
REPORT

Unbiased retrieval of frequency-dependent mechanical
properties from noisy time-dependent signals
Shada Abuhattum,1,2,3 Hui-Shun Kuan,2,4,5 Paul M€uller,1,2,3 Jochen Guck,1,2,3,6 and Vasily Zaburdaev2,4,5,*
1Max Planck Institute for the Science of Light, Erlangen, Germany; 2Max-Planck-Zentrum f€ur Physik und Medizin, Erlangen, Germany;
3Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universit€at Dresden, Dresden, Germany; 4Department of
Biology, Friedrich-Alexander-Universit€at Erlangen-N€urnberg, Erlangen, Germany; 5Max Planck Institute for the Physics of Complex Systems,
Dresden, Germany; and 6Department of Physics, Friedrich-Alexander-Universit€at Erlangen-N€urnberg, Erlangen, Germany
ABSTRACT Themechanical response of materials to dynamic loading is often quantified by the frequency-dependent complex
modulus. Probing materials directly in the frequency domain faces technical challenges such as a limited range of frequencies,
long measurement times, or small sample sizes. Furthermore, many biological samples, such as cells or tissues, can change
their properties upon repetitive probing at different frequencies. Therefore, it is common practice to extract the material prop-
erties by fitting predefined mechanical models to measurements performed in the time domain. This practice, however,
precludes the probing of unique and yet unexplored material properties. In this report, we demonstrate that the frequency-depen-
dent complex modulus can be robustly retrieved in a model-independent manner directly from time-dependent stress-strain
measurements. While applying a rolling average eliminates random noise and leads to a reliable complex modulus in the lower
frequency range, a Fourier transform with a complex frequency helps to recover the material properties at high frequencies.
Finally, by properly designing the probing procedure, the recovery of reliable mechanical properties can be extended to
an even wider frequency range. Our approach can be used with many state-of-the-art experimental methods to interrogate
the mechanical properties of biological and other complex materials.
WHY IT MATTERS Fully understanding the response of a system that depends on the time scale of perturbation entails
repetitive probing at different frequencies. However, when it comes to investigating the mechanical properties of a living
cell or tissue actively responding to mechanical stress via biochemical signaling, repetitive tests are often unreliable. Here,
we show how the frequency-dependent characteristics of a system can be accurately recovered from a noisy signal
recorded while it responds to a time-dependent change in a single and fast measurement. This approach can dramatically
upgrade existing and emerging high-throughput techniques by shortening measurement times and expanding the
frequency range.
INTRODUCTION

Interrogating the mechanical behavior of materials is
of great significance for understanding the relation
between their structure and function. For instance,
the elastic behavior of a rubber band originates from
entropic stretching of its constituent polyisoprene mol-
ecules. The shear-thickening properties of corn starch
imply the existence of dynamically jammed structures
(1), and the fluid-like viscous behavior of cellular aggre-
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gates can be linked to intermittent cell-cell interactions
(2–4). Most materials, when observed at different time
scales, will exhibit different mechanical behaviors. This
phenomenon, attributed as viscoelasticity, has been
studied extensively with the aim of unraveling complex
mechanical properties and exploring novel materials
(5). Characterizing mechanical properties has also
been at the front line of biophysical research. Eluci-
dating elastic and viscous properties of biological mat-
ter has led to significant insights into understanding
cellular processes, morphogenesis, or the role of me-
chanical properties in disease (6–8).

Mechanical properties of materials are typically
quantified via their stress (force per unit area [Pa]) -
strain (relative displacement of the material [-]) rela-
tionship. To characterize the material response at
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FIGURE 1 Viscoelastic behavior of a simulated standard linear solid
material. (A) Ideal stress s (red) and strain ε (blue) signals of an SLS
material as a function of time. (B) StorageG0 (dark green circles) and
loss G00 (light green squares) moduli of an SLS material calculated
from the Fourier transforms of the signals in (A) via Eq. (1). (C) Stress
s and strain ε signals of an SLS material in time accompanied with
random noise. (D) Storage G0 and loss G00 moduli of SLS material
calculated from the Fourier transforms of the signals in (C). The
dashed gray lines are the noise-free storage and loss moduli. The
simulated SLS components are E0 ¼ 3/2 Pa and E1 ¼ 3/28 Pa for
the springs and h ¼ 45=20 Pa,s for the dashpot (see supporting ma-
terial). The sampling frequency is 5000 Hz. The random noise has a
zero mean and a standard deviation of 0.25 and 0.15 Pa for stress
and strain signals, respectively.
different time scales, these properties are often repre-
sented in the frequency domain. The ratio of the Four-
ier-transformed stress bsðuÞ and strain bεðuÞ signals
defines

G�ðuÞ ¼ bsðuÞbεðuÞ; (1)

where u is the angular frequency. The complex
modulus G�ðuÞ is commonly used to describe the
viscoelastic behavior of the materials:

G�ðuÞ ¼ G0ðuÞ þ iG00ðuÞ; (2)

where G0 and G00 are the storage and the loss moduli,
respectively.

Measurements of the mechanical properties in the
frequency domain are routinely done in oscillatory rhe-
ometers but are time consuming and limited in acces-
sible frequency ranges due to hardware constraints.
Additionally, soft, living materials, such as single cells
or tissues, are often too small for probing with tradi-
tional rheometers. The size constraints stimulated
the development of probing techniques specifically
for small length scales (in the range of nm to cm)
such as particle microrheology (9,10), micropipette
aspiration (11,12), atomic force microscopy (AFM)
(13,14), optical stretching (15), and microfludic tech-
niques (16,17). While measuring the mechanical prop-
erties in the frequency domain has been performed at
small length scales, some materials measured change
their properties as an active response when probed
repetitively—a phenomenon known as mechanosensi-
tivity (18–20). As this change can occur within sec-
onds, applying even a few cycles of oscillatory
measurements can lead to probing different mechani-
cal behavior biased by this active response. Addition-
ally, few of these techniques, such as AFM, suffer in
the high frequency range from the effects of inertia
and hydrodynamic drag (21), which narrows down the
range of reliable frequencies that can be applied.
Recent studies have shown that in the high frequency
range, the viscous characteristics of cells dominate
over the elastic characteristics. This behavior can be in-
terpreted as a combined contribution of the viscous
cytoplasm and the relaxation modes of individual cyto-
skeleton filaments (22,23). Thus, exploring the me-
chanical properties at high frequencies aids the
investigation of the microscopic structural properties
of cells that contribute to their mechanics. One
approach to overcome these challenges is to perform
single time-resolved measurements. Commonly, the
time-dependent signals obtained are then fitted to a
predefined model such as a Maxwell liquid, a Kelvin-
Voigt solid, or a combination of both (24–29). Fitting
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a model implicitly prescribes a certain viscoelastic
behavior and limits the exploration of novel properties
of specimens studied. To circumvent this, recent ef-
forts have attempted to convert measurements con-
ducted in the time domain to the frequency domain
either directly (30) or after fitting to a preset function
(31). The caveat, however, is that the measured signals
are too complex to be described as a continuous
analytical function and are usually accompanied with
noise of different origins.

Fig. 1 illustrates how even a moderate random noise
added on top of the ideal standard linear solid (SLS)
stress and strain signals (Fig. 1, A and C) dramatically
changes the resultant frequency-dependent moduli
(Fig. 1, B and D) calculated from Fourier-transformed
signals using Eqs. (1) and (2) (see supporting material
for details of simulations and motivation to the signal
shape choice).

In this report, we present an unbiased approach to
extract the complexmodulus of materials from a single
time-dependent signal without fitting a predefined
model. Our approach utilizes the statistical properties
of noise (zero mean and short-time correlation) and



uses a modified Fourier transform with complex fre-
quency to enhance the signal-to-noise ratio. Further-
more, we use our analysis pipeline to suggest an
optimal time-dependent probing protocol, which can
dramatically improve the quality of the frequency-
dependent mechanical properties retrieved.
FIGURE 2 Recovery of viscoleastic properties from time-dependent
signals accompanied with random noise. (A) Stress s (red) and strain
ε (blue) signals of an SLS material after applying a rolling average fil-
ter (n¼ 20,000). (B) StorageG0 (dark green circles) and lossG00 (light
green squares) moduli of an SLS material calculated from the Fourier
transforms of the averaged signals in (A) (Eq. (6)). (C) Stress s and
strain ε signals of an SLS material in time accompanied with random
noise. The inset shows a fraction of the stress and strain signals and
the corresponding sum of a polynomials fit (black). (D) Storage G0

and loss G00 moduli of an SLS material where the moduli at low fre-
quencies (u< 20 rad/s, indicated by the vertical purple line) are recov-
ered from the moving average filtered stress and strain as shown in
(B) and at high frequencies are recovered from the ratio of the trun-
cated Fourier transforms (z ¼ 2 s-1) of the fitted segments of stress
and strain (up to tm¼ 2.6 s) shown in the inset in (C). The dashed gray
lines are the noise-free storage and loss moduli. The other simulation
parameters of SLS are the same as in Fig. 1.
Smoothing data with rolling average

One common method to reduce the effect of random
noise is to average multiple independent measure-
ments of the same sample. However, some materials,
such as living biological samples, can exhibit a change
in mechanical properties upon repetitive loading and,
thus, multiple measurements are not feasible. This
problem can be resolved by applying a rolling average
to the time-dependent signal if the noise is short-time
correlated (shorter than the sampling time) and has
zero mean. Assume that an experimentally measured
time-dependent signal can be represented as a sum
of the true signal and random white noise xðtÞ:

sexpðtÞ ¼ strueðtÞ þ xðtÞ: (3)

The random white noise xðtÞ has a zero mean,
CxðtÞD ¼ 0, and is uncorrelated, CxðtÞxðt0ÞD ¼ Cdðt � t0Þ,
where dðt�t0Þ is the Dirac delta function and the con-
stant C is the magnitude of the noise. Thus, the rolling
average of the experimental values sexpðtÞ with a large
enough averaging window should be statistically equal
to the time-averaged true values strueðtÞ (here, we used
the signal of stress as an example, but the same can be
applied to the strain ε):

sexpðtÞh 1

nþ 1

X0

j¼�n

sexpðtþ jDtÞ

x
1

nþ 1

X0

j¼�n

srealðtþ jDtÞ;
(4)

where Dt is the sampling time of the experimental mea-
surement, n is the number of time steps in the aver-
aging window, and sexpðtÞ is the averaged signal. As
is typical for the rolling average, the averaging window
size should be chosen large enough to filter out noise
but not too large to interfere with the true signal (see
supporting material).

Importantly for our application, the Fourier transform
(denoted with^) of the time-averaged signal sexpðtÞ can
be linked to that of the true signal:

bsexpðuÞ ¼ 1

2p

Z N

�N

dt e�iutsexpðtÞ

x
bstrueðuÞ
nþ 1

e�inuDt
�
1� eiuðnþ1ÞDt�
1� eiuDt

;

(5)
(for the derivation, see supporting material). By
applying a rolling average filter with the same window
size for the noisy stress and strain signals (see Fig. 2
A for the averaged signals and C for the noisy signals
before averaging shown for the example of SLS), the
noise-free complex modulus can be calculated from
the ratio of the Fourier transforms of the averaged
signals:

G�
trueðuÞ ¼

bstrueðuÞbεtrueðuÞx
bsexpðuÞbεexpðuÞ: (6)

This averaging helps to properly recover the mechan-
ical properties in the low frequency range (Figs. 1 D and
2 B; for a typical measured signal, the signal-to-noise
ratio is often smaller in the high frequency range), but
the higher frequencies are still problematic. To resolve
this problem, we should first find out which part of the
time-dependent signal affects the high frequency re-
sults and either make a better measurement or use
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some statistical method to enhance the signal-to-noise
ratio in this part of the signal.
Truncated Fourier transform

The short-time behavior of stress-strain signals has a
strong effect on the moduli recovered in the high fre-
quency range. For example, artificially shifting the
origin of signals relative to each other by a small
amount has a dramatic effect on the moduli recovered
(see supporting material). However, transforming only
the initial fraction of the signal from time to frequency
domain is not possible with the conventional use of
continuous or discrete Fourier transforms. Here, we
propose to transform the initial fraction of the signal
by truncating it via multiplication with an attenuating
exponent e�zt , where z, a non-negative real number, de-
fines the inverse of the truncation time (we used the
signal of stress as an example, but the same can be
applied to the strain):

bsðu; zÞ ¼ 1

2p

Z N

0

dt sðtÞe�iut�zt: (7)

The signal is assumed to start at t ¼ 0 (sðt <0Þ ¼ 0).
In fact, this expression might be viewed as a Fourier
transform with a complex frequency, where the stan-
dard Fourier transform of the whole signal is recovered
when z/0þ. The ratio Rðu; zÞ between the Fourier
transform of the whole signal bsðuÞ and the Fourier
transform of the truncated signal bsðu; zÞ gives a
measure of how close they are to each other and is
written as

Rðu; zÞx
R tm
0
dt sðtÞe�iut�ztRN

0
dt sðtÞe�iut

¼
R tm
0
dt ða0 þ a1t þ a2t

2 þ/Þe�iut�ztRN

0
dt ða0 þ a1t þ a2t2 þ/Þe�iut

¼
a0

1�e�ðiuþzÞtm
ðiuþzÞ þ a1

1�e�ðiuþzÞtmð1þðiuþzÞtmÞÞ
ðiuþzÞ2 þ/

a0
iu
� a1

u2 þ/
:

If the measurement time is much larger than the trun-
cation time, tm[z�1, we can substitute the infinite inte-
gration limit in Eq. (7) by tm. Additionally, we use the
polynomial expansion sðtÞ ¼ PN

j¼0ajt
j without losing

any generality (the polynomial expansion suggests
the signal has a well-defined Taylor expansion around
t ¼ 0, which, in general, is true in almost all signals).
Finally, in the limit, ztm/N, the above ratio Rðu; zÞ
becomes

Rðu; zÞx
a0

iuþz
þ a1

ðiuþzÞ2 þ/
a0
iu
� a1

u2 þ/
; (9)
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suggesting that it is close to 1 if u[z. This indicates
that the Fourier transform of the data in a constrained
range (t<tm) can provide an accurate estimate of the
Fourier-transformed signal for high frequencies. In
other words, unlike most other analysis methods, using
the Fourier transform with complex frequency does not
require the signals to reach a steady state (as, e.g., in
(30)), as the signal beyond t[1=z will not affect the
value of the Fourier-transform results significantly.
The value z then naturally sets the lower limit of fre-
quencies when Eq. (7) is close to the normal Fourier
transform. Combined with the criterion ztm[1, we
can naturally link this lower bound to the time of the
last signal measurement tm. In practical terms, the
value of z can be determined by setting e�ztm � d,
where d is a threshold value that determines the atten-
uation strength of the signal after tm.

Interestingly, the numerator (the argument works for
the denominator as well) of the ratio in Eq. (9) indicates
that the signal at high frequencies is dominated by the
lower-order terms in the polynomial expansion. This
suggests that the partial polynomial fitting, which can
enhance the signal-to-noise ratio in a certain, limited
range of the signal, can lead to accurate high-frequency
results even if the signal cannot be represented in its
entirety by a finite polynomial expansion (thus, the ac-
curacy of the smaller-order terms determines the upper
bound of the frequency; see supporting material).
Fig. 2 D shows the complex shear modulus of an SLS
material where the mechanical properties at lower fre-
quencies ðu< 20 rad/s for z ¼ 2 s-1) are recovered us-
ing a rolling average. The moduli at higher frequencies
(u[z) are calculated by applying the Fourier trans-
form with truncation (z ¼ 2 s-1) to the fitted (by polyno-
mial up to degree j ¼ 5) fraction of the noisy signal
(see inset in Fig. 2 C; see supporting material). The
slight discrepancy between the true and the recovered
complex modulus is associated with the quality of the
fit. Increasing the number of the fitted measurement
points improves the fit quality. In the study of Kwon
(31), the whole signal is fitted with a polynomial sum.
This, however, leads to inaccuracies, especially for
complex signal shapes. Thus, reducing the shape
complexity of the signal and using the truncated Four-
ier transform, which can be applied on signals that
cannot be transformed with the standard Fourier
transform, will result in higher-quality fits (see support-
ing material for more details and also the effect of the
different noise levels). This naturally leads to the most
forward-looking aspect of this work.
Optimized probing protocol

Combining the idea of the order expansion and the
lower bound definition z ¼ � logðdÞ=tm, a more



accurate restoration of the complex modulus can
already be influenced by choosing an optimized mea-
surement protocol. Although it is common to perturb
the material by fast probing and slow relaxation
(a step function) for enhancing the signal-to-noise
ratio (the Fourier transform of the linear probe is�� RN

0
dt bt exp�iut

�� ¼ �� b
u2

��, and the magnitude increases
as the slope b increases), a slower probing can gather
more reliable data to be used with the truncated Fourier
transform. The corresponding fitting of the slower
measurement can lead to a better signal-to-noise ratio
due to more sampled data. Indeed, in some methods,
either the stress or the strain can be set by the user
(for example, an AFM or a rheometer), and by choosing
a predefined signal that perturbs the material in a
simple manner, the fitting becomes easier and more
accurate.

In Fig. 3A, a linear stresssðtÞ ¼ At is applied to the SLS
material, whereA is a positive constant. The stresssignal
is thenfittedwith a linear functionwhile the strain isfitted
with the summation of polynomials (in this example, up
to the fourth order). The advantage of using a linear
stress ramp becomes clear when applying the truncated
Fourier transformation on thefitted fraction of the signal.
In this case, the fitting process is simplified due to the
linearityof thesignaland the largernumberofdatapoints
that canbe included in thefit. To confirm that ourmethod
works for a wide range ofmaterial properties, we verified
the method using other mechanical models, such as
Kelvin-Voigt, standard linearfluid, andpower lawmaterial
(see supporting material). The complex shear modulus
FIGURE 3 Alternative probing protocol. (A) Simulated SLS material
probed with linear stress s ¼ At (red) and its strain response ε

(blue). The inset shows a fraction of the stress and strain signals
and the corresponding sum of polynomials fit (black). (B) Storage
G0 (dark green circles) and loss G00 (light green squares) moduli of
an SLS material where the moduli at low frequencies (u< 1 rad/s,
indicated by the vertical purple line) are recovered from the moving
average (n¼ 20,000) filtered stress and strain and at high frequencies
are recovered from the ratio of the truncated Fourier transforms (z ¼
0.4 s-1) of the fitted segments up to tm ¼ 66 s) of stress and strain
shown in the inset in (A). The dashed gray lines are the noise-free
storage and loss moduli. The other simulation parameters of SLS
are the same as in Fig. 1.
of the material is remarkably well recovered in the lower
frequency range (below thepurple line in Fig. 3B)with the
rolling average method and at the higher frequencies
with the truncated Fourier transform (Fig. 3 B).
Experimental validation

Although the field of rheology has been explored for
many decades, finding a viscoelastic material that
can be used for validation of the method is not a
straightforward task, as the properties could change
depending on the technique (32). Thus, to demonstrate
the practical applicability of our approach to measured
data, we used the rheometer, a gold-standard method
in the field of rheology, to probe the mechanical proper-
ties of a precharacterized viscoelastic material, sili-
cone fluid (AK 1000000, Tsukuba, Wacker, Japan)
(see supporting material). A rheometer is typically
used for mechanical characterization due to its ability
to apply oscillatory stress and strain signals and thus
directly extract the frequency-dependent loss and stor-
age moduli. Furthermore, using the same device, time-
dependent strain or stress measurements can also be
performed. Here, we applied a linear stress signal and
measured the strain signal of the silicone fluid (see
supporting material). Fig. 4 A depicts the storage and
loss moduli of the silicone fluid measured from the
oscillatory stress and strain signals, as well as the
FIGURE 4 Mechanical properties of silicone fluid measured with
rheometer. Storage G0 (dark blue) and loss G00 (light blue) moduli
were recovered directly from the oscillatory stress and strain mea-
surements. (A) Storage G0 (dark green circles) and loss G00 (light
green squares) moduli calculated directly from the ratio of the Four-
ier-transformed time-dependent linear stress and the corresponding
strain signals. (B) Storage G0 (dark green circles) and loss G00 (light
green circles) moduli recovered in the low frequency range (below
the vertical purple line) using a rolling average filter (n ¼ 120)) and
at high frequencies from the ratio of the truncated Fourier transforms
of the fitted fraction of the applied linear stress and the correspond-
ing strain signals (see supporting material). For this data, the fraction
(up to tm ¼ 57 s) was fitted with a summation of polynomials up to
the ninth order. The purple line is considered the lower useful limit
of the truncated Fourier transformation approach (z ¼ 0.26 s-1).
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FIGURE 5 Mechanical properties of low-gelling point agarose hydro-
gel measured with AFM. Storage G0 (dark blue circles) and loss G00

(light blue circle) moduli were recovered directly from the oscillatory
indentation and force measurements, and the error bars indicate the
standard deviation of 27 measurements. (A) Storage G0 (dark green
circles) and loss G00 (light green squares) moduli calculated directly
from the ratio of the Fourier-transformed time-dependent linear
indentation and the corresponding force signals. (B) Storage G0

(dark green circles) and lossG00 (light green circles) moduli recovered
in the low frequency range (below the vertical purple line) using a roll-
ing average filter (n ¼ 2000) and at high frequencies from the ratio of
the truncated Fourier transforms of the fitted fraction of the applied
linear indentation and the corresponding force signals. For this
data, the fraction (up to tm ¼ 1.8 s) was fitted with a summation of
polynomials up to the sixth order. The purple line is considered as
the lower useful limit of the truncated Fourier transformation
approach (z ¼ 5 s-1).
moduli calculated from the Fourier transforms applied
directly to the linear stress and the corresponding
strain signals. It is evident that the moduli cannot be
properly retrieved and can even be erroneously
assumed to decrease for higher frequencies, if relying
directly on the Fourier transforms of the noisy signals.
Fig. 4 B shows, in addition to the moduli from the oscil-
latory measurement, the storage and loss moduli
calculated from a combination of the rolling average
(for frequencies below the purple line) and the trun-
cated Fourier transform applied to the signals fitted
(for frequencies above the purple line). Comparison
of the mechanical properties recovered from both ap-
proaches shows a dramatic improvement in the recov-
ery of G0 and G00 in both low and high frequency ranges.

To demonstrate that our method is also applicable
for micron-sized length scales, we used an AFM to
probe a low-gelling point agarose hydrogel (Sigma-
Aldrich, Hamburg, Germany) with a slow linear indenta-
tion (velocity 1 mm/s) using a PNP-TR-TL (Nanoworld,
Neuchâtel, Switzerland) cantilever (nominal spring con-
stant of 0.08 mN/m) modified with 5 mm diameter poly-
styrene beads (microParticles, Berlin, Germany) (see
supporting material). The force FðtÞ and indentation
dðtÞ signals are then used to calculate the complex
shear modulus using the relation originating from the
Hertz model for a parabolic indenter (33) and the
elastic-viscoelastic correspondence principle

G� ¼ 3

8

1� n

R
1
2

bFðuÞbDðuÞ: (10)
where bFðuÞ and bDðuÞ are the Fourier transforms of FðtÞ
and d

3
2ðtÞ, respectively, and n is the Poisson's ratio of the

material. In addition to the linear indentation measure-
ment, we applied, also using the AFM, an oscillatory
measurement to directly extract the complex shear
modulus. Fig. 5 shows in blue the storage (dark blue)
and loss (light blue) moduli evaluated from the oscilla-
tory measurements where the error bars indicate the
standard deviation and in green the storage and loss
moduli calculated from the time-dependent signals.
Fig. 5 A compares the results of the oscillatory mea-
surements to the complex modulus retrieved from
applying the Fourier transform directly to the force
and indentation signals. The mechanical properties,
especially at high frequencies, are heavily affected by
the noise. Applying our method to the time-dependent
signals improved greatly the precision of the retrieved
mechanical properties as shown in Fig. 5 B. Due to
the hydrodynamic-drag effects on the cantilever when
oscillating in high frequency, the frequency range of
reliable oscillatory measurements is narrower than
the range retrieved using our method. Additionally,
6 Biophysical Reports 2, 100054, September 14, 2022
since the oscillatory measurement is time consuming
in the lower frequency range, we limited the applied fre-
quency to 3 Hz to keep the measurement duration in
the range of few minutes. Here, we show that method
can be also used for materials measured in the small
length scale and can extend the range of reliable me-
chanical properties to a wider range of frequency.
CONCLUSIONS

We provide an unbiased and model-free method to
recover the frequency-dependent material properties
from noisy time-dependent stress and strain signals
froma singlemeasurement. The effect of randomuncor-
related noise can be removed from the lower frequency
range by a rolling average filter, and the partial fitting
combined with the truncated Fourier transform extends
the region of reliable retrieval of mechanical properties
to the higher frequency range. To further improve the
quality of data recovered, we propose the use of an alter-
nativemeasuring protocol in which the sample is probed
rather slowly, allowing for accuratefitting of a larger frac-
tion of the data with a polynomial series. Unlike the stan-
dard Fourier transforms, the truncated Fourier transform
does not require knowledge about the behavior of stress
and strain at very long times (30). This makes the



truncated Fourier transform together with the partial
fitting ideal for a variety of measured signals that do
not reach a steady state or cannot be transformed with
a discrete Fourier transform (e.g., square and triangular
signals). Still some assumptions need to be considered
for our method. First, the noise accompanying to the
experimental data is treated as random white noise.
This assumption excludes other noise types including
thermaldrift. In thecaseof rheometer andAFMmeasure-
ments presented here, this assumption seems to be suf-
ficient when compared with measurements directly
performed in the frequency domain. Moreover, it would
be interesting to theoretically consider more complex
noises in futurework. Second, thefittingof the initial frac-
tion of the signal becomes more accurate with an
increasing number of fitted polynomials. This, however,
causes the fit to bemore sensitive to noise.With our deri-
vation, we show that the lower-order polynomials domi-
nate the fitting in the higher frequency. Thus, it would
be adequate to only rely on the fitting of lower-order poly-
nomials. One possible extension of our method would
relate to the estimation of the non-linearity of biological
materials. In such case, ramps with different rates can
be used for probing the change in themechanical proper-
ties of suchmaterials. Applying our theoretical approach
to existing experimental techniques enhances not only
the analysis of time-dependent measurements but also
promotes the investigation of wider ranges of time and
length scales. Finally, the approach of converting time-
dependent signals to the frequency domain proposed
here is of course not limited to mechanical probing but
may well find beneficial application in many other areas
of physics where this is required.

SUPPORTING MATERIAL

Supplemental information can be found online at https://doi.org/10.
1016/j.bpr.2022.100054.
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