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One of the major aims of gravitational wave astronomy is to observationally test the Kerr nature
of black holes. The strongest such test, with minimal additional assumptions, is provided by obser-
vations of multiple ringdown modes, also known as black hole spectroscopy. For the gravitational
wave merger event GW190521, we have previously claimed the detection of two ringdown modes
emitted by the remnant black hole. In this paper we provide further evidence for the detection of
multiple ringdown modes from this event. We analyze the recovery of simulated gravitational wave
signals designed to replicate the ringdown properties of GW190521. We quantify how often our de-
tection statistic reports strong evidence for a sub-dominant (`,m, n) = (3, 3, 0) ringdown mode, even
when no such mode is present in the simulated signal. We find this only occurs with a probability
∼ 0.02, which is consistent with a Bayes factor of 56± 1 (1σ uncertainty) found for GW190521.
We also quantify our agnostic analysis of GW190521, in which no relationship is assumed between
ringdown modes, and find that less than 1 in 500 simulated signals without a (3, 3, 0) mode yield
a result as significant as GW190521. Conversely, we verify that when simulated signals do have an
observable (3, 3, 0) mode they consistently yield a strong evidence and significant agnostic results.
We also find that simulated GW190521-like signals with a (3, 3, 0) mode present yield tight con-
straints on deviations of that mode from Kerr, whereas constraints on the (2, 2, 1) overtone of the
dominant mode yield wide constraints that are not consistent with Kerr. These results on simu-
lated signals are similar to what we find for GW190521. Our results strongly support our previous
conclusion that the gravitational wave signal from GW190521 contains an observable sub-dominant
(`,m, n) = (3, 3, 0) mode.

I. INTRODUCTION

Einstein’s theory of general relativity (GR) predicts
that black holes are stable to perturbations [1]. A dis-
torted black hole should settle down to a stationary
Kerr state through the emission of gravitational waves
[2]. This applies to the remnant black hole formed in
a binary black hole merger event, which is highly dis-
torted on formation, but is expected to eventually settle
down to a Kerr black hole due to the emission of grav-
itational waves. The gravitational waveform in the late
stages of a merger event consists of a spectrum of quasi-
normal modes with a rich structure of different funda-
mental modes and overtones [3]. The spectrum consists
of a set of complex frequencies (determined by the black
hole mass and spin) labeled by three integers (`,m, n),
with ` ≥ 2, −` ≤ m ≤ `, and n ≥ 0. Modes with n ≥ 1
are known as “overtones”. Using black hole spectroscopy,
the observation of more than one such ringdown mode
can be used to determine if the black hole is consistent
with GR [4, 5]. A clear and unambiguous determination
of multiple ringdown modes provides one of the strongest
tests of the Kerr nature of black holes in our universe and
a possible route to discover new physics beyond standard
general relativity.

Quasi-normal modes for a Schwarzschild black hole
were first identified by Vishveshwara [6, 7], and further
studied within black hole perturbation theory by Chan-
drasekhar and Detweiler [8]. There remain several out-
standing theoretical questions regarding black hole quasi-
normal modes which are also important for observational
studies. The first is the question of the start time for the
ringdown. When the remnant black hole is formed, it
is initially highly distorted away from a Kerr black hole.
The black hole loses these distortions over time, and at
some point it can be considered to be a linear perturba-
tion of a Kerr black hole. It is not clear when (and if [9])
this perturbative regime can be distinguished. See [5, 10]
for studies of the start time of the ringdown phase, and
[11–14] for studies of possible non-linear effects. The dif-
ferent regimes seen in the gravitational wave signal are
expected to have counterparts in the strong field dynam-
ical spacetime region near the binary system [15–17]. See
e.g. [18–22] for studies of black hole horizon geometry in
the post-merger phase and whether a ringdown regime
can be identified using the horizon dynamics as well.

It has long been expected that only the most dominant
ringdown mode will be observable with the current gen-
eration of gravitational wave detectors [23, 24]. Those
expectations were based on astrophysical assumptions
about the total mass and mass ratio distributions of bi-
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nary black hole systems in the observable universe, which
in turn determine the amplitudes of various ringdown
modes [25]. However, evidence for an overtone of the
dominant mode of GW150914 was presented in [26, 27].
There it was shown that it is possible to model the gravi-
tational waveform as a superposition of ringdown modes
starting from the merger by using the overtones of the
dominant mode. This is a significant result, though there
remain several interesting open questions regarding data
analysis and theoretical issues. Some of the data analysis
issues are discussed in [28, 29]. On the theoretical side,
the stability of the overtones under small perturbations
raises several interesting open questions; see e.g. [30–34].
Evidence of a second fundamental mode, without using
overtones, was first presented for the event GW190521 in
[35], henceforth referred to as “Capano et al.”, and will
be elaborated further in this paper.

With this analysis we address three fundamental ques-
tions. Firstly, if a signal explicitly does not contain any
sub-dominant ringdown modes, how often does our de-
tection pipeline falsely claim the existence of such modes?
Secondly, if one or more sub-dominant modes are present
in the data, how often does our pipeline correctly recover
them? Thirdly, if our pipeline is used to constrain de-
viations from Kerr, how well do the resulting inferred
parameters match those of the simulated signal? The
key results for detection of a second mode are shown in
Figs. 5 and 6. Fig. 5 applies our analysis to simulated
signals without a (3, 3, 0) mode and shows that the false
alarm probability is consistent with expectations from
noise. Fig. 6 quantifies the ability of our method to de-
tect the (3, 3, 0) mode when it is present, as a function of
the signal strength.

In section II we give additional details of how the data
is treated in the analysis of Capano et al. Section III ex-
plains how we generate the simulated data sets. In sec-
tions IV and V we investigate the statistical significance
of detecting two modes versus one using a set of sim-
ulated signals. Section IV presents an agnostic analysis
that looks at the consistency of the second mode with the
first mode. Section V presents an analysis more closely
tied to the Kerr hypothesis, analysing the likelihood of
two Kerr modes versus just one. In section VI we use our
simulated signals to compare the accuracy with which the
no hair theorem can be tested using fundamental modes
or overtones for an event similar to GW190521.

We conclude this introduction by briefly summarizing
some basic properties of the event GW190521, which will
be relevant in the rest of this paper.

A. GW190521

The gravitational wave event GW190521 was detected
on May 21st 2019 at 03:02:29 UTC by the Advanced
LIGO and Advanced Virgo detectors [36]. The most con-
servative explanation of the signal is the binary merger of
two black holes [36, 37], although there are also various

other interpretations of this event [39–44].

While the progenitors of the event GW190521 are open
to speculation, in most scenarios the final outcome is still
likely to be a single black hole. The event GW190521
shows clear evidence of a dominant ringdown mode of a
final black hole after the merger [36]. In Capano et al. [35]
the ringdown signal was found to contain an additional
sub-dominant ringdown mode. The dominant mode is
consistent with being the (`,m, n) = (2, 2, 0) ringdown
mode of a Kerr black hole; the second mode is consistent
with the sub-dominant fundamental (`,m, n) = (3, 3, 0)
mode. As detailed in this paper, under a Kerr hypothesis,
the Bayes factor preferring the existence of the (2, 2, 0)
and (3, 3, 0) modes over just the (2, 2, 0) or the (2, 2, 0)
and (2, 2, 1) modes is estimated to be 56± 1 (1σ uncer-
tainty).

If GW190521 is indeed a binary black hole merger, the
inferred total mass of the system would make it one of the
most massive binary black hole systems observed to date
[45, 46]. Other interpretations have found even higher to-
tal masses [39]. A high total mass implies that very little
of the inspiral phase occurs inside the sensitive band of
the detectors and the recorded signal is dominated by the
merger and ringdown. Therefore an analysis that focuses
solely on the ringdown phase is of interest and avoids
some of the modelling issues in the progenitor inspiral
phase.

Inferences about the final black hole parameters using
the ringdown signal alone are sensitive to the assumed
start time of the ringdown [5, 28]. Different starting times
can lead to different results [47, 48]. A ringdown-only
analysis must explicitly exclude some of the signal that
is outside the ringdown phase. In this work we present
additional details of the approach used in Capano et al.
Parameter estimates for the event GW190521 based on
the binary black hole interpretation are shown in Figs. 1
and 2. These estimates come from different authors using
different methods [35, 46, 49, 50]. The redshifted final
total mass spans a wide range from around 200 M� to
nearly 400 M�.

The peak gravitational wave strain is expected to oc-
cur close to the merger. The GPS time of the peak strain
in the Hanford detector was initially estimated using the
posterior median with the NRSurPHM waveform model
to be 1242442967+0.0067

−0.0106 s. [37]. See [49] for further dis-
cussion. As can be seen in Fig. 2, estimates of the merger
coalescence time range over some 20 ms depending on the
waveform model considered. This is a significant time
range since, in geometric units, it corresponds to approx-
imately 13M for an object with a mass M = 300 M�.

We use the open source PyCBC Inference library for
performing Bayesian inference [38, 51]. For sampling the
parameter space we use the dynesty nested sampler [52].
We use data for the event GW190521 made publicly avail-
able by the Gravitational Wave Open Science Center [53].
We fix the sky location to the values given by the maxi-
mum likelihood result of Nitz & Capano [50], although we
have obtained similar results using the LVC’s maximum
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FIG. 1. Comparison of the final mass and spin of GW190521,
as estimated by NRSur7dq4 [50], IMRPhenomXPHM [46],
IMRPhenomTPHM [49], and a Kerr ringdown with both the
(2, 2, 0) and (3, 3, 0) modes [35]. The IMRPhenomTPHM re-
sults have a second mode in the posterior that is consistent
with the Kerr ringdown results.

FIG. 2. Comparison of the final mass, mass ratio, and coales-
ence time in the Livingston detector as estimated by the NR-
Sur7dq4 [50], IMRPhenomXPHM [46], and IMRPhenomT-
PHM [49] waveform models. The second mode in final mass
found by IMRPhenomTPHM, which is consistent with the
Kerr ringdown results (cf. Fig. 1), corresponds to a second
mode at more asymmetric masses. This mode also yields a
coalescence time that is ∼ 6 ms earlier than the equal mass
mode found by the other approximants. This earlier coales-
cence time estimate is ∼ 13 ms before the time at which the
Bayes factor for the (2, 2, 0) + (3, 3, 0) mode peaks in Capano
et al. [35]. It is also consistent with the time at which the ev-
idence for the (2, 2, 0) + (2, 2, 1) Kerr ringdown model peaks.

likelihood sky location [37]. We use a geocentric GPS ref-
erence time of tref = 1242442967.445 [50]. With the sky
location used in our analyses, this corresponds to the de-
tector GPS reference times 1242442967+0.4259 at LIGO
Hanford, +0.4243 at LIGO Livingston and +0.4361 at
Virgo. Credible intervals in the text are quoted to 90%.

II. BASICS OF RINGDOWN DETECTION AND
PARAMETER ESTIMATION

In this section we summarize some essential elements
of the data analysis procedure that we employ. Since we
analyze exclusively the ringdown which is only a part of
the full signal, an important challenge is to identify the
portion of the full signal corresponding to the ringdown.
Similarly, it is necessary to ensure that the procedure for
extracting this portion of the data properly takes into
account correlations with neighboring time samples that
should be excluded from the analysis.

Let ~s = {s0, ..., sN−1} denote time-ordered samples of
the strain data from a gravitational wave detector. The
data is sampled every ∆t seconds over a duration T , so
that the number of samples is N = bT/∆tc + 1. A net-
work of K detectors sampled in this way will produce
a set of samples ~snet = {~s1, ..., ~sK}. The strain data is

assumed to be a combination of a possible signal ~h and
noise ~n

~s = ~h+ ~n . (1)

Let p(~s|~λ,H) be the likelihood of the data ~s in the pres-

ence of a signal with given parameters ~λ under back-
ground hypotheses H, such as the signal model. The
probability of finding a realisation of noise ~n under the
hypotheses H is p(~n|H). Therefore the likelihood for
data ~s can be written as

p(~s|~λ,H) = p(~s− ~h(~λ)|H,n) , (2)

where the right-hand side is under the hypothesis n that
no signal is present. In gravitational-wave astronomy,
in the absence of a signal, it is common to assume over
short times that the detectors output stochastic Gaussian
noise which is independent across detectors. With this
assumption the probability density function describing
the time-ordered noise samples of the detector network
~nnet is a product of K N−dimensional multivariate nor-
mal distributions,

p(~nnet) =
exp

[
− 1

2

∑K
d=1 ~n

>
d
~C−1
d ~nd

]
√

(2π)NK
∏K
d=1 det ~Cd

. (3)

Here, ~Cd is the covariance matrix of the noise in detector
d, and we drop the hypotheses H in our notation. See
[54] for further details.
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If the detector’s noise is wide-sense stationary and er-
godic, which is typically the case for the LIGO and Virgo
detectors, the noise likelihood takes a simple form

p(~nnet) ∝ exp

[
−1

2

K∑
d=1

〈~nd, ~nd〉

]
. (4)

Here, the inner product 〈·, ·〉 is defined as

〈~ud, ~vd〉 ≡ 4<

 1

T

N/2−1∑
p=1

ũ∗d[p]ṽd[p]

S
(d)
n [p]

 , (5)

where ũ is the discrete Fourier transform of the time
series ~u, an asterisk denotes the complex conjugate,
and Sn is the power spectral density of the detector’s
noise. To obtain the posterior probability density func-

tion p(~λ|~s,H) for the parameters ~λ, we use Bayes’ theo-
rem

p(~λ|~s,H) =
1

Z
p(~s|~λ,H)p(~λ|H), (6)

where p(~s|~λ,H) is the likelihood function, p(~λ|H) is the
prior, and Z is a normalization constant known as the
evidence, depending only on the data. Taking the ratio
of evidences ZA/ZB for two different models HA and HB

yields the “Bayes factor”. In this work, the signal models
will be GW ringdown waveforms with only fundamental
modes and overtones. If our prior belief for the validity
of the two models is the same, the Bayes factor gives the
odds that model A is favoured over model B. Ref. [55]
suggested Bayes factors greater than 3.2, 10 and 100 are
considered substantial, strong, and decisive, respectively.

The ringdown waveform model takes the following
form

h++ih× =
Mf

DL

∑
`mn

−2
S`mn(ι, ϕ, χf )A`mne

i(Ω`mnt+φ`mn) ,

(7)
where h+/× are the plus/cross polarizations of the wave,
Mf is the total mass of the remnant black hole in the
detector frame and DL is the source luminosity distance.
The waveform is decomposed with respect to the spin-2
weighted spheroidal basis −2S`mn, which is a function of
the remnant black hole’s spin χf , the inclination angle
ι and azimuthal angle ϕ relative to the observer. The
amplitude and phase of the quasi-normal modes are de-
noted by A`mn and φ`mn. The complex frequency is
Ω`mn = 2πf`mn + i/τ`mn, where the characteristic fre-
quency f`mn and decay time τ`mn are solely determined
by the mass and spin of the remnant black hole, as pre-
dicted by the no-hair theorem in GR. We also consider
an agnostic ringdown waveform model in this work, for
which we absorb the Mf/DL term into the amplitude and
replace the spheroidal harmonics with arbitrary complex
numbers X`±mn = eiψ`±mn .

In a standard full-signal analysis, to obtain the likeli-
hood for the signal hypothesis, the noise ~nd in Eq. 4 is

replaced by the residuals ~sd − ~hd. This requires that ~h
is an accurate model of the signal across the entire ob-
servation time T , which is not valid for a ringdown-only
analysis. Quasi-normal modes only model the gravita-
tional wave from a binary black hole after the merger,
when the two component black holes have formed a sin-
gle, perturbed black hole. Performing Bayesian inference
using quasi-normal modes as the signal model therefore
requires ignoring times from the data when the ringdown
prescription is not valid.

We perform the “gating and in-painting” technique [56]
to remove the influence of pre-ringdown data. Define
~n′ = ~ng + ~x, where ~ng is the noise with the pre-merger

data zeroed out. We choose ~x such that ~C−1~n′ = 0 in the
gated region, therefore the likelihood Eq. 3 remains the
same outside the gating region while we can still utilize
the frequency domain likelihood of Eq. 4.

We use the gated-Gaussian likelihood described above
in PyCBC Inference [38], which evaluates the noise resid-

uals with ~ng = ~sg − ~hg (i.e., the residual with the gated
region zeroed out) and solves for ~x with the following
condition

~C−1 ~x = −~C−1~ng, (8)

where the overbar indicates the gating region.

We can then use ~x+~sg−~hg in the standard likelihood,
Eq. 4.

For all analyses we use a gate of two seconds, ending
at the start time of the ringdown.

In this work we consider a variety of signal mod-
els with different combinations of angular and overtone
modes characterized by Eq. 7. The fundamental mode is
(`,m, n) = (2, 2, 0), and we further consider models with
an additional (2, 2, 1) overtone or (3, 3, 0) mode, whose
complex frequencies are either predicted by the Kerr hy-
pothesis or treated agnostically as parameters to be de-

termined. We list the priors p(~λ|H) for all parameters
used in this work in Table II. In particular, the (2,2,1)
amplitude is chosen to be [0,5] times that of the (2,2,0)
mode’s. This choice is motivated by the numerical rela-
tivity fits from [27], and helps to prevent “label switch-
ing” in which the (2,2,1) mode template matches to the
fundamental mode signal in the data.

For the (3, 3, 0) amplitude we chose a prior that is
[0, 0.5] times that of the (2,2,0) mode. This choice is
motivated by the numerical simulations of binary black
hole mergers in Ref. [25].

When sampling the posterior for the Kerr analysis,
we numerically marginalize the polarization angle us-
ing a discrete grid of 1000 points. The original moti-
vation was to speed up sampler convergence for the large
number of injections analyzed here. However, we found
that doing so also led to more robust estimates of the
Bayesian evidence, as the sampler was better able to con-
verge on the posterior. Consequently we also reanalyzed
GW190521 using the numerical marginalization of the
polarization. The effect on the estimation of the Bayes
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factor is discussed in more detail in Appendix A. No nu-
merical marginalization is done for the agnostic analysis,
as the polarization angle is absorbed into the arbitrary
complex numbers used in place of the spheroidal harmon-
ics there.

III. SELECTION OF SIMULATED SIGNALS

In this paper we seek to validate the evidence for the
observation of the (3, 3, 0) mode in GW190521. To do
so, we create two sets of simulated signals (“injections”):
one set with no (3, 3, 0) mode in the ringdown (the Con-
trol set), and another set containing a (3, 3, 0) mode in
the ringdown (the Signal set). The Control set is used to
measure the rate of false alarms – i.e., to answer the ques-
tion, how often do we get large evidence for the (3, 3, 0)
mode when the signal contains no (3, 3, 0) mode? – while
the Signal set is used to validate that our pipeline can in
fact detect a (3, 3, 0) mode when it exists in the signal.

For the Control injections we randomly select 500 in-
jections from the NRSurrogate posterior published in
Nitz & Capano [50]. This posterior was similar to the
posterior published in the initial LIGO/Virgo publication
on GW190521 [37]. With the exception of a secondary
peak in the posterior around m1/m2 ∼ 6, this NRSur-
rogate posterior favored approximately equal masses for
the binary.1 It also yielded a merger time for GW190521
only ∼ 6 ms before the claimed observation time of the
(3, 3, 0) mode in Capano et al. and a relatively low final
mass estimate; see Figs. 1 and 2. These results contrast
with the claimed observation in Capano et al.: a large
(3, 3, 0) amplitude is not expected for equal-mass bina-
ries [25], and a ringdown model consisting of only funda-
mental modes is not expected to be a good model for the
signal until ∼ 10M after merger, which for GW190521
would be ∼ 12− 16 ms, not ∼ 6 ms. As such, these injec-
tions are ideal to test the false alarm rate of our analyses.

To ensure that no (3, 3, 0) mode exists in the Control
injections, we constrain all 500 injections to have mass
ratios m2/m1 > 0.5 and we turn off all but the ` = 2
modes when generating the simulated waveforms. The
waveforms are generated using the NRSur7dq4 approxi-
mant [57]. We use 500 injections to get a sufficient num-
ber of samples at the Bayes factor of GW190521 (56±1);
see Sec. V for more details.

To produce the Signal injections we draw random sam-
ples from the posterior published in Estelles et al. [49].

1 In Nitz & Capano a prior uniform in m1/m2 ∈ [1, 6] was used
in the NRSurrogate analysis. If a prior uniform in m2/m1 is
used (which is approximately the same as a prior uniform in
component masses, as done in the LIGO/Virgo analysis), the
second mode in the posterior at m1/m2 ∼ 6 is down-weighted,
giving further support to the equal-mass portion of the posterior.
Here, we draw from the original posterior published in Nitz &
Capano, which used a prior uniform in m1/m2.

This analysis used the IMRPhenomTPHM approximant
to analyze GW190521. As with the results presented in
Nitz & Capano, Estelles et al. found a bimodal posterior
in the component masses for GW190521: one mode fa-
voring nearly equal masses, and one mode favoring mass
ratios of ∼ 4 : 1. Intriguingly, as shown in Figs. 1 and 2,
the second mode yielded a mass and spin estimate for the
final black hole that is consistent with the estimate from
the ringdown analysis in Capano et al. The estimated
merger time for this second mode was also ∼ 5 − 10 ms
earlier than the NRSurrogate estimate, which is consis-
tent with the peak in the (2, 2, 1) Bayes factor found in
Capano et al. and ∼ 10M before the peak in the (3, 3, 0)
Bayes factor. The IMRPhenomTPHM waveforms are
therefore ideal for our Signal injection set, particularly
those from the more asymmetric mass ratio part of the
posterior.

To try to ensure that the Signal injections have an
observable (3, 3, 0) mode after the merger, we draw 100
injections from the IMRPhenomTPHM posterior pub-
lished in Estelles et al. and keep only those that have
a (`,m, n) = (3, 3, 0) amplitude > 0.2 after merger. We
also require that the signal-to-noise ratio (SNR) of the
(3, 3, 0) mode be at least 4 (the SNR estimated for the
(3, 3, 0) mode in GW190521 in Capano et al.) at some
point after merger. To estimate the (3, 3, 0) SNR we filter
each injection in noise with a template consisting only of
the (`,m) = (3, 3) mode, and we gate both the template
and signal to remove pre-merger times. Note that here,
(`,m) refer to spherical harmonics, which is the basis
used for IMR models, not the spheroidal harmonics used
for QNMs. Additionally, many of the posterior samples
have large precession. Precession mixes the m modes
with the same ` in the observer frame. Consequently, an
(`,m) = (3, 3) mode for a IMRPhenomTPHM waveform
may consist of a combination of (`,m, n) QNM modes,
and not necessarily just the (3, 3, 0) mode. As such, the
estimated SNR may be considered an upper bound on
the underlying (3, 3, 0) QNM.

Applying the SNR cut to the initial 100 draws yields 45
Signal injections. We do not try to generate more Signal
injections as they are only used to check that the anal-
ysis can recover signals with a (3, 3, 0) mode and not to
estimate small false alarm rates, as we do with the Con-
trol injections. We use IMRPhenomTPHM to generate
the waveform for the Signal set. Due to the differences
between spherical and spheroidal modes, and to try to
simulate a realistic signal, we use all available modes in
IMRPhenomTPHM when generating the Signal set.

Both sets of injections are added to detector data at
random times surrounding the estimated merger time of
GW190521. Specifically, an offset time toffset is drawn
uniformly in ±[4, 20] s and added to the coalescence time
tc that is drawn from the relevant posterior for each in-
jection. The gap of ±4 s around GW190521 is to prevent
contamination of the data from GW190521. As described
below, we perform ringdown analyses on a grid of times
surrounding each injection. The widest grid – used in
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Model Parameter Parameter description Uniform prior range
fA/B/C frequencies of regions A/B/C [50, 80]/[80, 256]/[15, 50] Hz
τA/B/C decay times of regions A/B/C [0.001, 0.1] s

log10AB base-10 logarithm of the amplitude of region B [-24,19]
Agnostic AA/C/AB ratio of amplitudes between region A/C and region B [0,0.9]

φA/B/C phases of regions A/B/C [0, 2π]

ψ
+/−
A/B/C phase of the +m and -m modes of the arbitrary complex

number in region A/B/C
[0, 2π]

dβ angular difference in amplitudes of +m and -m modes [−π/4, π/4]
Mf final black hole mass in the detector frame [100,500] M�
χf final black hole spin [-0.99,0.99]

Kerr log10A220 base-10 logarithm of the amplitude of (2,2,0) [-24,-19]
A330/220 ratio of amplitudes between (3, 3, 0) and (2, 2, 0) [0,0.5]
A221/220 ratio of amplitude between (2, 2, 1) and (2, 2, 0) [0,5]

φ220/330/221 phase of (2,2,0)/(2,2,1)/(3,3,0) [0, 2π]
δf221 fractional deviation from GR of the (2,2,1) frequency [-0.16,0.3] with the constraint

f221(1 + δf221) > 55 Hz
No hair

test
δτ221 fractional deviation from GR of the (2,2,1) decay time [-0.8,0.8]

δf330 fractional deviation from GR of the (3, 3, 0) frequency [-0.3,0.3] with the constraint
f330(1 + δf330) > 75 Hz

δτ330 fractional deviation from GR of the (3, 3, 0) decay time [-0.9,3]
All models cos ι cosine of inclination angle [-1,1]

ψ polarization angle [0, 2π]

TABLE I. Prior distributions of sampling parameters for the models used in this work: The agnostic model with the spheroidal
harmonics replaced by an arbitrary complex number as discussed in Sec. IV, the Kerr model described by Eq. 7 and discussed
in Sec. V, and the testing-GR model discussed in Sec. VI.

the validation of the Kerr Bayes factor (see Sec. V) – is
[−9, 24] ms. We therefore draw the toffset such that they
are at least 33 ms apart, to ensure that no two analyses
analyze exactly the same detector data.

As with the analysis of GW190521 in Capano et al.,
we use a reference time tinj

ref for each injection, around
which we construct the grid of times used in the ringdown
analyses. For each injection we set the reference time
to be tinj

ref = tref + toffset, where tref = 1242442967.445
GPS seconds is the estimated geocentric merger time of
GW190521, as determined by the maximum likelihood
parameters taken from the NRSurrogate analysis in Nitz
& Capano [50]. This is the same tref used in Capano et

al. Note that tinj
ref is not the injection’s coalescence time

tinj
c ; instead, tinj

c − tinj
ref follow the same distribution as

tc − tref (see Fig. 2). In the case of IMRPhenomTPHM,
this can mean that some of our Signal injections merge
as much as 20 ms before the reference time, well before
the grid times used for the analysis.

IV. STATISTICAL SIGNIFICANCE OF THE
AGNOSTIC ANALYSIS

Two ringdown analyses of GW190521 were presented
in Capano et al. [35]: an “agnostic” analysis and a “Kerr”
analysis. In the former, the data were analyzed using
three QNMs with no assumption made about the rela-
tionship between the frequency and damping times of

FIG. 3. Left: Marginal posterior of the frequency and damp-
ing time in frequency range B from the agnostic analysis of
GW190521 at tref + 6 ms (same as the heat map in Fig. 1 of
Capano et al). Right: the expected distribution of the (3, 3, 0)
mode assuming the mode observed in frequency range A is the
dominant, (2, 2, 0) mode (same as the blue contour in Fig. 1 of
Capano et al.) of a Kerr black hole. Darker regions indicate
higher probability. The expected distribution is more con-
centrated due to the larger SNR of the dominant mode. We
quantify the agreement between the measured and expected
by multiplying the two distributions together and integrating
(ζ). The figure and ζ values are produced using 100 bins each
in frequency and damping time.

each mode. To prevent all three modes from locking on
to the single dominant mode, each mode was assigned a
separate frequency range: 50 – 80Hz (range “A”), 80 –
256Hz (range “B”), and 15 – 50Hz (range “C”). Range A
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covered the dominant mode, which was clearly visible in
the data. This analysis was repeated in intervals of 6ms,
between tref + [0, 24] ms.

A signal with a well-defined posterior was found in
Range A, having frequency ∼ 63 Hz and damping time
∼ 26 ms (see Fig. 1 of Capano et al.). No signal was
found in Range C. A second putative mode was found in
Range B. This signal was most pronounced at tref +6 ms,
at which point it has a frequency of ∼ 98 Hz and damping
time ∼ 32 ms. As shown in Fig.3, these frequencies and
damping times were where one would expect the (3, 3, 0)
would be assuming GW190521 formed a Kerr black hole,
with the signal in Range A being the (2, 2, 0) mode.

Initially, the agnostic analysis was presented as qualita-
tive evidence for the presence of the (3, 3, 0) mode. Here,
we repeat the analysis on our two sets of injections and
use them to develop a statistic to quantify the statistical
significance of the agnostic result.

If an observable (3, 3, 0) mode is truly present in the
signal, and it is the only observable mode in Range B,
then the measured posterior distribution should peak at
the same values as the expected distribution. We expect
the measured distribution to be more diffuse than the
expected distribution. This is because the expected dis-
tribution is derived from the observed dominant mode,
which is more accurately measured due to its larger SNR.
With these considerations in mind, we quantify the agree-
ment between the measured distribution pmeas(fB , τB)
and the expected distribution p330(fB , τB) using:

ζ ≡
∫
pmeas(fB , τB)p330(fB , τB)dfBdτB . (9)

To evaluate this we construct 2D histograms in Range B
using 100 bins each in frequency and damping time. This
is done at each time step; we then maximize ζ over all
the time steps.

We calculate ζ for the Control injections. Since these
injections have no (3, 3, 0) mode by construction, the re-
sulting ζ values represent the distribution of false posi-
tives. The cumulative distribution of the maximized ζ is
shown by the black line in Fig. 4. We also calculate ζ
for the Signal injections that have post-merger SNR > 4.
The cumulative distribution of the maximized ζ is also
shown in Fig. 4 as a blue line. As evident in the figure,
we find good separation between the signal and control
injections.2

Calculating ζ for GW190521, we find that it is at a
maximum at tref + 6 ms, with a value of 1.55. This is

2 Note that ζ would be the Pearson correlation coefficient (without
the means subtracted; sometimes referred to as the “reflective
correlation”) between the measured and expected distributions

if we normalized by
√∫

p2meas

√∫
p2330. We in fact tried this, but

found poor separation between the Signal and Control injections
doing so. This is due to the fact that the expected distribution is
more concentrated than the measured distribution, as described
above.

FIG. 4. Cumulative distribution of ζ values for the Control
injections (black dots/line) and the Signal injections (blue
dots/line). The orange vertical line shows ζ for GW190521.
We use the cumulative distribution of Control injections to es-
timate a p-value for the ζ of GW190521. Since ζ of GW190521
is larger than all Control injections, we estimate its p-value
to be < 1 in 500.

consistent with our initial qualitative assessment that
the observed mode is most consistent with the expected
(3, 3, 0) mode at 6 ms. As shown in Fig. 4, GW190521
has a ζ larger than all 500 of our Control injections. We
therefore conclude that the probability of obtaining a ζ
greater than or equal that of GW190521 by chance from
noise (the p-value) is < 1 in 500.

V. STATISTICAL SIGNIFICANCE OF THE
KERR ANALYSIS

In the Kerr analysis we assume the final black hole
is described by the Kerr metric. In this case, the fre-
quencies and damping times of all post-merger QNMs are
given uniquely by the mass and spin of the black hole.
Each additional mode therefore adds two additional de-
grees of freedom: one for the amplitude and one for the
phase of the mode. The relative amplitudes and phases
of the modes can in principle be determined by the pre-
merger component masses, their spins, and their relative
orientation at merger.

Knowing what amplitude and phase to use for each
mode requires detailed knowledge of the pre-merger con-
ditions, which are not easily discernible for events like
GW190521 in which the pre-merger signal is short and
difficult to observe. Furthermore, models mapping pre-
merger properties to post-merger QNMs are limited for
highly precessing systems, particularly those with large
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(& 2) mass ratios. For these reasons, even when assuming
a Kerr model for the post-merger signal, we use uniform
priors on the phases and relative amplitudes of the sub-
dominant modes with respect to the dominant mode.

Using such broad priors on amplitude and phase makes
the analysis susceptible to overfitting. In principle, all
modes are present in the signal. However, the vast ma-
jority of these modes are negligible compared to the dom-
inant mode. For the types of signals detectable by the
current generation of detectors, we expect only a few fun-
damental modes to have amplitudes that are at most
O(10%) of the dominant mode’s [23, 24]. A signal model
that contains more than a few modes with such broad pri-
ors is effectively unphysical, as it is more likely to fit to
noise elements rather than signal (assuming the signal is
sufficiently close to GR). To give meaningful results, the
signal model should only include the observable modes,
not the possible ones.

As with the agnostic analysis, the Kerr analysis also
needs to determine when the observable modes are
present. Before the merger the QNM model is not valid
– there is not a single perturbed black hole at this point.
During the merger there may be non-linear components
to the signal and/or significant contributions from over-
tones. Too late after the merger, and the signal will have
damped away too much to make anything but the dom-
inant mode observable.

We address both challenges through the use of Bayes

factors. Given a signal model with observable modes ~X =
{(2, 2, 0), ...} at a given time t − tref , we calculate the
evidence that the data contain those modes at that time,

Z ~X(t) =

∫
p(~s|{~λ ~X ; t}, h)p({~λ ~X ; t}|h)d~λ ~X . (10)

Taking the ratio of this evidence to the evidence for the
(2, 2, 0)-only model (Z220) at the same time gives the
relative odds (or Bayes factor) that the data favor that
model as compared to the (2, 2, 0)-only model.

As discussed above, we do not normalize the likelihood
function in our analysis. This means that evidence values
at different times cannot be directly compared to each
other. However, the likelihood function’s normalization
factor cancels in the Bayes factor since the normalization
only depends on the noise properties and not the signal
model. It is therefore possible to compare Bayes factors
at different times.

Taking the point that Z ~X/Z220 is at a maximum yields

the time that the model with modes ~X is the best fit to
the data relative to the (2, 2, 0) model. However, the
(2, 2, 0)-only model is known not to be a good model for
the signal at merger [27]. As a result, if we find Z ~X/Z220

to be large at some time, it is not clear if this is be-

cause modes ~X are a good model for the signal, or if
the (2, 2, 0)-only model is just a very bad model at that
time. Put another way, Z ~X/Z220 only tells us whether

the ~X modes are a better fit for the data than just the

(2, 2, 0), not whether the ~X-modes are truly observable.

This problem becomes particularly acute as we get close
to merger.

To account for this, we make use of the observation in
Refs. [27] that including overtones of the dominant mode
better fit the signal close to (or even at) merger than the
(2, 2, 0)-mode only. We modify the Bayes factor to be

B(X, t) ≡ ZX(t)

max{Z220, Z220+221}
(11)

for all models X 6= (2, 2, 0) + (2, 2, 1) (for the (2, 2, 0) +
(2, 2, 1) model we simply use B = Z220+221/Z220). This
allows us to both identify the most likely observable
modes and the time at which they are most observable.

When applying this method to GW190521 we find
B(220+330) to peak at tref +6 ms with a value of 56±1.
This means that the (2, 2, 0) + (3, 3, 0) model is 56 times
more likely to be true than the (2, 2, 0)-only model, qual-
ifying it as “strong” evidence. Put another way, if the
signal did not have an observable (3, 3, 0) mode, then we
should expect to get a B as large as this from noise only
1 in 56 times.

To test the validity of this observation, we repeat
the Kerr analysis on our Control injections. As with
GW190521, we repeat the analysis on a grid of times
spanning tref + [−9, 24] ms, although to reduce compu-
tational cost for the large number of analyses involved,
we sample in intervals of 3 ms instead of the 1 ms inter-
val used in Capano et al. Since our Control injections
contain no (3, 3, 0) mode by construction, any large B
observed with them is a false alarm. If our analysis as-
sumptions are correct – that the real data is Gaussian
and that we are after the merger – then on average we
expect to get a B ≥ 56 from 8.9 of the 500 injections.

Figure 5 shows the cumulative fraction of Control in-
jections that yield Bayes factors larger than the value
given on the x-axis. For larger B, we expect the distribu-
tion to follow the line 1/x. We show two results: one in
which we maximize B over all times tested, t − tref ∈
[−9, 24] ms and one in which we maximize over times
t − tref ∈ [0, 24] ms. When maximizing over all times,
we find that the injected distribution does not follow the
expected distribution of 1/x; more injections yield large
Bayes factors than expected from noise. At the Bayes
factor found for GW190521 (56 ± 1), 16 of the injec-
tions yield larger Bayes factor, whereas we expect ∼ 9.3

However, when maximizing over times t − tref ≥ 0, the
injections show remarkable agreement with the expected
distribution. Indeed, we find 10 Control injections yield
a B ≥ 56± 1.

Maximizing over all grid times yields an excess of large
Bayes factors because the negative times include times

3 When maximizing over all time, we use 497 injections instead of
500. This is because one time point failed to converge for three
of the injections. For all three injections, this time point was
before tref , which is why we are able to use all 500 injections
when maximizing over t ≥ tref .
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before merger for all of the injections (note the distri-
bution of merger times for the NRSurrogate results in
Fig. 2). As stated above, before merger the signal is not
a superposition of QNMs. This breaks one of our as-
sumptions above. Thought another way – anything not
modeled by our signal model is “noise”; in the pre-merger
regime the “noise” is not Gaussian, and so larger Bayes
factors can be obtained than otherwise expected.

However, this only happens if we sample before the
merger. By maximizing over t − tref ∈ [0, 24] ms we are
in the post-merger regime for 174 of the 500 the injec-
tions. In this case, we get good agreement with the ex-
pectations. We find similarly good agreement if we use
our knowledge of the injections’ coalescence time to only
maximize over grid points that occur after tc. Doing so
introduces complications due to the fact that a different
number of grid points is maximized over for each injec-
tion; see Appendix B for more details.

In order for the larger-than-expected false alarm rate
to apply to GW190521, the time at which the maximum
Bayes factor occurred (tref + 6 ms) would have to have
been before the merger. Of the 500 Control injections
only 15 had coalescence times after tref +6 ms. We there-
fore conclude this scenario to be unlikely, and use the
result when maximizing over tref ≥ 0. Given the excel-
lent agreement between expectations and measurement,
we conclude that our measured (3, 3, 0) Bayes factor for
GW190521 is valid.

To check that our code can recover large Bayes fac-
tors when a signal actually has a (3, 3, 0) mode, we re-
peat this analysis on the Signal injections. The result
is summarized in Fig. 6. As expected, the cumulative
distribution of Bayes factors for Signal injections does
not follow the distribution expected from noise. We also
find there to be little difference between maximizing over
t − tref ∈ [−9, 24] ms and t ≥ tref . Of the 45 Signal in-
jections, 22 have Bayes factors larger than GW190521
when maximized over t ≥ tref while 23 have larger Bayes
factors when maximized over all times.

That the pipeline recovers large Bayes factors when the
signal is present further validates its ability to recover the
(3, 3, 0) mode from a signal if it is present.

VI. TESTS OF THE NO-HAIR THEOREM

With more than one ringdown mode, a non-trivial test
of the black hole no-hair theorem can be performed [4].
Here we parameterize this test through the deviations
δf`mn, δτ`mn associated with the measured frequency
and the damping time of the sub-dominant mode or the
overtone.

The deviation parameters are defined in terms of
the measured dominant mode parameters f220, τ220 by
f`mn = (1 + δf`mn)f`mn(f220, τ220) and equivalently for
τ`mn. The mappings f`mn(f220, τ220) and τ`mn(f220, τ220)
are given by the relation between the black hole’s fi-
nal mass and spin and each individual mode’s frequency

FIG. 5. Cumulative fraction of Control injections (i.e., ones
without a (3, 3, 0) mode in the ringdown) versus (3, 3, 0) Bayes
factor maximized over time. Since these injections have no
(3, 3, 0) mode in the ringdown, we expect the cumulative
distribution of Bayes factors & 2 when calculated after the
merger to follow the black-dashed line. Shaded yellow regions
show the 1-3σ deviation regions. The dark blue markers/line
show the cumulative distribution of Bayes factors for the Con-
trol injections when maximized over time steps ≥ tref . For all
injections t ≥ tref was after the merger. This line follows the
expected distribution. Light blue markers/lines show the dis-
tribution of Bayes factors when maximized over all times, in-
cluding before merger. We get an elevated set of Bayes factors
in this case, since the ringdown model is no longer valid be-
fore merger. The red vertical line shows the maximized Bayes
factor for GW190521 (56± 1), which occurred at tref + 6 ms.
On average, we expect 8.9 out of the 500 injections to have
a Bayes factor greater than this; we find 10 when maximized
over tref ≥ 0. Based on this, we conclude that the quoted
Bayes factor for GW190521 is statistically sound.

and damping time, calculated using the pykerr pack-
age [58]. We can perform this test either with the
(`,m, n) = (3, 3, 0) mode or the (`,m, n) = (2, 2, 1) over-
tone of the dominant (2, 2, 0) mode.

The parameter estimation is now performed on the
simulated signals of set Control and set Signal as in
the Kerr analysis, but adding the deviation parameters
(δf`mn and δτ`mn) to the set of varied parameters. For
the injection set Control, we add δf221, δτ221 and sim-
ilarly for injection set Signal we consider δf330, δτ330 as
two additional parameters in the respective analyses. We
use uniform prior distributions for the deviation param-
eters with δf221 ∈ [−0.16, 0.3], δτ221 ∈ [−0.8, 0.8] and
δf330 ∈ [−0.3, 0.3], δτ330 ∈ [−0.9, 3], (see Table II). For
the (`,m, n) = (2, 2, 1) analysis, we use the Controlin-
jections. Their simulated signals are generated from the
waveform approximant NRSur7dq4, including only the
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FIG. 6. Cumulative fraction of (3, 3, 0) Bayes factors (max-
imized over time) for the Signal injections that have an
`,m = (3, 3) post-merger SNR of at least 4. As in Fig. 5, the
black dashed line and shaded regions show the expected dis-
tribution from noise. Unlike for the Control injections, we find
the Bayes factors of this set of 45 injections to stay substan-
tially above the noise background. The red vertical line shows
the maximized Bayes factor for GW190521. When maximized
over t ≥ tref , 22 of the 45 injections have a Bayes factor greater
than GW190521. This indicates that our pipeline is capable of
detecting large Bayes factors when a (3, 3, 0) mode is present.

` = 2 modes. For the (`,m, n) = (3, 3, 0) analysis, we
use the Signalinjections, with simulated signals gener-
ated with IMRPhenomTPHM including all its available
modes. All injections are thus consistent with GR, and
should show no deviation, δf`mn = δτ`mn = 0.

We apply the overtone analysis to injections in set Con-
trol at the coalescence time tc. For the injections in set
Signal, we perform the test at the time where the largest
Bayes factor in favor of the subdominant (3, 3, 0) mode
in addition to the dominant (2, 2, 0) mode was found
in the Kerr analysis in section V, where no deviations
were allowed. Our results from the overtone analyses
performed on the injections in set Control and the sub-
dominant mode analyses on set Signal are presented in
Fig. 7. In the figure we show the 50%-credible regions
of the posterior distributions in δf`mn and δτ`mn, and
the one-dimensional marginalized distributions for sev-
eral events. We do not include the 90% contours here
since they typically cover the whole prior range in the
(2, 2, 1) analysis.

In Fig. 7, for the (3, 3, 0) mode analyses, results from
44 events with post-merger SNR ≥ 4 are shown4, while

4 In total, 45 injections in set Signal meet the criterion of having

for the (2, 2, 1) overtone analyses, we draw at random 40
events from those with B ≥ 100. These show that the fre-
quency and damping time of the (3, 3, 0) mode is more ac-
curately recovered than the frequency and damping time
of the (2, 2, 1) overtone, even though wider priors were
allowed in the (3, 3, 0) analysis. The damping time pos-
teriors are broad for both analyses, yet more tightly con-
strained for the (3, 3, 0) study. The subdominant (3, 3, 0)
mode’s frequency is constrained more tightly compared
to that of the (2, 2, 1) overtone. Additionally, the number
of (3, 3, 0) frequency posteriors centered on the expected
value δf330 = 0 increases with the Bayes factors, while for
the (2, 2, 1) frequency posteriors, δf221 < 0 is preferred
for large Bayes factors. For several (2, 2, 1) injections,
we observe a bimodal posterior distribution for the over-
tone frequency deviation. However, the recovery of the
(3, 3, 0) damping time for a single injection shows a bias
and the δτ330 posterior is centered away from zero even
though this injection has a large Bayes factor. We expect
this shift in the recovered damping time to be due to the
presence of even higher modes, but defer study of this
feature to future investigations. We find that tests for
deviations of subdominant mode parameters are favored
by use of the (3, 3, 0) mode compared to the (2, 2, 1) mode
for this type of event. We also leave further investigations
of full parameter recovery of black hole spectroscopy to
subsequent papers.

VII. CONCLUSIONS

Our results here support the conclusion that the ring-
down signal of GW190521 contains an observable 33
mode in addition to the dominant 22 mode.

We find a Bayes factor 56± 1 for the likelihood of two
Kerr ringdown modes over just one mode in the data of
GW190521. In the simulated tests of section V, for 500
simulated signals with higher ringdown modes explicitly
turned off, only 10 were recovered with a Bayes factor
higher than 56± 1. Thus a statistic at least as signifi-
cant as GW190521 occurs once in 50 times. We have in
addition demonstrated that the Bayes factor can detect
a (3, 3, 0) mode when it is present in the data.

For future events, our results in section IV for the
agnostic test suggest that an improved detection statis-
tic may be better able to detect multiple modes in the
data. This involves comparing the consistency of the
two-dimensional frequency and damping-time likelihood
of the second mode, with that predicted by the frequency
and damping-time likelihood from the first mode, assum-
ing that they are the (2, 2, 0) and (3, 3, 0) modes of a Kerr
black hole.

Our results for the no hair theorem test in VI indicate
that using two fundamental modes may perform more re-

post-merger SNR ≥ 4. We show results for 44 of these as the
sampler did not converge for one of the injections.
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FIG. 7. Each plot shows the contours of the 50% credible regions for the deviation parameters δf`mn, δτ`mn, and the
corresponding 1-D marginalized distributions for several injections. The colors show the log Bayes-factor log10 B in favor of the
presence of the respective subdominant mode or overtone in addition to the dominant (2, 2, 0)-mode. Results are shown for
the analyses considering the (3, 3, 0) subdominant mode at the time of the highest Bayes factor on the left, for all injections
with SNR ≥ 4 in the subdominant mode. The right plot shows the results for the analysis using the (2, 2, 1) overtone, for 40
randomly chosen injections with B ≥ 100. Dotted lines mark the values of the injected signals, δf`mn = δτ`mn = 0. Note
the axes’ ranges, showing the (2, 2, 1) posteriors often peaking at negative values of δf221 and positive δτ221, while the (3, 3, 0)
posteriors are typically centered around δf330 = 0.

liably than using the dominant mode and a single over-
tone. However, there still remain some issues when using

two fundamental modes over a very broad range of as-
trophysical parameters. We leave a full investigation of
these features to future work.
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on the Bayes factor

In the initial analysis in Capano et al. [35] we used
dynesty to sample over all parameters for the Kerr anal-
ysis listed in Table II. We found a maximum Bayes fac-
tor of 44+6

−5 in favor of the (2, 2, 0) + (3, 3, 0) model at
tref +7 ms. However, this method proved time-consuming
as the sampler struggled to converge for some mode com-
binations. The difficulty largely arises from the combi-
nation of the phases of the modes and the polarization
angle. In particular, for GW190521 the phase of the dom-
inant mode and the polarization are degenerate, as the
polarization is not measured well due to the low SNR in
the Virgo detector. This results in a banding pattern in
the marginal likelihood between these parameters that is
a challenge to sample.

Sampling over all parameters would have been un-
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polarization using 1000 grid points. This marginalization
technique was employed in the 3-OGC [59] and 4-OGC
analyses [46], where it was found to speed convergence
for full IMR templates with sub-dominant modes. We
are able to apply the same technique here because the de-
pendence on the polarization is approximately constant
over time for a short-duration event like GW190521, and
so can be separated from the gating-and-in-painting pro-
cedure.

In implementing the polarization marginalization, we
discovered that we obtained a larger Bayes factor for
GW190521 one ms earlier, at tref + 6 ms. To verify this,
we repeated the +6 ms and +7 ms analysis 10 times using
different starting seeds. We also repeated each analysis
once with double the number of live points. We found
consistently larger values at +6 ms. Averaging the Bayes
factors over the runs we obtained 56 ± 1 at +6 ms and
45± 1 at +7 ms, where the uncertainty is reported with
1σ. We further verified these Bayes factors by using the
Savage-Dickey ratio on the (3, 3, 0) amplitude posterior
to estimate the Bayes factor, and obtained similar results
as reported by dynesty’s estimate.

The result at 7 ms was consistent with our initial re-
sult in Capano et al., but the result at 6 ms was substan-
tially higher. Our initial estimate for the Bayes factor at
+6 ms (without marginalization) was 40+5

−4. Evidently,
without marginalization, the sampler had not fully con-
verged at 6 ms, yielding an underestimate of the Bayes
factor. Marginalization also affected our (2, 2, 1) results:
we found the Bayes factor for the (2, 2, 1) mode peaked
slightly earlier, at tref − 7 ms instead of the tref − 5 ms
that we initially estimated.

Given the robustness of the new results under polariza-
tion marginalization, we quote the updated Bayes factor
at tref + 6 ms here for GW190521.

Appendix B: Maximizing the Kerr Bayes factor
after merger

As discussed in Sec. V, we obtain good agreement be-
tween the expected distribution of Bayes factors and the
measured distribution if we restrict the maximization in-
terval to be strictly after the Control injections’ coales-
cence time tc. The result is shown in the left plot of

Fig. 8. Above Bayes factors of ∼ 20 we find excellent
agreement with the background. Indeed, we find that
9 of the 500 injections have a Bayes factor larger than
GW190521, exactly the amount expected by chance.

However, for Bayes factors . 20 there is a nearly 3σ
downward deviation in the measured background. This
deviation is due to the fact that differing numbers of grid
points are maximized over when using the injection’s co-
alescence time. For example, the maximization interval
spans nine grid points (spanning tref + [0, 24] ms) for in-
jections that have a tc ≈ tref , whereas the interval is only
two grid points for injections with tc ≈ tref + 21. Al-
though grid points are not independent of each other – if
a large Bayes factor exists at a particular point in time,
there is a higher probability that its neighbors will also
have larger Bayes factors – they are not entirely depen-
dent either. Due to the stochastic nature of the noise,
there are random fluctuations in Bayes factors across
time. Consequently, if a maximization interval covers
fewer grid points, there is less opportunities to obtain
larger Bayes factors.

Large Bayes factors are not strongly affected by differ-
ences in maximization interval, since there is a low prob-
ability that a noise fluctuation could produce a larger
Bayes factor. This is evident in the left plot of Fig. 8.
Conversely, smaller Bayes factors will be affected by this,
hence the deviation at lower Bayes factors in that plot.

This issue can be corrected for by multiplying the
Bayes factors of each injection by (maxNgrid)/Ngrid,
where Ngrid is the number of grid points maximized over
for the given injection and maxNgrid is the largest num-
ber of grid points maximized over in the set. Renor-
malizing the Bayes factors yields the result shown in the
right plot of Fig. 8. Now we find good agreement with
the expected background and measured distribution at
all Bayes factors. With this we find 10 Control injections
to have a larger Bayes factor when we expect 9.

Note that the normalization factor implicitly assumes
that each grid point is independent of the others. As
stated above, this is not the case. Since using this factor
tends to overestimate the contribution, this is a conser-
vative error.

Due to these complications we present in the main text
the simpler maximization over tref ≥ 0.
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FIG. 8. Left : Same as Fig. 5, but with the maximization interval based on the injections’ coalescence time tc (dark blue line).
We find excellent agreement with the expected background distribution at large Bayes factors, but a ∼ 3σ downward deviation
in the measured distribution at Bayes factors . 20. This deviation is due to the different maximization range for each injection.
Right: Renormalized version of the left plot. Here, we’ve accounted for variations in maximization interval across the Control
injections by multiplying their Bayes factor by (maxNgrid)/Ngrid, where Ngrid is the number of time points maximized over.
We find good agreement with the expected background at both large and small Bayes factors in this case.
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