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Deutsche Zusammenfassung

Ziel dieser Arbeit ist, Methoden zu vergleichen, welche vorhandene Strukturen in
einem Festkörperdatensatz zu extrahieren, mit deren Hilfe die Vorhersage der Ziel-
eigenschaft verbessert und eine Gruppe repräsentaiver Datenpunkte für ein effizientes
Training gefunden werden kann. Diese Repräsentanten sollen reichen, um ein Modell
ähnlicher Qualität zu erhalten wie eines, das aus Training auf dem ganzen Datensatz
beruht. Eine ihrer Varianten, Prototypen, sollen zusätzlich die unterliegenden Clus-
terstruckturen repräsentieren, während die andere Variante, Archetypen, Aussagen
über die Qualitätsgrenzen zukünftiger unbekannter Materialien erlauben sollen. Wir
untersuchen weiterhin, ob Besondere Datenpunkte existieren, welche unabdingbar in
der Gruppe der Repräsentanten sind. Mit dem Kubische Perowskit Datensatz, der
zuverlässige Datenqualität und eine ausreichende Größe aufweist, und Metriken zur
Methodenevaluation, welche auf dem Median von Test-Fehlern basieren und somit
die statistische Signifikanz unserer Resultate sichern, nähern wir uns diesem Ziel
indem wir die folgenden drei zentralen Fragen beantworten:
Hat ein gegebener Datensatz eine Struktur, oder Untergruppen von Materialien

welche durch andere Gesetze beschrieben werden als andere? Zur Beantwortung
dieser Frage bewerten wir die Qualität der extrahierten Strukturen mit dem Me-
dian Test-Fehler von mSISSO, welches verschiedene Fitting-Koeffizienten für jede
Materialgruppe erlaubt.
Einige der untersuchten Clustermethoden basieren auf grundlegenden chemischen

Erkenntnissen über den Datensatz Einfacher Kubischer Perowskite ABO3, deren
Elemente A alle der Gruppe eins bis drei und dem f-Block des Periodensystems
angehören, während die Elemente B alle aus Gruppe vier oder höher stammen. Ihre
vergleichende Bewertung zeigt, dass Methode ElB, welche alle Materialien dessel-
ben Elements B demselben Cluster zuordnet, und Methode GruppeB, deren Materi-
alien gemäß der Gruppe ihres B Elements im Periodensystem Clustern zugeordnet
werden, mit Abstand am erfolgreichsten sind. Verglichen mit einer sSISSO App-
likation, dessen Koeffizienten global für alle Materialien gefittet werden, reduziert
sich der Median Test-Fehler um mehr als 67%. Eine Anpassung dieser Methoden
für eine Anwendung auf generische Datensätzen wird präsentiert. Die Qualität ihrer
Resultate ist jedoch unbekannt und muss in zukünftigen Arbeiten evaluiert werden.
Andere Methoden extrahieren prototypische Cluster im primry-Feature-Raum

(PrimaryRaum), welches die Zieleigenschaft entweder ausschliesst oder einschliesst
(ohneZiel oder mitZiel), oder im durch sSISSO abgeleiteten Raum (Abgeleiteter-
Raum). Von diesen erweisen sich Kmeans, welches isotrpische Cluster gleicher Vari-
anz aufspürt, welche somit gleichmässige Unterteilungen des Featureraums repräsen-
tieren, und HDBSCAN, welches die genannten Einschränkungen nicht teilt und un-
terliegende Clusterstrukturen somit besser abbilden kann, als erfolgreich im Prima-
ryRaum ohneZiel und im AbgeleitetenRaum, in beiden mit Clusteranzahl c ∈ [5, 8].
Ihr Median Test-Fehler reduziert sich um 30 bis 35%, und die Anwendung auf gener-
ische Datensätze ist ohne Anpassung möglich.
Alle oben erwähnten erfolgreichen Methoden sind sowohl global als auch lokal

zufriedenstellend, und ihre extrahierten Clusterstrukturen gleichen sich teilweise.
Es kann gezeigt werden, dass der Grad der Klarheit der Clusterbegrenzung in den



Daten, und damit der Eindeutigkeit der Aufteilung durch den stochastischen Al-
gorithmus Kmeans, ein Indikator für die Nützlichkeit seiner Resultate für unsere
Zwecke ist.
Wir können somit unsere erste Frage bejahen- die vorgestellten Methoden ex-

trahieren nützliche unterliegende Strukturen. Jede ihrer Materialgruppen gehorcht
leicht anderen Gesetzen als die anderen, in dem Sinne dass eigene mSISSO Koef-
fizientenfits für jede von ihnen die Ergebnisse erheblich verbessern.
Aufbauend auf solchen Strukturen wollen wir in einem weiteren Schritt folgendes

beantworten:
Kann der Datensatz erheblich reduziert werden, so, dass Training auf ihm weiter-

hin Vorhersagen von ähnlicher Qualität erlaubt, und existierten stabile oder einzi-
gartige Datenpunkte, deren Inklusion in den so reduzierten Datensatz für den Qual-
itätserhalt unabdingbar sind?
Für den ersten Teil dieser Frage nutzen wir den Leistungsindikator Normalisierter

Medianfehleranstieg (nmei), welcher möglichst klein sein soll.
Ein globaler Vergleich zeigt, dass die erfolgreichsten Clustermethoden erneut auf

grundlegenden chemischen Erkenntnissen, gepaart mit einer Geführten Zufallsselek-
tion, beruhen. Methode ElA, welche alle Materialien desselben Elements A einem
Cluster zuordnet, erzielt mit Abstand die besten Resultate, mit einem Median Test-
Fehler, der sogar unter dem eines global trainierten sSISSO Modells liegt. Die näch-
sten erfolgreichen Methoden sind GruppeA, deren CLuster durch die Gruppe des A
Elements im Periodensystem bestimmt sind, ElB, sowie TypA, welches Materialien
basierend auf dem Typ von Element A entweder zum Alkalimetall-, Alkalisches-
Erdmetall-, Lanthadin-, oder Übergangsmetall-Cluster zuordnet. Ihre durchschnit-
tlichen nmei bewegen sich zwischen 31 und 66%. Es muss jedoch beachtet werden,
dass die Qualität der Ergebnisse der präsentierten Anpassung dieser Methoden für
generische Datensätze noch nicht evaluiert wurde.

Weitere erfolgreiche Methoden sind Clusterzentrumsauswahl basierend aufKmeans
im AbgeleitetenRaum, welches marginal bessere Ergebnisse liefert als die Anwen-
dung im PrimaryRaum ohneZiel, gefolgt von Zufallsauswahl in Clustern, die durch
Kmeans oder HDBSCAN im PrimaryRaum ohneZiel und mitZiel oder im Abgeleit-
etenRaum extrahiert werden. Ihre nmei liegen zwischen 69 und 92%, und vor allem
Zufallsauswahl bewirkt nur eine marginale Verbesserung der Ergebnisse.

Ein verlässliches Set von optimalen Hyperparametern für diese Methoden kann
nicht gefunden werden, da Korrelationen der einzelnen Hyperparameter mit nmei
inkonsistent sind. Für eine finale vergleichende Analyse können Hyperparameter
daher nicht zur Methodenvorselektion verwendet werden.
Stattdessen wird letztere für stark reduzierte Datensätze um 90% durchgeführt,

mithilfe eines Methodenleistungsindikators, welcher auf einer Validierungsfehler-
grenze basiert. Mit diesem Ansatz sind die besten Methoden gegeben durch Clus-
terzentrumsauswahl für Kmeans im AbgeleitetenRaum, gefolgt vonKmeans im Pri-
maryRaum ohneZiel und Geführte Zufallsauswahl basierend auf Clustermethode
TypA.

Der erste Teil unserer zweiten Frage kann daher ebenfalls bejaht werden- ein
reduzierter Datensatz kann für das Training verwendet werden; wird er mit den
vorgestellten Methoden extrahiert, werden verlässlich bessere Ergebnisse erzielt als
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für eine zufallsbasierte Datensatzreduktion. Soll eine starke Reduktion um 90% erfol-
gen, sind die Methoden, die sich hinsichtlich des letztgenannten Leistungsindikators
hervortun, denen mit besten nmei vorzuziehen.

Bezüglich des zweiten Teils der Frage kann gezeigt werden, dass keine stabilen oder
einzigartigen Repräsentanten existieren, welche Teil des Trainngs sein müssen, um
ein Modell hoher Qualität zu erhalten. Für Prototypen existieren solche Besonderen
Datenpunkte also nicht. Dieses Resultat gilt vermutlich generell, also auch für andere
Datensätze- jedes Material kann als Repräsentant deklariert werden oder auch nicht,
solange die Repräsentanten richtig kombiniert werden.

Unabhängig davon, welcher Leistungsindikator herangezogen wird- fast keine der
besten Clustermethoden für unsere zweite Frage nach einer substantiellen, gleichw-
ertigen Datensatzreduktion entspricht einer der Clustermethoden, die in der ersten
Frage hilft, unterliegende Datensatzstrukturen für angepasstes Fitting nutzbar zu
machen. Liefert eine Methode ein gutes Ergebnis zu einer der beiden Fragen, lässt
sich daher keine Aussage zu ihrer Leistungsfähigkeit bezüglich der anderen ableiten.
Unsere dritte Frage lautet:
Wie können wir abschätzen, ob ein neues Material unbekannter Zieleigenschaft

adäquat durch unser vorliegendes Modell vorhergesagt werden kann?
Der Versuch, sie zu beantworten, also Archetypen mithilfe des Iterativen Ansatzes

zu finden, scheitert für seine beiden VersionenGrößter Fehler und Lineare Archetypen.
Wahrscheinliche Ursachen für das Scheitern werden erörtert und ein Vorgehen vorgeschla-
gen, mit dem sie in Zukunft vermieden werden können.
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Glossary

Archetypes See Representatives. ix, 39–44, 47

DerivedSpace Space spanned by the derived features of sSISSO (usually 3d). Each
dimension, corresponding to one derived feature, is "streched" by the respec-
tive sSISSO-coefficient, such that the change in estimated target property for
moving positively along any of the DerivedSpace axes is equal to 1. 14, 15, 20,
21, 23–26, 29, 34, 35, 37, 45, 46

DVIB Deep variational information bottleneck. 10

Exceptional Data Points Stable or unique Representatives whose inclusion into Train-
ing Set is strictly necessary in order to obtain a model of similar quality as the
one resulting from training on the Work Set. 3, 35, 37, 47

GLRM Generalized linear rank model: Principal component analysis with regular-
ization. 1, 2

HDBSCAN Hierarchical density based clustering. vi, 7–9, 14, 15, 17–21, 23–26, 29,
31–35, 45

IQR Interquartile range. 15, 20, 22, 23, 27–29, 33

MaxAE Maximum absolute error. 25, 26

ML Machine learning. vi, 1, 3, 6–8, 10, 12, 43

NN Neural network. 10

NoTarget See PrimarySpace. 9, 14, 15, 17–26, 29, 31–33, 35, 45

PCA Principal component analysis. 1

PrimarySpace Space spanned by either primary feature space only, with each fea-
ture being standardized (noTarget), or primary features and target property,
each of which is standardized (withTarget). viii, ix, 17–26, 29, 31–35, 45

Prototypes See Representatives. 37, 39, 47

viii



Glossary

Representatives Subset of data set materials which suffice for training sSISSO in
order to obtain a model of quality comparable to training on Work Set. Two
versions exist, namely Average Representatives, or Prototypes, which stand
for relevant cluster structures in the data set, and Extreme Representatives,
or Archetypes, which exhibit an additional Property that can be used to make
limiting statements about the prediction quality of materials of unknown target
property. viii, ix, 3, 33–37, 39–43

RMSE Root mean squared error. 15–31, 33, 35–37, 40, 41

(Selection Method Specific) Property If exhibited by Representatives, they are
considered Extreme Representatives or Archetypes. Allows to make limit-
ing statementes about the prediction quality of materials of unknown tar-
get property- for Biggest Error Selection Method, the Archetypes are worst
described by the respective model as compared to all Work Set materials,
thus setting an upper limit for prediction errors; for Linear Archetypes Selec-
tion Method, the convex hull spanned by the Archetypes defines a subspace in
sSISSO’s descriptor space, for which predition quality of materials of unknown
target property is probably high. ix, 40, 42–44

SISSO Sure independence screening and sparsifying operator, either single-task
(sSISSO), or multi-task (mSISSO). vi, viii, ix, 7, 11–23, 25–33, 37, 39, 40,
43–46

Test Set Fixed subset of data set that is left untouched and only used for final
method evaluation. 6, 9, 14, 17–21, 23, 24, 27, 30, 35, 41

Training Set Subset of data set at hand that ML-algorithm is trained on; it is always
a subset of the Work Set. viii, ix, 6, 13, 15, 27–30, 33, 35–44

VAE Variational autoencoder. 10

Validation Set Subset of data set at hand which remains after subtracting the
Training Set from the fixed Work Set. 6, 35, 39

Volatility Quantified by interquartile range (IQR) or its normalized equivalent (nIQR)
and illustrated by boxplots, whose box sizes correspond to IQR, and whose
whiskers indicate the range of non-outliers. Whisker positions are given by
[Q1− 1.5 · IQR,Q3 + 1.5 · IQR], with Q1 and Q3 denoting the first and third
quartile. 15, 17, 18, 23, 27–30

WithTarget See PrimarySpace. 9, 14, 15, 17–20, 29, 31–33, 35, 45

Work Set Fixed subset of data set at hand that does not belong to the Test Set.
viii, ix, 6, 9, 14–20, 23, 27, 28, 30–33, 37, 39–44
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1 Introduction
The recent surge in applications of machine-learning (ML) algorithms to material
science has shown its potential of predicting various properties for the majority of
materials inside a given data set. One central aspect of physics however is lost in
this approach: Determining the range of validity and thus limitations of the deduced
models, which in materials science corresponds to extracting average and extreme
representatives.

By combining clustering, variational autoencoders, and supervised ML algorithms,
this work aims to find these two types of representatives and explore the following
aspects: Does a given data set have a structure, or subsets of materials that follow
different laws than others? Can the data set be reduced substantially, such that
training the model still yields results of similar quality, and are there stable or
unique data points whose inclusion during training is strictly necessary in order to
obtain such a model? How can we estimate whether a new material of unknown
target property is likely to be predicted well by our current best analytical model?
By answering these questions, we intend to pave the way for a ML-driven search
for the ’needle in the haystack’, with research targeted to promising new materials
whose investigated properties differ in the desired way from the rest.
This work is structured as follows: After recapitulating related work on represen-

tative data points and defining central terms that are used throughout the thesis,
existing ML-algorithm building blocks are presented, whose combinations to Di-
rect Approach and Iterative Approach are newly introduced in this work to answer
our three core questions above. The designs of both approaches are presented subse-
quently alongside with respective results. A summary recapitulates the core findings
and ideas for future research.

1.1 Related work
What exactly are Exceptional Data Points and Representatives and what do they
stand for? In literature, this question has been approached from various slightly
different angles and using differing definitions of versions of Representatives.

In [1], a general definition via Principal Component Analysis (PCA) with regular-
ization is proposed. This concept of Generalized Low Rank Model (GLRM) approxi-
mates a data set with n data points and m features as a product of two-dimensional
factors by minimizing the objective function

min
∑

(i,j)∈Ω
(Xi,j − wiaj)2 +

m∑
i=1

ri(wi) +
n∑
j=1

r̃j(aj) . (1.1)

Here, the standardized primary features matrix X ∈ R(n×m) of n data points and m
features is to be approximated by a matrix Z of rank k < m, which is expressible as

1



1 Introduction

Figure 1.1: Illustration of how to interpret the matrices in GLRM [1]. For each data
point i, the encoder compresses the m feature values of data point vector
xi to k latent feature values of data point vector wi. For each feature j,
the decoder compresses the n data point values of feature vector xj to k
representative values of feature vector aj . Each representative vector al
thus captures the information contained in one of k idealized examples,
whose linear combination with wi maps to data point vector xi. Figure
adapted from [2].

Z = WA with matricesW ∈ R(n×k) and A ∈ R(k×m), while applying the regularizers
ri, r̃j → R∞. The ith row of a matrix M is indicated as mi, the jth column as mj .
Irrespective of the regularization, this approach can be interpreted in various

ways (see fig. 1.1): It can be seen as a bi-linear auto-encoder with encoder W
and decoder A, which discovers the latent variables that best explain the observed
data X according to squared reconstruction error. As the auto-encoder is low-rank
k < m, it is an information bottleneck: Each row of encoder W represents a low-
dimensional embedding of a data point i by compressing them feature values of data
point vector xi to k latent feature values of data point vector wi. The same holds
for each column of decoder A, which, for each feature j, compresses the n data point
values of feature vector xj to k representative values of feature vector aj . At the
same time, the rows of A, here denoted Representatives al, capture the behaviour
of k idealized and maximally informative examples. Every data point vector xi can
be expressed as a linear combination wi of these Representatives, where each wil
indicates the resemblance of data point i to representative l.
One possible regularization is given by r̃ = 0 and non-negativity and a normal-

ization on the rows of matrix W ,

r =
{

0 ifWi,j ≥ 0 and ||wi||1 ∈ [0, 1]
∞ otherwise .

(1.2)

where || · ||1 denotes the L1 norm. The constraint ||wi||1 ∈ [0, 1] ⇒ Wi,l < 1
implies that the position xi of any data point i that is to be transformed like this
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1.2 Definitions

is bounded by the Representatives’ positions al for l ∈ {1, ..., k}, which are thus
Extreme Representatives of the data.

Another regularization type is quadratic clustering with r̃ = 0 and

r =
{

0 if wi = el for l ∈ {1, ..., k}
∞ otherwise .

(1.3)

Here, el denotes the l-th standard basis vector, such that wi encodes the cluster to
which data vector xi is assigned. Alternating minimization then yields the cluster
centroid position solution l∗ = arg minl

(∑n
j=1(Xij −Alj)2

)
. Quadratic clustering

is thus equivalent to Kmeans (see section 3.1) and finds Average Representatives of
the data.
While Udell et al. call both of these specifications Archetypes [1], Keller et al.

denote only Extreme Representatives as Archetypes, and Average Representatives as
Prototypes [3] and claim that the assessment of the latter is more useful if a cluster
structure exists in the data, and otherwise the former.
Yet another possible interpretation is given in [4], where firstly k Extreme Repre-

sentatives, denoted Archetypes in [4], are extracted with the stricter regularization
condition |wi|1 = 1. Data points are allocated in a space spanned by them accord-
ing to W and cluster memberships are extracted by assigning each data point to
the closest of the k Extreme Representatives. Corresponding k cluster centroids are
determined by maximizing an internal similarity criterion and mapped to the finally
selected Representatives, denoted Prototypes in [4].

1.2 Definitions
The terms Archetypes and Prototypes are not clear-cut in literature- in this work,
we introduce our own definitions of the two concepts in order to be able to answer
our three core questions.
In order to assess whether the number of points in a data set can be substan-

tially reduced, we define Representatives in general as a subset of materials, upon
which training of an ML algorithm yields a model of similar quality as compared to
training on the whole data set. If stable or unique Representatives can be identified
whose inclusion during training is strictly necessary in order to obtain such a model,
we call them Exceptional Data Points. Depending on the type of Representatives,
their materials carry additional information: Average Representatives or Prototypes
stand for relevant cluster structures in the data set, for which it is investigated
whether some clusters follow different laws than others. Extreme Representatives or
Archetypes on the other hand carry boundary information on the validity of future
predictions. A more detailed explanation of the latter is provided in the Iterative
Approach chapter (5), in which Archetypes are mainly assessed, while Prototypes are
investigated in in the Direct Approach chapter (4).
In ML-Building Blocks (see chapter 3), we explicitly use the terms archetypes and

prototypes in the sense of Keller et al. [3] (see section 1.1), as our definitions do
not apply to individual ML-building blocks. We additionally stress the difference
in definition by not using italics. In Direct Approach (see chapter 4) and Iterative

3



1 Introduction

Approach (see chapter 5) though, where we present our contributions and investigate
our core questions, we refer to our definitions.
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Figure 2.1: Illustration of perovskites atomic structure (left) and their composition
(right). All combinations of elements of set A with those of set B con-
stitute the ABO3 Simple Cubic Perovskites data set of 504 materials.
In the more general A2BB

∗O6 Double Cubic Perovskites data set of 814
materials, all combinations of sets A, B and B∗, where each element
belongs to either group one or two as indicated by the upper right circle
color, are contained additionally. Figure adapted from Lucas Foppa.

2 Data

In the following, the two versions of the perovskites data set that are investigated
in this work are presented, followed by definitions of data set subsets that are used
consistently thereafter.

2.1 Two versions of Cubic Perovskites

As this work implements newly combined machine-learning methods, a data set of
reliable data quality and sufficient size is needed to be able to assesses the meth-
ods’ suitability for our goal of finding exceptional data points and determining the
exploitability of data set structures.

We thus investigate the ABO3 Simple Cubic Perovskites data set, which is il-
lustrated in fig. 2.1. It comprises all possible combinations of elements in set A,
which consists of alkali metals, alkaline earth metals, lanthanides and two transition
metals, with the ones in set B, which contains transition metals, other metals and
metalloids. In this way, a set of 504 materials is created.
A similar, but larger and more heterogeneous data set version is investigated with

the A2BB
∗O6 Double Cubic Perovskites of 814 materials. In addition to the 504

Simple Cubic Perovskites materials, it contains all combinations of sets A, B and B∗,

5



2 Data

Table 2.1: Target property and primary features of the Simple Cubic Perovskites
and Double Cubic Perovskites data set.

Acronym Meaning Unit
lat lattice constant (target property) Å
rs, rp s/ p orbital radius Å
Z atomic number e
HOMO, LUMO highest occupied/ lowest unoccupied molecular orbital eV
EA, IP,EN electron affinity, ionization potential, electronegativity eV

where for each material, each constituting element either belongs to set one or two
as indicated by the upper right circle color in fig. 2.1, thus yielding 310 additional
materials.

2.2 Feature Selection
The investigated target property, the lattice constant, is evaluated with density-
functional-theory (DFT) calculations, using the FHI-aims code and the PBEsol
exchange-correlation functional. Table 2.1 contains the acronyms and their mean-
ings and units for target property and primary features for both versions of the data
set. In formulas, the acronyms are appended a subscript A or B to indicate which
element group they refer to.

2.3 Data Subset Definitions
In machine learning literature, terms like Training Set are not defined unambigu-
ously. Furthermore, as the way ML algorithms are combined in this work differs
from what is typically done, we define the following terms to suit our needs: For any
of the above presented data sets, we split data randomly, yielding a Work Set and
Test Set, which stays the same for any methods we apply unless stated otherwise in
order to ensure comparability of results. The Standard Test Set for Simple Cubic
Perovskites (ABO3) is displayed as white fields for the respective combination of
material A (vertical axis) and B (horizontal axis) in fig. 4.8. For any application
step of the composite algorithm, the Training Set is always a subset of or equal to
the Work Set, whose remaining materials form the Validation Set. The Test Set is
left untouched until final method evaluation, for which the Test Set is predicted.

6



3 ML-Building Blocks

In the following, the algorithms applied to identify archetypes and prototypes in
the sense of Keller et al. [3] (see section 1.1) alongside their respective clusters
are expounded comparatively. As the terms do not correspond to our definitions
introduced in section 1.2, they are not printed in italics.

Afterwards, Sure Independence Screening and Sparsifying Operator (SISSO) is
presented. As opposed to the other building blocks, it extracts analytic equation,
which may give physical insight and is thus always used for the final target property
prediction and to assess the quality of the extracted data set structure.

3.1 Prototype and Archetype Selection Algorithms
3.1.1 Prototype Identification: Kmeans and HDBSCAN Clustering
Kmeans [5]: This clustering algorithm tries to separate samples into c groups or
clusters C of equal variance, minimizing the within-cluster sum-of-squares

n∑
i=0

min
µj∈C

||xi − µj ||2 , (3.1)

where xi is the position vector of material i and µj the one of cluster center j. The
number of resulting clusters c is preset- Kmeans randomly initializes c centroids,
derives the cluster-affiliation of each material with a Voronoi Tesselation [6], thus
by assigning it to its closest centroid, and recalculates each cluster’s centroid as
the average of its members. This is repeated until a (local) minimum is reached.
Besides the stochasticity of its result and the need to preset the hyperparameter
c, thus the number of clusters, an additional drawback of Kmeans is that clusters
of unequal variance and density and/or anisotropical distribution are generally not
well detected (see fig. 3.1).
All these disadvantages are addressed by the other clustering method, Hierarchi-

cal Density Based Clustering, (HDBSCAN) [7]. In order to enable finding clusters
of varying density, variance and shape and discarding single sparse bridge points
between them as outliers, it transforms the space by calculating the mutual reacha-
bility distance dk(a, b) = max{corek(a), corek(b), d(a, b)} between all material pairs
(a, b). Here, d(a, b) denotes the regular Euclidean Distance between a and b, while
core(a)k calculates the distance of a to its kth nearest neighbor. In a next step,
a minimum spanning tree is derived by iteratively adding the edge of lowest mu-
tual distance that connects a lose material to the graph. After sorting the edges
by mutual distance, we iterate through them and at each given threshold drop all
edges of higher distance. By keeping only the resulting clusters of minimum clus-
ter size m or higher and discarding smaller offsplits as outliers at each threshold,
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Kmeans clustering HDBSCAN clustering Linear AA & Voronoi

Figure 3.1: Prototype / archetype cluster identification as defined by Keller et al.
[3] (see section 1.1): For Kmeans and Linear AA unique virtual repre-
sentatives can be extracted, which are marked by an x. Color saturation
indicates how central a point is in its cluster- for Kmeans and Linear
AA, this corresponds to the normed distance of a material to its rep-
resentative, for HDBSCAN to its probability value. Kmeans tends to
find clusters of equal variance and assign points at the extremes of an
anisotropic cluster lower centrality values than HDBSCAN. Linear AA
focuses on extremes instead of averages and hence yields a quite different
clustering as obtained by Voronoi Tessalation [6], thus assigning points
to their closest archetype. An increased δ and thus higher rate of re-
laxation of the weighted average constraint leads to a convex hull that
encloses more data points.

a dendogram or condensed cluster tree is derived. In order to select those clusters
of highest longevity during the distance scan, their respective stability is calculated
by ∑p∈cluster(λp − λbirth), being λp = 1/dk the inverse mutual distance of the edge
connecting material p to its cluster and λbirth the inverse mutual distance of the
edge whose cut leads to the creation of the cluster. Preliminary selecting all leafs
and working up the tree, each non-leaf cluster stability is overwritten by the sum of
stability of its children, if the latter is larger. If on the other hand the parent stabil-
ity is larger, the parent cluster is selected and all descendants unselected. When the
root cluster is reached, all clusters declared as selected compose the final selection.
As opposed to Kmeans, HDBSCAN produces outliers which are not assignable to

any cluster and its clusters do not have distinguished cluster centers that can be
identified as prototypes, which are drawbacks for our purposes.

A HDBSCAN version that depends on the number of clusters

All prototype and archetype selection algorithms except HDBSCAN depend on the
chosen number of clusters c, which are hence scanned as the potential for detection
of meaningful clusters might depend highly on it. In order to obtain an equiva-
lent representation for HDBSCAN, which selects the number of resulting clusters
automatically, we use its deterministic dendogram (see fig. 3.2):
Here, each bar stands for a cluster, whose thickness and color lightness increases

with the number of points contained in it. As the inverse mutual distance cutoff λ
increases, the bars become thinner, as small clusters containing less points than the

8



3.1 Prototype and Archetype Selection Algorithms

Figure 3.2: Dendogram of deterministic HDBSCAN-application for minimum num-
ber of clusters m = 5, versions noTarget (left) and withTarget (right),
which illustrates the clusters resulting from different inverse mutual dis-
tance cutoff values λ. The clusters chosen by HDBSCAN are encircled.

minimum cluster size m are split off and discarded as outliers. At the λ where an
offsplit cluster size surpasses m, the bar ends and is replaced by two bars indicating
the offsplit and remaining cluster.
For HDBSCAN-λ we thus scan the dendogram by varying λ, and capture all

possible decomposition states as the number of clusters increases. In order to not
discard a mayority of points as outliers for higher cluster numbers, the members
of each cluster, which appear as λ is increased to its target value, are assigned at
the respective cluster split-off λbirth. This process is illustrated in fig. 3.2, right
panel: For λ = 4, our HDBSCAN-λ yields the four encircled clusters. If cluster
memberships were assigned according to actual decomposition states at λ = 4, the
third cluster from the left would have lost many points as compared to when it first
appeared at λbirth ≈ 3.5, and the first cluster from the left would have dissolved into
outliers. For that, cluster member assignments are conducted at their respective
birth values, λbirth ∈ {3.1, 3.2, 3.5, 3.5}.
The python package HDBSCAN does not provide a method to assign unseen test

points to the cluster offsplits derived like this. Hence, we introduce an assignment
strategy as follows: For each Test Set point a, the non-outlier Work Set point b
of minimal mutual reachability distance d = minb dk(a, b) to it are selected as its
potential cluster connection. For any given cluster structure yielded by its associated
inverse mutual distance cutoff λ, the latter is then used to determine whether the
point at hand is discarded as an outlier for λ > 1/d, or assigned to the same cluster
as its non-outlier Work Set point partner for λ < 1/d.

3.1.2 Archetype Identification: Linear and Deep Archetypal Analysis

Linear archetypal analysis (Linear AA) [8, 9] aims to find a preset number A of
virtual archetypes of a data set, which span its convex envelope and are calculated
as the weighted average of all M data points, A = XC, where X is the (M × F )

9
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Figure 3.3: DeepAA illustration: Its DVIB consists of an encoder and two decoder
branches of four dense NN layers, respectively. The encoder transforms
the real space features X into a latent space representation T of lower
dimension, where the archetypes are extracted, and which is decoded
to the real space feature and target property reconstruction, X̃ and ỹ.
Figure adapted from [3].

data point matrix and C the (F × A) weighting matrix with 1 − δ ≤ |cd|1 ≤ 1 + δ
and C ≥ 0. The parameter δ allows for a relaxation of the model in case of data
points which cannot be enclosed by a convex hull of A virtual archetypes derived like
this (which is the typical case for materials data) [9]. The weighted average of these
virtual archetypes in turn can be used to approximate the data points themselves
with X̃ = AS with the A × M weighting matrix S with |sn|1 = 1 and S ≥ 0.
Formally, this is achieved by optimizing arg minC,S ||X− X̃||2 (see fig. 3.1).
The two drawbacks of Linear AA, namely that it only finds virtual archetypes

which have to be mapped to their closest actual data point neighbor, and that
its unique optimization solution is not always found by the algorithm due to local
minima, is shared by its more sophisticated nonlinear counterpart, Deep Archetypal
Analysis (DeepAA).

Keller et al. [3] introduced DeepAA based on a Deep Variational Information
Bottleneck (DVIB), a type of Variational Autoencoder (VAE), which was modified
for this work for materials data instead of images: In a data set with a (M×F ) data
point matrix X, DVIB tries to find a latent space representation T of a preset lower
dimension D < F with a dense Neural Network (NN) encoder, that contains enough
information to reconstruct both the F primary features, X̃, and a target property,
ỹ, with two branches of NN decoders (see fig. 3.3). DeepAA is thus supervised,
contrary to unsupervised Linear AA.
As the latent space is artificially constructed by nonlinear transformations and

combinations of the real space features, assumptions about its size and shape can
and must be made. By definition, the archetypes span the convex hull of latent
space of a preset dimension D by being connected through a hyperplane, hence the
minimum number of archetypes must be D + 1. As the archetypes are to carry
unique information, thus, the set of archetypes should be mappable to each data
point by an unambiguous weight matrix, the maximum number of archetypes is also
D+1. For symmetry reasons, the latent space is always spanned by a simplex of the
respective dimension, which is centered in the origin, whose corners are represented
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by the archetypes position matrix A.
In order to force the encoder to map real space into the so constructed restricted

latent space, its intermediate result, a dimension-reduced transformation of real
space, is transformed with a final dense layer with softmax activation functions,
yielding a weight matrix S with |sn|1 = 1 and S ≥ 0, whose application to the
archetypes position matrix A produces the position of each data point in latent
space. Like this, by construction all data points, including test points that have not
been used for network training, are mapped inside the convex hull that is defined
by the archetypes.
Mathematically, all primary features x, latent space variables t and target prop-

erties y are assumed to be normally distributed and the algorithm aims to find a
latent space representation that allows for a close feature and target reconstruction,
x̃ and ỹ, by optimizing its objective function

max
Φ,Θ
{−IΦ(t;x) + λIΦ,Θ(t; ỹ) + νIΦ,Θ(t; x̃)− `AT} . (3.2)

Here, I denotes the mutual information which is determined by the encoding and
decoding functions Φ and Θ, which in turn are determined by their constituting
dense layer functions. The function type of each dense layer is preset, such that I
is parameterized by the set of assigned weights in all constituting functions. The
parameters λ and ν weigh the target and feature reconstruction, respectively, and
`AT corresponds to our known Linear Archetype Analysis objective function, `AT =
||Zfixed − Zpred||2, which is here applied to the fixed archetypes Zfixed, with Zpred =
ZfixedSC.

As opposed to SISSO (see next section), a crucial disadvantage of Deep Archetypal
Analysis is that its target property prediction remains a blackbox as no analytical,
human-readable formulas are extracted. Its major advantage over all other prototype
and archetype identifying algorithms presented in this work, on the other hand, is
that it is supervised- it allows for an archetype definition that includes information
about the target property, as the latter is used in the training of the network, while
not needing the target property to predict an unseen point’s place in latent space.
This advantage is bought with high computational cost, though, and a stochastic
result.

In order to be able to not only extract representatives but also clusters based
on them, after archetype identification we apply a Voronoi Tessalation [6], thus,
assign each data point to its closest archetype as illustrated in fig. 3.1 for Linear
AA. For DeepAA, this assignment is based on the distances in latent space. To our
knowledge, this combined application has not been used before.

3.2 Sure Independence Screening and Sparsifying Operator
(SISSO)

At the core of this work, the supervised compressed-sensing method Sure Inde-
pendence Screening and Sparsifying Operator (SISSO) [10] is used to predict a
target property vector p of a compound (for instance its lattice constant) in an
analytic, therefore transparent way, which may give physical insight. For this,
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in a first step it calculates all combinations of its F primary features that are
physically possible (thus respecting unit restrictions, e.g. not allowing for sum-
ming distances and energies). To this end, it iteratively applies an operator set
Ĥ = {I,+,−, ∗, /, exp, log, | − |,√,−1,2 ,3 }, where I denotes the identity operator,
yielding the candidate descriptors matrix D. The maximum number of iterations is
given by rung, which in this work is always set to rung = 2. Typically, rung = 3 is
necessary for accurate results, but for the method benchmarking conducted in this
thesis, conclusions do not depend on the chosen rung and choosing rung = 2 allows
for a more extensive benchmark. In a second step, it determines its best sparse sub-
set, the descriptor or derived features matrix D∗ of dimension D < F , for linearly
fitting target property vector p, by optimizing arg minc(||p−Dc||22 +λ||c||0), where
||c||0 is the number of nonzero components of the coefficients c.
The derived features space can be seen as a type of latent space as well, which con-

trary to the DeepAA latent space is constrained to be linearly correlated to the target
property. Non-linear relationships between primary features and target property are
captured in descriptor construction. SISSO exhibits two distinguished advantages
over DeepAA though: Firstly, this deterministic method extracts analytic, therefore
transparent formulas, which may give physical insight. Furthermore, SISSO does
not include the primary feature reconstruction in its objective function, nor other
additional terms like the Archetype Loss `AT. SISSO’s descriptor or latent space is
thus constructed by optimizing the reconstruction of the target property only, which
leads to a better prediction.
Two different variants of SISSO are used: The above-described Single-task SISSO

(sSISSO), which estimates the optimal descriptor and coefficients jointly for all mate-
rials, andMulti-task SISSO (mSISSO) [11]. The latter allows for different coefficients
ki for given c tasks of Mi materials, respectively, but selects the same descriptor, by
optimizing

arg min
k

c∑
i=1

1
Mi
||Pi −Diki||22 + λ||k||0 . (3.3)

It hence weighs each task by the number of materials inside in order to minimize the
global prediction error. How the tasks are defined and thus which materials they
contain can be decided for the problem at hand. For instance, clusters as extracted
by the algorithms presented in section 3.1.1 can be tasks.
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Does a given data set have a structure, or subsets of materials that follow different
laws than others (see section 4.1)? Can the data set be reduced substantially, such
that training the model still yields results of similar quality, and are there stable or
unique data points whose inclusion during training is strictly necessary in order to
obtain such a model (see section 4.2)?

In order to answer these questions, in the Direct Approach, a data set clustering
structure is extracted once with a given clustering method, and either used to assign
materials to mSISSO-tasks according to their cluster membership in the Structure
Exploitation section, or to choose Representative materials from them with a given
selection approach, which then constitute the sSISSO Training Set, in the attempt
of finding an Equivalent Reduced Data Set.
In both the Structure Exploitation and Equivalent Reduced Data Set section, the

same clustering methods are applied in order to be able to compare the results of
the two and assess whether a method that is successful with the former approach is
so as well with the latter one.
There are three types of clustering methods:

• Clustering based on element metadata: Clusters can be constructed based on
any meaningful information. These clustering methods each use material meta-
data of nominal or ordinal scale, which are thus not representable as physical
features of the data set as displayed in table 2.1, but which capture central
properties of the observed material and might thus be useful for clustering.
For ElA/B, materials of same element A or B, respectively, are assigned to
one cluster. As elements A and B determine all primary features, and feature
subgroups corresponding to them are completely dependent, this clustering
method is more precise and might be more useful than the subsequently intro-
duced Clustering in Primary Space. All remaining methods in this clustering
type are based on the constituting elements as well and hence share this ad-
vantage: For GroupA/B, those materials whose element A or B belongs to
the same column in the periodic table (see fig. 2.1) are ascribed to the same
cluster. For TypeA/B/AB, cluster membership is determined by the type as
indicated by the coloring of the respective element A, B or both (see fig. 2.1).
Hence, for TypeA clustering, four clusters are yielded, where element A belongs
to the Alkali Metals, Alkaline Earth Metals, Transition Metals or Lanthanides,
respectively, while for TypeB clustering, three clusters are returned contain-
ing materials whose element B belongs to Transition Metals, Other Metals,
or Metalloids. Consequently their combination, TypeAB clustering, results in
twelve clusters. In appendix A, the cluster memberships resulting from each
clustering method are listed.
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The above clustering methods are designed for application to Simple Cubic
Perovskites- for data sets where a differentiation between elements A, B, etc.
is not possible, or where elements exhibit varying stoichiometry, possibly also
considering off-stoichiometric compositions, the methods should be adapted.
In such a generic data set, any data point i consists of ni elements eji with
composition ratios rji , with arbitrary sequence j = 1, ..., ni and

∑
j r

j
i = 1 ∀ i.

In this case, mSISSO could be applied to tasks defined by overlapping clus-
tering, which allows each material to simultaneously be part of ni clusters,
which are determined by the affiliation of its elements eji . Each material’s
fitting coefficients and target property estimation could then be calculated as
the weighted mean of its respective mSISSO task values, with weights given
by the composition ratios rji . Like this, all proposed clustering methods based
on Element, element Group or element Type could be applied to generic data
sets. The performance of this overlapping clustering approach though is not
assessed in this thesis and remains to be investigated in future work.

• Clustering in Primary Space: For a given target number of clusters c, the
unsupervised clustering methods Kmeans or HDBSCAN-λ are applied to the
space spanned by the primary features as described in table 2.1.
In general, unsupervised clustering is conducted on the feature space only,
without the target property (noTarget). In this application version, the dis-
tance based clustering algorithms are applied to the primary features, which
are each standardized in order to avoid biases. If a structure is yielded that
proves to be valuable, it can be used to determine whether an unseen point,
whose target property is by definition unknown, is an outlier or if it can be
well predicted with the given model. The drawback of this application version
is that always the same structure is extracted regardless of the target.
As intuitively the detection of a more valuable structure is to be expected
if information about the target property is included, we additionally apply
the withTarget version: For that, the same per-feature standardization is con-
ducted as before on all features and the target property. For Work Set points,
the actual target property is used, for Test Set points, whose target property
is unknown by definition, its 3d-sSISSO estimation is used. Then, we multiply
the standardized target property by the number of included features, so that
its influence on clustering is always as high as the summed up influence of
all features and does not depend upon their number, and conduct clustering
on the resulting feature-and-target-property space. To our knowledge, this
approach has not been used before.

• Clustering in Derived Space: For a given target number of clusters c, Kmeans
or HDBSCAN-λ are applied to the three-dimensional DerivedSpace as spanned
by the derived features di for i ∈ [1, 2, 3] that are yielded by 3d-sSISSO when
applied to the Work Set. Each dimension is "stretched" by the respective
sSISSO-coefficient c1, c2 or c3, such that the change in estimated target prop-
erty for moving positively along any of the DerivedSpace axes is equal to 1.
For the case of DeepAA, clusters are assigned via Voronoi tesselation in its
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latent space (see section 3.1).
The noTarget/ withTarget distinction does not apply to clustering in derived/
latent space, as the latter is extracted based on both information about pri-
mary features and the target property. At the same time, the position of a
material in derived/ latent space can be calculated even if its target property
is unknown, thus also allowing for outlier analysis.

The performance of a method is measured based on test-root mean squared error
(RMSE) of 3d-SISSO only, as for both Singletask and Multitask, 3d-SISSO ususally
yields best results on the examined data sets. Similarly, for simplicity the SISSO
hyperparameter rung is set to two, in order to avoid further increasing the com-
plexity of hyperparameter choice. Qualitatively, the obtained results are expected
to also hold for all values for rung.

All clustering methods based on element metadata and HDBSCAN-λ are deter-
ministic, while Kmeans and DeepAA are stochastic. If the Training Set creation
algorithm, which consists of the clustering and the subsequently applied selection
or assignment method, is deterministic, results are analyzed based on 3d-SISSO
test-RMSE. If it is non-deterministic, corresponding median errors and error volatil-
ities are assessed. The latter is illustrated by boxplots- its box sizes indicate in-
terquartile error ranges (IQR), which are used as a quantification of error volatility,
while its whiskers indicate the range of non-outliers. Their positions are given by
[Q1 − 1.5 · IQR,Q3 + 1.5 · IQR], where Q1 and Q3 represent the first and third
quartile. Both median error and error volatilities are calculated based on 30 inde-
pendent runs. An exception is given by Training Set creation algorithms relying
on the computational expensive, non-deterimenistic DeepAA clustering method. Its
quality in terms of feature and target reconstruction varies considerably, and thus
also its quality of corresponding clustering- in order to obtain a suitable clustering
but limit computation times, DeepAA is run 20 times independently, and the best
clustering in terms of feature and target reconstruction is selected. If the following
selection or assignment method is stochastic, that step is run 30 times independently,
but it is always based on the same best-DeepAA clustering.
In section 4.1, we can show that for Structure Exploitation, clustering methods

ElB and GroupB are most successful, with a reduction in test-RMSE of more than
67%. For finding an Equivalent Reduced Data Set in section 4.2, depending on the
success measure, either ElA and GroupA, or Cluster Center Selection for Kmeans in
DerivedSpace are most suitable.

4.1 Structure Exploitation
Does a given data set have a structure, or subsets of materials that follow different
laws than others?

To answer this question, clusters resulting from applying different clustering meth-
ods to the Work Set are extracted, and 3d-Multitask-SISSO (mSISSO) is trained on
them, with each cluster corresponding to one task. The Training Set thus corre-
sponds to the Work Set, except for clustering with HDBSCAN-λ (see 3.1.1), whose
identified outliers are excluded from the Training Set. As the derived features are
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Figure 4.1: Evaluation of whether median test-RMSE of 3d-mSISSO for random
clustering is a valid benchmark for Structure Exploitation method as-
sessment. In the left panel (a), training and test materials are uniformly
distributed among clusters, while in the right panel (b), a majority of
66, 6% materials is assigned to one dominant cluster, and the rest is
distributed uniformly among the other clusters. In both panels and ir-
respective of the number of clusters, median test-RMSE is smaller than
target property standard deviation (red line), but close to or larger than
test-RMSE of 3d-sSISSO (green line). As median test-RMSEs of the
evaluated methods are expected to lay below the latter, it is chosen as
benchmark throughout this section.

the same for each cluster, the extracted model is still global, but peculiarities of
each cluster are accounted for with their differing coefficients.
As the number of fitting coefficients increases with the number of clusters, it

could be assumed that training-RMSE decreases with it irrespective of the quality
of chosen cluster structure. The same should not hold for test-RMSE though, as a
too fine or otherwise inappropriate clustering probably leads to overfitting. Whether
the latter holds is relevant for the choice of a benchmark for method evaluation
in this section and is verified for random clustering, whose median test-RMSE of
3d-mSISSO should thus be close to or surpass test-RMSE of global 3d-sSISSO.
We test this hypothesis for varying Number of Clusters c, once for uniformly sized
clusters (uniform), and once for one dominant cluster containing 66, 6% of training
and test points, and c − 1 small clusters among which the remaining materials
are uniformly distributed (dominant). Resulting boxplots of 30 independent runs
for each hyperparameter set are shown in fig. 4.1. They are compared to test-
RMSE of global 3d-sSISSO elat

sSISSO and target property standard deviation σlat,
which throughout this section are indicated by a green and red line, respectively.
Values of the two benchmarks in Simple Cubic Perovskites with Standard Work Set
are elat

sSISSO = 0.077 and σlat = 0.173. Irrespective of whether the random cluster
selection is uniform (a) or dominant (b) and irrespective of c, median test-RMSEs
are close to or surpass elat

sSISSO, confirming our hypothesis.
As contrary to this an appropriate clustering should decrease median test-RMSE

of 3d-mSISSO as compared to test-RMSE of global 3d-sSISSO (green line), the latter
is thus used as benchmark throughout this section.
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Figure 4.2: Test-RMSE of 3d-mSISSO for Simple Cubic Perovskites with Standard
Test Set for different clustering methods. For ElA/B, materials of same
element A or B, respectively, are assigned to one cluster; for GroupB,
those whose element B belongs to the same column in the periodic table
(see fig. 2.1) are ascribed to the same cluster. TypeA clustering yields
four clusters, where element A belongs to the Alkali Metals, Alkaline
Earth Metals, Transition Metals or Lanthanides, respectively, while for
TypeB clustering, three clusters are returned containing materials whose
element B belongs to Transition Metals, Other Metals, or Metalloids as
indicated in fig. 2.1. Consequently their combination, TypeAB cluster-
ing, results in twelve clusters. The green line indicates the benchmark,
3d-sSISSO test-RMSE.

In the following, results for the different clustering methods as introduced at the
beginning of this chapter are presented, followed by a comparative assessment of the
clusters and mSISSO formula yielded by the best clustering methods.

4.1.1 Element Metadata based Clustering

As can be seen in fig. 4.2, 3d-mSISSO based on ElB clustering yields the best test-
RMSE elat

ElB = 0.0239 with number of clusters c = 28, closely followed by GroupB
with elat

GroupB = 0.0253 and c = 12. Both are a significant improvement as compared
to Work Set target property standard deviation σlat = 0.173 and Work Set trained
3d-sSISSO test-RMSE elat

sSISSO = 0.077 (green line). GroupB should be preferred
over ElB as it consists of fewer clusters, and hence achieves the same performance
with fewer fitting coefficients.

4.1.2 Clustering in Primary Space

In fig. 4.3 the results for a 3d-mSISSO application based on Kmeans and HDBSCAN
clustering in PrimarySpace for both noTarget and withTarget version are shown.
As HDBSCAN is deterministic, the boxplots indictate the volatility of results for

seven randomly selected Test Sets of same size as the Standard Test Set. In order
to compare it to the median error of stochastic Kmeans, only the Standard Test Set
results for HDBSCAN are used (blue lines).
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Figure 4.3: Results of different clustering methods in PrimarySpace. Target property
standard deviation is indicated by a red line, 3d-sSISSO test-RMSE by
a green line. The test-RMSEs of 3d-mSISSO of HDBSCAN noTarget
vary highly due to overfitting of a single task for c ∈ [4, 7]. For Standard
Test Set (blue solid line), additionally discarding tasks as outliers which
estimate test point targets outside the confidence interval as indicated
in fig. 4.4 results in a smooth curve (blue dashed line) close to the
median error. For Standard Test Set, both HDBSCAN noTarget and
withTarget seemingly outperform their Kmeans counterparts, but at the
expense of only describing a subset of the data set as illustrated in fig.
4.5. Comparing the noTarget / withTarget boxplots of both methods,
respectively, shows that including the target for clustering worsens the
mSISSO estimation.

Although median HDBSCAN noTarget errors form a smooth curve with a min-
imum for c = 9, its results are very volatile, especially for our Standard Test Set.
For c ∈ [4, 7], task 2, which contains one single test point, SmMnO3, exhibits an
test error of elat

task2 > 1000, as compared to elat
task ∈ [0.3, 0.9] for the other tasks, thus

worsening performance considerably. We cannot discard its constituting materials
as outliers based on its high task-test-RMSE, as by definition the target property
of the Test Set is not known. Instead, we can use the target property distribution
of Work Set materials and its skewed Gaussian fit, which are shown in fig. 4.4, and
argue that due to random selection of the Test Set, its lattice constant distribution
must resemble it. Taking a very conservative confidence interval of 99.999% (whose
borders are marked by red dashed lines) allows us to discard test point estimations
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Figure 4.4: Relative frequency histogram of target property (lattice constant) distri-
bution of Standard Work Set of Simple Cubic Perovskites along with
skewed Gaussian fit and its 99.999% confidence interval (red dashed
lines). The latter was chosen conservatively in order to avoid discarding
extreme, but correct points, tasks or models estimations.

Figure 4.5: Ratio of training and test outliers for HDBSCAN noTarget (left) and
withTarget (right) in PrimarySpace. Solid lines represent outliers as dis-
carded by HDBSCAN-λ in Primary Space, dashed lines account for ad-
ditionally discarding task 2 due to test point estimations outside of the
confidence interval as illustrated in fig. 4.4.

which lay outside of it and their respective tasks / models. Doing so results in
discarding SmMnO3 and thus task 2 as outliers and a smooth test-RMSE curve
of 3d-mSISSO for c ∈ [4, 7], which resembles the median-test-RMSE curve (dashed
blue line), and a slight increase of the ratio of Work Set and Test Set points that are
discarded as outliers as shown in fig. 4.5.
Using the approach described above, it appears that all clustering methods result

in a smooth curve of 3d-mSISSO test-RMSE for our Standard Test Set that runs
close to, but mostly below the sSISSO test-RMSE for c ∈ [2, 9] and then surpasses
it when the clustering becomes too fine and overfitting sets in.
Regardless of whether we discard out-of-confidence tasks as outliers, for the Stan-

dard Test Set, HDBSCAN noTarget yields best results at c = 9, with elat = 0.054
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with a percentage of discarded outliers as yielded by HDBSCAN (see section 3.1.1)
of olat

rel = 20% and olat
rel = 26% in the Work and Test Set, respectively. These data

points could be declared to be non-predictable. A better solution though is to fit
the whole Work Set in the descriptor space spanned by 3d-mSISSO, thus obtaining
a global model that is compatible with the task models, and use resulting fitting
coefficients for all outliers. In this case, when the result is assessed, it should be kept
in mind that the outliers have not influenced the choice of mSISSO descriptor space.
The latter might thus not be an optimal model for them, and a possibly increased
test-RMSE of outliers as compared to task-test-RMSEs might be attributable to
this procedure, and not to an inherent bad predictability of these data points.
The results of Kmeans noTarget are comparable to those of HDBSCAN noTarget,

with median error m(elat) = 0.056 at c = 5 and no outliers. For Kmeans withTarget,
the best median test-RMSE m(elat) = 0.068 is yielded for c = 5, for HDBSCAN
withTarget at c = 6 with elat = 0.041 and a percentage of discarded outliers of
olat

rel = 73% and olat
rel = 85%. This high percentage of outliers suggests that in the

withTarget version of PrimarySpace, materials are scattered and do not cluster at
all. As Kmeans is outperformed by TypeB clustering and the HDBSCAN discards a
majority of points, the withTarget approach in PrimarySpace is deemed unsuitable
for our purposes and are not investigated further.

4.1.3 Clustering in Derived Space

In fig. 4.6, the test-RMSEs of mSISSO based on clustering in DerivedSpace are
shown.
Compared to their noTarget PrimarySpace counterparts, both clustering algo-

rithms yield slightly improved results regarding the best median and IQR ofmSISSO-
test-RMSE. The best (median) error for our Standard Test Set for Kmeans is elat =
0.0498 at c = 8, for HDBSCAN it is elat = 0.0560 at c = 7 and the ratio of points
discarded as outliers is significantly reduced to olat

rel = 7% for both Work and Test
Set materials. DeepAA clustering does not yield any promising results along the
entire c range.

Regardless of the number of clusters, the results based on DeepAA clustering are
worse than those of sSISSO. This might be explained by its original purpose, namely
to derive a Latent Space or Derived Space which is not only optimized for estimating
the target property, but also for reconstructing primary features. For its original pur-
pose of artificially generating pictures of faces/ structures of molecules (our primary
features) with a specific emotional expression/ heat capacity (our target property)
[3] for any point in latent space, the ability to reconstruct both primary features
and target property is central. For our application to materials science data though,
simultaneously optimizing target property and primary feature reconstruction is not
necessary nor useful, as is expounded in the following:
For pictures, the value on the continuous grey-scale of each bit in the bitmap

is largely independent of the values of all other bits. Contrary to that, for the
investigated Simple Cubic Perovskites data set, the corresponding values for all
material primary features are determined by the elements that constitute them.
Possible values are thus discrete, and the ones of each feature of the same element
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4.1 Structure Exploitation

Figure 4.6: Results of different clustering methods in DerivedSpace. Target property
standard deviation is indicated by a red line, 3d-sSISSO test-RMSE by
a green line. Contrary to its PrimarySpace noTarget version, Standard
Test Set test-RMSEs for mSISSO based on HDBSCAN clustering in De-
rivedSpace (top left) decrease smoothly with increasing c until overfitting
starts at c = 11. Also, the ratio of outliers discarded by HDBSCAN (top
right) is much smaller for the relevant range of c and justifiable. The
best test-RMSE yielded for Kmeans clustering in DerivedSpace (bottom
left) slightly outperformes the one of clustering in PrimarySpace and no-
Target. DeepAA (bottom right) does not show any promising results on
the entire c range.

(A or B) are completely dependent. For more complex data sets with variable stoi-
chiometry and/or more than two elements, primary features are often represented as
the weighted mean and standard deviation of the material’s constituting elements.
Allowing for off-stoichiometric compositions, each individual feature value is thus
continuous- still, they are determined by the constituting elements and composition
ratios and are thus completely dependent. Due to this dependency, the (Recon-
structed) Real Space spanned by these features is also only discretely populated by
points or hyperplanes representing possible actual materials.

Estimated feature values scatter in Reconstructed Real Space as the strict feature
dependence can only indirectly be addressed by DeepAA via the feature reconstruc-
tion error. Selecting any unknown point in Latent Space, it is thus unclear whether
the reconstructed primary features match. The latter determines if constituting
elements and composition ratios can be derived from them, hence, whether the re-
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Figure 4.7: Fit of Pearson correlation coefficient ρ of median (top) and IQR (bottom)
of test-RMSE elat to Cluster Stability s for 3d-mSISSO based on Kmeans
noTarget in PrimarySpace and Kmeans in Derived Space for Single and
Double Cubic Perovskites.

constructed data point represents a possible actual material. At the same time,
reconstruction is not necessary as we can navigate Latent Space and corresponding
target value with the trained model by feeding the Real Space branch all possible
constituting elements and composition ratios combinations- a method which does
not apply to pictures of faces that have not been taken yet nor for the huge number
of possible complex molecule structures.

The reconstruction branch of DeepAA is thus not useful for our purposes and
could be omitted, as simultaneously optimizing target property and primary feature
reconstruction yields worse results than optimizing target property reconstruction
only. An adapted neural network without the feature reconstruction branch and
feature reconstruction error penalty term, all other things being equal, would still
lead to a Latent Space and thus also clustering which comprises information about
both primary features and target value, comparable to sSISSO’s Derived Space.

For future work, an assessment of whether the architecture and objective function
of the algorithm candidate are suitable for the task at hand should be conducted
before implementation.
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4.1.4 Assessment of Best Structure Exploitation Methods
As can be seen in fig. 4.3, median test-RMSE resulting from Kmeans noTarget
in Primary Space and Kmeans in DerivedSpace is lowest where its IQR is lowest.
Subsequently it is assessed whether both in turn are determined by the Cluster
Stability of the stochastic Kmeans for given Number of Clusters c. We define Cluster
Stability sc as the average Cluster Similarity si,jc over all iteration pairs. The latter
we define by the Jaccard index1 [13] of the two sets of same-cluster-membership
Work Set material pairs P i, P j for two iterations i, j ∈ {1, 2, ..., 30}:

si,jc = |P i ∪ P j |
|P i ∩ P j |

(4.1)

sc = si,jc (4.2)

Both si,jc and sc range from zero to one, with a higher value indicating more
similar clusters and a more stable result of the stochastic Kmeans, respectively. The
results are displayed in fig. 4.7. Each point represents the Cluster Stability sc and
median (left) or IQR (right) 3d-mSISSO test-RMSE for a given number of clusters
c for Kmeans noTarget in PrimarySpace and Kmeans in DerivedSpace.
As we are not interested in the amount of average influence s has on the median

or IQR, respectively, which would correspond to the slope of a linear fit, but in the
question whether s and the latter two are (linearly) related, and if so, how noisy
that relationship is, the Pearson correlation coefficient is applied.

For Kmeans noTarget in PrimarySpace, a weak negative Pearson correlation coeffi-
cient results for both median (ρ = −0.25) and IQR (ρ = −0.42), while for Kmeans in
DerivedSpace, they are quite strong (ρ = −0.67 and ρ = −0.8, respectively). Hence,
only the stability of Kmeans clustering in DerivedSpace might be usable as an indi-
cator for the potential for error improvement and error volatility. Cluster stability in
term is directly determined by the distinctiveness of the cluster structure, and hence
of the heterogeneity of the data set. In order to confirm whether Cluster Stability is
a suitable indicator, this analysis is repeated with Double Cubic Perovskites, which
contains Single Cubic Perovskites but exhibits increased heterogeneity.
Again, clustering in PrimarySpace results in rather weak correlation coefficients of

ρs,m = −0.46 and ρs,iqr = −0.37 and clustering in DerivedSpace in strong correlations
of ρs,m = −0.87 and ρs,iqr = −0.93. This supports the hypothesis that Kmeans
clustering in DerivedSpace is a more suitable indicator for error improvement than
in PrimarySpace.
In fig. 4.8, the clusters yielding best test-RMSE are illustrated. The vertical

axis represents the set A, the horizontal one the set B element of the respective
material. The first of the two elements indicates the top row/ left column, the
second one the bottom row/right column, respectively. Cell color denotes material
cluster membership. White indicates Test Set materials, grey outliers. Clustering
ElB is not displayed.
It can be seen that the most successful clustering, GroupB, yields clusters which

are not found by Kmeans and HDBSCAN. An exception is the assignment of Zn and
1 Akin to Tanimoto similarity [12].
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Figure 4.8: Clustering resulting in best test-RMSE for Standard Test Set. Element
denotation X|Y indicates that X is the element corresponding to the
upper row/ left column, thus Y to the lower row/ right column of its
two neighboring slices. Cluster membership is indicated by color, outliers
by grey and Standard Test Set by white cells. Resulting Number of
Clusters are c = 5 and c = 7 for Kmeans and HDBSCAN noTarget
in PrimarySpace, respectively, and c = 8 and c = 6 for Kmeans and
HDBSCAN in DerivedSpace.

Cd to the same cluster, which is also the result of both methods in PrimarySpace and
assigning Al and Ga to the same cluster, which is found by all methods. Interestingly,
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4.1 Structure Exploitation

Figure 4.9: Task and global errors resulting of best-test-RMSE yielding clustering
methods. The green line indicates the benchmark, 3d-sSISSO test-
RMSE. The letters correspond to the task assignments shown in fig. 4.8,
except for ElB clustering tasks, whose set B element is annotated. Ex-
cept for test-RMSE of task H for Kmeans in DerivedSpace and MaxAE
of task F for HDBSCAN in DerivedSpace, which are slightly higher than
the respective errors of sSISSO, all task-errors are consistently smaller.

despite sSISSOs nonlinear space transformation and different optimal number of
clusters c, the structures found by Kmeans noTarget in PrimarySpace and Kmeans
in DerivedSpace are quite similar: They yield many overlapping material groups
of same-cluster-membership, which for each method are combined differently to
clusters: One group contains set B elements Cr to Cu and Al and Ga, another
one elements Ag to Pt plus some Ru and Rh materials, a third group Pb and Bi
elements and for both methods, all Ti and Zr materials belong to the same group,
respectively.
The latter two groups are also found by HDBSCAN in DerivedSpace which addi-

tionally shares the Zn, Cd and Ge group, respectively, with Kmeans in DerivedSpace,
to which it is thus more similar than to HDBSCAN in PrimarySpace. The latter is
the only one that also extracts four clusters based on set A elements, namely Na to
Cs, Be and Mg, Ca and Sr and the Nd cluster.
For the assessment of the resulting data set structure and its task performance,

both RMSE and maximum absolute error (MaxAE) of target property estimation
for each task in the Test Set are valuable: The former measures the prediction
performance of the model for the whole task, which, regarding all tasks jointly, is
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Table 4.1: Derived features d1, ..., d3 of 3d-mSISSOmodel lat = ct0+ct1d1+ct2d2+ct3d3
with tasks t = 1, ..., T for best-test-RMSE yielding clustering methods.
Prim. 5 stands for noTarget PrimarySpace, Der. for DerivedSpace.

Clustering Space d1 d2 d3

global model rsAZB/ENB rsB expEAB IPA · EAB/r3
pB

ElB
√
ZA

IPA+HOMOA
log(ZA)(IPA − LUA) EAA−ENA

|EAA−HOA|

GroupB LUB
ZB

3√rsA

3√ZAEAB
rsA

√
ZA

IPA+HOA

Prim. 5
Kmeans ZB

ENB ·rpB
exp

(
r3
sB

)
(EAB −HOB) exp(rsA)

HDBSC. ENA−ENB
ZB ·rsA

HOA·LUB
3√EAB

Z2
B log(rsB)

Der. Kmeans ZB
rsA+rsB
IPB

ZA
rpB(IPA+HOA) |EAB − ENB −HOB |

HDBSC. ZA
IPA

+ ZB
ENB

3√EAB
ZBrsA

IPA
HOB

(IPB +HOA)

an indicator of the overall meaningfulness of the found structure, while the latter
focuses on the single task point of worst prediction, thus measuring how "clear-cut"
the found clusters are. Hence, for all best clustering methods discussed above, both
error types of each task (corresponding to one cluster, respectively) are displayed
in fig. 4.9. Almost all exhibit smaller test-RMSE and MaxAE then the simple
sSISSO application, except for task H of Kmeans in DerivedSpace and task F of
HDBSCAN in DerivedSpace, whose RMSE and MaxAE, respectively, are slightly
higher. Although GroupB clustering results in a slightly higher global test-RMSE
than ElB clustering, its variance of task-test-RMSEs is significantly lower. The same
holds for its global test-MaxAE and the variance of test-MaxAE amongst its tasks.
Furthermore, as it relies on far less clusters, we consider GroupB superior to ElB
clustering.
The partial similarity of the cluster structures for different clustering methods as

displayed in fig. 4.8 is not reflected in the derived features yielded by mSISSO (see
table 4.1). This is notable especially for the two mSISSO models based on cluster-
ing in DerivedSpace, whose derived features do not resemble the ones of sSISSO.
Although the mSISSO estimations are thus reliable globally as well as for each task
and each point, human-readable and reusable, derived feature variety in models of
similar quality suggests that its solutions are not unique.

As was to be expected, for ElB clustering, the variance in target property caused
by the features of element B is not reflected in the human-readable, analytical de-
rived features di for i = 1, ..., 3, which only depend on features of element A. The
influence of element B features is thus entirely captured in the varying task co-
efficients cti for i = 0, ..., 3, whose values are not mapped to primary features by
analytical formula. In the following, a short formalization of this feature of mSISSO
is conducted:
Generally, the predictive power of a statistical model can be assessed via the

Coefficient of Determination [14] R2 = 1− SSres
SStot

. Here, SSres = ∑
i(yi− fi)2 = ∑

e2
i
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denotes the residual sum of squares, fi the prediction of model f for point i and
ei its residual or error, and SStot = ∑

i(yi − y)2 the total sum of squares, which is
proportional to target property variance. It thus measures the performance of model
f as compared to the one of simply taking the target property mean y. For mSISSO,
an analogous coefficient can be constructed which captures the ratio of residual sum
of squares reduction we obtain by allowing for differing coefficients in the global
linear model f in the given descriptor space for each cluster c, thus obtaining fc:
The value of the Coefficient of Determination via Coefficient Variation C2 = 1 −∑

(yi−fc,i)2∑
(yi−f i)2 indicates both the meaningfulness of the underlying cluster structure for

target property prediction, and the amount of variance which is captured by the
model through varying coefficients, but not derived from primary features in form
of analytical physical formula.
For ElB clustering, all possible influences of element B features on the task coef-

ficients cti are thus "hidden" in this representation and can themselves be estimated
with sSISSO in order to yield a global model.
In an attempt to obtain such a global model of similar quality as measured in

test-RMSE, sSISSO with maximum dimension dmax = 3 and rung = 2 is run four
times independently with the respective coefficient cti as target property for i ∈
{0, 1, 2, 3} with t ∈ ElB and the respective element B features of Simple Cubic
Perovskites as features. All elements are used in the Training Set as for each, we
have all information about both target properties and features. For all coefficients,
3d-sSISSO models yield lowest RMSE. Despite the high model complexity of a three
dimensional model, their coefficient predictions c̃it are thus chosen as a replacement
for the ones yielded by mSISSO. This eliminates the unexplained task differences
and yields a global model for lattice constant prediction, whose test-RMSE though is
significantly increased to elat = 0.0586 as compared to elat

ElB = 0.0239. Furthermore,
as this process leads to an increased effective rung = 3 and d = 12 of the lattice
constant prediction model, it is not investigated further.

4.2 Equivalent Reduced Data Set

Can the data set be reduced substantially, such that training the model still yields
results of similar quality, and are there stable or unique data points whose inclusion
during training is strictly necessary in order to obtain such a model?
To address this question, the clustering-based Training Set selections are compared

to a completely random selection (see fig. 4.10). Light blue solid and dashed lines
represent the median and IQR of 3d-sSISSO test-RMSEs for 30 random Training
Set selections and Standard Test Set, respectively. Due to their high volatility, their
smoothed counterparts (blue lines) are used as benchmarks in their place, which are
calculated as the moving average of their ±10 neighbors.
It is to be expected that for any clustering method M , selecting a Training Set

from the 378 materials containing Standard Work Set yields a model whose median
test-RMSEmM,n(e) is at best (approximately) as large as the one for sSISSO trained
on the wholeWork Set eWork = 0.077, or slightly below. We thus measure the success
of method M by Normalized Median Error Increase
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Figure 4.10: Random Training Set selection benchmark: For each Training Set size,
a random subset of the Standard Work Set is drawn 30 times, whose
median and IQR are displayed in light blue. Due to their high volatility
especially for smaller Training Set sizes, the smoothed median and IQR
(blue solid and dashed lines, respectively) serve as benchmarks instead.
Target property standard deviation is indicated by a red line, 3d-sSISSO
test-RMSE by a green line.

nmei(eM,n) = m(eM,n)− eWork

ms(er,n)− eWork (4.3)

with ms(er,n) being the smoothed median test-RMSE for random Training Set se-
lection of same size n. As ms(er,n) − eWork > 0 always holds, nmei > 1 indicates
that the error of Training Set selection method M is worse than for a randomly
selected Training Set of size n. For 0 ≤ nmei ≤ 1, method M is superior to random
selection, for nmei < 0 it is even better than training sSISSO on the whole Work
Set, which is expected to not- or only rarely- be achieved.

We also define Normalized IQR

nIQR(eM,n) = IQR(eM,n)/IQR(er,n) (4.4)

as the ratio of IQR resulting from methodM and the one yielded by random selection
for n train points, respectively. Where Normalized Median Error Increases indicate
a successful method, nIQR ≤ 1 ensures that an improvement of median error is not
achieved at the expense of (substantially) increased error volatility.

In the following, two methods for Training Set selection are regarded - the Cluster
Center and (Guided) Random Selection approach.

4.2.1 Cluster Center Selection - in Primary and Derived Space
The first approach - Cluster Center Selection - chooses the material of lowest Eu-
clidean distance to its cluster center, whose position in turn is calculated as the av-
erage of the position of all cluster members. This Selection Method thus results in a
Training Set size that equals the number of clusters c. It cannot be applied in neither
of the TypeA/B/AB, GroupA/B nor ElA/B approaches as in the "spaces" spanned
by type, group and element, measuring the Euclidean distance is not possible. As for
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Figure 4.11: Boxplots of 3d-sSISSO test-RMSE based on 30 Training Sets of size
c, each consisting of the materials closest to the cluster centers for c
clusters, as yielded by non-deterministic Kmeans in PrimarySpace for
noTarget (left) and withTarget (middle) and Kmeans in DerivedSpace
(right) as compared to smoothed random-selection median (solid blue
line) and IQR-borders (dashed blue line). Target property standard
deviation is indicated by a red, 3d-sSISSO test-RMSE by a green line.

HDBSCAN and DeepAA the maximum number of clusters cmax is limited, for the
former by the number of leafs in the dendogram, and for the latter by the number of
primary features, which results in a small cmax ≤ 25 for both algorithms, the Cluster
Center approach is only applied to Kmeans. In fig. 4.11, the results of 30 Kmeans
applications in noTarget or withTarget PrimarySpace and in DerivedSpace are dis-
played and compared to the smoothed median and IQR for random selection. For
noTarget PrimarySpace, the medians and IQR borders lay consistently below their
random counterparts except for c = 50, with an average nmei(enoTarget) = 0.770.
For withTarget PrimarySpace, the same holds only for its medians, with exception of
c ∈ {20, 40, 70}, with an average nmei(ewithTarget) = 0.976. As before, the noTarget
is superior to the withTarget approach, which yields only marginal improvements
to random subset selection. In DerivedSpace, nmei(eDer.Sp.) = 0.696, outperform-
ing PrimarySpace applications. For few clusters though, c = 30, error volatility
tripled, nIQR(eDer.Sp.,30) = 3.056; for all other method M and ntrain combinations,
nIQR(eM,ntrain) / 1.

4.2.2 Guided Random Selection - Element Metadata based Clustering

In order to avoid disregarding one chemical element completely and obtaining a high
error volatility for small Training Set sizes, the random subset selection based on ele-
ment metadata clustering is partially guided. For element metadata based clustering
methods, in each cluster the same number of materials nperCluster are selected with
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Table 4.2: Mean Normalized Median Error Increase and mean nIQR for different
element metadata based clustering methods.

ElA ElB GroupA GroupB TypeA TypeB
nmei -1.567 0.601 0.310 0.859 0.655 1.076
nIQR 1.053 0.823 1.284 0.627 0.761 1.017

the following algorithm: Shuffle the sequence of clusters. For each cluster, iteratively
randomly select a material from the ones in the cluster whose elements have been
least picked in the already chosen Training Set materials. Repeat this nperCluster
times, hence yielding n = c · nperCluster materials that are evenly distributed among
clusters and exhibit the most uniform element A and B distributions possible. The
upper border for nperCluster is given by the minimum number of Work Set materials
for all clusters. Thus, TypeAB clustering is not applicable with this selection algo-
rithm because nperCluster = 2 for the Sc-Y/Ga-Sb cluster as the materials ScGeO3
and YSbO3 are part of the Test Set, hence yielding max (ntotal) = 24.
This procedure is thus applied 30 times based on ElA/B, GroupA/B and TypeA/B

clustering - in table 4.2, mean Normalized Median Error Increase and mean nIQR are
displayed. All methods except TypeB exhibit a mean nmei below 1, with substantial
mean median improvements of approximately 33, 40 and 69% for TypeA, ElB and
GroupA clustering, respectively, and even a mean median test-RMSE that lays below
sSISSO test-RMSE when trained on the whole Work Set for ElA clustering. Mean
nIQR are smaller than one except for ElA and TypeB clustering, for which it is
slightly higher, and GroupA, for which it is substantially bigger than one.
A more detailed view of nmei(eM,n) and nIQR(eM,n) is provided with fig. 4.12.

On the left hand side, Normalized Median Error Increases are displayed, alongside
a red line at nmei = 1 above which medians resulting after clustering are worse
than those resulting from random selection, and a green line at nmei = 0, below
which median errors are smaller than Work Set trained 3d-sSISSO test-RMSE. On
the right hand side, the red line at nIQR = 1 indicates where error volatility of the
method surpasses its random counterpart.
For all methods except GroupB and TypeB, which surpass the red border multiple

times for ntrain bigger 168 and 39, respectively, medians resulting from guided ran-
dom selection inside the clusters lay consistently below the one of random selection,
and nmei decreases with increasing ntrain. For GroupA and ElA clustering, for ntrain
bigger 288 and 112, respectively, median error even lays consistently below Work Set
trained 3d-sSISSO test-RMSE. Also, all methods exhibit a nIQR consistently below
1, except for ElA, GroupA and TypeB, whose nIQR is bigger for ntrain regions cor-
responding to close to or outside of nmei = 0 and nmei = 1 borders. Interestingly,
TypeA and GroupA nmei’s differ significantly, especially for ntrain ≥ 112, although
the latter clustering corresponds to the former, except that every lanthanide ele-
ment forms its own cluster, with exception of La, which is assigned to the Sc and Y
containing cluster (see fig. 2.1). Thus, a Training Set selection that contains dispro-
portionately many Ce-, Pr-, Nd-, Pm- and Sm-containing materials seems to yield
better results for ntrain ≥ 112. Please note though that for both ElA and GroupA,
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Figure 4.12: Normalized Median Error Increase (left) and nIQR (right) for guided
random selection based on different element metadata based clusterings.
Above the red lines at nmei = 1 and nIQR = 1, respectively, medians
and IQRs resulting from the corresponding method are higher than their
random selection counterparts, and below the green line at nmei = 0,
medians yielded by the method are smaller than test-RMSE of 3d-
sSISSO trained on the Work Set.

for nmei < 0 absolute median errors are still consistently m(e) > 0.7, and thus close
to eWorkSet

sSISSO = 0.077.

4.2.3 Random Selection - Clustering in Primary Space

For Kmeans, HDBSCAN and DeepAA, conducting a selection of points as expounded
above proves to be unfeasible, as for these algorithms clusters of significantly differing
sizes appear; trying to extract the same number of points from each cluster would
firstly drastically limit the number of total points selected, ntotal = nperCluster · c, as
nperCluster is limited by the smallest cluster, and secondly disproportionately assign
weight to smaller clusters when fitting the final sSISSO model.

The method is thus adapted to select, for a given train ratio rtrain, the correspond-
ing rounded number of materials in each cluster randomly, but at least one, in order
to avoid disregarding smaller clusters completely. Due to varying cluster sizes result-
ing from non-deterministic Kmeans, this algorithm can yield different total numbers
of materials ntotal = ∑c

i=1 max(1, brtrainnic) for the same rtrain and c. For a given
number of clusters c and train ratio rtrain, non-deterministic Kmeans both noTarget
and withTarget are run 30 times in PrimarySpace and random selection is conducted
once on each of them. Deterministic HDBSCAN-λ in PrimarySpace is run once
for noTarget and withTarget and resulting clusters are selected 30 times randomly.
Due to the additional dependence on hyperparameter c the assessment of their re-
sults is more complex. For that, in fig. 4.13, Normalized Median Error Increase
nmei(eM,c,rtrain) are regarded as well as their means nmei(eM,c), nmei(eM,rtrain) and
nmei in order to make visible possible trends and compare methods. Cells whose
median test error exceeds standard error of the target property are marked by a red
cross, as corresponding models are not useful for target property prediction.
Similar to the Structure Exploitation results ofmSISSO, noTarget clustering slightly
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Figure 4.13: Normalized Median Error Increase (nmei) for Kmeans and HDBSCAN
in Primary Space for noTarget and withTarget for varying number of
clusters c and train ratios rtrain as well as their mean values for fixed c
or rtrain. Red crosses indicate that the cell’s corresponding median test
error exceeds the standard deviation of the target property.

outperforms withTarget clustering, with nmeiKmeans = 0.862, nmeiHDBSCAN = 0.890
for the former and nmeiKmeans = 0.916, nmeiHDBSCAN = 0.915 for the latter. The
reason for that differs though: For mSISSO based on withTarget clustering, assigning
cluster memberships to test points relies on by definition unknown target proper-
ties, which were thus estimated with sSISSO. Resulting faulty cluster assignments
of some test points due to limited estimation accuracy might have led to the inferior
performance of withTarget to noTarget based mSISSO. For the random selection ap-
proach, such a test point cluster membership determination is not necessary. Here,
the withTarget approach in PrimarySpace simply leads to selection which weighs the
importance of a target property distribution resemblance of Training and Work Set
equal to the one of their joint primary feature distributions. The better performing
noTarget version in contrast leads to a selection for which only a primary features
distribution resemblance of Training and Work Set results, which thus seems to be
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Figure 4.14: Pearson correlation coefficients of Normalized Median Error Increase
(nmei) with number of clusters c and train ratio rtrain for Kmeans
and HDBSCAN in PrimarySpace for noTarget and withTarget. Except
for Kmeans withTarget strong negative correlations with c are yielded,
ρc,nmei ∈ [−1,−0.5], and weak positive correlations with rtrain with
ρrtrain,nmei ∈ [0, 0.5].

more important for finding Representatives of a data set.

In fig. 4.14 mean mse trends are analyzed- it becomes apparent that for all
methods except Kmeans withTarget, aiming for a finer clustering by increasing c
in general reduces mean Normalized Median Error Increase with strong negative
correlations as measured by Pearson correlation coefficient |ρ| > 0.5, while increasing
rtrain increases msertrain with weak positive correlations |ρ| < 0.5. As mse measures
relative median test-RMSE of Training Sets selected by methodM to those resulting
from randomly selected Training Sets of same (average) size, it can increase although
the absolute median error resulting from methodM decreases with increasing rtrain.

The mean mse of all these methods, especially those using withTarget, indicates
an only moderate improvement of around 9 to 14% in median. In the following we
analyze results for specific hyperparameter values as those can differ strongly from
mse. We leverage the negative correlation between msec and c by regarding cmax
only and choose rtrain = 0.1 and rtrain = 0.2 as representative train ratios whose
smoothed random selection IQR, in the former case (for ntrain = 38), just lays inside
the Work Set sSISSO test-RMSE and standard deviation range and, in the latter
case (for ntrain = 76), whose 25% quartile for random selection lays quite close to
Work Set sSISSO test-RMSE, and whose 75% quartile lays way below standard
deviation. Results are displayed in table 4.3- the improvement in median error is
about 8 to 40% for all methods and all IQR (displayed in brackets) lay below its
random selection counterpart.
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4 Direct Approach

Table 4.3: Normalized Median Error Increase and nIQR (latter one in brackets) for
c = cmax for different clustering methods in PrimarySpace.

rtrain Kmeans noT Kmeans withT HDBSCAN noT HDBSCAN withT
0.1 0.617 (0.441) 0.928 (0.919) 0.887 (0.655) 0.708 (0.606)
0.2 0.727 (0.535) 0.806 (0.772) 0.872 (0.824) 0.748 (0.680)

Figure 4.15: Normalized Median Error Increase (nmei) for Kmeans and HDBSCAN
clustering in DerivedSpace and for clustering in DeepAA’s Latent Space
for varying number of clusters c and train ratios rtrain as well as their
means for fixed c or rtrain. Red crosses indicate that the cell’s corre-
sponding median test error exceeds the standard deviation of the target
property.

4.2.4 Random Selection - Clustering in Derived Space

Results for clustering in DerivedSpace are displayed in fig. 4.15. Mean Normal-
ized Median Error Increases are mneiKmeans = 0.900, mneiHDBSCAN = 0.874 and
mnei

DeepAA = 0.908, again indicating only a small improvement in median of 9 to
13%. This time, mean Normalized Median Error Increases exhibit a weak negative
correlation with c for all methods |ρ| ∈ [0.22, 0.45]. With rtrain, a strong positive
correlation results for DeepAA (ρ = 0.8) and a strong negative one for Kmeans and
HDBSCAN, ρ ∈ [−0.58,−0.53] (see fig. 4.16). As no clear trends can be extracted
from these correlations regarding which hyperparameter areas yield best results, a
further assessment of nmei and nIQR for a specific set of promising hyperparame-
ters cannot be conducted.

4.2.5 Assessment of Best Equivalent Reduced Data Set Methods

In the following, we define which of our results presented in this section can be
considered to be the "best", and corresponding training materials are compared in
order to assess whether unique or "stable" Representatives exist for Simple Cubic
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4.2 Equivalent Reduced Data Set

Figure 4.16: Normalized Median Error Increase (nmei) for Kmeans and HDBSCAN
in DerivedSpace for noTarget and withTarget for varying number of
clusters c and train ratios rtrain as well as their means for fixed c or
rtrain. Red crosses indicate that the cell’s corresponding median test
error exceeds the standard deviation of the target property.

Perovskites with Standard Test Set.
As the negative correlation of nmei with number or ratio of training points, ntrain

or rtrain, respectively, which appears in element metadata based clustering, is not sus-
tained for clustering in Primary and DerivedSpace, and as we look for a substantially
reduced data set in order to be able to call the constituting points Representatives,
in the following we regard rtrain = 10% and corresponding ntrain ∈ [30, 40] only. Fur-
thermore, as a strong negative correlation of nmei with number of clusters c is only
visible for clustering in PrimarySpace, hyperparameter c cannot be used to guide
our choice of best models. We thus use an alternative criterion on which to base
model choice, namely 3d-RMSE of Validation Set V , which is given by V = W \ T ,
whereW is the Work and T the Training Set. Validation-RMSE eVal is used instead
of test-RMSE, so as to avoid introducing overfitting to the Standard Test Set with
this final model selection step.
Two approaches for best model selection for rtrain = 10% are implemented: In

version (a), the N = 16 models of best eVal for each of the 16 Selection Methods
implemented in this chapter are chosen, the latter being Guided Selection for ElA/B,
GroupA/B and TypeA/B clustering; Cluster Center Selection for Kmeans; Random
Selection for Kmeans and HDBSCAN clustering- all conducted in PrimarySpace for
the noTarget and withTarget version and in DerivedSpace; and Random Selection
for clustering in DeepAA’s Latent Space. In version (b) all models that yield a
eVal < 0.09 are chosen, resulting in N = 73 selected models.
Comparing the rtrain = 10% Training Sets of the so defined best models in detail

is ineffective for our search for unique Representatives or Exceptional Data Points,
which have to be included into training in order to extract a high quality model.
Instead, for each material it is counted how often it is included in these Training
Sets, in order to assess whether some materials are chosen (much) more frequently
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4 Direct Approach

Figure 4.17: Assessment of whether unique Representatives can be found by com-
paring all Training Set materials of the best model in terms of 3d-
validation-RMSE eVal of each method, yielding 16 models in total, (left)
and those of all models with eVal < 0.09, hence in total 73 models,
(right). In the illustrations of the top row, the color of each material
indicates the number of times ninTrain it is selected into the respec-
tive best-model Training Set. In the bottom row, histograms show the
number of materials nmat that have been selected ninTrain times into
the Training Set, along with the binomial distribution (red dots) that
would result if the materials were picked completely randomly for each
model, while keeping their number fixed. The distributions resemble
one another closely.

than random. The results are shown in fig. 4.17.
At the top, heatmaps indicate the number of times a material has been selected

into a Training Set with approach (a) and (b), respectively. As in fig. 4.8, element
A is indicated by the vertical, element B by the horizontal axis. The first element
name always represents the top row/ left column of its two adjacent rows/ columns,
the second one the bottom/ right one. The colors are uniformly scattered; contrary
to fig. 4.8, no clear shared patterns emerge, as for instance elements or groups that
are over- or underrepresented.
The bottom row confirms these findings: Histograms show how many materials

nmat have been selected ninTrain times into the Training Sets yielded by approaches
(a) and (b) (blue bars). They are compared to the results of the binomial probability
mass function
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4.2 Equivalent Reduced Data Set

Table 4.4: List of derived features di for i ∈ [1, 2, 3] that appear more than once for
the N = 16 best models of each method in case (a), or whose ratio of
appearance ra > 0.05 in the N = 73 models of eVal < 0.09 in case (b).

(a) Best model of each method
ra d

0.375 exp(r3
sB)

0.25 ZB/(rpB(IPB +HOB))
0.125 r3

sB · exp(EAB)
0.125 (HOB · ZB)/(IPB · rpB)

(b) 3d-validation-RMSE < 0.09
ra d

0.438 exp(r3
sB)

0.192 ZB/(rpB(IPB +HOB))
0.151 (HOB · ZB)/(IPB · rpB)
0.137 (ZB · rsA)/(ENB · rpB)
0.082 r3

sB · exp(EAB)
0.068 exp(EAB) · log(rsB)
0.055 (ENB +HOB)/(EAB · LUB)

nmat(ninTrain) ≈
(

N

ninTrain

)
pninTrain (1− p)N−ninTrain , (4.5)

where p = |T |
|W | indicates the probability that any material inside the Work Set of

size |W | is selected randomly into a Training Set of average size |T |. The number of
regarded Training Sets is denoted N . Parameter values are |T | = 34.4, |W | = 378,
and N = 16 for approach (a) and |T | = 33.4, |W | = 378, and N = 73 for approach
(b). The results of this function are indicated by red dots and would appear if
instead of choosing the Training Sets yielding the best models, each time the same
number of materials was chosen randomly. They closely resemble the distributions
yielded by best model selection (blue bars), indicating that no unique or stable set
of Representatives exists, nor single materials which are more or less suitable as
Representatives. Hence, for Prototypes, no Exceptional Data Points can be found.
In the following, our two model selection approaches are used in order to assess

how stable or unique the derived features of the chosen best sSISSO models are.
After that, a comparison of method performance, given the substantial data set
reduction to 10%, is based on approach (b).
In table 4.4, derived features that appear for approach (a) and (b) are displayed

alongside their ratio of appearance ra. In case (a), only derived features which appear
more than once for the N = 16 models are displayed, in case (b) only those chosen
in more than 5% of the N = 73 models. Despite the non-stable Representatives,
some derived features are repeatedly chosen, as exp(r3

sB) with ra = 0.4 in both cases.
Feature r3

sB ·exp(EAB) is the only one which also appears in 3d-sSISSO when trained
on the whole Work Set. Hence, although a variety of Training Set materials prove
to be suitable Representatives, the best analytical models resulting from training on
them do not exhibit a variety of same degree, as their derived features partly repeat.
An examination of the Ratio of Models with Low Validation Error r∗, thus of

models with eVal < 0.09, reveals that Kmeans Center Selection in DerivedSpace is
most successful, with r∗ = 0.2, followed by Kmeans Center Selection in noTarget
PrimarySpace and Guided Random Subset Selection for GroupA clustering, which
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both exhibit r∗ = 0.133, and Guided Random Subset Selection for TypeA clustering
with r∗ = 0.1. All other training point selection methods exhibit an r∗ ∈ [0, 0.04]. If
substantial Training Set reductions to 10% are to be conducted, these best methods
should preferred over those most successful in terms of average nmei’s.
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As the last chapter proved that the set of Prototypes, thus Average Representatives
of a data set is not unique, the Iterative Approach presented in this chapter aims
to find a "stable" set of Archetypes, thus Extreme Representatives to answer the
following question:
How can we estimate whether a new material of unknown target property is likely

to be predicted well by our current best analytical model?
To this end, we aim to find Extreme Representatives or Archetypes, thus a subset

of data points on which training sSISSO yields a model of comparable quality as
training on the Work Set, which additionally are to exhibit a Property that can
be used to make limiting statements about the prediction quality of materials of
unknown target property.
The algorithm we designed to discover Archetypes, Iterative Approach, is presented

in the following, alongside its two versions, followed by a guide on how results can
be interpreted under which conditions, and some details on execution.
The algorithm works as follows: Initially, a random Training Set T0 of given size

nT is selected from theWork SetW . Then, at each iteration step i = {0, 1, 2, ..., 200},
sSISSO of maximum dimension dmax = 3 and rung = 2 is trained on it. The model
corresponding to the dimension d∗ = arg mind(eVi

d ) of smallest validation error eVi
d ,

with Validation Set Vi = W\Ti, is chosen and a Selection Method which chooses the
next Training Set Ti+1 of same size is applied to it. As SISSO and all Training Set
Selection Methods are deterministic, the iteration is stopped once the same Training
Set is selected twice. If the reselection occurs in the subsequent step, Ti = Ti+1,
we call the algorithm converged, if it occurs for any other future step, Ti = Ti+t for
t > 1, we say it reached a loop. Should none of those be reachable within imax = 200
iterations, we call the run failed.
Two different Selection Methods are used:
The first is the Biggest Error Method which, given the selected model, calculates

the prediction error of each Work Set material, and exchanges up to a number of
materials nS from the Training Set with Validation Set materials, corresponding to
a given Maximum Swap Ratio rS = nS/nT . The exchange is conducted as follows:
Remove the nS materials of smallest prediction error from the Training Set Ti.
Together with the nS materials of biggest prediction error from the Validation Set,
they form the Potential Swap Set of size 2nS . Select the nS materials of biggest
prediction error from it and add them back to the Training Set, obtaining Ti+1.

For rS = 1, the Biggest Error Selection Method thus finds Archetypes Ai = Ti that
are worst described by modelMi as compared to all Work Set materials, thus setting
an upper limit for prediction errors. If the algorithm converges, Ai = Ai+1 ⇒ Mi =
Mi+1, hence,Mi is also the best analytical model that can be extracted from sSISSO
training on them. For rS = 1, the entire Training Set can be exchanged at each
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5 Iterative Approach

iteration step. Due to that, both chosen dimension d∗ and derived features of the
model, di for i ∈ {1, ..., d∗} are likely to change drastically from step to step, which
might impair convergence- data points with Biggest Error in one model are likely to
not still exhibit the Biggest Error if the model changes completely. For that, we also
run the algorithm with rS < 1 in order to facilitate convergence- if only few Training
Points are exchanged, the change in optimal descriptor space is more likely to be
more marginal as well. At the same time, for rS < 1 the algorithm is more likely to
get stuck in "local minima", meaning that convergence is reached although a large
part of the Training Set points are not Archetypes in the sense of exhibiting Biggest
Error for the chosen model. They are only kept as the Maximum Swap Ratio rS
did not allow for more exchanges in Training Set materials.
The second Selection Method is the Linear Archetypes Method as described in

section 3.1.2- given the selected model and its descriptor space spanned by derived
features di for i ∈ {1, ..., d∗}, it calculates the virtual linear Archetypes as the materi-
als forming the convex hull of all Work Set materials and finds their actual-material
counterparts as their nearest neighbors. This Selection Method depends on two hy-
perparameters: One is the number of Archetypes, which corresponds to the Training
Set size |Ai| = |Ti| = nT , the other is the Relaxation Parameter δ ∈ [0, 0.5], whose
increase produces an outward shift of positions of virtual- and consequently also
actual- Archetypes as illustrated in fig. 3.1. Irrespective of the chosen hyperparame-
ters, upon convergence, Archetypes are found. Their Property is that, when sSISSO
is trained onto them, it yields a descriptor space such that all Work Set materials
are enclosed by the convex hull formed by these Archetypes. This convex hull hence
defines a subspace in descriptor space for which we have relatively dense observa-
tions and for which the quality of predicting the target property of an unknown
material is thus probably high. For a small δ ≈ 0, the convex hull does not enclose
all Work Set materials (see fig. 3.1) and yields a conservative subspace of assumed
high prediction quality. For δ ≈ 0.5 the opposite holds.

As expounded above, in order for the materials in the resulting Training Set to be
considered Archetypes, with the Selection Method Specific Property of either repre-
senting the Work Set but at the same time exhibiting the largest prediction errors,
or of defining a descriptor subspace of probably high prediction quality of unknown
materials, as for Biggest Error and Linear Archetypes Selection, respectively, the
algorithm must reach convergence.

If instead, a loop is reached, models and corresponding Representatives are yielded
which do not exhibit the respective Selection Method Specific Property, as Mi−1 =
MProp 6= Mi = MRepr = M chosen and thus cannot be denoted Archetypes in the nar-
rower sense. Here, MProp denotes the model in which the finally selected Archetype
candidates exhibit their Selection Method Specific Property. Training on them results
in a model MRepr for the Archetypes candidates, which hopefully is representative
for the data set, but in which the Archetype candidates no longer exhibit the desired
Selection Method Specific Property. Hence, the only use for material subsets found
by Iterative Approach ending in a loop would be as Representatives.

Analogously to Equivalent Reduced Data Set section of the previous chapter, re-
sulting models are evaluated using Normalized Median Error Increase nmei (see eq.
4.3). It defines the ratio of increase of median test-RMSE resulting from choosing
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a Training Set with a given method, where training on the whole Work Set is the
benchmark, to the smoothed median increase for a randomly selected Training Set
of same size. The median test-RMSE of methodM and Training Set size n, denoted
mM,n(e) in eq. 4.3, are here defined as median test-RMSE of all models contained in
the loop, respectively as test-RMSE of the converged model. In order for a yielded
model or set of models to be considered valid and corresponding Archetypes or Rep-
resentative candidates to be accepted as such, nmei < 1 must hold. Only then
their definition as (Extreme) Representatives, upon which training yields a model of
similar quality as compared to training on the whole Work Set, is met.
Due to the computational expensiveness of the Iterative Approach, in the following

it is run once for each Selection Method and set of associated hyperparameters and
assessed whether it converges and, if so, how the Normalized Median Error Increase
depends on the hyperparameters. Please note that due to a fixed seed for the first
random Training Set T0 selection, all runs of same Training Ratio rT start with the
same Training Set T0(M, rT , h) ≡ T0(rT ), irrespective of Selection Method M and
its associated hyperparameter h value, with h ∈ [rS , δ].

5.1 Biggest Error Selection Method

In table 5.1, the convergence status and Normalized Median Error Increase for ap-
plying Iterative Approach with Biggest Error Selection to Simple Cubic Perovskites
with target property lattice constant (see chapter 2) is displayed. Floats indicate
the resulting Normalized Median Error Increase. Integer values in brackets signal a
loop, denoting its loop length, convergence is marked by 3, and failure by 7. For
adjacent cells of same result, the latter is printed once and its range of validity is
denoted by adjoining colons.
It can be seen that only the run of rT = 0.6 and rS = 0.3 converges, with a very

high Normalized Median Error Increase nmei = 13.8, indicating that the learned
model describes the Test Set materials significantly worse than the model of median
error resulting from randomly selected Training Sets of same size. The materials
constituting the Training Set which results in the converged model thus do not
fulfill the criteria to be considered Archetypes. As for all hyperparameter sets with
loop results, corresponding Normalized Median Error Increases nmei ≥ 2.0 holds,
yielding corresponding Training Sets useless as Representatives.
Considering the high computational cost of running this algorithm, above results

of one run with each hyperparameter set are not promising enough to justify further
investigations for the Iterative Approach with Biggest Error Selection, just as with
Linear Archetypes Selection, as is expounded in the next section.

5.2 Linear Archetypes Selection Method

For none of the hyperparameter sets, convergence is achieved, and almost all loop
solutions exhibit a Normalized Median Error Increase nmei > 1, rendering them
unfit to extract Representatives from them.
An exception are the two hyperparameter sets (rT , δ) ∈ {(0.9, 0.1), (0.9, 0.5)}.
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Table 5.1: Normalized Median Error Increase (Convergence status) for applying Iter-
ative Approach with Biggest Error Selection to Simple Cubic Perovskites
with target property lattice constant (see chapter 2). Integer values in
brackets indicate that the run ended in a loop, denoting its loop length,
convergence is marked by 3, failure by 7. For runs of same Training Ratio
rT and differing Maximum Swap Ratio rS with same result, the latter is
printed once and its range of validity is marked by adjacent colons. For
nmei < 1, the (set of) Representative candidates are accepted as such; if
additionally convergence is reached, they are considered Archetypes with
Property of setting an upper limit for prediction errors.

Training Ratio rT
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax
im

um
Sw

ap
Ra

tio
rS 0.1 2.7 (4) 7 7 7 7 10.2 (3) 4.4 (3) 7

:::
:::
:::
:::

22
.1

(2
):
:::
:::
:::
:::

0.2 7 5.8 (2) 7 7 7 18.1 (2) 7

:::
:::
:::
:5
.9

(1
14

):
:::
:::
:::

0.3 7 5.9 (6) 7 7 7 13.8 3

:::
:::
:1

4.
7

(7
2)

:::
:::
::

0.4 2.7 (2) 7 7 7.1 (162) 7

:::
::

11
.9

(6
7)

:::
::

0.5 2.0 (81) 7 7 7 7

0.6 2.0 (95) 5.9 (6) 7 7 7

0.7 7 7 7 7 7

0.8 7 5.8 (2) 7 7 7

0.9 7 5.8 (2) 7 7 7

Their nmei = −46.6 and nmei = −46.0, respectively, are negative due to a smoothed
median error of randomly selected Training Set to Work Set trained error ratio
ms(er,0.9·nT )/eWork = 0.999 < 1, which leads to a negative denominator of eq. 4.3,
entailing that median loop model error m(eM,nT ) > eWork. Corresponding Training
Sets are thus not usable as Representatives.

Applying this insight to the other, positive nmei loop solutions for Linear Archetype
Selection and (rT , δ) = (0.9, 0.4), and -in previous section- Biggest Error Selection
with rT = 0.9 and rS ∈ {0.1, 0.2, ..., 0.9}, yielding nmei = 23.7 and nmei = 22.1,
respectively, implies that their median error of loop models is 2.37%, respectively
2.21% lower than eWork. As this improvement is marginal considering the large
Training Ratio rT = 0.9, the corresponding Training Sets are not useful as Repre-
sentatives.
In summary, analogously to the previous section, due to the high computational

cost of the Iterative Approach, these one-time run results for Linear Archetype Se-
lection are not promising, and the Iterative Approach with any Selection Method is
not investigated further.

5.3 Assessment of Iterative Approach
The Iterative Approach did not produce promising results for any Selection Method
and hyperparameter set. In the following, possible reasons for that are discussed
along with suggestions for enhanced future design of Representative detection algo-
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Table 5.2: Normalized Median Error Increase (Convergence status) for applying It-
erative Approach with Linear Archetype Selection to Simple Cubic Per-
ovskites with target property lattice constant (see chapter 2). Integer
values in brackets indicate that the run ended in a loop, denoting its loop
length, convergence is marked by 3, failure by 7. For nmei < 1, the
(set of) Representative candidates are accepted as such; if additionally
convergence is reached, they are considered Archetypes with Property of
defining a descriptor subspace of probably high prediction quality.

Relaxation Parameter δ
0.1 0.2 0.3 0.4 0.5

Tr
ai
ni
ng

Ra
tio

rT

0.1 2.2 (2) 1.9 (6) 1.1 (9) 2.1 (4) 2.2 (2)
0.2 2.1 (3) 2.7 (49) 3.1 (7) 2.5 (79) 3.1 (3)
0.3 1.7 (11) 2.0 (80) 7 1.8 (75) 1.8 (31)
0.4 3.2 (9) 2.4 (59) 7 7 7

0.5 7 3.5 (15) 3.1 (99) 2.6 (32) 2.9 (181)
0.6 6.5 (10) 7 2.7 (35) 7 7

0.7 8.0 (21) 6.4 (77) 7 7.6 (50) 7

0.8 7 7 17.9 (13) 7 7

0.9 -46.6 (38) 7 7 23.7 (65) -46.0 (100)

rithms.

• No mechanism to ensure convergence nor systematic error decrease:
The algorithm is designed to find Extreme Representatives if it converges,
hence, if inside the space spanned by the sSISSO model after training on
Archetype candidates, the latter are selected again by the given Selection
Method. The resulting model, which after convergence is always the same,
additionally is to exhibit a reasonably small sSISSO test error.
In order to achieve the latter goal, other ML algorithms are mathematically
designed to systematically decrease the validation error defined by a cost func-
tion, possibly after a transient initial period. For instance, DeepAA optimizes
its objective function (see eq. 3.2) for successful image interpolation. Clearly,
the sSISSO application at each step i likewise uses optimization of its cost
function (see eq. 3.3) to find the best model for given Training Set materials.
The combination of sSISSO and any of the Selection Methods to our Itera-
tive Approach on the other hand lacks mechanisms which ensures systematic
error decrease and convergence. Introducing such a mechanism to Iterative
Approach in its current form seems difficult as the iterative reapplication of
sSISSO allows for the model and thus basis of error calculation and Represen-
tative candidates selection to drastically change.

• Simultaneous pursuit of conflicting goals: For Biggest Error Selection
Method with rS = 1, we hope to find a Training Set whose sSISSO model
predicts the target properties of all Training Set materials worse than the ones
of all other Work Set materials, in order to exhibit Biggest Error Property.

43



5 Iterative Approach

That very model though is selected by sSISSO minimizing training error, thus
the average error of Training Set materials, irrespective of the average error of
the other Work Set materials, the validation error, which is hence prone to be
larger. Regarding training and validation error of all models analyzed in this
thesis (both resulting from Direct and Iterative Approach), the former is larger
than the latter in less than two percent of the cases. Please note that a training
error larger than validation error is a necessary, but not sufficient condition for
Biggest Error Property with rS = 1, which poses a much tighter constraint.
The model selection mechanism of sSISSO thus conflicts with Biggest Error
Property for large rS , although in very rare cases, achieving both might be
possible. In this work, convergence was only accomplished once and only for
a small rS = 0.3.

• Unknown validity of Archetype Property implications: For Biggest Er-
ror Selection, the Property of training errors exceeding validation errors is to
be achieved, and assumed to imply an upper limit for prediction errors of other
unknown materials as well; for Linear Archetype Selection, the desired Prop-
erty is that the Training Set forms a convex hull around the Work Set, which is
presumed to define a subspace inside which new material predictions are valid,
while outside of it no statements can be made, especially for material positions
far away from the hull. It has neither been proved nor empirically investigated
though whether these two implications are valid. A possible explanation for
training errors as an upper limit for validation errors could be mere statistical
chance instead of a reliable underlying mechanism which also applies to other
unknown, similar materials. The same holds for Linear Archetype Selection:
Whether the position of an unknown data point inside or outside of the con-
vex hull spanned by the Training Set in general is a suitable predictor for its
estimation quality is unclear. Intuition guided by interpolation and extrapo-
lation does provide a reason for this approach; yet, an empirical verification
of its applicability to models generated by sSISSO prior to Iterative Approach
design and implementation should have been conducted.

To prevent the above errors for future designs of iterative algorithms of this kind,
following procedure is suggested: First, a clear single goal or question is to be
formulated, like How can we estimate whether a new material of unknown target
property is likely to be predicted well by our current best analytical model?, which
is then broken down into its implicit sub goals, here being Find the best analytical
model for a given Work Set or one of similar quality and Find a prediction success
probability metric for unknown data points. For each sub goal, different approaches
can arise. An approach should only be considered valid if its algorithm systematically
decreases the cost function of the respective sub goal- if it does, its performance
should be tested empirically if possible. All combinations of valid and performative
sub goal approaches should be checked for compatibility, and the performance of the
remaining combinations should finally be evaluated empirically.
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6 Conclusion

The goal of this work is to derive methods for discovering underlying structures in
a given data set, which can be used to enhance the prediction of a target property
and to identify representative data points for efficient training. Such Representatives
should yield a model of similar quality as training on the whole data set, and in one
version of them, Prototypes, they additionally are to mirror the underlying cluster
structure, while in the other version, Archetypes, they are to allow for limiting state-
ments about the quality of future unknown material predictions. We also investigate
whether Exceptional Data Points exist, thus points that are indispensable in a set of
Representatives. Using the Cubic Perovskites data set, which exhibits reliable data
quality and is sufficiently large, and method evaluation metrics based on median
test errors, which ensures statistical significance of our findings, we approach this
goal by answering three core questions:
Does a given data set have a structure, or subsets of materials that follow different

laws than others? To answer this question, we evaluate the quality of structures
returned by different clustering methods with the median test error of mSISSO,
which allows for differing fitting coefficients for each cluster.
Some of the investigated clustering methods are based on chemical insight about

Simple Cubic Perovskites ABO3, whose A elements all belong to group one to three
and the f-block of the periodic table, and whose B elements belong to group four
and above. Their comparative assessment shows that ElB clustering, which assigns
all materials of same B element to one cluster, and GroupB clustering, that allots
materials to one cluster if their B element belongs to the same group in the periodic
table, are by far most successful. Their reduction in median test error amounts
to more than 67% as compared to a global sSISSO application, which yields a best
model of fitting coefficients that are globally valid for all materials. In order to apply
these approaches to generic data sets, an adaptation that allows for overlapping
clustering is presented whose performance remains to be tested in future work.
Other methods extract prototypical clusters in primary feature space (PrimaryS-

pace), which either includes or excludes target property (withTarget or noTarget),
or in the space derived by sSISSO (DerivedSpace). Of those, Kmeans, which returns
isotropic clusters of equal variance, which thus represent uniform feature space parti-
tions, and HDBSCAN, which does not share these constraints and hence reflects the
underlying cluster structure much more closely, prove to be successful in noTarget
PrimarySpace and in DerivedSpace with a Number of Clusters c ∈ [5, 8]. For them,
error reduction amounts to 30 to 35%, and they can be applied to generic data sets
without adaptations.
All of the above mentioned successful clustering methods show satisfying results

globally and locally, and their resulting cluster structures are partly similar. It
can be shown that the degree to which clusters in the given data are clear-cut,
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and resulting unambiguity of partition with the stochastic algorithm Kmeans, is an
indicator for the performance of the latter.
We can thus conclude that the presented methods are suitable to find a meaningful

data set structure. The material subsets defined by the latter each follow slightly
different laws, in the sense that allowing for different mSISSO coefficient fits for each
of them substantially reduces median test error.
Based on such structures, in a next step we aim to answer the following:
Can the data set be reduced substantially, such that training the model still yields

results of similar quality, and are there stable or unique data points whose inclusion
during training is strictly necessary in order to obtain such a model?
For the first part of this question, we use the success measure Normalized Median

Error Increase (nmei) which is designed to ensure statistical significance of our
findings and which should be as small as possible.
A global comparison shows that most successful clustering methods are again

based on chemical insight and a Guided Random Selection from resulting clusters.
ElA clustering, which allots all materials of same element A to one cluster, yields
by far best results, with a mean median test error even lower than the one resulting
from sSISSO on the non-reduced data set. Next most successful methods areGroupA
clustering, which assigns materials whose element A belongs to the same group in
periodic table, ElB, and TypeA clustering, which yields four clusters of materials
whose element A is either an Alkali Metal, Alkaline Earth Metal, Lanthanide, or
Transition Metal. Their mean nmeis range between 31 and 66% - it has to be kept
in mind though, that the performance of the proposed adaptation of these methods
to generic data sets still remains to be tested.
Next most fruitful methods prove to be those based on clustering in feature spaces,

namely Cluster Center Selection based on Kmeans in DerivedSpace, which slightly
outperform application in noTarget PrimarySpace, followed by Random Selection
inside each cluster yielded by eitherKmeans or HDBSCAN in noTarget or withTarget
PrimarySpace, or in DerivedSpace. Their nmei’s range between 69 and 92%, and
especially methods using Random Selection only marginally improve median error.
No reliable set of optimal hyperparameters can be found for these methods, as

correlations between either of them and nmei prove to be inconsistent. A guided
presetting of hyperparameters in case of a new application is thus not possible, and
neither is choosing best models based on hyperparameters for a final comparative
method evaluation.
The latter is thus conducted specifically for substantial data set reductions to

10%, using a method success metric based on a validation error threshold. In this
assessment, best methods are Cluster Center Selection for Kmeans in DerivedSpace,
which outperforms its counterpart in noTarget PrimarySpace and Guided Random
Selection based on GroupA clustering, followed by Guided Random Selection based
on TypeA clustering.
It can hence be concluded that reducing the data set is possible, and doing so

in an informed manner, thus with the presented methods, yields results which are
reliably better then for random data set reductions. If the data set reduction is to
be substantial, methods excelling in terms of the latter success measure should be
preferred over those with best global nmei.
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Regarding the second part of the question, it can be shown that no unique or
stable Representatives exist that have to be included in training in order to obtain
a high quality model- it can thus be concluded for Prototypes that such Exceptional
Data Points do not exist. This finding probably applies to general data sets- any
material might be included or excluded as Representative, as long as the combination
of Representatives is conducted in the right manner, for instance using the presented
most successful clustering methods.

Irrespective of which success measure is chosen, almost none of the clustering
methods which perform best for finding an Equivalent Reduced Data Set (which
corresponds to our second question) do so as well for Structure Exploitation (which
corresponds to our first question). The performance of a method regarding one of
these two goals does thus not predict its performance in the other one.
The attempt of answering our third question,
How can we estimate whether a new material of unknown target property is likely

to be predicted well by our current best analytical model?,
thus of discovering Archetypes with the Iterative Approach fails for both its Biggest

Error and Linear Archetypes version. Probable causes for its failure are extracted
and a procedure is suggested to prevent them in the future.
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Appendix

A Clusters yielded by Element Metadata based Clustering

A.1 ElA Clustering

Materials of same element A are assigned to one cluster.

• Li - cluster: LiAgO3, LiAlO3, LiBiO3, LiCdO3, LiCoO3, LiCrO3, LiCuO3,
LiFeO3, LiGaO3, LiMoO3, LiNbO3, LiNiO3, LiPbO3, LiPdO3, LiPtO3, LiRhO3,
LiRuO3, LiSbO3, LiTaO3, LiTcO3, LiTiO3, LiVO3, LiWO3, LiZnO3, LiZrO3

• Na - cluster: NaAgO3, NaAlO3, NaBiO3, NaCoO3, NaGaO3, NaMnO3,
NaMoO3, NaNbO3, NaNiO3, NaPbO3, NaPdO3, NaPtO3, NaRhO3, NaSbO3,
NaSnO3, NaTaO3, NaTiO3, NaVO3, NaZnO3, NaZrO3

• K - cluster: KBiO3, KCoO3, KCrO3, KCuO3, KFeO3, KGaO3, KGeO3,
KMnO3, KMoO3, KNbO3, KNiO3, KPbO3, KPdO3, KPtO3, KSbO3, KSnO3,
KTaO3, KTcO3, KTiO3, KVO3, KWO3, KZnO3, KZrO3

• Rb - cluster: RbAgO3, RbBiO3, RbCoO3, RbCuO3, RbFeO3, RbGaO3,
RbGeO3, RbMnO3, RbMoO3, RbNbO3, RbNiO3, RbPbO3, RbPtO3, RbRuO3,
RbSbO3, RbSnO3, RbTcO3, RbTiO3, RbVO3, RbZnO3, RbZrO3

• Cs - cluster: CsAgO3, CsCdO3, CsCoO3, CsCrO3, CsFeO3, CsMnO3, CsMoO3,
CsNbO3, CsNiO3, CsPbO3, CsPdO3, CsPtO3, CsRhO3, CsRuO3, CsSbO3,
CsSnO3, CsTaO3, CsVO3, CsWO3, CsZrO3

• Be - cluster: BeAlO3, BeCdO3, BeCoO3, BeCuO3, BeFeO3, BeGeO3, BeMnO3,
BeNbO3, BePbO3, BePdO3, BePtO3, BeRuO3, BeSbO3, BeSnO3, BeTiO3,
BeVO3, BeZnO3, BeZrO3

• Mg - cluster: MgAgO3, MgBiO3, MgCdO3, MgCuO3, MgFeO3, MgMnO3,
MgMoO3, MgNbO3, MgNiO3, MgPbO3, MgPdO3, MgPtO3, MgSnO3, MgTaO3,
MgTcO3, MgTiO3, MgVO3, MgWO3, MgZnO3, MgZrO3

• Ca - cluster: CaAgO3, CaAlO3, CaCdO3, CaCoO3, CaCrO3, CaCuO3,
CaFeO3, CaGaO3, CaMnO3, CaMoO3, CaNbO3, CaPbO3, CaPdO3, CaPtO3,
CaRhO3, CaSbO3, CaTaO3, CaTiO3, CaWO3, CaZrO3

• Sr - cluster: SrAgO3, SrAlO3, SrCoO3, SrCrO3, SrFeO3, SrGeO3, SrMnO3,
SrMoO3, SrNbO3, SrNiO3, SrPbO3, SrRhO3, SrSbO3, SrTaO3, SrTcO3, SrVO3,
SrWO3, SrZnO3, SrZrO3
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• Ba - cluster: BaAgO3, BaAlO3, BaBiO3, BaCdO3, BaCoO3, BaCrO3, BaCuO3,
BaGaO3, BaGeO3, BaMnO3, BaNiO3, BaPbO3, BaPdO3, BaPtO3, BaRhO3,
BaRuO3, BaTaO3, BaTcO3, BaTiO3, BaVO3, BaWO3, BaZnO3

• La - cluster: LaAgO3, LaAlO3, LaCoO3, LaCrO3, LaCuO3, LaFeO3, LaGaO3,
LaGeO3, LaMnO3, LaMoO3, LaNbO3, LaNiO3, LaPdO3, LaPtO3, LaRuO3,
LaSbO3, LaSnO3, LaTaO3, LaTiO3, LaVO3, LaWO3, LaZnO3, LaZrO3

• Ce - cluster: CeAgO3, CeBiO3, CeCdO3, CeCoO3, CeCrO3, CeGaO3, CeGeO3,
CeMnO3, CeMoO3, CeNbO3, CeNiO3, CePtO3, CeRhO3, CeRuO3, CeSnO3,
CeTaO3, CeTcO3, CeTiO3, CeVO3, CeWO3, CeZrO3

• Pr - cluster: PrAgO3, PrAlO3, PrBiO3, PrCoO3, PrCrO3, PrFeO3, PrGaO3,
PrGeO3, PrMnO3, PrNbO3, PrNiO3, PrPbO3, PrPtO3, PrRuO3, PrSbO3,
PrSnO3, PrTcO3, PrTiO3, PrVO3, PrWO3, PrZnO3

• Nd - cluster: NdAgO3, NdAlO3, NdBiO3, NdCdO3, NdCrO3, NdGaO3,
NdGeO3, NdMnO3, NdMoO3, NdNbO3, NdNiO3, NdPbO3, NdPtO3, NdRuO3,
NdSbO3, NdSnO3, NdTaO3, NdTiO3, NdVO3, NdZrO3

• Pm - cluster: PmAlO3, PmBiO3, PmCdO3, PmCrO3, PmCuO3, PmFeO3,
PmGaO3, PmGeO3, PmMnO3, PmMoO3, PmNbO3, PmNiO3, PmPbO3, PmPdO3,
PmSbO3, PmSnO3, PmTaO3, PmTcO3, PmWO3, PmZnO3, PmZrO3

• Sm - cluster: SmAgO3, SmAlO3, SmBiO3, SmCdO3, SmCrO3, SmFeO3,
SmGaO3, SmGeO3, SmNbO3, SmNiO3, SmPtO3, SmRhO3, SmRuO3, SmSbO3,
SmSnO3, SmTaO3, SmTcO3, SmTiO3, SmVO3, SmWO3, SmZrO3

• Sc - cluster: ScAlO3, ScCoO3, ScCrO3, ScCuO3, ScGaO3, ScMnO3, ScMoO3,
ScNbO3, ScNiO3, ScPdO3, ScRhO3, ScRuO3, ScSbO3, ScSnO3, ScTcO3, ScTiO3,
ScWO3, ScZrO3

• Y - cluster: YAgO3, YAlO3, YBiO3, YCdO3, YCoO3, YCrO3, YCuO3,
YFeO3, YGaO3, YGeO3, YMnO3, YMoO3, YNiO3, YPbO3, YPtO3, YRhO3,
YRuO3, YSnO3, YTaO3, YTcO3, YTiO3, YVO3, YWO3, YZnO3, YZrO3

A.2 ElB Clustering

Materials of same element B are assigned to one cluster.

• Ti - cluster: BaTiO3, BeTiO3, CaTiO3, CeTiO3, KTiO3, LaTiO3, LiTiO3,
MgTiO3, NaTiO3, NdTiO3, PrTiO3, RbTiO3, ScTiO3, SmTiO3, YTiO3

• V - cluster: BaVO3, BeVO3, CeVO3, CsVO3, KVO3, LaVO3, LiVO3, MgVO3,
NaVO3, NdVO3, PrVO3, RbVO3, SmVO3, SrVO3, YVO3

• Cr - cluster: BaCrO3, CaCrO3, CeCrO3, CsCrO3, KCrO3, LaCrO3, LiCrO3,
NdCrO3, PmCrO3, PrCrO3, ScCrO3, SmCrO3, SrCrO3, YCrO3

50



A Clusters yielded by Element Metadata based Clustering

• Mn - cluster: BaMnO3, BeMnO3, CaMnO3, CeMnO3, CsMnO3, KMnO3,
LaMnO3, MgMnO3, NaMnO3, NdMnO3, PmMnO3, PrMnO3, RbMnO3, ScMnO3,
SrMnO3, YMnO3

• Fe - cluster: BeFeO3, CaFeO3, CsFeO3, KFeO3, LaFeO3, LiFeO3, MgFeO3,
PmFeO3, PrFeO3, RbFeO3, SmFeO3, SrFeO3, YFeO3

• Co - cluster: BaCoO3, BeCoO3, CaCoO3, CeCoO3, CsCoO3, KCoO3, LaCoO3,
LiCoO3, NaCoO3, PrCoO3, RbCoO3, ScCoO3, SrCoO3, YCoO3

• Ni - cluster: BaNiO3, CeNiO3, CsNiO3, KNiO3, LaNiO3, LiNiO3, MgNiO3,
NaNiO3, NdNiO3, PmNiO3, PrNiO3, RbNiO3, ScNiO3, SmNiO3, SrNiO3,
YNiO3

• Cu - cluster: BaCuO3, BeCuO3, CaCuO3, KCuO3, LaCuO3, LiCuO3, MgCuO3,
PmCuO3, RbCuO3, ScCuO3, YCuO3

• Zr - cluster: BeZrO3, CaZrO3, CeZrO3, CsZrO3, KZrO3, LaZrO3, LiZrO3,
MgZrO3, NaZrO3, NdZrO3, PmZrO3, RbZrO3, ScZrO3, SmZrO3, SrZrO3,
YZrO3

• Nb - cluster: BeNbO3, CaNbO3, CeNbO3, CsNbO3, KNbO3, LaNbO3,
LiNbO3, MgNbO3, NaNbO3, NdNbO3, PmNbO3, PrNbO3, RbNbO3, ScNbO3,
SmNbO3, SrNbO3

• Mo - cluster: CaMoO3, CeMoO3, CsMoO3, KMoO3, LaMoO3, LiMoO3,
MgMoO3, NaMoO3, NdMoO3, PmMoO3, RbMoO3, ScMoO3, SrMoO3, YMoO3

• Tc - cluster: BaTcO3, CeTcO3, KTcO3, LiTcO3, MgTcO3, PmTcO3, PrTcO3,
RbTcO3, ScTcO3, SmTcO3, SrTcO3, YTcO3

• Ru - cluster: BaRuO3, BeRuO3, CeRuO3, CsRuO3, LaRuO3, LiRuO3, NdRuO3,
PrRuO3, RbRuO3, ScRuO3, SmRuO3, YRuO3

• Rh - cluster: BaRhO3, CaRhO3, CeRhO3, CsRhO3, LiRhO3, NaRhO3,
ScRhO3, SmRhO3, SrRhO3, YRhO3

• Pd - cluster: BaPdO3, BePdO3, CaPdO3, CsPdO3, KPdO3, LaPdO3, LiPdO3,
MgPdO3, NaPdO3, PmPdO3, ScPdO3

• Ag - cluster: BaAgO3, CaAgO3, CeAgO3, CsAgO3, LaAgO3, LiAgO3, MgAgO3,
NaAgO3, NdAgO3, PrAgO3, RbAgO3, SmAgO3, SrAgO3, YAgO3

• Ta - cluster: BaTaO3, CaTaO3, CeTaO3, CsTaO3, KTaO3, LaTaO3, LiTaO3,
MgTaO3, NaTaO3, NdTaO3, PmTaO3, SmTaO3, SrTaO3, YTaO3

• W - cluster: BaWO3, CaWO3, CeWO3, CsWO3, KWO3, LaWO3, LiWO3,
MgWO3, PmWO3, PrWO3, ScWO3, SmWO3, SrWO3, YWO3

• Pt - cluster: BaPtO3, BePtO3, CaPtO3, CePtO3, CsPtO3, KPtO3, LaPtO3,
LiPtO3, MgPtO3, NaPtO3, NdPtO3, PrPtO3, RbPtO3, SmPtO3, YPtO3
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• Zn - cluster: BaZnO3, BeZnO3, KZnO3, LaZnO3, LiZnO3, MgZnO3, NaZnO3,
PmZnO3, PrZnO3, RbZnO3, SrZnO3, YZnO3

• Cd - cluster: BaCdO3, BeCdO3, CaCdO3, CeCdO3, CsCdO3, LiCdO3,
MgCdO3, NdCdO3, PmCdO3, SmCdO3, YCdO3

• Al - cluster: BaAlO3, BeAlO3, CaAlO3, LaAlO3, LiAlO3, NaAlO3, NdAlO3,
PmAlO3, PrAlO3, ScAlO3, SmAlO3, SrAlO3, YAlO3

• Ga - cluster: BaGaO3, CaGaO3, CeGaO3, KGaO3, LaGaO3, LiGaO3, NaGaO3,
NdGaO3, PmGaO3, PrGaO3, RbGaO3, ScGaO3, SmGaO3, YGaO3

• Sn - cluster: BeSnO3, CeSnO3, CsSnO3, KSnO3, LaSnO3, MgSnO3, NaSnO3,
NdSnO3, PmSnO3, PrSnO3, RbSnO3, ScSnO3, SmSnO3, YSnO3

• Pb - cluster: BaPbO3, BePbO3, CaPbO3, CsPbO3, KPbO3, LiPbO3, MgPbO3,
NaPbO3, NdPbO3, PmPbO3, PrPbO3, RbPbO3, SrPbO3, YPbO3

• Bi - cluster: BaBiO3, CeBiO3, KBiO3, LiBiO3, MgBiO3, NaBiO3, NdBiO3,
PmBiO3, PrBiO3, RbBiO3, SmBiO3, YBiO3

• Ge - cluster: BaGeO3, BeGeO3, CeGeO3, KGeO3, LaGeO3, NdGeO3, PmGeO3,
PrGeO3, RbGeO3, SmGeO3, SrGeO3, YGeO3

• Sb - cluster: BeSbO3, CaSbO3, CsSbO3, KSbO3, LaSbO3, LiSbO3, NaSbO3,
NdSbO3, PmSbO3, PrSbO3, RbSbO3, ScSbO3, SmSbO3, SrSbO3

A.3 GroupA Clustering:
Materials whose element A belongs to the same column in the periodic tabld are
ascribed to the same cluster.

• Group1 - cluster: CsAgO3, CsCdO3, CsCoO3, CsCrO3, CsFeO3, CsMnO3,
CsMoO3, CsNbO3, CsNiO3, CsPbO3, CsPdO3, CsPtO3, CsRhO3, CsRuO3,
CsSbO3, CsSnO3, CsTaO3, CsVO3, CsWO3, CsZrO3, KBiO3, KCoO3, KCrO3,
KCuO3, KFeO3, KGaO3, KGeO3, KMnO3, KMoO3, KNbO3, KNiO3, KPbO3,
KPdO3, KPtO3, KSbO3, KSnO3, KTaO3, KTcO3, KTiO3, KVO3, KWO3,
KZnO3, KZrO3, LiAgO3, LiAlO3, LiBiO3, LiCdO3, LiCoO3, LiCrO3, LiCuO3,
LiFeO3, LiGaO3, LiMoO3, LiNbO3, LiNiO3, LiPbO3, LiPdO3, LiPtO3, LiRhO3,
LiRuO3, LiSbO3, LiTaO3, LiTcO3, LiTiO3, LiVO3, LiWO3, LiZnO3, LiZrO3,
NaAgO3, NaAlO3, NaBiO3, NaCoO3, NaGaO3, NaMnO3, NaMoO3, NaNbO3,
NaNiO3, NaPbO3, NaPdO3, NaPtO3, NaRhO3, NaSbO3, NaSnO3, NaTaO3,
NaTiO3, NaVO3, NaZnO3, NaZrO3, RbAgO3, RbBiO3, RbCoO3, RbCuO3,
RbFeO3, RbGaO3, RbGeO3, RbMnO3, RbMoO3, RbNbO3, RbNiO3, RbPbO3,
RbPtO3, RbRuO3, RbSbO3, RbSnO3, RbTcO3, RbTiO3, RbVO3, RbZnO3,
RbZrO3

• Group2 - cluster: BaAgO3, BaAlO3, BaBiO3, BaCdO3, BaCoO3, BaCrO3,
BaCuO3, BaGaO3, BaGeO3, BaMnO3, BaNiO3, BaPbO3, BaPdO3, BaPtO3,
BaRhO3, BaRuO3, BaTaO3, BaTcO3, BaTiO3, BaVO3, BaWO3, BaZnO3,
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BeAlO3, BeCdO3, BeCoO3, BeCuO3, BeFeO3, BeGeO3, BeMnO3, BeNbO3,
BePbO3, BePdO3, BePtO3, BeRuO3, BeSbO3, BeSnO3, BeTiO3, BeVO3,
BeZnO3, BeZrO3, CaAgO3, CaAlO3, CaCdO3, CaCoO3, CaCrO3, CaCuO3,
CaFeO3, CaGaO3, CaMnO3, CaMoO3, CaNbO3, CaPbO3, CaPdO3, CaPtO3,
CaRhO3, CaSbO3, CaTaO3, CaTiO3, CaWO3, CaZrO3, MgAgO3, MgBiO3,
MgCdO3, MgCuO3, MgFeO3, MgMnO3, MgMoO3, MgNbO3, MgNiO3, MgPbO3,
MgPdO3, MgPtO3, MgSnO3, MgTaO3, MgTcO3, MgTiO3, MgVO3, MgWO3,
MgZnO3, MgZrO3, SrAgO3, SrAlO3, SrCoO3, SrCrO3, SrFeO3, SrGeO3, SrMnO3,
SrMoO3, SrNbO3, SrNiO3, SrPbO3, SrRhO3, SrSbO3, SrTaO3, SrTcO3, SrVO3,
SrWO3, SrZnO3, SrZrO3

• Group3 - cluster: LaAgO3, LaAlO3, LaCoO3, LaCrO3, LaCuO3, LaFeO3,
LaGaO3, LaGeO3, LaMnO3, LaMoO3, LaNbO3, LaNiO3, LaPdO3, LaPtO3,
LaRuO3, LaSbO3, LaSnO3, LaTaO3, LaTiO3, LaVO3, LaWO3, LaZnO3, LaZrO3,
ScAlO3, ScCoO3, ScCrO3, ScCuO3, ScGaO3, ScMnO3, ScMoO3, ScNbO3,
ScNiO3, ScPdO3, ScRhO3, ScRuO3, ScSbO3, ScSnO3, ScTcO3, ScTiO3, ScWO3,
ScZrO3, YAgO3, YAlO3, YBiO3, YCdO3, YCoO3, YCrO3, YCuO3, YFeO3,
YGaO3, YGeO3, YMnO3, YMoO3, YNiO3, YPbO3, YPtO3, YRhO3, YRuO3,
YSnO3, YTaO3, YTcO3, YTiO3, YVO3, YWO3, YZnO3, YZrO3

• Ce - cluster: CeAgO3, CeBiO3, CeCdO3, CeCoO3, CeCrO3, CeGaO3, CeGeO3,
CeMnO3, CeMoO3, CeNbO3, CeNiO3, CePtO3, CeRhO3, CeRuO3, CeSnO3,
CeTaO3, CeTcO3, CeTiO3, CeVO3, CeWO3, CeZrO3

• Pr - cluster: PrAgO3, PrAlO3, PrBiO3, PrCoO3, PrCrO3, PrFeO3, PrGaO3,
PrGeO3, PrMnO3, PrNbO3, PrNiO3, PrPbO3, PrPtO3, PrRuO3, PrSbO3,
PrSnO3, PrTcO3, PrTiO3, PrVO3, PrWO3, PrZnO3

• Nd - cluster: NdAgO3, NdAlO3, NdBiO3, NdCdO3, NdCrO3, NdGaO3,
NdGeO3, NdMnO3, NdMoO3, NdNbO3, NdNiO3, NdPbO3, NdPtO3, NdRuO3,
NdSbO3, NdSnO3, NdTaO3, NdTiO3, NdVO3, NdZrO3

• Pm - cluster: PmAlO3, PmBiO3, PmCdO3, PmCrO3, PmCuO3, PmFeO3,
PmGaO3, PmGeO3, PmMnO3, PmMoO3, PmNbO3, PmNiO3, PmPbO3, PmPdO3,
PmSbO3, PmSnO3, PmTaO3, PmTcO3, PmWO3, PmZnO3, PmZrO3

• Sm - cluster: SmAgO3, SmAlO3, SmBiO3, SmCdO3, SmCrO3, SmFeO3,
SmGaO3, SmGeO3, SmNbO3, SmNiO3, SmPtO3, SmRhO3, SmRuO3, SmSbO3,
SmSnO3, SmTaO3, SmTcO3, SmTiO3, SmVO3, SmWO3, SmZrO3

A.4 GroupB Clustering
Materials whose element B belongs to the same column in the periodic tabld are
ascribed to the same cluster.

• Group4 - cluster: BaTiO3, BeTiO3, BeZrO3, CaTiO3, CaZrO3, CeTiO3,
CeZrO3, CsZrO3, KTiO3, KZrO3, LaTiO3, LaZrO3, LiTiO3, LiZrO3, MgTiO3,
MgZrO3, NaTiO3, NaZrO3, NdTiO3, NdZrO3, PmZrO3, PrTiO3, RbTiO3,
RbZrO3, ScTiO3, ScZrO3, SmTiO3, SmZrO3, SrZrO3, YTiO3, YZrO3
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• Group5 - cluster: BaTaO3, BaVO3, BeNbO3, BeVO3, CaNbO3, CaTaO3,
CeNbO3, CeTaO3, CeVO3, CsNbO3, CsTaO3, CsVO3, KNbO3, KTaO3, KVO3,
LaNbO3, LaTaO3, LaVO3, LiNbO3, LiTaO3, LiVO3, MgNbO3, MgTaO3, MgVO3,
NaNbO3, NaTaO3, NaVO3, NdNbO3, NdTaO3, NdVO3, PmNbO3, PmTaO3,
PrNbO3, PrVO3, RbNbO3, RbVO3, ScNbO3, SmNbO3, SmTaO3, SmVO3,
SrNbO3, SrTaO3, SrVO3, YTaO3, YVO3

• Group6 - cluster: BaCrO3, BaWO3, CaCrO3, CaMoO3, CaWO3, CeCrO3,
CeMoO3, CeWO3, CsCrO3, CsMoO3, CsWO3, KCrO3, KMoO3, KWO3, LaCrO3,
LaMoO3, LaWO3, LiCrO3, LiMoO3, LiWO3, MgMoO3, MgWO3, NaMoO3,
NdCrO3, NdMoO3, PmCrO3, PmMoO3, PmWO3, PrCrO3, PrWO3, RbMoO3,
ScCrO3, ScMoO3, ScWO3, SmCrO3, SmWO3, SrCrO3, SrMoO3, SrWO3, YCrO3,
YMoO3, YWO3

• Group7 - cluster: BaMnO3, BaTcO3, BeMnO3, CaMnO3, CeMnO3, CeTcO3,
CsMnO3, KMnO3, KTcO3, LaMnO3, LiTcO3, MgMnO3, MgTcO3, NaMnO3,
NdMnO3, PmMnO3, PmTcO3, PrMnO3, PrTcO3, RbMnO3, RbTcO3, ScMnO3,
ScTcO3, SmTcO3, SrMnO3, SrTcO3, YMnO3, YTcO3

• Group8 - cluster: BaRuO3, BeFeO3, BeRuO3, CaFeO3, CeRuO3, CsFeO3,
CsRuO3, KFeO3, LaFeO3, LaRuO3, LiFeO3, LiRuO3, MgFeO3, NdRuO3, PmFeO3,
PrFeO3, PrRuO3, RbFeO3, RbRuO3, ScRuO3, SmFeO3, SmRuO3, SrFeO3,
YFeO3, YRuO3

• Group9 - cluster: BaCoO3, BaRhO3, BeCoO3, CaCoO3, CaRhO3, CeCoO3,
CeRhO3, CsCoO3, CsRhO3, KCoO3, LaCoO3, LiCoO3, LiRhO3, NaCoO3,
NaRhO3, PrCoO3, RbCoO3, ScCoO3, ScRhO3, SmRhO3, SrCoO3, SrRhO3,
YCoO3, YRhO3

• Group10 - cluster: BaNiO3, BaPdO3, BaPtO3, BePdO3, BePtO3, CaPdO3,
CaPtO3, CeNiO3, CePtO3, CsNiO3, CsPdO3, CsPtO3, KNiO3, KPdO3, KPtO3,
LaNiO3, LaPdO3, LaPtO3, LiNiO3, LiPdO3, LiPtO3, MgNiO3, MgPdO3,
MgPtO3, NaNiO3, NaPdO3, NaPtO3, NdNiO3, NdPtO3, PmNiO3, PmPdO3,
PrNiO3, PrPtO3, RbNiO3, RbPtO3, ScNiO3, ScPdO3, SmNiO3, SmPtO3,
SrNiO3, YNiO3, YPtO3

• Group11 - cluster: BaAgO3, BaCuO3, BeCuO3, CaAgO3, CaCuO3, CeAgO3,
CsAgO3, KCuO3, LaAgO3, LaCuO3, LiAgO3, LiCuO3, MgAgO3, MgCuO3,
NaAgO3, NdAgO3, PmCuO3, PrAgO3, RbAgO3, RbCuO3, ScCuO3, SmAgO3,
SrAgO3, YAgO3, YCuO3

• Group12 - cluster: BaCdO3, BaZnO3, BeCdO3, BeZnO3, CaCdO3, CeCdO3,
CsCdO3, KZnO3, LaZnO3, LiCdO3, LiZnO3, MgCdO3, MgZnO3, NaZnO3,
NdCdO3, PmCdO3, PmZnO3, PrZnO3, RbZnO3, SmCdO3, SrZnO3, YCdO3,
YZnO3

• Group13 - cluster: BaAlO3, BaGaO3, BeAlO3, CaAlO3, CaGaO3, CeGaO3,
KGaO3, LaAlO3, LaGaO3, LiAlO3, LiGaO3, NaAlO3, NaGaO3, NdAlO3,
NdGaO3, PmAlO3, PmGaO3, PrAlO3, PrGaO3, RbGaO3, ScAlO3, ScGaO3,
SmAlO3, SmGaO3, SrAlO3, YAlO3, YGaO3
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• Group14 - cluster: BaGeO3, BaPbO3, BeGeO3, BePbO3, BeSnO3, CaPbO3,
CeGeO3, CeSnO3, CsPbO3, CsSnO3, KGeO3, KPbO3, KSnO3, LaGeO3, LaSnO3,
LiPbO3, MgPbO3, MgSnO3, NaPbO3, NaSnO3, NdGeO3, NdPbO3, NdSnO3,
PmGeO3, PmPbO3, PmSnO3, PrGeO3, PrPbO3, PrSnO3, RbGeO3, RbPbO3,
RbSnO3, ScSnO3, SmGeO3, SmSnO3, SrGeO3, SrPbO3, YGeO3, YPbO3,
YSnO3

• Group15 - cluster: BaBiO3, BeSbO3, CaSbO3, CeBiO3, CsSbO3, KBiO3,
KSbO3, LaSbO3, LiBiO3, LiSbO3, MgBiO3, NaBiO3, NaSbO3, NdBiO3, NdSbO3,
PmBiO3, PmSbO3, PrBiO3, PrSbO3, RbBiO3, RbSbO3, ScSbO3, SmBiO3,
SmSbO3, SrSbO3, YBiO3

A.5 TypeA Clustering
The type of element A of a material determines its cluster membership.

• Alkali metals - cluster: CsAgO3, CsCdO3, CsCoO3, CsCrO3, CsFeO3,
CsMnO3, CsMoO3, CsNbO3, CsNiO3, CsPbO3, CsPdO3, CsPtO3, CsRhO3,
CsRuO3, CsSbO3, CsSnO3, CsTaO3, CsVO3, CsWO3, CsZrO3, KBiO3, KCoO3,
KCrO3, KCuO3, KFeO3, KGaO3, KGeO3, KMnO3, KMoO3, KNbO3, KNiO3,
KPbO3, KPdO3, KPtO3, KSbO3, KSnO3, KTaO3, KTcO3, KTiO3, KVO3,
KWO3, KZnO3, KZrO3, LiAgO3, LiAlO3, LiBiO3, LiCdO3, LiCoO3, LiCrO3,
LiCuO3, LiFeO3, LiGaO3, LiMoO3, LiNbO3, LiNiO3, LiPbO3, LiPdO3, LiPtO3,
LiRhO3, LiRuO3, LiSbO3, LiTaO3, LiTcO3, LiTiO3, LiVO3, LiWO3, LiZnO3,
LiZrO3, NaAgO3, NaAlO3, NaBiO3, NaCoO3, NaGaO3, NaMnO3, NaMoO3,
NaNbO3, NaNiO3, NaPbO3, NaPdO3, NaPtO3, NaRhO3, NaSbO3, NaSnO3,
NaTaO3, NaTiO3, NaVO3, NaZnO3, NaZrO3, RbAgO3, RbBiO3, RbCoO3,
RbCuO3, RbFeO3, RbGaO3, RbGeO3, RbMnO3, RbMoO3, RbNbO3, RbNiO3,
RbPbO3, RbPtO3, RbRuO3, RbSbO3, RbSnO3, RbTcO3, RbTiO3, RbVO3,
RbZnO3, RbZrO3

• Alkaline earth metal - cluster: BaAgO3, BaAlO3, BaBiO3, BaCdO3,
BaCoO3, BaCrO3, BaCuO3, BaGaO3, BaGeO3, BaMnO3, BaNiO3, BaPbO3,
BaPdO3, BaPtO3, BaRhO3, BaRuO3, BaTaO3, BaTcO3, BaTiO3, BaVO3,
BaWO3, BaZnO3, BeAlO3, BeCdO3, BeCoO3, BeCuO3, BeFeO3, BeGeO3,
BeMnO3, BeNbO3, BePbO3, BePdO3, BePtO3, BeRuO3, BeSbO3, BeSnO3,
BeTiO3, BeVO3, BeZnO3, BeZrO3, CaAgO3, CaAlO3, CaCdO3, CaCoO3,
CaCrO3, CaCuO3, CaFeO3, CaGaO3, CaMnO3, CaMoO3, CaNbO3, CaPbO3,
CaPdO3, CaPtO3, CaRhO3, CaSbO3, CaTaO3, CaTiO3, CaWO3, CaZrO3,
MgAgO3, MgBiO3, MgCdO3, MgCuO3, MgFeO3, MgMnO3, MgMoO3, MgNbO3,
MgNiO3, MgPbO3, MgPdO3, MgPtO3, MgSnO3, MgTaO3, MgTcO3, MgTiO3,
MgVO3, MgWO3, MgZnO3, MgZrO3, SrAgO3, SrAlO3, SrCoO3, SrCrO3,
SrFeO3, SrGeO3, SrMnO3, SrMoO3, SrNbO3, SrNiO3, SrPbO3, SrRhO3, SrSbO3,
SrTaO3, SrTcO3, SrVO3, SrWO3, SrZnO3, SrZrO3

• Lanthanide - cluster: CeAgO3, CeBiO3, CeCdO3, CeCoO3, CeCrO3, CeGaO3,
CeGeO3, CeMnO3, CeMoO3, CeNbO3, CeNiO3, CePtO3, CeRhO3, CeRuO3,
CeSnO3, CeTaO3, CeTcO3, CeTiO3, CeVO3, CeWO3, CeZrO3, LaAgO3, LaAlO3,
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LaCoO3, LaCrO3, LaCuO3, LaFeO3, LaGaO3, LaGeO3, LaMnO3, LaMoO3,
LaNbO3, LaNiO3, LaPdO3, LaPtO3, LaRuO3, LaSbO3, LaSnO3, LaTaO3,
LaTiO3, LaVO3, LaWO3, LaZnO3, LaZrO3, NdAgO3, NdAlO3, NdBiO3, NdCdO3,
NdCrO3, NdGaO3, NdGeO3, NdMnO3, NdMoO3, NdNbO3, NdNiO3, NdPbO3,
NdPtO3, NdRuO3, NdSbO3, NdSnO3, NdTaO3, NdTiO3, NdVO3, NdZrO3,
PmAlO3, PmBiO3, PmCdO3, PmCrO3, PmCuO3, PmFeO3, PmGaO3, PmGeO3,
PmMnO3, PmMoO3, PmNbO3, PmNiO3, PmPbO3, PmPdO3, PmSbO3, PmSnO3,
PmTaO3, PmTcO3, PmWO3, PmZnO3, PmZrO3, PrAgO3, PrAlO3, PrBiO3,
PrCoO3, PrCrO3, PrFeO3, PrGaO3, PrGeO3, PrMnO3, PrNbO3, PrNiO3,
PrPbO3, PrPtO3, PrRuO3, PrSbO3, PrSnO3, PrTcO3, PrTiO3, PrVO3, PrWO3,
PrZnO3, SmAgO3, SmAlO3, SmBiO3, SmCdO3, SmCrO3, SmFeO3, SmGaO3,
SmGeO3, SmNbO3, SmNiO3, SmPtO3, SmRhO3, SmRuO3, SmSbO3, SmSnO3,
SmTaO3, SmTcO3, SmTiO3, SmVO3, SmWO3, SmZrO3

• Transition metal - cluster: ScAlO3, ScCoO3, ScCrO3, ScCuO3, ScGaO3,
ScMnO3, ScMoO3, ScNbO3, ScNiO3, ScPdO3, ScRhO3, ScRuO3, ScSbO3,
ScSnO3, ScTcO3, ScTiO3, ScWO3, ScZrO3, YAgO3, YAlO3, YBiO3, YCdO3,
YCoO3, YCrO3, YCuO3, YFeO3, YGaO3, YGeO3, YMnO3, YMoO3, YNiO3,
YPbO3, YPtO3, YRhO3, YRuO3, YSnO3, YTaO3, YTcO3, YTiO3, YVO3,
YWO3, YZnO3, YZrO3

A.6 TypeB Clustering

The type of element B of a material determines its cluster membership.

• Transition metal - cluster: BaAgO3, BaCoO3, BaCrO3, BaCuO3, BaMnO3,
BaNiO3, BaPdO3, BaPtO3, BaRhO3, BaRuO3, BaTaO3, BaTcO3, BaTiO3,
BaVO3, BaWO3, BeCoO3, BeCuO3, BeFeO3, BeMnO3, BeNbO3, BePdO3,
BePtO3, BeRuO3, BeTiO3, BeVO3, BeZrO3, CaAgO3, CaCoO3, CaCrO3,
CaCuO3, CaFeO3, CaMnO3, CaMoO3, CaNbO3, CaPdO3, CaPtO3, CaRhO3,
CaTaO3, CaTiO3, CaWO3, CaZrO3, CeAgO3, CeCoO3, CeCrO3, CeMnO3,
CeMoO3, CeNbO3, CeNiO3, CePtO3, CeRhO3, CeRuO3, CeTaO3, CeTcO3,
CeTiO3, CeVO3, CeWO3, CeZrO3, CsAgO3, CsCoO3, CsCrO3, CsFeO3, CsMnO3,
CsMoO3, CsNbO3, CsNiO3, CsPdO3, CsPtO3, CsRhO3, CsRuO3, CsTaO3,
CsVO3, CsWO3, CsZrO3, KCoO3, KCrO3, KCuO3, KFeO3, KMnO3, KMoO3,
KNbO3, KNiO3, KPdO3, KPtO3, KTaO3, KTcO3, KTiO3, KVO3, KWO3,
KZrO3, LaAgO3, LaCoO3, LaCrO3, LaCuO3, LaFeO3, LaMnO3, LaMoO3,
LaNbO3, LaNiO3, LaPdO3, LaPtO3, LaRuO3, LaTaO3, LaTiO3, LaVO3, LaWO3,
LaZrO3, LiAgO3, LiCoO3, LiCrO3, LiCuO3, LiFeO3, LiMoO3, LiNbO3, LiNiO3,
LiPdO3, LiPtO3, LiRhO3, LiRuO3, LiTaO3, LiTcO3, LiTiO3, LiVO3, LiWO3,
LiZrO3, MgAgO3, MgCuO3, MgFeO3, MgMnO3, MgMoO3, MgNbO3, MgNiO3,
MgPdO3, MgPtO3, MgTaO3, MgTcO3, MgTiO3, MgVO3, MgWO3, MgZrO3,
NaAgO3, NaCoO3, NaMnO3, NaMoO3, NaNbO3, NaNiO3, NaPdO3, NaPtO3,
NaRhO3, NaTaO3, NaTiO3, NaVO3, NaZrO3, NdAgO3, NdCrO3, NdMnO3,
NdMoO3, NdNbO3, NdNiO3, NdPtO3, NdRuO3, NdTaO3, NdTiO3, NdVO3,
NdZrO3, PmCrO3, PmCuO3, PmFeO3, PmMnO3, PmMoO3, PmNbO3, PmNiO3,
PmPdO3, PmTaO3, PmTcO3, PmWO3, PmZrO3, PrAgO3, PrCoO3, PrCrO3,
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PrFeO3, PrMnO3, PrNbO3, PrNiO3, PrPtO3, PrRuO3, PrTcO3, PrTiO3,
PrVO3, PrWO3, RbAgO3, RbCoO3, RbCuO3, RbFeO3, RbMnO3, RbMoO3,
RbNbO3, RbNiO3, RbPtO3, RbRuO3, RbTcO3, RbTiO3, RbVO3, RbZrO3,
ScCoO3, ScCrO3, ScCuO3, ScMnO3, ScMoO3, ScNbO3, ScNiO3, ScPdO3,
ScRhO3, ScRuO3, ScTcO3, ScTiO3, ScWO3, ScZrO3, SmAgO3, SmCrO3, SmFeO3,
SmNbO3, SmNiO3, SmPtO3, SmRhO3, SmRuO3, SmTaO3, SmTcO3, SmTiO3,
SmVO3, SmWO3, SmZrO3, SrAgO3, SrCoO3, SrCrO3, SrFeO3, SrMnO3, SrMoO3,
SrNbO3, SrNiO3, SrRhO3, SrTaO3, SrTcO3, SrVO3, SrWO3, SrZrO3, YAgO3,
YCoO3, YCrO3, YCuO3, YFeO3, YMnO3, YMoO3, YNiO3, YPtO3, YRhO3,
YRuO3, YTaO3, YTcO3, YTiO3, YVO3, YWO3, YZrO3

• Other metal - cluster: BaAlO3, BaBiO3, BaCdO3, BaGaO3, BaPbO3,
BaZnO3, BeAlO3, BeCdO3, BePbO3, BeSnO3, BeZnO3, CaAlO3, CaCdO3,
CaGaO3, CaPbO3, CeBiO3, CeCdO3, CeGaO3, CeSnO3, CsCdO3, CsPbO3,
CsSnO3, KBiO3, KGaO3, KPbO3, KSnO3, KZnO3, LaAlO3, LaGaO3, LaSnO3,
LaZnO3, LiAlO3, LiBiO3, LiCdO3, LiGaO3, LiPbO3, LiZnO3, MgBiO3, MgCdO3,
MgPbO3, MgSnO3, MgZnO3, NaAlO3, NaBiO3, NaGaO3, NaPbO3, NaSnO3,
NaZnO3, NdAlO3, NdBiO3, NdCdO3, NdGaO3, NdPbO3, NdSnO3, PmAlO3,
PmBiO3, PmCdO3, PmGaO3, PmPbO3, PmSnO3, PmZnO3, PrAlO3, PrBiO3,
PrGaO3, PrPbO3, PrSnO3, PrZnO3, RbBiO3, RbGaO3, RbPbO3, RbSnO3,
RbZnO3, ScAlO3, ScGaO3, ScSnO3, SmAlO3, SmBiO3, SmCdO3, SmGaO3,
SmSnO3, SrAlO3, SrPbO3, SrZnO3, YAlO3, YBiO3, YCdO3, YGaO3, YPbO3,
YSnO3, YZnO3

• Metalloid - cluster: BaGeO3, BeGeO3, BeSbO3, CaSbO3, CeGeO3, CsSbO3,
KGeO3, KSbO3, LaGeO3, LaSbO3, LiSbO3, NaSbO3, NdGeO3, NdSbO3, PmGeO3,
PmSbO3, PrGeO3, PrSbO3, RbGeO3, RbSbO3, ScSbO3, SmGeO3, SmSbO3,
SrGeO3, SrSbO3, YGeO3

A.7 TypeAB Clustering

The type of element A as well as the one of element B of a material determine its
cluster membership.

• Alkali metal / transition metal - cluster: CsAgO3, CsCoO3, CsCrO3,
CsFeO3, CsMnO3, CsMoO3, CsNbO3, CsNiO3, CsPdO3, CsPtO3, CsRhO3,
CsRuO3, CsTaO3, CsVO3, CsWO3, CsZrO3, KCoO3, KCrO3, KCuO3, KFeO3,
KMnO3, KMoO3, KNbO3, KNiO3, KPdO3, KPtO3, KTaO3, KTcO3, KTiO3,
KVO3, KWO3, KZrO3, LiAgO3, LiCoO3, LiCrO3, LiCuO3, LiFeO3, LiMoO3,
LiNbO3, LiNiO3, LiPdO3, LiPtO3, LiRhO3, LiRuO3, LiTaO3, LiTcO3, LiTiO3,
LiVO3, LiWO3, LiZrO3, NaAgO3, NaCoO3, NaMnO3, NaMoO3, NaNbO3,
NaNiO3, NaPdO3, NaPtO3, NaRhO3, NaTaO3, NaTiO3, NaVO3, NaZrO3,
RbAgO3, RbCoO3, RbCuO3, RbFeO3, RbMnO3, RbMoO3, RbNbO3, RbNiO3,
RbPtO3, RbRuO3, RbTcO3, RbTiO3, RbVO3, RbZrO3

• Alkali metal / other metal - cluster: CsCdO3, CsPbO3, CsSnO3, KBiO3,
KGaO3, KPbO3, KSnO3, KZnO3, LiAlO3, LiBiO3, LiCdO3, LiGaO3, LiPbO3,
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LiZnO3, NaAlO3, NaBiO3, NaGaO3, NaPbO3, NaSnO3, NaZnO3, RbBiO3,
RbGaO3, RbPbO3, RbSnO3, RbZnO3

• Alkali metal / metalloid - cluster: CsSbO3, KGeO3, KSbO3, LiSbO3,
NaSbO3, RbGeO3, RbSbO3

• Alkaline earth metal / transition metal - cluster: BaAgO3, BaCoO3,
BaCrO3, BaCuO3, BaMnO3, BaNiO3, BaPdO3, BaPtO3, BaRhO3, BaRuO3,
BaTaO3, BaTcO3, BaTiO3, BaVO3, BaWO3, BeCoO3, BeCuO3, BeFeO3,
BeMnO3, BeNbO3, BePdO3, BePtO3, BeRuO3, BeTiO3, BeVO3, BeZrO3,
CaAgO3, CaCoO3, CaCrO3, CaCuO3, CaFeO3, CaMnO3, CaMoO3, CaNbO3,
CaPdO3, CaPtO3, CaRhO3, CaTaO3, CaTiO3, CaWO3, CaZrO3, MgAgO3,
MgCuO3, MgFeO3, MgMnO3, MgMoO3, MgNbO3, MgNiO3, MgPdO3, MgPtO3,
MgTaO3, MgTcO3, MgTiO3, MgVO3, MgWO3, MgZrO3, SrAgO3, SrCoO3,
SrCrO3, SrFeO3, SrMnO3, SrMoO3, SrNbO3, SrNiO3, SrRhO3, SrTaO3, SrTcO3,
SrVO3, SrWO3, SrZrO3

• Alkaline earth metal / other metal - cluster: BaAlO3, BaBiO3, BaCdO3,
BaGaO3, BaPbO3, BaZnO3, BeAlO3, BeCdO3, BePbO3, BeSnO3, BeZnO3,
CaAlO3, CaCdO3, CaGaO3, CaPbO3, MgBiO3, MgCdO3, MgPbO3, MgSnO3,
MgZnO3, SrAlO3, SrPbO3, SrZnO3

• Alkaline earth metal / metalloid - cluster: BaGeO3, BeGeO3, BeSbO3,
CaSbO3, SrGeO3, SrSbO3

• Lanthanide / transition metal - cluster: CeAgO3, CeCoO3, CeCrO3,
CeMnO3, CeMoO3, CeNbO3, CeNiO3, CePtO3, CeRhO3, CeRuO3, CeTaO3,
CeTcO3, CeTiO3, CeVO3, CeWO3, CeZrO3, LaAgO3, LaCoO3, LaCrO3, LaCuO3,
LaFeO3, LaMnO3, LaMoO3, LaNbO3, LaNiO3, LaPdO3, LaPtO3, LaRuO3,
LaTaO3, LaTiO3, LaVO3, LaWO3, LaZrO3, NdAgO3, NdCrO3, NdMnO3,
NdMoO3, NdNbO3, NdNiO3, NdPtO3, NdRuO3, NdTaO3, NdTiO3, NdVO3,
NdZrO3, PmCrO3, PmCuO3, PmFeO3, PmMnO3, PmMoO3, PmNbO3, PmNiO3,
PmPdO3, PmTaO3, PmTcO3, PmWO3, PmZrO3, PrAgO3, PrCoO3, PrCrO3,
PrFeO3, PrMnO3, PrNbO3, PrNiO3, PrPtO3, PrRuO3, PrTcO3, PrTiO3,
PrVO3, PrWO3, SmAgO3, SmCrO3, SmFeO3, SmNbO3, SmNiO3, SmPtO3,
SmRhO3, SmRuO3, SmTaO3, SmTcO3, SmTiO3, SmVO3, SmWO3, SmZrO3

• Lanthanide / other metal - cluster: CeBiO3, CeCdO3, CeGaO3, CeSnO3,
LaAlO3, LaGaO3, LaSnO3, LaZnO3, NdAlO3, NdBiO3, NdCdO3, NdGaO3,
NdPbO3, NdSnO3, PmAlO3, PmBiO3, PmCdO3, PmGaO3, PmPbO3, PmSnO3,
PmZnO3, PrAlO3, PrBiO3, PrGaO3, PrPbO3, PrSnO3, PrZnO3, SmAlO3,
SmBiO3, SmCdO3, SmGaO3, SmSnO3

• Lanthanide / metalloid - cluster: CeGeO3, LaGeO3, LaSbO3, NdGeO3,
NdSbO3, PmGeO3, PmSbO3, PrGeO3, PrSbO3, SmGeO3, SmSbO3

• Transition metal / transition metal - cluster: ScCoO3, ScCrO3, ScCuO3,
ScMnO3, ScMoO3, ScNbO3, ScNiO3, ScPdO3, ScRhO3, ScRuO3, ScTcO3,
ScTiO3, ScWO3, ScZrO3, YAgO3, YCoO3, YCrO3, YCuO3, YFeO3, YMnO3,
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YMoO3, YNiO3, YPtO3, YRhO3, YRuO3, YTaO3, YTcO3, YTiO3, YVO3,
YWO3, YZrO3

• Transition metal / other metal - cluster: ScAlO3, ScGaO3, ScSnO3,
YAlO3, YBiO3, YCdO3, YGaO3, YPbO3, YSnO3, YZnO3

• Transition metal / metalloid - cluster: ScSbO3, YGeO3
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