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High-precision atomic structure calculations require accurate modelling of electronic correlations
involving large multiconfiguration wave function expansions. Here we develop a deep-learning
approach which allows to preselect the most relevant configurations out of large basis sets until the
targeted precision is achieved. Our method replaces a large multiconfiguration Dirac-Hartree-Fock
computation by a series of smaller ones performed on an iteratively expanding basis subset
managed by a convolutional neural network. The results for several examples with many-
electron atoms show that deep learning can significantly reduce the required computational memory
and running time and renders possible large-scale computations on otherwise unaccessible basis sets.

The precise knowledge of atomic structure is indis-
pensable for frequency standards in metrology, spectral
analysis in astrophysics, understanding of nuclear phe-
nomena involving atomic electrons, or investigations of
physics beyond the standard model, e.g space and time
variation of fundamental constants [1]. Ab initio atomic
structure calculations are the scope of high performance
codes that provide a wide range of electronic properties of
atoms and ions, such as energy levels, radiative transition
rates, g-factors or hyperfine structure constants. The
practical difficulty arises from many-body effects when
considering atoms or ions with high atomic number Z
and many electrons. The electronic correlations are typi-
cally tackled by multiconfiguration wave function expan-
sions combined with the configuration interaction (CI)
method. The size of the involved basis set can easily
become challenging even for state-of-the-art parallelized
codes running on supercomputer systems, see e.g. recent
calculations of electronic energy levels in Th35+ [2–4],
Ir17+ [5, 6] or Fe16+ [5, 7].

The ability to preselect the basis states which have
large relative weights would allow us to construct a com-
pact wave function that delivers accurate observables
without requiring the computational effort on the full
basis. Selected CI methods were applied to atomic and
molecular systems using selection criteria based on per-
turbation theory [8, 9] or the Monte-Carlo approach
[10, 11]. However, these methods become inefficient
for large basis sets, since perturbation theory still re-
quires computations on the entire basis, whereas the
random selection completely disregards the properties of
its states. Recently in quantum chemistry selected CI
based on machine learning has been demonstrated, for
instance using supervised active learning [12–14], or re-
inforcement learning [15]. Neural networks (NN) have so
far proved their versatility for the active learning iter-
ations in selected CI [13], although for small electronic

systems like H4, H2C or H2O, support vector machines
can be preferable [14]. Unfortunately, shallow NNs as
applied in Ref. [12] as well as NNs of straightforward
dense structure with more layers [13] are not sufficient
for high-performance calculations for heavy atoms and
ions. Apart from the strong electronic correlations, an-
other reason is the more complicated labelling of the ba-
sis states due to presence of the rotational symmetry in
atomic calculations as opposed to the quantum chemistry
examples considered so far.

In this Letter, we develop an efficient deep-learning
approach to iteratively construct an approximative wave
function that delivers atomic level energies for high-
Z atoms and ions with many electrons. The crucial
step is application of a convolutional NN after appro-
priate encoding of basis states. This significantly im-
proves the performance for atomic systems as compared
to similar-sized NN of a simple dense type as applied
e.g. in Refs. [12, 13]. The NN is trained on-the-fly
and asked to select the important states for specific elec-
tronic levels. The atomic structure calculations are ad-
dressed employing the multiconfiguration Dirac-Hartree-
Fock (MCDHF) method with the General Relativistic
Atomic Structure Package GRASP2018 [16].

For benchmarking and demonstration of our approach
we choose the case of neutral 187Re and 187Os atoms and
calculate the respective ground state energies. These val-
ues have been just recently evaluated with GRASP2018
to extract the β-decay energy of 187Re from experimen-

tally determined masses of 187Re
29+

and 187Os
29+

[17].
Due to the prohibitively large basis set size, the authors
of Ref. [17] had to preselect the most important basis
states by evaluating transition and ionization energies
and fitting them to experimental values [18]. In con-
trast, the NN allows to avoid ad hoc methods and carry
out large computations from first principles by replacing
them by a series of smaller ones performed on an iter-
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atively expanding basis subset until the required energy
precision is achieved.

In MCDHF, the wave function of the considered state
Ψ is represented as an expansion Ψ =

∑
α cαΦα in the

basis of configuration state functions (CSF) Φα, where α
stands for all quantities uniquely characterizing a CSF.
For a given electronic configuration n1l

a1
1 . . . nkl

ak
k (here

a is the occupation of the orbital with the principal and
orbital quantum numbers n and l, respectively), CSFs
are constructed from individual electronic wave functions
by subsequently considering (1) different distributions of
electrons over relativistic suborbitals; (2) all possible an-
gular momenta couplings within each suborbital; (3) all
possible couplings between the suborbitals to the total
angular momentum J . The unknown coefficients cα and
the energy E of the electronic state are then obtained by
solving the diagonalization problem ĤΨ = EΨ, where Ĥ
is the Dirac-Hartree-Fock Hamiltonian [19]. The diago-
nalization problem is solved iteratively with simultaneous
evaluation of the radial electronic wave functions. When
the latter are fixed, MCDHF reduces to the well-known
configuration interaction (CI) [1].

A single electronic configuration n1l
a1
1 . . . nkl

ak
k yields

usually only a few to a few tens of CSFs. However, for ac-
curate atomic structure data, correlation effects [19] need
to be taken into account by additionally including CSFs
originating from other configurations with the same good
quantum numbers J and parity π. Thereby the targeted
accuracy determines the size of the required basis set.
These additional configurations are obtained from the
initial one by moving (“exciting”) electrons from occu-
pied orbitals to vacancies in partially occupied or empty
(virtual) orbitals up to some fixed orbital nvlv. In prac-
tice, the innermost core electronic shells are kept frozen
and only excitations from higher occupied orbitals down
to a fixed orbital nclc are allowed. The main difficulty
stems from the very fast growth of the set size and the
increased computational costs per matrix element. This
is why often only single (S) and double (D) excitations
are considered. We denote the obtained set of CSFs as
X(nclc, nvlv), where the generic notation X stands for S,
D or their combination.

For example, the set SD(3p, 9h) for the ground state
of Re and Os atoms considered here and in Ref. [17]
consists of about 100 million CSFs and lies far beyond
the computational capabilities of GRASP2018. Ref. [17]
restricted the basis set to the approx. 5 million most
important CSFs selected by reproducing experimental
data for excitation and ionization energies [18]. How-
ever, such experimental data are often not available for
highly charged ions and higher excited states of high-
Z atoms. Other ab initio approximation methods such
as e.g. the many-body perturbation theory [9, 20] are
still computationally demanding for large sets and often
do not provide reasonable precision. This renders the
MCDHF problem with a large number of CSFs generally

very challenging.

In this work, we develop a systematic and general
deep-learning-based approach allowing for approximate
MCDHF computations on large basis sets without the
need to actually perform any atomic calculations on the
entire CSF set. In our method, the diagonalization prob-
lem is solved iteratively on a relatively small subset ex-
panded in each iteration until the required precision of
the state energy is achieved. The WF set expansion is
managed by a NN trained on the CSF weights wα = |cα|2
obtained at the diagonalization stage in the current and
previous iterations. Following Refs. [12, 13], we con-
sider a binary output: a CSF is either important or
unimportant, in the sense that wα exceeds or not some
cutoff value w0 chosen in advance. However, instead
of using a fixed cutoff as in Refs. [12, 13], we use a
running cutoff taking at the i-th iteration a new value
wi < wi−1 < . . . < w1 < w0. This choice is crucial for
obtaining convergence of the energy to its true value, a
point which was also observed in Ref. [14]. The final
subset of CSFs together with their expansion coefficients
cα constitute an approximate state wave function which
can be used for evaluation of further electronic properties
of interest. We refer to it henceforth as the wave function
(WF) subset.

Some important CSFs for a particular electron config-
uration are known from the start and should always be
included in the WF set. They form the primary subset
and we do not expose them to the NN at any stage. At
first, the NN is trained on a random selection of CSFs
from the considered set X(nclc, nvlv) (excluding the pri-
mary subset). Throughout this work we use 1% of CSFs
for the initial training. In the i-th iteration, the WF set is
enriched with the CSFs identified by the NN as important
with respect to the cutoff wi. Then the diagonalization
problem is solved on the WF subset with GRASP2018.
The obtained weights are used for re-training of the NN
and to exclude from the WF set those CSFs which turned
out to be unimportant.

In contrast to the earlier approaches [12, 13] which
dealt with relatively simple input of spin-orbital occupa-
tions fed directly into usual dense NNs, we employ a NN
of the convolutional type well known from image recogni-
tion applications [21, 22] combined with proper restruc-
turing of the basis state labels. As input, the NN re-
ceives the information uniquely characterizing CSFs (see
Fig. 1): (1) populations of the relativistic suborbitals nk;
(2) the total angular momenta for each suborbital Jk; (3)
the intermediate angular momenta for couplings between
them Jcpl

k . The orbitals are ordered in natural succession
of quantum numbers. We normalize the populations of
the orbitals to their maximal capacity and the angular
momenta to the total angular momentum of the state.
The three classes of input data are then interpreted as
color channels of a 1D convolutional input layer.

A network architecture that we found to work effi-
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ciently and which we focus on here is shown in Fig. 1.
The input layer (A) consists of 3 channels (see color en-
coding in Fig. 1) of size N . The input is processed with a
filter kernel of size 3 (B) resulting in 96 feature maps (C)
each of size N − 2. The latter are mapped to 16 feature
maps (D) of size N − 2 by application of a filter kernel
of size 1 (thus representing a purely local transforma-
tion). The obtained output of 16× (N −2) values is then
flattened and forwarded to a network of 4 dense layers
(E) with 150, 120, 90 and 2 neurons, respectively. The
ReLU activation function was used throughout the NN
apart from the two-neuron output layer (F), where the
softmax function is applied yielding the probabilities of
the CSF to be important or unimportant. The categor-
ical cross-entropy was chosen as the loss function. The
NN is trained on batches of size 32 using the Adam op-
timization algorithm with early stopping. The described
NN functionality was implemented using the Python li-
brary Keras [23, 24] which is a high-level interface of the
well-known TensorFlow library [25].

nk
Jk
J cplk

FIG. 1. NN architecture. See text for further explanations.

This NN architecture, together with the strategy of
CSF selection and iterative re-training described above,
constitutes our new approach to atomic structure calcu-
lations. For benchmarking we first consider a basis set
of a moderate size, for which a direct full GRASP2018
calculation is possible. We choose the set SD∗(3p, 9h)
for the Re atom ground state (4,267,362 CSFs charac-
terized by 64× 3 quantum numbers), where D∗ denotes
the subset of D with the additional restriction that each
virtual orbital can be either doubly excited or empty.
We simplify the GRASP2018 runs by considering at this
stage just the Coulomb interaction and by keeping the
radial wave functions fixed. These are obtained with
GRASP2018 in advance using the layer-by-layer proce-
dure as described in Ref. [26] and including SD excita-
tions within the main configuration and S excitations to
the virtual orbitals. The primary subset used in all iter-
ations consists of 37,220 CSFs constructed based on SD
excitations to the valence orbitals and S excitations to
the virtual orbitals.

Following this procedure, our results show that the
convolutional NN tends to treat both completely filled as
well as empty orbitals as a common “background”. Simi-

larly to image recognition, this background is stripped off
by the NN such that the remaining “image” represents
the partially filled (open) orbitals. The input data un-
dergos this transformation when moving from part (A)
to part (D) of the NN (see Fig. 1). In the 16 feature maps
(D), non-zero values tend to appear only at those of the
62 positions which correspond to the partially filled or-
bitals. This “background elimination” is observed for all
CSFs in the set already after a few first training epochs,
whereas the whole computation consists of a few tens of
epochs. In this way, the NN discovers in the data the
well-known physical fact that the CSF properties in a
basis set are determined by the open orbitals. We at-
tribute the better performance of our NN in comparison
to NNs of a usual dense architecture to this CSF process-
ing feature.

Table I shows the results obtained in each iteration:
the energy EWF on the current WF set with respect to
the exact value Eall = −454, 655.537 eV (obtained sep-
arately in a direct calculation), the number of CSFs in
the GRASP2018 run, and the time taken by diagonal-
ization. We note that for fixed radial wave functions
the energies always satisfy EWF > Eall [27]. The iter-
ations are labelled by log10 w

i where wi is the running
cutoff value at the i-th iteration. The initial NN train-
ing on 1% randomly chosen CSFs is also represented in
Table I in the row labelled as “Init.”. After the very last
iteration, CSFs unimportant with respect to the value
log10 w

i = −11.6 as calculated by GRASP2018 are ex-
cluded from the WF set yielding the final WF set with
784,446 CSFs instead of 1,083,274. The latter step is im-
portant if the obtained WF set is intended for further
calculations on the state, such as e.g. improving the ra-
dial wave functions or evaluation of QED corrections and
isotope shifts.

The accuracy of 7.6 meV was achieved on 180 cores
in 85 min, of which 67 min were taken by the atomic
calculations and the rest was used mostly for training of
the NN. The peak memory consumed by the program
was 177 GB. In contrast, the direct GRASP2018 com-
putation on the same computer hardware configuration
took 6.4 hours with the peak memory consumption of 1.3
TB. This comparison shows the clear advantages of the
presented approach.

Fig. 2 illustrates graphically the growth of the WF set
for the considered example of SD∗(3p, 9h). Plotted is the
number of CSFs not (yet) included in the WF set as a
function of the weight log10 wα for each iteration. The
distribution is normalized with respect to the total size
of the SD∗(3p, 9h) set and the weights wα are taken from
the full GRASP2018 calculation. In each iteration, CSFs
are included in the WF set (and thus removed from the
depicted distributions) from the right. The right edge of
the distributions is not completely sharp, meaning that
not all CSFs important with respect to the current cut-
off are included in the WF set. The NN selection ensures
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log10 w
i EWF − Eall, meV CSFs in GRASP Time, min

Init. 11,180.2 79,521 1.6

-8.6 3,590.8 244,405 3.5

-9.2 900.1 396,378 6.2

-9.8 114.1 597,313 11.0

-10.4 32.6 818,002 17.3

-11.0 7.6 1,083,274 27.6

TABLE I. Results of approximate energy calculations on the
SD∗(3p, 9h) basis set for the Re atom ground state using
our deep-learning-based approach. Iterations are labelled by
log10 w

i where wi is the running cutoff value at the i-th iter-
ation. The row labelled as “Init.” represents the initial NN
training on 1% randomly chosen CSFs.

that the slope becomes stable in the first iterations and
moves then from right to left. As alternative, we have
checked the energy convergence for the case that CSFs
were randomly picked instead. In this case, the chosen
CSF come mostly from the maximum region of the dis-
tribution, and only a small fraction of them is important,
leading to a very slow expansion of the WF set and im-
practical slow convergence of the calculated energy.
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FIG. 2. (Color online) The distribution of CSF from the set
SD∗(3p, 9h) not (yet) included in the WF set as a function of
their respective weights log10 wα for each iteration. The dis-
tributions are normalized with respect to the total size of the
SD∗(3p, 9h) set. The iterations are labelled by the cutoff val-
ues log10 w

i which are additionally illustrated by the vertical
dotted lines.

The WF set expansion is a stochastic process implying
different final energy values EWF for separate runs. To
check the stability, we have run the same calculation 30
times. This yielded for the (positive) quantity EWF−Eall

the average value of 7.8 meV with the mean squared de-
viation of approx. 40%. At the same time, the WF
set size in the last and most computationally demand-
ing iteration deviated only 5% from its average value of

1,065,268 CSFs, ensuring also stability of the required
resources. Further checks showed that variation of the
NN hyperparameters influences the result smoothly and
mostly within the stochastic distribution for EWF−Eall.
Since the convolutional network can deal with arbitrary
input sizes, the NN parameters applied here can be used
as a reasonable starting point for other computations.

Finally, we have performed the described calculations
replacing the convolutional NN by a NN of a usual dense
architecture with similar number of trainable parameters.
The concrete shape of the latter was varied. As input, we
used both the (flattened) representation applied in this
work, and a binary encoding of the input data favoured
by dense NNs. In all considered cases, the obtained en-
ergy deviation from Eall was several times larger than
the average value 7.8 meV achieved using a convolutional
NN. This advantage over simple dense NNs as applied in
Refs. [12, 13] is especially important for large CSF sets
as the one considered in the following.

We switch now to calculations on the large basis sets
SD(3p, 9h) for the Re and Os neutral atoms relevant
for the determination of the 187Re β-decay energy in
Ref. [17]. These calculations involve basis sets of over
90 million CSFs and cannot be performed directly using
GRASP2018. However, it is sufficient to retain for each
set only the CSFs that deliver a 1 eV precision for the en-
ergy. Using our deep-learning approach, we could achieve
the targeted accuracy by performing partial GRASP2018
runs on up to about 4 million CSFs. The CSFs included
in the primary subset were constructed as in the previ-
ous example resulting in 37,220 and 32,660 CSFs for the
Re and Os atom, respectively. The radial wave functions
were obtained in advance in the layer-by-layer procedure
with GRASP2018 [26] by including SD excitations to the
valence orbitals and S excitations to the virtual orbitals,
and kept fixed in the CSF selection process.

We started from the cutoff value log10 w
0 = −8.0 and

performed iterations with decreasing it in steps from 0.3
to 0.5 until the energy converged. In order to make sure
that the converged value represents the correct energy,
we carried out a few separate runs choosing each time
different cutoff paths. Each computation could be per-
formed on 500–600 cores within one day (a half of this
time was taken by the NN training) with the peak mem-
ory consumption of 4 TB. The approximative WF sets
for neutral Re and Os atoms were then used to refine the
atom energies by including QED corrections and isotope
shifts and by improving the radial wave functions for the
virtual orbitals. In order to compare our results with
Ref. [17] where the electronic binding energy difference
δE between a neutral atom and a 29+ ion for Re and
Os was provided, we evaluate the energies of the Re29+

and Os29+ ions on the basis sets SD(3p, 9h). Since these
consist of only 53,885 and 2,455,449 CSFs, respectively,
we carry out MCDHF calculations directly taking into
account also QED corrections and isotope shifts using
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GRASP2018.

Based on the calculated atom and ion energies, we
find δERe = −10, 905.80 eV and δEOs = −10, 958.94 eV,
which agree with the values δẼRe = −10, 894.5±25.9 eV
and δẼOs = −10, 947.9± 24.6 eV from Ref. [17]. For the
quantity ∆E we obtain ∆E = 53.14 eV, whereas in Ref.
[17] the value ∆Ẽ = 53.4± 1.0 eV was reported. Our re-
sults are thus in good agreement. We note that although
the set SD(3p, 9h) accounts for a large part of the corre-
lation corrections, its choice affects the individual atom
energies significantly. By carrying out analogous calcula-
tions for “adjacent” sets, e.g., SD(3d, 9h) or SD(3d, 10h),
we have observed that whereas a change of the lowest
core orbital influences the binding energy at the level of
1 eV, expansion to the valence orbitals with n = 10 leads
to a variation of the result of the order of 10 eV. The
small error of ∆E with respect to δERe and δEOs is the
result of cancellation of the correlation effects due to the
similarity of the Re and Os neutral atoms. This calls for
further investigations of the Re and Os electronic struc-
ture, e.g. using our deep-learning approach.

In conclusion, our deep-learning-based approach of-
fers a crucial simplification of MCDHF calculations on
large basis sets, which are otherwise computationally de-
manding and often not feasible. The NN allows to re-
place a large computation by a series of smaller ones
performed on an iteratively expanding basis subset un-
til the targeted precision is achieved. A benchmark has
been performed on intermediate-size basis for the exam-
ples of Re and Os, and energy predictions were made on
large basis sets which are at present not accessible with
GRASP2018. The developed approach can be used with
other atomic codes, which do not necessarily employ the
rotational symmetry and are based on an uncoupled basis
of Slater determinants (see for instance Ref. [5]).

We are thankful to Marianna Safronova, Sergey Por-
sev and Charles Cheung from University of Delaware for
fruitful discussions. AP gratefully acknowledges funding
from the Deutsche Forschungsgemeinschaft (DFG) in the
framework of the Heisenberg Program.
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