
RESEARCH ARTICLE

Pooled testing of traced contacts under

superspreading dynamics

Stratis TsirtsisID
1*, Abir De2, Lars LorchID

3, Manuel Gomez-RodriguezID
1*

1 Μax Planck Institute for Software Systems, Kaiserslautern, Germany, 2 IIT Bombay, Mumbai, India,

3 ETH Zürich, Zürich, Switzerland
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Abstract

Testing is recommended for all close contacts of confirmed COVID-19 patients. However,

existing pooled testing methods are oblivious to the circumstances of contagion provided by

contact tracing. Here, we build upon a well-known semi-adaptive pooled testing method,

Dorfman’s method with imperfect tests, and derive a simple pooled testing method based

on dynamic programming that is specifically designed to use information provided by con-

tact tracing. Experiments using a variety of reproduction numbers and dispersion levels,

including those estimated in the context of the COVID-19 pandemic, show that the pools

found using our method result in a significantly lower number of tests than those found using

Dorfman’s method. Our method provides the greatest competitive advantage when the

number of contacts of an infected individual is small, or the distribution of secondary infec-

tions is highly overdispersed. Moreover, it maintains this competitive advantage under

imperfect contact tracing and significant levels of dilution.

Author summary

Due to the emergence of COVID-19, pooled testing has gained significant attention as a

method for allocating testing resources more efficiently. In this context, the majority of

existing pooled testing methods for the identification of infected individuals are agnostic

to the circumstances of contagion. However, individuals for whom a test is ordered are

usually traced contacts of an infectious person—they are secondary infections. As a result,

their infection statuses are correlated. In this work, we propose a novel pooled testing

method that makes explicit use of epidemic parameters describing the distribution of sec-

ondary infections. Our method partitions an infected individual’s contacts into pools

whose sizes make more efficient use of the available tests. Extensive simulations under a

variety of epidemiological conditions informed by the COVID-19 literature show that our

method can significantly decrease the expected number of tests under superspreading

dynamics, i.e., when the distribution of secondary infections exhibits high variance. The

simulations also show that our method maintains its advantageous performance under

imperfect conditions, such as significant dilution effects or incomplete contact tracing.
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This is a PLOS Computational BiologyMethods paper.

Introduction

As countries around the world learn to live with COVID-19, the use of testing, contact tracing

and isolation has been proven to be as important as social distancing for containing the spread

of the disease [1,2]. However, as the infection levels grow, their effectiveness reaches a tipping

point and quickly degrades since the health authorities lack resources to trace and test all con-

tacts of a diagnosed individual [3]. In this context, there has been a flurry of interest in the use

of pooled testing—testing pools of multiple samples simultaneously—to scale up testing under

limited resources.

The literature on pooled testing methods has a rich history, starting with the seminal work

by Dorfman [4]. However, the majority of existing methods [4–22], including those allowing

for different individual infection probabilities [7,11–15] as well as those developed and used in

the context of the COVID-19 pandemic [16–22], assume statistical independence of the sam-

ples to be tested. This assumption can be seemingly justified by classical epidemiological mod-

els where the number of infections caused by a single individual follows a Poisson distribution.

However, for COVID-19, there is growing evidence suggesting that the number of secondary

infections caused by a single individual is overdispersed—most individuals do not infect any-

one but a few superspreaders infect many in infection hotspots [23–26] (Overdispersion has

been also observed in MERS and SARS [27–30]). This suggests that the infection statuses of

samples from close contacts of the same infected individual may be correlated. Only very

recently, a narrow line of work has relaxed the above independence assumption [31–33]. How-

ever, these works only investigate to what extent the correlation between samples influences

the expected number of tests in pooled testing, rather than proposing a method to find the

optimal partition of correlated samples into pools. Furthermore, their investigations build

upon infection probability distributions whose parameters may be difficult to estimate using

real contact tracing data, reducing their potential applicability in practice.

In this work, we build upon a well-known semi-adaptive pooled testing method, Dorfman’s

method with imperfect tests [7,8,34]. In Dorfman’s method, samples from multiple individuals

are first pooled together and evaluated using a single test. If a pooled sample is negative, all

individuals in the pooled sample are deemed negative. If the pooled sample is positive, each

individual sample from the pool is then tested independently. To determine testing pools,

Dorfman’s method models the probability of individual samples being positive with indepen-

dent and identically distributed (i.i.d.) Bernoulli distributions. Contrary to this, we assume

that: (i) the samples to be tested are all the (close) contacts of a diagnosed individual during

their infectious period who are identified using contact tracing, and (ii) the number of true

positive samples, i.e., secondary infections by the diagnosed individual, follows an overdis-

persed generalized negative binomial distribution, as commonly done in epidemiological stud-

ies quantifying the superspreading of infectious diseases [23–25,28,30]. We introduce a

dynamic programming algorithm to efficiently find a partition of the contacts into pools, pos-

sibly of different sizes, that optimally trade off the average number of tests, false negatives and

false positives in polynomial time. Under our assumptions, contacts are exchangeable within

pools, hence the optimal pools can be filled and tested sequentially as samples from contacts

become available, as for Dorfman’s method.
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Experiments using a variety of reproduction numbers and dispersion levels in secondary

infections, including those observed for COVID-19, show that the pools found using our

method result in a significantly lower average number of tests than those found using the stan-

dard Dorfman’s method. Our method provides the greatest competitive advantage when the

number of contacts of an infected individual is small or the distribution of secondary infec-

tions is highly overdispersed. Moreover, it maintains this competitive advantage under imper-

fect contact tracing and significant levels of dilution.

Methods

Modeling overdispersion of infected contacts

Previous work has mostly built on the assumption that the number of infections X caused by a

single individual follows a Poisson distribution with mean R, so X ~ Poisson(R), where R is

often called the effective reproduction number. However, having equal mean and variance, the

Poisson is unable to capture settings where the number of cases exhibits higher variance. Fol-

lowing recent work in the context of COVID-19 [24,25], we instead model X using a general-

ized negative binomial distribution. In a (standard) negative binomial distribution, X ~ NBin

(k, p) can be interpreted as the number of successes before the k-th failure in a sequence of

Bernoulli trials with success probability p. In a generalized negative binomial distribution,

k> 0 can take real values and the probability mass function is given by

P X ¼ nð Þ ¼
Gðnþ kÞ
GðkÞn!

pnð1 � pÞk;

where k is called the dispersion parameter and parameterizes higher variance of the distribu-

tion for small k. Here, we assume that the number of secondary infections X is distributed as X

~ NBin(k, p) with p = R / (k + R), hence parameterizing X via its mean E½X� ¼ R and disper-

sion parameter k. Under this parameterization, Var[X] = R (1 + R /k), which is greater than

the variance of the Poisson R for k<1. For k!1, the sequence of random variables Xk ~

NBin(k, R/ (k + R)) converges in distribution to X ~ Poisson(R).

Furthermore, since by assumption we identify all contacts of a diagnosed individual using

contact tracing, we have prior information about the maximum number of possible infections

N. More specifically, we can use the following truncated negative binomial distribution in our

derivations:

qR;k;NðnÞ≔PðX ¼ njX � NÞ; ð1Þ

where X ~ NBin(k, R/(k+R)) and note that P(X = n | X� N) = P(X = n) / P(X� N) if n� N

and 0 otherwise. In practice, the identification of all contacts of a diagnosed individual might

not always be feasible, however, our method’s competitive performance with respect to Dorf-

man’s remains even if contact tracing is unable to identify all contacts of a diagnosed individ-

ual (refer to the Results section).

Pooling contacts of a positively diagnosed individual

Our goal is to identify infected individuals among all contacts N of a positively diagnosed

individual via testing, where jN j ¼ N. For each individual j 2 N , we define the indicator ran-

dom variable Ij ¼ I½individual j is infected� and, for each pool of individuals S � N , we define

the number of infected in S as IðSÞ≔
P

j2SIj. Moreover, following our assumption on the dis-

tribution of the number of secondary infections, we define PðIðN Þ ¼ nÞ ¼ qR;k;NðnÞ.
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Let TðSÞ ¼ I½test of pool S is positive�. To account for imperfect tests, we specify the sensi-

tivity se (i.e., true positive probability) and the specificity sp (i.e., true negative probability) of

individual testing. To capture the effect of dilution when testing a pool S, we adopt the model

of Burns and Mauro [35] and parameterize the conditional probabilities as

P TðSÞ ¼ 1jI Sð Þ ¼ s > 0ð Þ ¼ 1 � sp þ se þ sp � 1
� � s

jSj

� �d

PðTðSÞ ¼ 0jIðSÞ ¼ 0Þ ¼ sp:

Here, d2[0, 1] controls the effect that dilution has on a pooled test’s sensitivity. The right-

hand side of the top equation converges to se as d!0. In the above, we implicitly assume that

all infected individuals contribute equally to the concentration of viral load in a pool and the

probability of a false positive pooled test is independent of the size of the pool since the con-

centration of the virus is zero in any case.

Dorfman testing under overdispersion of infected contacts

Dorfman testing proceeds by pooling individuals into non-overlapping partitions of N and

first testing the combined samples of each pool using a single test. Every member of a pool is

marked as negative if their combined sample is negative. In contrast, if a combined sample of a

pool is positive, each individual of the pool is subsequently tested individually to determine

who exactly is marked positive in the pool.

Let DS
j denote the indicator random variable for the event that individual j is marked as

infected in pool S � N : jSj > 1 after Dorfman testing. Then, its value can be expressed as

DS
j ¼ I½TðSÞ ¼ 1 \ TðfjgÞ ¼ 1�;

i.e., it takes the value 1 if and only if the combined sample of pool S is first tested positive and

subsequently the sample of individual j is tested positive. In the simple case of jSj ¼ 1, we have

DS
j ¼ TðfjgÞ:

Finding the optimal pool sizes

We first compute the expected number of tests, false negatives, and false positives due to each

pool S for Dorfman testing under our above model of infected contacts. Their values only

depend on the pool size (refer to S1 Appendix). Hence, for a given number of contacts jN j ¼
N and pool of size jSj ¼ s, we overload notation and write E½KðsÞ�; E½FNðsÞ� and E½FPðsÞ� for

the expected number of tests, false negatives and false positives, respectively.

Let Z be the set of all sets C of positive integers such that 1 � jCj � N and
P

s2Cs ¼ N. It is

easy to see that every such set C ¼ fs1; s2; . . . ; sCg is a valid partition of the set of contacts N
into a set of pools with sizes s1, s2, . . ., sC. In that context, our goal is to find the sizes C of the

sets of pools that optimally trade off the expected number of tests, false negatives and false pos-

itives [8,35]:

minimize
C2Z

X

s2C

gðsÞ;

with gðsÞ ¼ E½KðsÞ� þ l1E½FNðsÞ� þ l2E½FPðsÞ�, where λ1 and λ2 are given nonnegative

parameters that balance the penalty incurred by false negatives and false positives. Note that

the parameters λ1, λ2 can be thought of as Lagrange multipliers for the problem of minimizing

the expected number of tests subject to the expected numbers of false negatives and false

PLOS COMPUTATIONAL BIOLOGY Pooled testing under superspreading dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010008 March 28, 2022 4 / 17

https://doi.org/10.1371/journal.pcbi.1010008


positives being less than two given values. For a discussion on alternative objective functions

and their benefits, we refer the interested reader to [36,37].

Perhaps surprisingly, we can solve the above problem in polynomial time using a simple

dynamic programming procedure. To do so, we define the following recursive functions:

hðnÞ ¼ min
1�j�n
½gðjÞ þ hðn � jÞ� and Sn ¼ Sn� s [ fsg;

where s ¼ argmin
1�j�n½gðjÞ þ hðn � jÞ�. Interpreting n as the number of individuals not yet

assigned to a pool, using the two recursive functions, the (sizes of the) optimal sets of pools can

be recovered by computing h(n) in increasing order of n, up to the value N. Refer to S2 Appen-

dix for pseudocode summarizing the overall procedure and a formal proof of optimality. If the

testing authorities wish to manually assign a given fraction of x contacts to pools based on

some other criteria (e.g., household membership [38]), the optimal sets of pools for the

remaining N-x contacts can be recovered by computing h(n) in increasing order of n, up to

the value N-x.

Experimental design

We perform simulations to compare our method against Dorfman’s method in terms of its

ability to optimally trade off resources and false test outcomes in the presence of overdispersed

distributions of secondary infections. Although it is possible to derive analytical expressions

for each method’s expected numbers of tests, false negatives and false positives, we resort to

simulations to fully characterize and compare their (empirical) distributions. To evaluate the

performance of the two methods, we generate the infection states of a set of contacts by first

fixing the number of contacts N and sampling the secondary infections n ~ qR,k,N(n), where

qR,k,N(n) is a truncated negative binomial distribution as defined in Eq 1. Then, we select n of

the N contacts at random and set their status to be infected. To find the optimal pool sizes

given by our method, we use our dynamic programming algorithm and the expected numbers

of tests, false negatives and false positives, computed assuming the same truncated negative

binomial distribution of secondary infections (refer to S1 Appendix). To find the optimal pool

sizes given by Dorfman’s method, we use a variation of the dynamic programming algorithm

in which the expected numbers of tests, false negatives and false positives are computed assum-

ing an i.i.d. probability of infection of p ¼ EqR;k;N
½n�=N for each individual contact (refer to

S3 Appendix).

Following the literature on COVID-19, we consider (PCR) tests with high specificity and

moderate sensitivity [39]. It is worth noting that we distinguish between two types of sensitiv-

ity and specificity: analytic and clinical. The former is reflecting a test’s accuracy in a controlled

laboratory environment while the latter is also affected by factors related to sample collection

(e.g., stage of the disease at the time of collection, use of a throat or nasal swab) and, therefore,

it is typically lower [40]. Since we focus on pooled testing of samples obtained through contact

tracing, we will generally refer to clinical sensitivity and specificity unless otherwise specified.

In this context, most studies report values in the range of 70% - 98% and 97% - 99% for indi-

vidual tests’ (clinical) sensitivity and specificity, respectively, with the exact value differing

based on the method of sample collection and the laboratory protocol followed [41–43].

Informed by these values, we set se = 0.8 and sp = 0.98. However, we provide additional results

for alternative se, sp values in the Supporting information section.

To set the value of the parameter d that controls the effect of dilution, we fit the parameter-

ized expression of the conditional probability PðTðSÞ ¼ 1jIðSÞ ¼ s > 0Þ to real pooled testing

data analyzed by Bateman et al. [44]. In this study, the authors report that a PCR test’s analytic
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sensitivity for an undiluted sample equals to 0.99, whereas this sensitivity drops to 0.93, 0.91

and 0.81 when a single infected sample is present in pools of 5, 10 and 50 respectively. The ana-

lytic specificity of the test is not reported and hence, we assume that it is also equal to 0.99.

Using these values, we get an estimate of d = 0.0455 via ridge regression, which we use

throughout the paper. The resulting curve showing the effect of dilution on the sensitivity of a

pooled test as a function of the virus’s concentration is depicted in S1 Fig.

Results

Reduction in the average number of tests compared to Dorfman’s method

We first compare the performance of our method and Dorfman’s method in finding the pools

that minimize the average number of tests (i.e., λ1 = λ2 = 0) for fixed values of the reproductive

number R and the dispersion parameter k, matching estimates obtained during the early phase

of the COVID-19 pandemic [24]. Table 1 summarizes the results for different numbers of con-

tacts N of the diagnosed individuals. The results show that our method achieves a lower aver-

age number of tests across all settings and indicate greater competitive advantage when the

number of contacts is small. These results hold across a variety of sensitivity and specificity val-

ues (refer to S1 and S2 Tables and S2 Fig). At the same time, the average numbers of false nega-

tives and false positives are similar for the two methods. That said, we observe that both

methods present high variance, with ours’ being generally larger. Looking at the average pool

sizes chosen by each method in Fig 1A, we observe that Dorfman’s method chooses smaller

pool sizes that increase with the number of contacts while the ones chosen by our method

remain relatively constant. This leads to significant differences between the distributions of the

number of tests performed under the two methods. For example, as shown in Fig 1B, when the

number of contacts is N = 20, our method is most likely to perform about 70% less tests than

Dorfman’s. However, due to the more conservative pool sizes selected by Dorfman’s method,

there is a small probability that our method ends up performing more tests, sometimes even

double the amount.

Next, we investigate to what extent our method improves upon Dorfman’s method for

other values of the reproductive number R and dispersion parameter k, including those esti-

mated by several COVID-19 studies [23–25,45–48]. Fig 2 summarizes the results, which show

that our method offers the greatest competitive advantage whenever the reproductive number

R is large and the number of secondary infections is overdispersed, i.e., k! 0. The results sug-

gest that for an infected individual with N = 100 contacts and under the estimated values of

reproductive number and dispersion parameter reported in the COVID-19 literature, our

method would have saved 3%-30% with respect to Dorfman’s method. Similar findings hold

for a variety of values for the number of contacts N, sensitivity se and specificity sp (refer to S3–

S5 Figs).

Table 1. Average numbers of tests, false negatives and false positives achieved by our method (Dorf-OD) and classic Dorfman’s method (Dorf-Cl) for various values

of the number of contacts N. Here, we sample the number of secondary infections from a truncated negative binomial distribution with reproductive number R = 2.5

and dispersion parameter k = 0.1 [24] and, we set the sensitivity and specificity to se = 0.8, sp = 0.98. For each combination of method and parameter values, the averages

and standard deviations are estimated using 10,000 samples.

N Average # of tests per contact Average # of false negatives per contact Average # of false positives per contact

Dorf-Cl Dorf-OD Dorf-Cl Dorf-OD Dorf-Cl Dorf-OD

20 0.331 (σ: 0.250) 0.245 (σ: 0.396) 0.024 (σ: 0.070) 0.025 (σ: 0.087) 0.002 (σ: 0.009) 0.003 (σ: 0.013)

50 0.259 (σ: 0.220) 0.219 (σ: 0.324) 0.016 (σ: 0.050) 0.016 (σ: 0.056) 0.002 (σ: 0.007) 0.003 (σ: 0.009)

100 0.207 (σ: 0.184) 0.180 (σ: 0.239) 0.009 (σ: 0.030) 0.009 (σ: 0.032) 0.002 (σ: 0.005) 0.002 (σ: 0.006)

200 0.164 (σ: 0.149) 0.148 (σ: 0.201) 0.005 (σ: 0.016) 0.005 (σ: 0.016) 0.001 (σ: 0.004) 0.002 (σ: 0.005)

https://doi.org/10.1371/journal.pcbi.1010008.t001
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Balancing tests, false negatives and false positives

To explore the trade-off between the average number of tests that our method achieves and the

false positive and negative rates, we experiment with different values of the parameters λ1, λ2

and the sensitivity se and specificity sp. Fig 3 summarizes the results, which show that to

achieve lower false negative and false positive rates, more tests need to be performed. When

Fig 1. Performance of our method (Dorf-OD) and classic Dorfman’s method (Dorf-Cl) for various values of the number of contacts N of a diagnosed

individual during their infectious period. Panel (A) shows the average pool size. Panel (B) shows the empirical distribution of the percentage of tests saved by

using our method instead of Dorfman’s method, where we exclude the highest and lowest 5% of observations and the purple dashed lines represent average

values. In both panels, we sample the number of secondary infections from a truncated negative binomial distribution with reproductive number R = 2.5 and

dispersion parameter k = 0.1 [24] and, we set the sensitivity and specificity to se = 0.8, sp = 0.98. For each combination of method and parameter values, the

averages and quantiles in both panels are estimated using 10,000 samples.

https://doi.org/10.1371/journal.pcbi.1010008.g001

Fig 2. Percentage of tests saved by using our method instead of Dorfman’s method for different values of the

reproductive number R and dispersion parameter k. Darker colors correspond to a higher average percentage of

tests saved. To generate the contour, we evaluate the average percentage of tests saved using values in [0.25, 5.0] with

step 0.05 for R and in [0.05, 1.0] with step 0.05 for k. The overlaid annotations indicate the average percentage of tests

saved for several estimated values of the reproductive number and dispersion parameter reported in the COVID-19

literature [23–25,45–48]. Here, we set the number of contacts to N = 100 and the sensitivity and specificity to se = 0.8,

sp = 0.98. In each experiment we estimate the average using 10,000 samples.

https://doi.org/10.1371/journal.pcbi.1010008.g002

PLOS COMPUTATIONAL BIOLOGY Pooled testing under superspreading dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010008 March 28, 2022 7 / 17

https://doi.org/10.1371/journal.pcbi.1010008.g001
https://doi.org/10.1371/journal.pcbi.1010008.g002
https://doi.org/10.1371/journal.pcbi.1010008


trading off the number of tests with the number of false positives (λ1 = 0, λ2 > 0), our method

gradually changes the average pool size, leading to many unique pool partitions across λ2 val-

ues. For small values of λ2, the optimal solution leads to pool sizes that mainly minimize the

number of tests. For large values of λ2, the optimal solution consists of pools of two contacts.

When balancing the number of tests with the number of false negatives (λ1 > 0, λ2 = 0) under

the most realistic values of sensitivity and specificity, we observe that our method results in a

small number of unique pool partitions across λ1 values. For small values of λ1, the optimal

solution leads to pool sizes that mainly minimize the number of tests, similarly as in the previ-

ous case. For large values of λ1, our method reaches a tipping point, after which, the optimal

solution corresponds to individual testing (i.e., pools of size one). In contrast, when both the

sensitivity and specificity are high (se = sp = 0.99), we notice that the number of unique pool

partitions increases. This indicates that when testing authorities have low tolerance for false

negatives in the presence of significantly imperfect tests (i.e., when the value of λ1 is large),

reducing the pool size contributes marginally towards the reduction of false negative outcomes

and individual testing becomes necessary. For the exact partitions into pools given by our

method as we vary the values of λ1 and λ2, refer to S4–S11 Tables. Finally, note that, for large

values of λ1 (λ2), Dorfman’s method also results in pools of size one (two) and, therefore, the

two methods become equivalent.

Fig 3. Average number of tests, false negative rate and false positive rate achieved by our method under different values of the parameters λ1 and λ2 and

different levels of specificity se and sensitivity sp. In each panel, we either penalize the false negative rate (i.e., we vary λ1 and set λ2 = 0) or the false positive

rate (i.e., we vary λ2 and set λ1 = 0). Accordingly, for the former, we show the false negative rate vs average number of tests (in blue) and, for the latter, we show

the false positive rate vs average number of tests (in purple). Here, we set the number of contacts to N = 100 and sample the number of positive infections from

a truncated negative binomial distribution with reproductive number R = 2.5 and dispersion parameter k = 0.1. In each experiment, we estimate averages using

10,000 samples. For the exact sizes of the optimal pools corresponding to each point in the figure, refer to S4–S11 Tables.

https://doi.org/10.1371/journal.pcbi.1010008.g003

PLOS COMPUTATIONAL BIOLOGY Pooled testing under superspreading dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010008 March 28, 2022 8 / 17

https://doi.org/10.1371/journal.pcbi.1010008.g003
https://doi.org/10.1371/journal.pcbi.1010008


On the effect of dilution

To assess the effect of dilution on the performance of our method and Dorfman’s method at

minimizing the average number of tests (i.e., λ1 = λ2 = 0), we experiment with different values

of the parameter d, which controls the effect of dilution on the sensitivity of a pooled test. Fig 4

summarizes the results. As expected, Fig 4A shows that the average number of tests (false nega-

tives) decreases (increases) as the level of dilution increases. However, we observe that our

method presents a clear advantage when d< 0.6, which it achieves by favoring larger group

sizes, as shown in Fig 4B. Our method never performs worse than Dorfman’s method across

the entire range of dilution levels. In this context, we point out that realistic values of the

parameter d might lie in the lower range of the spectrum—our estimate about the dilution

parameter based on data by Bateman et al. [44] gives d = 0.0455 while other studies in the con-

text of COVID-19 report even weaker dilution effects (e.g., Yelin et al. [49] report an analytic

sensitivity of 96% for pools of size 10). Therefore, we can conclude that our method would

achieve a competitive advantage over Dorfman’s method even if the dilution parameter d was

slightly misspecified.

Performance in the presence of unreported contacts

So far, we assumed that all close contacts of an infected individual are identified via contact

tracing. Here, we study to what extent our method would be favorable over Dorfman’s if con-

tact tracing is incomplete, i.e., the true number of close contacts of an infected individual is

underreported. As previously, we sample the infection statuses for an individual with a set of

contacts N total, but we assume that only a random subset N traced of fixed size N ¼ jN tracedj is

reported and tested. Fig 5 summarizes the results, which show that our method maintains its

advantage at saving tests in comparison to Dorfman’s method even when half of the individu-

al’s contacts are not reported to the contact tracing authorities. We also observe that the aver-

age percentage of tests saved by our method compared to Dorfman’s increases as the

effectiveness of contact tracing declines and the number of infected individuals among the set

of traced contacts becomes smaller.

Discussion

We have introduced a pooled testing method based on Dorfman’s method that is especially

designed to use information provided by contact tracing. In comparison with Dorfman’s

Fig 4. Performance of our method (Dorf-OD) and classic Dorfman’s method (Dorf-Cl) for various values of the dilution parameter d. Panel (A) shows

the average numbers of tests (solid lines) and false negatives (dashed lines). Panel (B) shows the average pool size. In both panels, shaded regions represent 95%

confidence intervals. Here, we set N = 100, R = 2.5, k = 0.1, se = 0.8, sp = 0.98 and, for each combination of method and parameter value, the averages are

estimated using 10,000 samples.

https://doi.org/10.1371/journal.pcbi.1010008.g004
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method, we showed through realistic simulations that our method finds pools that lead to a

significant reduction in tests performed under a variety of epidemiological conditions, includ-

ing those observed for the COVID-19 pandemic. Moreover, we also demonstrated that our

method maintains its competitive advantage with respect to Dorfman’s method under imper-

fect contact tracing and significant levels of dilution.

Our results have direct implications for the allocation of limited and imperfect testing

resources in future pandemics whenever there exists evidence of substantial overdispersion in

the number of secondary infections. However, we acknowledge that more research is needed

to more accurately characterize the level of overdispersion in a pandemic, which is a prerequi-

site for our method to operate. In this context, it would be interesting to extend our approach

using distributions other than the generalized negative binomial, which might reflect the num-

ber of secondary infections more suitably in different contact tracing scenarios. Moreover, it

would be worth exploring alternative dilution models and objective functions. Another limit-

ing factor of our method, which however holds for many pooled testing methods, is the

assumption that the algorithm deciding about the partition of contacts into pools has access to

the true sensitivity and specificity, which may not be trivial in practice [50]. A potential avenue

for future work would be to investigate the impact of different testing methods (including

ours) on the evolution of an epidemic under a limited testing capacity, using individual-based

models [51–53]. Finally, to make our method applicable and beneficial for real contact tracing

and pooled testing operations, it would be interesting to validate its reduced consumption of

tests with respect to Dorfman’s in randomized control studies.

Supporting information

S1 Fig. Effect of dilution on a pooled test’s sensitivity. The two lines show the sensitivity of a

pooled test as a function of the concentration of viral load based on the parameterized model

of PðTðSÞ ¼ 1jIðSÞ ¼ s > 0Þ. The green line shows a pooled test’s analytic sensitivity (high se,

sp values) which is fitted based on dilution data by Bateman et al. [44] and gives an estimate of

d = 0.0455, via ridge regression. The blue line shows a pooled test’s clinical sensitivity (moder-

ate se and high sp values) under the same value of the dilution parameter d.

(TIF)

Fig 5. Performance of our method and Dorfman’s method under incomplete contact tracing. Panel (A) shows the average percentage of tests saved by

using our method instead of Dorfman’s under various values of the number of traced contactsN ¼ jN tracedj and the percentage of contacts who were

successfully traced, i.e.,N=jN totalj. Panel (B) shows the number of infected contacts in N traced. In both panels, error bars represent 95% confidence intervals.

Here, we first sample the number of positive infections from a truncated negative binomial distribution with reproductive number R = 2.5 and dispersion

parameter k = 0.1 for a set of contacts N total and then, we compute pool sizes and evaluate both methods based on a random subset of size N. For each

combination of method and parameter values, the averages in all panels are estimated using 10,000 samples.

https://doi.org/10.1371/journal.pcbi.1010008.g005
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S2 Fig. Performance of our method (Dorf-OD) and classic Dorfman’s method (Dorf-Cl)

for various values of the number of contacts N, under additional levels of sensitivity se and

specificity sp. In panels (A, B) we set se = 0.7, sp = 0.97, in panels (C, D) we set se = 0.9, sp =

0.99 and, in panels (E, F) we set se = 0.99, sp = 0.99. Panels (A, C, E) show the average pool

size. Panels (B, D, F) show the empirical distribution of the percentage of tests saved by using

our method instead of Dorfman’s method, where we exclude the highest and lowest 5% of

observations and the purple dashed lines represent average values. In all panels, we sample the

number of secondary infections from a truncated negative binomial distribution with repro-

ductive number R = 2.5 and dispersion parameter k = 0.1 [24]. For each combination of

method and parameter values, the averages and quantiles in all panels are estimated using

10,000 samples.

(TIF)

S3 Fig. Percentage of tests saved by using our method instead of Dorfman’s method for

different values of the reproductive number R and dispersion parameter k, under addi-

tional levels of sensitivity se, specificity sp and numbers of contacts N. In panels (A, B), we

set N = 20 and N = 50 respectively and, in both panels, we set the sensitivity and specificity to

se = 0.8, sp = 0.98. Darker colors correspond to a higher average percentage of tests saved. To

generate the contours, we evaluate the average percentage of tests saved using values in [0.25,

5.0] with step 0.05 for R and in [0.05, 1.0] with step 0.05 for k. The overlaid annotations indi-

cate the average percentage of tests saved for several estimated values of the reproductive num-

ber and dispersion parameter reported in the COVID-19 literature [23–25,45–48]. In each

experiment, we estimate the average using 10,000 samples.

(TIF)

S4 Fig. Percentage of tests saved by using our method instead of Dorfman’s method for

different values of the reproductive number R and dispersion parameter k, under addi-

tional levels of sensitivity se, specificity sp and numbers of contacts N. In panels (A, B, C),

we set N = 20, N = 50 and N = 100 respectively and, in all panels, we set the sensitivity and

specificity to se = 0.7, sp = 0.97. Darker colors correspond to a higher average percentage of

tests saved. To generate the contours, we evaluate the average percentage of tests saved using

values in [0.25, 5.0] with step 0.05 for R and in [0.05, 1.0] with step 0.05 for k. The overlaid

annotations indicate the average percentage of tests saved for several estimated values of the

reproductive number and dispersion parameter reported in the COVID-19 literature [23–

25,45–48]. In each experiment, we estimate the average using 10,000 samples.

(TIF)

S5 Fig. Percentage of tests saved by using our method instead of Dorfman’s method for

different values of the reproductive number R and dispersion parameter k, under addi-

tional levels of sensitivity se, specificity sp and numbers of contacts N. In panels (A, B, C),

we set N = 20, N = 50 and N = 100 respectively and, in all panels, we set the sensitivity and

specificity to se = 0.9, sp = 0.99. Darker colors correspond to a higher average percentage of

tests saved. To generate the contours, we evaluate the average percentage of tests saved using

values in [0.25, 5.0] with step 0.05 for R and in [0.05, 1.0] with step 0.05 for k. The overlaid

annotations indicate the average percentage of tests saved for several estimated values of the

reproductive number and dispersion parameter reported in the COVID-19 literature [23–

25,45–48]. In each experiment, we estimate the average using 10,000 samples.

(TIF)

S1 Table. Average numbers of tests, false negatives and false positives of our method

(Dorf-OD) and classic Dorfman’s method (Dorf-Cl) for various values of the number of
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contacts N, under additional levels of sensitivity se and specificity sp. Here, we set the sensi-

tivity and specificity to se = 0.7, sp = 0.97. We sample the number of secondary infections from

a truncated negative binomial distribution with reproductive number R = 2.5 and dispersion

parameter k = 0.1 [24] and, for each combination of method and parameter values, the aver-

ages and standard deviations are estimated using 10,000 samples.

(DOCX)

S2 Table. Average numbers of tests, false negatives and false positives of our method

(Dorf-OD) and classic Dorfman’s method (Dorf-Cl) for various values of the number of

contacts N, under additional levels of sensitivity se and specificity sp. Here, we set the sensi-

tivity and specificity to se = 0.9, sp = 0.99. We sample the number of secondary infections from

a truncated negative binomial distribution with reproductive number R = 2.5 and dispersion

parameter k = 0.1 [24] and, for each combination of method and parameter values, the aver-

ages and standard deviations are estimated using 10,000 samples.

(DOCX)

S3 Table. Average numbers of tests, false negatives and false positives of our method

(Dorf-OD) and classic Dorfman’s method (Dorf-Cl) for various values of the number of

contacts N, under additional levels of sensitivity se and specificity sp. Here, we set the sensi-

tivity and specificity to se = 0.99, sp = 0.99. We sample the number of secondary infections

from a truncated negative binomial distribution with reproductive number R = 2.5 and disper-

sion parameter k = 0.1 [24] and, for each combination of method and parameter values, the

averages and standard deviations are estimated using 10,000 samples.

(DOCX)

S4 Table. Pool partitions corresponding to the points of Fig 3A, resulting by penalizing the

false negative rate. Here, under se = 0.7, sp = 0.97, we vary λ1 while we fix λ2 = 0 and, for each

resulting partition, we compute the average number of tests and false negative/positive rate.

We set the number of contacts to N = 100 and sample the number of positive infections from a

truncated negative binomial distribution with reproductive number R = 2.5 and dispersion

parameter k = 0.1. In each experiment, we estimate averages using 10,000 samples. Double

entries in the first column correspond to cases where the set of contacts is partitioned into a

combination of pools of two different sizes.

(DOCX)

S5 Table. Pool partitions corresponding to the points of Fig 3A, resulting by penalizing the

false positive rate. Here, under se = 0.7, sp = 0.97, we vary λ2 while we fix λ1 = 0 and, for each

resulting partition, we compute the average number of tests and false negative/positive rate.

We set the number of contacts to N = 100 and sample the number of positive infections from a

truncated negative binomial distribution with reproductive number R = 2.5 and dispersion

parameter k = 0.1. In each experiment, we estimate averages using 10,000 samples. Double

entries in the first column correspond to cases where the set of contacts is partitioned into a

combination of pools of two different sizes.

(DOCX)

S6 Table. Pool partitions corresponding to the points of Fig 3B, resulting by penalizing the

false negative rate. Here, under se = 0.8, sp = 0.98, we vary λ1 while we fix λ2 = 0 and, for each

resulting partition, we compute the average number of tests and false negative/positive rate.

We set the number of contacts to N = 100 and sample the number of positive infections from a

truncated negative binomial distribution with reproductive number R = 2.5 and dispersion

parameter k = 0.1. In each experiment, we estimate averages using 10,000 samples. Double
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entries in the first column correspond to cases where the set of contacts is partitioned into a

combination of pools of two different sizes.

(DOCX)

S7 Table. Pool partitions corresponding to the points of Fig 3B, resulting by penalizing the

false positive rate. Here, under se = 0.8, sp = 0.98, we vary λ2 while we fix λ1 = 0 and, for each

resulting partition, we compute the average number of tests and false negative/positive rate.

We set the number of contacts to N = 100 and sample the number of positive infections from a

truncated negative binomial distribution with reproductive number R = 2.5 and dispersion

parameter k = 0.1. In each experiment, we estimate averages using 10,000 samples. Double

entries in the first column correspond to cases where the set of contacts is partitioned into a

combination of pools of two different sizes.

(DOCX)

S8 Table. Pool partitions corresponding to the points of Fig 3C, resulting by penalizing the

false negative rate. Here, under se = 0.9, sp = 0.99, we vary λ1 while we fix λ2 = 0 and, for each

resulting partition, we compute the average number of tests and false negative/positive rate.

We set the number of contacts to N = 100 and sample the number of positive infections from a

truncated negative binomial distribution with reproductive number R = 2.5 and dispersion

parameter k = 0.1. In each experiment, we estimate averages using 10,000 samples. Double

entries in the first column correspond to cases where the set of contacts is partitioned into a

combination of pools of two different sizes.

(DOCX)

S9 Table. Pool partitions corresponding to the points of Fig 3C, resulting by penalizing the

false positive rate. Here, under se = 0.9, sp = 0.99, we vary λ2 while we fix λ1 = 0 and, for each

resulting partition, we compute the average number of tests and false negative/positive rate.

We set the number of contacts to N = 100 and sample the number of positive infections from a

truncated negative binomial distribution with reproductive number R = 2.5 and dispersion

parameter k = 0.1. In each experiment, we estimate averages using 10,000 samples. Double

entries in the first column correspond to cases where the set of contacts is partitioned into a

combination of pools of two different sizes.

(DOCX)

S10 Table. Pool partitions corresponding to the points of Fig 3D, resulting by penalizing

the false negative rate. Here, under se = 0.99, sp = 0.99, we vary λ1 while we fix λ2 = 0 and, for

each resulting partition, we compute the average number of tests and false negative/positive

rate. We set the number of contacts to N = 100 and sample the number of positive infections

from a truncated negative binomial distribution with reproductive number R = 2.5 and disper-

sion parameter k = 0.1. In each experiment, we estimate averages using 10,000 samples. Double

entries in the first column correspond to cases where the set of contacts is partitioned into a

combination of pools of two different sizes.

(DOCX)

S11 Table. Pool partitions corresponding to the points of Fig 3D, resulting by penalizing

the false positive rate. Here, under se = 0.99, sp = 0.99, we vary λ2 while we fix λ1 = 0 and, for

each resulting partition, we compute the average number of tests and false negative/positive

rate. We set the number of contacts to N = 100 and sample the number of positive infections

from a truncated negative binomial distribution with reproductive number R = 2.5 and disper-

sion parameter k = 0.1. In each experiment, we estimate averages using 10,000 samples. Double

entries in the first column correspond to cases where the set of contacts is partitioned into a
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