ŒE;F 0�;

which concludes the proof.

Theorem 1 Let q�2 D t. The infinite module H together with the above-described
action of E, F .1/, K˙1 and F .k/ for k � 2 yields a representation of the integral
algebra U

L=2
q sl.2/.

Proof The algebra U
L=2
q sl.2/ is presented in Definition 5.5. We use the same notation

(from Section 5.1) for generators and we recover the same relations. Namely, the
relations between E, F .1/ and K˙1 are recovered using Proposition 6.13, while the
fact that F .k/ are the so-called divided powers of F .1/ — see Proposition 6.4 — ensures
that the relations involving them hold.

Remark 6.14 Even if it is not necessary to prove them knowing Proposition 6.4
(divided power property), we can check homologically the relations involving the
divided powers of F .1/ (relations introduced in Remark 5.6). Namely,

ŒE;F .nC1/�D F .n/.q�nK� qnK�1/

is a simple computation of the relative boundary of a class as in the proof of Proposition
6.13, while

F .n/F .m/ D
hnCm

n

i
q
F .nCm/

is a direct consequence of the homological Corollary 4.11.

We have a complete homological description of the relations holding in U
L=2
q sl.2/.
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Remark 6.15 Using Proposition 6.13, one sees that we have a representation of the
simply connected rational version of Uqsl.2/, for which are introduced generators
that correspond to square roots of K and K�1. See [6, Section 9; 1, Remark 2.2; 5,
Section 9.1] for information about this version of Uqsl.2/.

6.2 Computation of the U
L=2
q sl.2/–action

In this section we compute the action of the operators E, F .1/ and K in the basis of
multiarcs, in order to recognize the representation of Uqsl.2/ obtained over H. First
we define a normalized version of the multiarc basis.

Definition 6.16 (normalized multiarcs) Let k 2E0
n;r and let A.k0; : : : ; kn�1/ be the

element of Hrel�
r

A.k/D q˛1.k1C���Ckn�1/C˛2.k2C���Ckn�1/C���C˛n�1kn�1A0.k/:

Let AD .A.k//k2E0
n;r

be the corresponding family indexed by E0
n;r . By convention,

A.k0; : : : ; kn�1/ is defined to be 02Hrel�
r whenever kiD�1 for some i 2f0; : : : ; n�1g.

Remark 6.17 The family A is obtained from A0 by a diagonal matrix of invertible
coefficients in Rmax, so A is still a basis of Hrel�

r as an Rmax–module. As for the
definition of divided powers of F, we could have chosen to avoid the normalization
coefficient but would have to draw more complicated handles. In the following compu-
tations we will work with A0 drawings and add the coefficient ad hoc to work with the
family A.

We are going to compute the action of operators in this basis, and we will see that it
recovers the basis of U

L=2
q sl.2/ Verma modules.

6.2.1 Action of E First we need a lemma to reorganize handles.

Lemma 6.18 For .k0; : : : ; kn�1/ 2E0
n;r , let A0.k0; : : : ; kn�1/ be the standard multi-

arc. For i D 1; : : : ; n, there is the relation , in Hrel�
r ,0BBB@

� � � � � �
k0

kn�1
ki�1

w0

wnwi
1CCCAD tk0C���Cki�2

0BBB@
� � � � � �

k0

kn�1
ki�1

w0

wnwi
1CCCA ;

where , in the right term , only one component of the red tube indexed by ki has been
moved to the extreme left of the other red handles. Namely, only the leftmost handle
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composing the .ki/–handle (tube of ki parallel handles) has been pushed to the left
of the .k0/–handle. Down the parentheses , red handles join the basepoint following a
usual dashed box , without crossing with each other. The left class follows this box as in

� � �

@Dn

k0 k1 kn�1

�r �1

� � � � � � � � �
� � �

w0

w1 w2 wn�1 wn

while the right one has the leftmost single handle following the leftmost path of the
above dashed box. All other handles are right-shifted.

Proof This is a straightforward consequence of the handle rule. The braid involved is
drawn in Figure 13, so that one sees the local system coefficient (we did not draw the
punctures as they don’t play any role).

Lemma 6.19 For any kD .k0; : : : ; kn�1/ 2E0
n;r , the action of E over the standard

multiarcs is

E �A0.k0; : : : ; kn�1/D

n�1X
iD0

tk0C���Cki�1 A0.k0; : : : ; ki�1; ki � 1; kiC1; : : : ; kn�1/:

Proof The leftmost component of every dashed component of A0.k0; : : : ; kn�1/ has
one end in w0. For i D 1; : : : ; n� 1, we have, from the above lemma,

A0.k0; : : : ; kn�1/D

0BBBBBBB@
� � � � � �

k0

kn�1
ki�1

w0

wnwi
1CCCCCCCA

D tk0C���Cki�2

0BBBBBBB@
� � � � � �

k0

kn�1
ki�1

w0

wnwi
1CCCCCCCA
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w0

w0

ki�2k0 ki�1� 1

: : :

Figure 13: Handle rule.

Using exactly the same arguments as in Example 6.11, we have

@�

0BBBBBBB@
� � � � � �

k0

kn�1
ki�1

w0

wnwi
1CCCCCCCA
D

0BBBBBBB@
� � � � � �

k0

kn�1
.ki�1� 1/

w0

wnwi
1CCCCCCCA
C � � � ;

where the rest of the terms concern boundary terms coming from other arcs (different
from the ki�1–indexed one). Every dashed arc indexed by ki for i D 0; : : : ; n� 1 can
be treated the same way. The boundary of A.k0; : : : ; kn�1/ relative to w0 is then the
sum of these terms, and one gets the statement of the lemma.

One has the following action over the normalized multiarcs:

Proposition 6.20 (action of E over multiarcs) For any kD .k0; : : : ; kn�1/ 2E0
n;r ,

the action of E over the (normalized ) multiarc is

E �A.k0; : : : ; kn�1/

D

n�1X
iD0

q˛1C���C˛i tk0C���Cki�1 A.k0; : : : ; ki�1; ki � 1; kiC1; : : : ; kn�1/:

Proof This is a simple computation:

E �A.k0; : : : ; kn�1/

D q˛1.k1C���Ckn�1/C���C˛n�1kn�1

n�1X
iD0

tk0C���Cki�1 A0.k0; : : : ; ki � 1; : : : ; kn�1/

D

n�1X
iD0

q˛1C���C˛i tk0C���Cki�1 A.k0; : : : ; ki�1; ki � 1; kiC1; : : : ; kn�1/:

Geometry & Topology, Volume 26 (2022)



A homological model for Uqsl2 Verma modules and their braid representations 1271

We emphasize the action in the case of one puncture.

Corollary 6.21 (nD 1) Let nD 1 and k 2N, and A.k/ be the associated element
of H. Then

E �A.k/DA.k � 1/:

6.2.2 Action of F .k/ Let i 2 f1; : : : ; ng and Si be the class

Si D

0BBBBBBBBB@
� � � � � �

k0

ki

ki�1
kn�1

w0

wiC1wi wn

1CCCCCCCCCA
2Hrel�

r :

Namely, one recognizes a standard .k0; : : : ; kn�1/–multiarc to which a plain arc as
in the picture has been added. To compute the action of F .1/ we need the following
lemma, allowing us to deal with Si by recursion:

Lemma 6.22 For i 2 f2; : : : ; ng, the following equality holds in Hrel�
r :

Si D .ki C 1/t�1A0.k0; : : : ; ki C 1; kiC1; : : : ; kn�1/

� t�ki .ki�1C 1/tA0.k0; : : : ; ki�1C 1; ki ; : : : ; kn�1/C q�2˛i t�ki Si�1:

Proof By a breaking of a plain arc (see Example 4.5), one gets the decomposition

Si D

0BBBBBBBB@

� � � � � �
k0

ki

ki�1
kn�1

w0

wiC1wi wn

1CCCCCCCCA
C

0BBBBBBB@
� � � � � �

k0

ki

ki�1
kn�1

w0

wiC1wi wn
1CCCCCCCA
:

We treat both terms on the right independently. From the first one we get0BBBBBBBB@

� � � � � �
k0

ki

ki�1
kn�1

w0

wiC1wi wn

1CCCCCCCCA
D q�2˛i t�ki Si�1;

which follows from the handle rule.
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Again, to treat the second term, breaking the plain arc (Example 4.5) leads to0BBBBBB@
� � � � � �

k0

ki

ki�1
kn�1

w0

wiC1wi wn

1CCCCCCA

D

0BBBBBB@
� � � � � �

k0

ki

ki�1
kn�1

w0

wiC1wi wn

1CCCCCCA�
0BBBBBB@

� � � � � �
k0

ki

ki�1
kn�1

w0

wiC1wi wn

1CCCCCCA :

To decompose these two terms in the standard multiarc basis, one must apply Lemma 4.8
to crash a plain arc over a dashed one, after a simple application of the handle rule to
reorganize the handles of the right term. This recovers the lemma.

We use this lemma to compute the action of F .1/ in the multiarcs basis.

Lemma 6.23 Let kD .k0; : : : ; kn�1/ 2E0
n;r ; the action of F .1/ over the associated

standard multiarc is

F .1/�A0.k/D

n�1X
iD0

q
PiC1
jD1 j̨ q�

Pn
jDiC2 j̨ t�

Pn�1
jDiC1 kj.kiC1/t.1�q�2˛iC1 t�ki /A0.k/i ;

where A0.k/i means A0.k0; : : : ; ki�1; ki C 1; kiC1; : : : ; kn�1/.

Proof First, we compute the element F 0 �A0.k0; : : : ; kn�1/ of Hrel�
r . This corresponds

to the following class, for which we give a decomposition in Hrel�
r :0BBBBBB@

� � � � � �
k0

kn
ki

w0

wnwi

� � �

1CCCCCCA

D

0BBB@
� � � � � �

k0
knki

w0

wnwi
1CCCA�

0BBBB@
� � � � � �

k0

kn
ki

w0
wnwi

1CCCCA :
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This decomposition follows from a breaking of a plain arc (Example 4.5). The minus
sign is due to the reverse of the orientation of the right term’s plain arc. The first term
of the decomposition is in position to apply Lemma 4.8, while, after a handle rule, one
recognizes Sn�1 in the second term. Finally, we get

F 0 �A0.k0; : : : ; kn�1/D .kn�1C 1/tA0.k0; : : : ; kn�1C 1/� q�2˛nSn�1:

Thanks to the recursive property of Sn�1, the proof is achieved using Lemma 6.22, so
one gets

F 0 �A0.k/D

n�1X
iD0

q�2
Pn
jDiC2 j̨ t�

Pn�1
jDiC1 kj .ki C 1/t.1� q�2˛iC1 t�ki /A0.k/i :

By multiplication of the action by q
P
˛i , one obtains the expected action for F .1/ over

the multiarc basis.

Proposition 6.24 (action of F .1/ over multiarcs) Let k D .k0; : : : ; kn�1/ 2 E0
n;r ;

the action of F .1/ over the associated standard (normalized ) multiarc is

F .1/ �A.k/D

n�1X
iD0

q�
Pn
jDiC2 j̨ t�

Pn�1
jDiC1 kj q˛iC1.kiC1/t.1�q�2˛iC1 t�ki /A.k/i :

Proof This is a straightforward consequence of the previous lemma and of the nor-
malization sending the family A0 to A.

We emphasize again the case nD 1.

Corollary 6.25 (nD 1) Let nD 1 and k 2N, and A.k/ be the associated element
of H. Then

F .1/ �A.k/D q˛1.kC 1/t.1� q�2˛1 t�k/A.kC 1/:

We end this section by giving the action of the divided powers F .l/ but only in the case
of one puncture. We need the following remark:

Remark 6.26 We observe the relations between homology classes0BB@ k
w0 wi

1CCAD
0B@ k
w0 wi

1CA�
0B@ kw0 wi

1CA
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D ..kC 1/t� q�2˛i .kC 1/t�1/

0B@ kC 1
w0 wi

1CA
D .kC 1/t.1� q�2˛i t�k/

0B@ kC 1
w0 wi

1CA ;
where everything stands inside a small neighborhood of the picture, without perturbing
the rest of the class contained outside of it. The first equality comes from a breaking of
a plain arc; see Example 4.5. The second one is a consequence first of the application
of a handle rule to get vertical handles, and then relations from Lemma 4.8.

Proposition 6.27 (action of F .l/, n D 1) Let n D 1 and k 2 N, and A.k/ be the
associated element of H. Let l 2N; then

F .l/ �A.k/D q�l.l�1/=2ql˛1

�kCl

k

�
t

lY
mD0

.1� q�2˛1 t�m/A.kC l/:

Proof We have

.l/t! F 0.l/ �A.k/D .l/t!

0BB@ k

l

w0 w1

1CCA

D

0BBBB@ k
� � �lw0

w1

1CCCCA
D

lY
mD0

.kCm/t! .1� q�2˛1 t�m/

0B@ kC l
w0 w1

1CA :
The second equality comes from Corollary 4.10 and the last one is an iteration of the
relations from Remark 6.26. Finally, we have

F 0.l/ �A.k/D
�kCl

k

�
t

lY
mD0

.1� q�2˛1 t�m/A.kC l/:

The proposition is proved after the normalization passing from F 0.l/ to F .l/.
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6.2.3 Recovering monoidality of Verma modules for U
L=2
q sl.2/ Since in this sec-

tion the number n of punctures is particularly important, we denote by H˛1;:::;˛n the mod-
ule H built from Xr .w0; : : : ; wn/ with coefficients in RmaxDZŒt˙1; q˙˛1 ; : : : ; q˙˛n �.

Remark 6.28 We recall the action of K. We distinguish the cases whether n is greater
than 1 or not:

� Let nD 1, so Rmax D ZŒt˙1; q˙˛1 �. Let k 2N and let A.k/ be the associated
element of H˛1 . Then

K �A.k/D q˛1 tk A.k/:

� Let n > 1 and k 2 E0
n;r , and let A.k/ be the associated element of Hrel�

r 2

H˛1;:::;˛n . Then
K �A.k/D q

Pn
iD1 ˛i tr A.k/:

Proposition 6.29 Let tD q�2. The module H˛1 is a Verma module for U
L=2
q sl.2/ of

highest weight ˛1.

Proof The presentation of the action over a Verma module is given in [12] (see
relations (18)) and is recalled in Definition 5.8. Using Corollaries 6.21 and 6.25 and the
above remark in the case nD 1, one recognizes the presentation of the Verma module.
Namely, let tD q�2 and let s D q˛1 . Then

K �A.k/D q˛1 tk A.k/D sq�2kA.k/; E �A.k/DA.k � 1/

and

F .1/ �A.k/Dq˛1.kC1/t.1�q�2˛1 t�k/A.kC1/D ŒkC1�q.sq�k
�s�1qk/A.kC1/:

The last equality uses Remark 6.1.

These expressions ensure that the isomorphism of ZŒs˙1; q˙1�–modules

H˛1 ! V ˛1 ; A.k/ 7! vk for k 2N;

is U
L=2
q sl.2/–equivariant.

Remark 6.30 There is an isomorphism of Rmax–modules

tens WH˛1;:::;˛n !H˛1 ˝ � � �˝H˛n ; A.k0; : : : ; kn�1/ 7!A.k0/˝ � � �˝A.kn�1/:
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Theorem 2 (monoidality of Verma modules) For tD q�2, the morphism

tens WH˛1;:::;˛n !H˛1 ˝ � � �˝H˛n

is an isomorphism of U
L=2
q sl.2/–modules.

Proof From Proposition 6.24 one notes that the formulas satisfy

tens.F .1/ �A.k//

D tens
� n�1X

iD0

q�
Pn
jDiC2 j̨ t�

Pn�1
jDiC1 kj q˛iC1.ki C 1/t.1� q�2˛iC1 t�ki /A.k/i

�

D

n�1X
iD0

A.k0/˝ � � �˝ .q
˛iC1.ki C 1/t.1� q�2˛iC1 t�ki //A.ki C 1/

˝ q�˛iC2 t�kiC1 A.kiC1/˝ � � �˝ q�˛n t�kn�1 A.kn�1/

D

n�1X
iD0

.1˝ 1˝ � � �˝F .1/˝K�1
˝ � � �˝K�1/A.k0/˝ � � �˝A.kn�1/;

where the F .1/ in the sum is in the .iC1/st position, and one recognizes the expression
of �n.F .1//.

We do the same for E: from Proposition 6.20 we have

tens.E �A.k0; : : : ; kn�1//

D tens
� n�1X

iD0

q˛1C���C˛i tk0C���Cki�1 A.k0; : : : ; ki�1; ki � 1; kiC1; : : : ; kn�1/

�

D

n�1X
iD0

.K˝ � � �˝K˝E˝ 1˝ � � �˝ 1/A.k0/˝ � � �˝A.kn�1/;

which proves that the action of E over H˛1;:::;˛n corresponds to the action of �n.E/

over the tensor product. The same proof works for the action of K, so the theorem
holds.

Remark 6.31 The above theorem suggests that there should exist a homological
interpretation of the U

L=2
q sl.2/ coproduct, probably in terms of gluing once-punctured

disks along arcs of their boundary. The morphism tens should then be the involved
homological operator.

We note that

tens.A0.k//Dq˛1.k1C���Ckn�1/C˛2.k2C���Ckn�1/C���C˛n�1kn�1A0.k0/˝� � �˝A0.kn�1/;
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so multiarcs are divided into tensor products of single arcs, with coefficients appearing
from the gluing operation. If one is able to draw the handles corresponding to the
normalization coefficient, one should know how to glue once-punctured disks.

Remark 6.32 Theorem 2 answers [9, Conjecture 6.2]. In fact, the isomorphism was
suggested by the conjecture while the topological basis was not the one that fits with
the integral coefficients setting. See Corollary 7.5 for details.

6.3 Homological braid action

6.3.1 Definition of the action In this section we present an extension of Lawrence
representations [18] for braid groups, following her ideas. The starting point is the fact
that the braid group is the mapping class group of Dn.

Remark Recall that the braid group on n strands is the mapping class group of Dn,

Bn DMod.Dn/D Homeo.Dn; @D/=Homeo0.Dn; @D/:

This definition is isomorphic to the Artin presentation of the braid group (Definition 1.1)
by sending generator �i to the mapping class of the half Dehn twist swapping punctures
wi and wiC1. The pure braid group PBn is defined to be those braids fixing the
punctures pointwise.

The action of a homeomorphism of Dn can be generalized to Xr as homeomorphisms
extend to the configuration space coordinate by coordinate. Namely, if � is a homeo-
morphism of Dn, the map

Xr !Xr ; fz1; : : : ; zr g 7! f�.z1/; : : : ; �.zr /g;

is a homeomorphism. We show that the action of half Dehn twists passes to homology
with local coefficients in Lr , treating the unicolored case (˛1 D � � � D ˛n) separately
from the general one. In the unicolored case, we get a representation of the standard
braid group.

Lemma 6.33 (representation of the braid group) Let ˛ D ˛1 D � � � D ˛n, so that
Rmax D ZŒt˙1; q˙˛ �. Let ˇ 2 Bn be a braid and y̌ a homeomorphism representing ˇ.
The action of y̌ on Xr described above lifts to Hrel�

r , so it yields a homological
representation of the braid group ,

Rhom
WRmaxŒBn�! EndRmax.H˛;:::;˛/:
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Proof Let � 2 Bn be one of the Artin braid generators; the lemma is a direct con-
sequence of the invariance of the local system representation under the braid action,
namely the commutativity of the diagram

�1.Xr ; �
r / �1.Xr ; �

r /

Z2 D Zhq˛i˚Zhti Zhq˛i˚Zhti

y��

�r �r

Id

where y� is a half Dehn twist of Xr associated with � and y�� its lift to the fundamental
group. It is easy to see that, for l 2 f1; : : : ; r � 1g and k 2 f1; : : : ; ng,

�r .y��.�l//D �r .�l/ and �r .y��.Br;k//D �r .Br;k/;

considering the generators �l and Br;k of �1.Xr ; �
r / introduced in Remark 2.2. This

ensures that the action lifts to the maximal abelian cover, and that it commutes with
deck transformations, so that the action on homology with local coefficients is well
defined. The action is invariant under isotopies, so the action of Bn is well defined.

To deal with different colors, we need a morphism to follow the change of colors
in Rmax.

Definition 6.34 Let s 2Sn be a permutation. We define the morphism

Os WRmax!Rmax; q˛i 7! q˛s.i/ ; t 7! t:

Lemma 6.35 (representation of the pure braid group) In the general case , let �i be an
Artin generator of Bn, with i 2 f1; : : : ; n� 1g and s 2Sn. There exists a well-defined
action of �i lifted to homology,

Rhom.�i/ 2 HomRmax.Hs.˛1/˝ � � �˝Hs.˛n/;Hs�i .˛1/˝ � � �˝Hs�i .˛n//;

where �i D .i; i C 1/ 2Sn. There is a well-defined action of PBn over H˛1;:::;˛n ,

Rhom
WRmaxŒPBn�! EndRmax.H˛1;:::;˛n/:

This action commutes with the Rmax structure.

Proof The proof is almost the same as the one for Lemma 6.33. Namely, it is a
consequence of the fact that the following diagram commutes:
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�1.Xr ; �
r / �1.Xr ; �

r /

Zhq˙˛i ; t˙1ii2f1;:::;ng Zhq˙˛i ; t˙1ii2f1;:::;ng

y��

�r �r

y�k

The fact that this diagram commutes comes from the observation

.y�i/�.Br;k/D Br;kC1;

while other generators of �1.Xr ; �
r / are not perturbed by the action of �i . For a pure

braid ˇ, we have

Rhom.ˇ/ 2 EndRmax.H˛1 ˝ � � �˝H˛n/;

and, as ˇ can be written as a composition of generators �i , by composition of diagrams,
one obtains the commutative diagram

�1.Xr ; �
r / �1.Xr ; �

r /

Zhq˙˛i ; t˙1ii2f1;:::;ng Zhq˙˛i ; t˙1ii2f1;:::;ng

y̌
�

�r �r

Id

with the identity morphism on the second line coming from the pureness of ˇ. This
ends the proof as for Lemma 6.33.

6.3.2 Computation of the action In the case of two punctures w1 and w2, we can
perform the computation of the action of the single braid generator of B2, and first we
recall the classical operators necessary to define the R–matrix of Uqsl.2/.

Definition 6.36 Let q.H˝H=2/ be the Rmax–linear map

q.H˝H=2/
WH˛1 ˝H˛2 !H˛1 ˝H˛2 ;

A˛1.k/˝A˛2.k 0/ 7! q.˛1�2k/.˛2�2k0/=2A˛1.k/˝A˛2.k 0/;

and T be

T WH˛1 ˝H˛2 !H˛2 ˝H˛1 ; A˛1.k/˝A˛2.k 0/ 7!A˛2.k 0/˝A˛1.k/;

where A.k 0/˛1 and A.k/˛2 are multiarcs of H˛1 and H˛2 , respectively.
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Lemma 6.37 (braid action with two punctures) Let tD q�2. Let k; k 0 2N and �1

be the standard generator of the braid group on two strands. Its action can be expressed
as

tens
�
Rhom.�1/.A.k

0; k/˛1;˛2/
�

D

�
q�˛1˛2=2q.H˝H=2/

ı

kX
lD0

.ql.l�1/=2El
˝F .l// ıT

�
A.k 0/˛1 ˝A.k/˛2 ;

where A.k 0; k/˛1;˛2 , A.k 0/˛1 and A.k/˛2 are vectors of H˛1;˛2 , H˛1 , and H˛2 , re-
spectively.

Proof We have the relations between homology classes

Rhom.�1/.A
0.k 0; k/˛1;˛2/

D Rhom.�1/

0BBBBBB@
k

k 0
w0

w2w1
1CCCCCCA

D

0BBBBBBB@
k 0

k

w0

w1w2

1CCCCCCCA

D

kX
lD0

0BBBBBBBB@
k 0 l

k � l
w0

w1w2

1CCCCCCCCA

D

kX
lD0

t�k0.k�l/ t�l.k�l/ q�2.k�l/˛1

0BBBBBB@
k 0 l

k � l
w0

w1w2
1CCCCCCA :
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w0

w0

w1

w1

w2

w2

lk 0 k � l

Figure 14: Braided handle rule.

The second equality comes from a breaking of a dashed arc (Example 4.6); the last one
is a handle rule, for which we draw the corresponding braid in Figure 14.

The bands represent a .k�l/–handle, an .l/–handle and a .k 0/–handle. On the top and
on the bottom of this box there is the part of the path corresponding to the dashed box.
Namely, red arcs are going back to � without crossing themselves, passing in the front
of w1 and w2. As this braid has k � l strands passing successively in the back of k 0

strands, l strands and finally w2, its local coefficient is t�.k�l/.k0Cl/ q�2˛2 . From the
local coefficient of this braid we deduce the coefficient appearing in the last term.

Finally, applying the proof of Proposition 6.27 to crash a dashed loop on the index k

dashed arc, we get

Rhom.�1/.A
0.k 0; k/˛1;˛2/

D

kX
lD0

t�.k
0Cl/.k�l/ q�2.k�l/˛1

�k 0Cl

l

�
t

lY
mD0

.1� q�2˛1 t�m/A0.k � l; k 0C l/˛2;˛1 ;

so that

Rhom.�1/.A.k
0; k/˛1;˛2/D

kX
lD0

t�.k
0Cl/.k�l/ q.�kC2l/˛1q�.k

0Cl/˛2

�k 0Cl

l

�
t

�

lY
mD0

.1� q�2˛1 t�m/A.k � l; k 0C l/˛2;˛1 :

Let tD q�2; passing the above expression to tens, we get the following expression for
tens

�
Rhom.�

�1

1
/.A.k 0; k/˛1;˛2/

�
:
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kX
lD0

q2.k0Cl/.k�l/C.�kC2l/˛1�.k
0Cl/˛2

�k 0Cl

l

�
t

�

lY
mD0

.1� q�2˛1 t�m/A.k � l/˛2 ˝A.k 0C l/˛1 :

By use of the expression of the action of F .l/ in Proposition 6.27, one recognizes� kX
lD0

q2.k0Cl/.k�l/C.�kC2l/˛1�.k
0Cl/˛2El

˝F 0.l/
�

A.k/˛2 ˝A.k 0/˛1 :

Finally, passing from F 0.l/ to F .l/, we get

tens
�
Rhom.�1/.A.k

0; k/˛1;˛2/
�

D

� kX
lD0

q2.k0Cl/.k�l/�.k�l/˛1�.k
0Cl/˛2ql.l�1/=2El

˝F .l/
�

A.k/˛2 ˝A.k 0/˛1

D

�
q�˛1˛2=2q.H˝H=2/

ı

kX
lD0

.ql.l�1/=2El
˝F .l// ıT

�
A.k 0/˛1 ˝A.k/˛2 :

Theorem 3 (recovering the R–matrix of Uqsl.2/) The representation of the pure
braid group over H˛1;:::;˛n (resp. the one of Bn over H˛;:::;˛) is isomorphic to the R–
matrix representation over the product of U

L=2
q sl.2/ Verma modules V ˛1 ˝ � � �˝V ˛n

(resp. over the product .V ˛/˝n) from Definition 5.10 (and Remark 5.12 for the colored
version).

Proof From Lemma 6.37, the diagram

H˛1;˛2 H˛1 ˝H˛2

H˛2;˛1 H˛2 ˝H˛1

tens

Rhom.�1/ q�˛1˛2=2RıT

tens

commutes. The action of a braid generator �i over a multiarc is contained in a disk
that contains the dashed arcs reaching wi and wiC1 and no other, so that the action
does not perturb the other arcs. This last fact shows that the proof with two punctures
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guarantees the general case, and that the diagram

H˛1;:::;˛n H˛1 ˝ � � �˝H˛n

H�i f˛1;:::;˛ng H˛�i .1/ ˝ � � �˝H˛�i .n/

tens

Rhom.�i / Q.�i /

tens

commutes, where Q.�i/D Id˝i�1
˝ q�

Q
˛i=2R ıT ˝ Id˝n�i�1. Moreover, all the

morphisms involved commute with the Uqsl.2/ structure. This proves the theorem.

7 Links with previous works

7.1 Integral version for Kohno’s theorem

The following corollary recovers Kohno’s theorem [16; 11, Theorem 4.5], recalled in
Theorem 1.2(iii), in an integral version, namely with coefficients in Rmax. It relates the
action of the braid group over elements in the kernel of the action of E to the action
over absolute homology modules.

Corollary 7.1 Under the condition q�2D t, the restriction of the representation of the
braid group Bn to the kernel of the homological action of E yields a subrepresentation
of Bn in H isomorphic to HE D

L
r2N� H BM

r .Xr ILr /.

Proof For r 2N, the relative long exact sequence of pairs gives the exact sequence
of morphisms

Hr .X
�
r ILr /!Hr .Xr ILr /!Hrel�

r
@�
�!Hr�1.X

�
r ILr /!Hr�1.Xr ILr /;

where we have avoided the notation BM as everything is Borel–Moore homology here.
Using [4, Lemma 3.1], one gets that Hr�1.Xr ILr / vanishes, while Remark 6.8 above
implies that Hr .X

�
r ILr / vanishes. This provides a short exact sequence

0!Hr .Xr ILr /!Hrel�
r

@�
�!Hr�1.X

�
r ILr /! 0:

The kernel of the action of E is exactly the kernel of the map @�. This implies the
corollary, as the kernel of the action of E is isomorphic to the module of absolute
homology.
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Kohno’s theorem [16] holds only for generic choice of parameters, while in the above
corollary all morphisms are defined over the ring of Laurent polynomials. Kohno’s
theorem in terms of bases, as it is stated for instance in [11], uses the basis of multiforks
that we recall next:

Notation For k 2 E0
n;r , we let the multifork F.k0; : : : ; kn�1/ be the class in Hrel�

r

assigned to

� � �
...

k0

...

k1

...

kn�1

w0

w1 w2 wn�1 wn

� � � � � � � � �

�r � � � �1

� � �

@Dn

This recovers the consequences of Kohno’s theorem that can be found in [11], stating
that the family of multiforks is generically a basis of Hr .Xr .w0/ILr /. We state precise
genericity conditions in the following corollary:

Proposition 7.2 Let k 2 E0
n;r ; there is the following relation between the standard

fork and the code sequence associated with k:

F.k0; : : : ; kn�1/D

� n�1Y
iD0

.ki/t!

�
U.k0; : : : ; kn�1/:

This shows that the family F is a basis of Hrel�
r whenever one works over a ring R

where all the .i/t! are invertible for i an integer at most r .

Proof The proof for the relation between multiforks and code sequences is a direct
consequence of Corollary 4.10.

Remark 7.3 Multiforks in the kernel of the action of E are multiforks not reachingw0,
namely of type F.0; k1; : : : ; kn�1/. This is the link with the multiforks basis used in
[11, Theorem 4.5].

7.2 Felder and Wieczerkowski’s conjectures

In [9], the authors use as a basis for their module elements called r–loops, for which
we give a homological definition as follows:
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Notation For k2E0
n;r , we call L.k0; : : : ; kn�1/ an r–loop, the class in Hrel�

r assigned
to the drawing

� � �� � �

k0

� � �

k1

� � �

kn�1

w0 w1
w2 wn

� � � � � � � � �

�r � � � �1

� � �

@Dn

Proposition 7.4 Let k 2E0
n;r . There is the relation between the standard multiarc and

the r–loop associated with k

L.k0; : : : ; kn�1/D

� n�1Y
iD0

.ki/t!

kiY
kD0

.1� q�2˛i t�k/

�
A0.k0; : : : ; kn�1/:

Proof To prove the proposition, one treats separately the loops winding around w1

from those winding around w2, etc. Every case is a straightforward recursion, using
Remark 6.26, and leads to the formula of the proposition.

This answers [9, Conjecture 6.1]. In fact, it is a more precise statement, saying exactly
under which conditions the family of r–loops is a basis of the homology.

Corollary 7.5 [9, Conjecture 6.1] If R is a ring in which .1�q�2˛i t�k/ is invertible
for all i D 1; : : : ; n and so is .k/t! (for k � r ), then Hrel�

r is a free R–module admitting
the family L of r–loops as a basis.

Actually, the lifts of the r–loops chosen in [9] are not exactly the same as ours; namely,
the handles we’ve chosen do not correspond to their choice of lift. As a change of lift
corresponds to multiplication by an invertible monomial of Rmax, the conditions to be
a basis are the same.
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Appendix

A.1 Local coefficients

Remark A.1 We recall that the representation �r defining the local system Lr is
canonically equivalent to the construction of a covering map over Xr . Namely, one can
consider the universal cover zXr of Xr , upon which there is an action of �1.Xr /. By
taking the quotient of zXr by the action of Ker �r � �1.Xr /, one gets a cover yXr of Xr .
The group of deck transformations is then isomorphic to Im.�r /D ZnC1. There are
three equivalent ways to build the chain complex with local coefficients in Lr :

C�.Xr ILr /' C�. zXr ;Z/˝�1.Xr /Rmax ' C�. yXr /:

The first one corresponds to a complex with coefficients in a locally trivial bundle. In
the middle one, the action of �1.Xr / is the one over the universal cover on the left,
and given by �r on the right. The last one corresponds to the singular chain complex
of yXr with the deck transformations action of Rmax.

We use Lr or �r to designate both the representation of �1.Xr / or the covering yXr

together with the deck transformations group action.

A.2 Locally finite chains

In this work we use the locally finite version for singular homology, which is isomorphic
in our case to the Borel–Moore homology. This version controls the noncompact phe-
nomena arising at punctures. We give general ideas and definitions of these homologies
in this section. Let X be a locally compact topological space.

Definition A.2 (locally finite homology) The locally finite chain complex associated
with X is the chain complex for which we allow infinite chains under the condition
that their geometrical realization in X is locally finite (for the topology of X ). The
latter guarantees that the boundary map is well defined.

Let Y �X. The relative to Y locally finite chain complex corresponds to the locally
finite chain complex of X modded out by the one of Y. The homology of locally finite
chains is the homology corresponding to this definition of chain complexes. We use
the notation Hlf

�
.X / to denote the locally finite homology.
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Remark A.3 [4] The homology of locally finite chains is isomorphic to the Borel–
Moore homology, which can be defined as

H BM
�
.X /D lim

 ��
H�.X;X nA/;

where the inverse limit is taken over all compact subsets A of X. The relative case is
then

H BM
�
.X;Y /D lim

 ��
H�.X; .X nA/[Y /

for Y � @X.

The above fact that Borel–Moore homology consists in a limit of homology over
compact spaces allows generalizations of many compact singular homology properties.

Locally finite homology have very different properties than the usual ones when the
space is noncompact. We give first examples:

Example A.4 We give the example of the real line being a locally finite cycle, and a
related example.

Real line Any 0–chain is null homologous (so that the 0–homology does not encode
connectedness). Let p be a point; the chain

� D

1X
iD0

ŒpC i;pC i C 1/

has p as Borel–Moore boundary, while the chainX
�1<k<1

Œk; kC 1/

has no boundary and hence is a cycle. This shows that H BM
k
.R/DZ if k D 1 and is 0

otherwise, and can be generalized to H BM
k
.Rn/D Z if k D n and is 0 otherwise.

Punctures Let Dn be the punctured disk and c be a small circle running once around
a puncture p. Then c is a cycle using the same kind of telescopic infinite chain as in
the previous point.

We emphasize that the previous example generalizes.

Remark A.5 There are the following facts:

Compact space If X is compact, then the singular and locally finite homologies are
identical.
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Submanifold In the spirit of the previous example, any closed oriented submanifold
defines a class in Borel–Moore homology, but not in ordinary homology unless the
submanifold is compact.
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