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It is by now well established that periodically driven quantum many-body systems can realize topological

non-equilibrium phases without any equilibrium counterpart. Here we show that even in the absence of time

translation symmetry, non-equilibrium topological phases of matter can exist in aperiodically driven systems for

tunably parametrically long prethermal lifetimes. As a prerequisite, we first demonstrate the existence of long-

lived prethermal Anderson localization in two dimensions under random multipolar driving. We then show that

the localization may be topologically non-trivial with a quantized bulk orbital magnetization even though there

are no well-defined Floquet operators. We further confirm the existence of this Anomalous Random Multipolar

Driven Insulator by detecting quantized charge pumping at the boundaries, which renders it experimentally

observable.

I. INTRODUCTION

The exploration of non-equilibrium many-body phenom-
ena has flourished in the past decades as time-dependent driv-
ing opens new pathways for controlling quantum systems .
Beyond the research programme of “Floquet-engineering”
sought-after equilibrium phases of matter™’, of particular
interest is the possibility to realise intrinsically dynamical
phases without direct analogies in static systems™ . For exam-
ple, combining the discrete time translational symmetry (TTS)
of periodically driven systems with many-body localization
(MBL)'"" may stabilize a discrete time crystal phase sponta-
neously breaking TTS''~'". Floquet systems may also host
a variety of topological non-equilibrium phases such as the
two-dimensional (2D) anomalous Floquet Anderson insula-
tors (AFAD) '
lous Floquet insulator (AFI)

and its interacting generalization, the Anoma-
Although fully localized in
the bulk, they support quantized chiral edge currents robust to
generic perturbations.

It is natural to ask whether dynamical phases may exist be-
yond the Floquet paradigm °~~". Recently the fate of Floquet
topological edge states in the presence of white noise has been
studied™

ical phases exist in aperiodically driven systems for tunably

. Here we will address the question: can topolog-

parametrically long times when the temporal aperiodicity is
strong? If so, is there a diagnostic capable of capturing the
topological nature of the system once TTS is explicitly bro-
ken? At first sight it seems unlikely because the absence
of TTS precludes the usual definition of Floquet operators.

Therefore, the topological characterization, e.g., via the bulk
winding numbers of the AFAI Floquet states, cannot be ap-
plied'”>*'. In addition, the stability of MBL in Floquet systems
is essential for the realization of the AFAI/AFI. In contrast,
MBL is unstable for aperiodic drives and, thus, cannot pre-

vent heating to a featureless infinite temperature state'

Nevertheless, we here provide an affirmative answer to the
above question by constructing a concrete example. To do so,
we introduce an aperiodic step-wise driving scheme which ex-
tends the Floquet protocol for the realization of the AFAI' ™
to n—random multipolar driving (n—RMD) as recently pro-
posed in Ref. 29. A key observation for our purpose is that
for generic (non-integrable) many-body systems a transient
but long-lived prethermal steady state emerges in n—RMD
drives, whose lifetime 7 scales universally as 7 oc (1/7")?+1
for finite n~""" (with T the duration of the fundamental time
evolution block as introduced below). The lifetime grows
faster than any power law in 1/7 in the n — oo limit, where
n—RMD corresponds to the quasiperiodic Thue-Morse (TM)
sequence’ . Here, we first establish that disorder induced lo-
calization also follows this scaling and can indeed persist as
a long-lived prethermal phenomenon’ " before the system
eventually delocalizes. Next we show how long-lived local-
ization can lead to a prethermal topologically nontrivial 2D
insulator, which we dub the Anomalous Random Multipolar

Driven Insulator (ARMDI).

Crucially, although TTS is absent, we can show that the
bulk orbital magnetization density’” remains quantized over

the prethermal time scale. We furthermore confirm the exis-
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FIG. 1.
blocks UOi employed to realize the TM protocol up to time 2"7T.

Scheme of the driving protocol. (a) Sequence of driving

(b) The elementary time evolution operator USE involves five driv-
ing steps. The first four steps contain hopping processes on different
bonds of different colors, meanwhile a sublattice potential of ampli-
tude +6h is applied. The disorder potential appears in the fifth step,
leading to Anderson localization.

tence of the ARMDI by detecting the quantized charge pump-
ing at its boundaries. Although we concentrate on the non-
interacting limit, the prethermal lifetime of the ARMDI strik-
ingly scales in the same way as established for non-integrable
systems in 1D~""", suggesting that the ARMDI remains robust

with respect to the addition of sufficiently weak interactions.

II. THE DRIVING PROTOCOL

We first introduce the protocol, starting with a system of
non-interacting spinless fermions on a 2D bipartite lattice
driven by the step-wise time-dependent Hamiltonian H () =
Hiq(t)+ Hais(t), which is periodic in time: H(t) = H(t+T)
with period 7". Within a period, the first term consists of trans-
lationally invariant hopping terms described by

JZan ) (g, the), @
reAn=1

where f,(t) = 1 for (n — 1)T/5 < t < nT/5 and zero
otherwise. The summation over r is performed over all sites
of sublattice A as illustrated in Fig. 1 (b). The vectors {d,, }
are defined as d; = —d3 = (0,1) and dy = —d4 = (1,0).
This model has a solvable limit when the hopping amplitude
J is chosen as JT'/5 = 7/2 such that one particle prepared

on site r can be completely transferred to site r + d,, over
step n of the cycle. The fifth step of the cycle involves the
disorder potential Hais(t) = f5(t) Y, heclcy, where hy is
This Flo-
quet model hosts the topologically protected non-equilibrium

uniformly chosen in the interval [—hmax, Pmax]-

phase, AFAI, which features chiral edge modes together with
a fully localized bulk'’. It remains stable to generic time-
periodic perturbations (with the same period as the drive, T
as long as no topological phase transition occurs.

Building on this foundation, we now study an aperiodically
driven cousin of the AFAI — the ARMDI introduced above —
and show that nontrivial topology persists as a new long-lived
prethermal phase. The aperiodic driving protocol is defined
in terms of sequences which toggle in an irregular fashion be-
tween two types of evolution blocks, labeled by + and —. The
corresponding stroboscopic time evolution operators for these
blocks are defined as

Uoﬁ: — Te—i fOT dSHi(t), (2)

where the Hamiltonian reads H*(t) = Hiq(t) + Hais(t) +
Now T de-
fines the duration of the fundamental evolution block, and

Hgtert( ) with a local perturbation Hpert(t).

its inverse denotes the characteristic driving rate of the pro-
The qualitative behavior of the ARMDI does not de-
pend on the specific form of the perturbation but for concrete-

tocol.

ness we consider the perturbation of the form Hpert( ) =
(6J/J)Hiq(t)£ [1 — f5(t)] ShHgup. The first term modifies
the hopping amplitudes in the “ideal” hopping cycle by an
amount ¢.J, which breaks the perfect transfer of particles be-
tween sites on each step. The second term is a time-dependent

(ZreA Ny — ZrGB Ty

posite signs in the two types of evolution blocks, see Fig. 1

sublattice potential, Hg,}, = ), with op-
(b), which is nonzero during all but the fifth step. For any
d0h # 0, the stroboscopic block evolution operators defined
in Eq. (2) do not commute: [Uy,U; | # 0. Thus the driving
with dh # 0 is qualitatively different from that of the afore-
mentioned Floquet drive.

We consider two types of aperiodic driving protocols where
TTS is explicitly broken. The first protocol is the quasiperi-
odic TM sequence shown in Fig. 1 (a). In this case, the time
evolution operator U, at time ¢ = 2"T is constructed re-
cursively from the elementary block evolution unitaries UOﬂE
[Eq. ()] as U = UF Uy,
sider is the n—RMD protocol. For n-RMD, at each iteration

. The other protocol we con-

one of the two n—th order multipolar operators U;* defined
. In both
cases, it is clear that Floquet theory manifestly does not apply.

above is randomly chosen to propagate the state

Importantly, this means that the eigenstates and quasi-energies
that underpin the topological classification of Floquet systems



are absent and a different approach is needed.

III. PRETHERMAL LOCALIZATION

For generic non-integrable systems subjected to n—RMD
or TM driving, it was both rigorously shown and numeri-
cally verified that long-lived prethermal states form in the
rapid driving regime, i.e., when the inverse of the correspond-
ing fundamental block duration, 1/TrMmp or 1/Ty, respec-
tively, is the dominant energy scale of the system®. For the
model considered here, it is not a priori clear whether the
same phenomenology holds, because Anderson localization
might drastically change the system’s approach to eventual
equilibration. Also, to remain close to the “ideal hopping”
condition, i.e., JT'/5 = 7 /2, the hopping amplitude J must
increase proportionally with the driving rate 1/7". Hence, the
requirement of rapid driving cannot be satisfied.

To demonstrate that the strongly-driven, disordered model
that we consider also exhibits long-lived prethermalization,
we employ a unitary transformation Q(t) = Te™* Jo dsHia(s)
that removes the evolution due to the “ideal” part of the hop-
ping'’. The Hamiltonian in the corresponding rotating frame
reads H(t) = QT (t)H(t)Q(t) — iQ' (t)Q(t). Note that this
transformation is periodic in time: Q(t) = Q(t + T'). In the
rotating frame, the energy scale J does not contribute to the
norm of the Hamiltonian, see Supplementary Material (SM).
A rapid driving regime is hence achieved for Ay, 6J, 0h <
T—1, where a long-lived prethermal localization can be es-
tablished. The localization length in the rotating frame in-
creases with the ratio 6J/hmax; the value of dh determines
the strength of the temporally aperiodic portion of the drive,
which eventually delocalizes the system. In fact, due to the
periodicity of Q(t), the stroboscopic time evolution operators
in the physical and rotating frames coincide. Therefore, rig-
orous results obtained in the rotating frame for n—RMD and
TM driving directly remain valid in the physical frame at stro-
boscopic times.

In the following, we numerically verify the existence of
prethermal Anderson localization as a prerequisite for the AR-
MDI. We consider a lattice of N = L, x L, sites with periodic
boundary conditions, subjected to the TM and n—RMD proto-
cols described above. To demonstrate the existence of prether-
mal localization, we prepare an initial state of a single particle
on site m and quantify the degree of localization over time us-
ing the participation ratio (PR) PR,,(t) = 1/ Zjv:l |1/)}”|4 ,
where w;-"(t) defines the single particle wavefunction on site
jattimet = MT, and M denotes the total number of funda-
mental evolution blocks USE. We also average over all possi-

a b
(@) I T =38 ® 1/T=5
0.4 /T =12 0.4 Yr=1
r 1/T =16 1T =9
5 | —— 1/T=20 5 —— 1/T=1
£0.2 Eo.2f J
0.0 m - 0.() fro-sesmminiss m 1
10 _ 1,10 100 - 10°
© tlJ5 "] W tJ5 ]
Cc
Ve =121 o $ B=712 ¢ B=262
4.5¢ A | ¢ p=sa7 4 B=023
e 10°F -8
z A 8 [n=3 /LTR“’ID ~T
& L A = P
= 4.0 > E ,‘(:"’O n= 24—",,44”
1% 7 =1
35F s o O /0 = n=0
¢ TT™M ~ € - e eprety SO
2.0 2.5 3.0 610 20 3
InT-! T!

FIG. 2. The participation ratio for (a) TM driving and (b) 3-RMD,
with varying driving rates, quickly saturates to a prethermal plateau
before increasing to 0.5 (indicating delocalization at long times). The
dependence of the prethermal lifetime on the driving rate is shown
for (¢) TM driving and (d) the n-RMD drivings. We use parameters
6J = 1.2Jo, hmax = 6Jo,dh = TJy and system size 70 x 70 and
40 x 40 for TM driving and RMD respectively. T is in units of
Jo.

ble initial states to obtain PR = (PR,,,). For localized states,
the participation ratio scales as PR/N ~ 1/N, whereas for
delocalized states one has PR/N ~ O(1)

The evolution of PR/N for the TM and 3—RMD protocols
are plotted in Fig. 2 (a) and (b), respectively. As the particle’s
wave function locally spreads, PR /N first increases and satu-
rates to a small value (black dashed line) at time t ~ 102 Jo L
(Here Jj is a reference energy scale that we use for the scal-
ing of all numerical parameters in this work.) The initial rise
of PR/N is independent of the driving rate 1/7" as long as
it is large. PR/N remains nearly constant in the prethermal
regime, confirming the existence of long-lived prethermal lo-
calization. Only after a large time window, PR/N rapidly in-
creases to the eventual plateau at the value 0.5, corresponding
to a final steady state evenly occupying the entire space.

For both types of driving, the prethermal lifetime of local-
ization increases with 1/7". To enable the numerical extrac-
tion of a prethermal lifetime, we first define a time ¢, such that
PR(t;)/N = x. Since the choice of = is somewhat arbitrary,
we define the prethermal lifetime as the average 7 = (t;),
performed over five threshold values x = xg, xo+e€, x9te/2.
For TM driving, zog = 0.2,¢ = 0.06 and for RMD, we use
xo = 0.05,¢ = 0.03"". The dependence of 7 on 1/T is de-
picted in Fig. 2 (c) and (d) respectively for TM and RMD pro-
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FIG. 3. Dynamics and scaling of prethermal lifetime for TM driving.
(a) Particle density for a single random realization in the prethermal
regime at time ¢ ~ 103 Jy ! for 1 /T = 20Jo. (b) Quantized orbital
current serving as a prethermal topological order parameter. (c) Chi-
ral edge current at the boundary between filled and empty sites. (d)
Scaling of the lifetime of the quantized current. We use parameters
8J = 1Jy, hmax = 20Jo,6h = 7Jo. T~ is in units of Jo.

tocols. As shown in Fig. 2 (c), the numerical results fit well
with the analytical prediction of 7y ~ €T /9 for
TM driving”’, where the slope defines the constant v/C. In
contrast, a log-log scale is used in Fig. 2 (d) where the linear
fit indicates that Trp scales algebraically with the driving
rate as Trvp ~ TP for n—RMD. The fitted exponent reads
approximately 8 =~ 2n + 1 for n > 1, again in accordance
with rigorous predictions™"". For the purely random driving
with n = 0, the system always quickly delocalizes around

t ~ 10.J; ! and prethermal localization cannot be established.

IV. QUANTIZED CHARGE PUMPING

We now confirm that the prethermal localized phase is topo-
logical and that its topological nature is characterized by a
prethermal bulk invariant. As the system possesses neither a
Floquet spectrum nor a periodic micromotion operator, here
we diagnose nontrivial topology using the time-averaged or-
bital magnetization density as introduced in Ref. 36 and de-
tailed in the SM.

For the AFAI, which is stable in the long-time limit, the
magnetization density averaged over an infinitely long time
window, M, was shown to be a topological invariant in

units of 1/T This quantity is obtainable by using a fi-

nite “droplet” constructed such that its interior is completely
filled with particles whereas its surroundings are unoccu-
pied. According to Ampere’s law, for a droplet of suffi-
ciently large size compared with the localization length, and
in a stationary state, the magnetization density deep inside the
droplet equals the time-averaged orbital current flowing at the
droplet’s boundary

As localization in our system has a finite lifetime, instead
of employing M., we here use the magnetization density
mp(t) averaged over each block of duration 7. Although
mp(t) is time-dependent, we will show that it remains ap-
proximately constant and quantized in units of 1/7 in the
prethermal regime.

To extract (), we initially fill a square droplet (35 x 35)
centered in the middle of the square lattice (70 x 70) with
Subject to TM driving, the
droplet starts to evolve and remains well localized during the

periodic boundary conditions.

prethermal regime. As shown in Fig. 3 (a), for a single dis-
order realization, the particle density at time ¢t ~ 103.J; ! re-
mains close to the initial distribution with a slightly broad-
ened boundary. The orbital current I (t) can be obtained
by integrating the expectation value of the current operator
I = —iYep |Jor(t)cfer — Jr/r(t)cl,cr} over a com-
plete evolution block of duration 7', where the set D includes
all sites along one side of the cut [solid black line in Fig. 3 (a)]
and J, (t) is the time-dependent hopping to the adjacent sites
on the other side of the cut, as defined in Eq. 1. The average
over different cuts is performed to reduce spatial and tempo-
ral fluctuations. Clearly, as shown in Fig. 3 (b), a prethermal
plateau in the orbital current can be identified at the integer
value Ic = 1/T. The current drops to zero only after a para-
metrically long time scale which substantially increases for
larger 1/T. Using the Ampere’s law as discussed above, on
the prethermal plateau we extract mr(t) = Ir(t). Conse-
quently, this defines the prethermal topological bulk invariant
v(t) = Tr(t) and suggests the existence of a prethermal
topologically non-trivial ARMDI.

This is further verified by confirming the existence of a ro-
bust chiral edge current circulating at the boundary between
filled and empty sites, in coexistence with a fully localized
bulk. We now consider the lattice geometry of a cylinder of
size 70 x 70 where the upper half is occupied. The edge cur-
rent averaged over each evolution block of length T’ starting at
t = 2™T is plotted in Fig. 3 (¢). The pumped charge per evo-
lution block remains at the quantized value in the prethermal
regime, before decaying when delocalization sets in. Similar
to the lifetime of prethermal localization, we define the life-
time 7 of both the prethermal orbital and edge current by us-
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FIG. 4. (a) Particle density for a single 3—RMD realization at
time t ~ 400J, ' for 1/T = 9. (b) Edge current averaged
over a single block at the boundary between filled and empty sites
with 3—RMD for different driving frequencies. We use parameters
8J = 1Jo, hmax = 10Jo, 8h = 7Jy. T~ ! is in units of J.

ing the threshold values 0.6/T for the current” . As presented
in Fig. 3 (d) for TM driving, their relation with the driving
rate again fits well with the scaling 7y ~ Clin(T™"/9))*
Both the fitted slopes give approximately the same exponent

v Cr,vCo =~ 1 for the edge and orbital current respectively.

When switching from quasi-periodic TM driving to the
RMD, the prethermal topological phase remains robust. How-
ever, as the recursive quasi-periodic structure is missing [35],
to simulate a sufficiently long time evolution (¢t ~ 10°.J; b,
the size of the square lattice is limited to 40 x 40. In Fig. 4,
we illustrate the dynamics for n = 3 RMD, in the case where
the upper half of a cylinder is fully filled as the initial state. In
Fig. 4 (a), the particle density at time ¢ ~ 400J; ! is depicted.
The density only changes significantly in a strip centered
around the boundary of the filled region, similarly to Fig. 3 (a).
As shown in Fig. 4 (b), the current across the vertical black cut
remains close to a constant quantized value for a long time,
confirming the existence of the prethermal ARMDI. In the SM
we further verify the dependence of the prethermal lifetime on
the driving rate, which exhibits an algebraic scaling similar to
the behavior of the PR as mpyp ~ 7~ 271,

V. DISCUSSION AND OUTLOOK

By constructing a concrete example, we have estab-
lished that aperiodically driven systems can host novel non-
equilibrium topological phases of matter without any equilib-
rium counterparts. The price to pay for relieving the constraint
of TTS is that the ARMDI is strictly speaking only transient,
disappearing in the asymptotic long-time limit. However, its
prethermal lifetime can be tuned arbitrarily long with a con-
trollable universal scaling of the heating times.

Regarding the experimental feasibility of our proposal, we
note that the (periodically-driven) AFAI has recently been re-
alized in cold atom quantum simulators™~. We expect that
the RMD drives proposed here can be naturally implemented
in a similar fashion. In that context, recent simulation plat-
forms studying prethermalization, e.g., in trapped ions™ or
cold atoms™, would also permit a study of the universal scal-
ing of the prethermal time scale as a function of n.

A fundamental and open question is whether there exist
aperiodically driven topological phases stable for infinitely
long times, e.g., in discrete versus continuous driven clean
or disordered systems. Finally, the role of interactions for the
stability of the ARMDI prethermal phase is a very interesting
and challenging problem, which is beyond the reach of nu-
merical methods and is thus an ideal candidate for quantum
simulators.
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Appendix A: Rotating frame

Quantum systems subjected to random multipolar driving

(RMD) have been shown to exhibit long-lived prethermal qua-

sisteady states, with lifetimes that grow algebraically with the

driving rate 1/7"

This behavior is obtained when 1/T

is large compared with the energy scales associated with all

other local terms in the system’s Hamiltonian. However, the

anomalous random multipolar driven insulator (ARMDI) in-



troduced in the main text has one energy scale J whose mag-
nitude is locked to be proportional to 1/7". Hence the previous
results exhibiting long lifetimes for RMD systems do not di-
rectly apply here.

To demonstrate the prethermal stability of the ARMDI, we
define a rotating frame transformation the removes the dynam-
ics associated with the hopping with energy scale J ~ 1/T"

Qt) = Te o dethale), (A1)

where, as defined in Eq. (1) of the main text, H;q(s) generates
the “ideal” hopping sequence in which each particle circles
around one plaquette in time 7'. Importantly, for systems with
periodic boundary conditions (PBCs) one obtains Q(T") = I,
as particles all hop back to their initial position after the first
four steps.

The new Hamiltonian in the rotating frame is given by

H(t) = QT()H* ()Q(t) —iQT()Q(t),

where H*(t) = Hiq(t) + Huis(t) + HE

pert

(A2)

(t) (see main text).
This transformation gives

H*(t) = Q"(t) [Hais(t) + Hpert (D] Q(1). (A3)

Note that H;q has been canceled, and thus there are no terms
of magnitude .J in H*(t). Also, as Q(t) is equal to the iden-
tity during the fifth step of each block, Hgjs(t) (which itself is
only nonzero during the fifth step) remains unchanged in the
new frame.

Now we discuss the behavior of the perturbation in the ro-
tating frame. The specific form of the perturbation should not
result in qualitatively different results, as long as it is local
and its amplitude remains small. Here, as in the main text, we
consider

4
Hin () =Y fult) [5,] 3 (chdncr n h.c.> iéhHsub] :

=1 recA

n
Hypp, = E Ny — ana

reA reB
(A4)

where d,, is a nearest neighbor bond vector as defined in the
main text. The first term represents a deviation of the hopping
amplitude from its ideal value (where each particle hops be-
tween neighboring sites with probability one during a given
step). This term transforms to a new (next-nearest neighbor)
hopping term in the rotating frame, remaining local on this
scale. The second contribution is a sublattice potential that
is present during the hopping steps. Note that a nonzero §.J
or h will both induce imperfect hopping during the first four
steps. Here we set 6h # 0 and §.J = 0 for simplicity. In the

rotating frame, we have new driving Hamiltonians for the +
and — blocks given by

H*(t) = Hais f5(t) £ 60 fu(1)QT (1) Ha Q(1). (AS)
n=1

The second term, corresponding to the sublattice potential, in-
volves the transformed operators 7. (t) = QT (t)n,Q(t). Note
that each operator 7, (t) has its support only on r, as well as
the nearest neighbor and next-nearest neighbor sites of r''. To
be precise, we take the result from Ref.'’ for the first driving

step as an example

e (t) = cos?(Jt)cle, + Sing(Jt)CI+grdICr+ard1
1 (A6
+ 5 sin(2Jt) (clertora, —he), 0<t<T/5,

where o, = 1 for r in sublattice A and o, = —1 for r in
sublattice B. Terms with support on the neighboring sites of
r appear, e.g., clcpiq.q, and Ci+ardlcr+0rd1' At later times
T/5 < t < T, terms involving next-nearest-neighbor sites
of r also appear, but H £(t) still remains local. Clearly, the
hopping amplitude J now does not contribute to the norm of
the rotated Hamiltonian H *(t). Expressions for the opera-
tor 7, (t) for §J # 0 can be similarly obtained. Therefore,
in the rotating frame, a rapid driving regime required for the
prethermalization is achieved for hyay, 0J, 6h < T71.

One can furthermore estimate the heating rate induced by a
random drive, in two different limits 7" — 0 and §h — 0. One
can consider a simplified time-independent version of Eq. AS:
H¥* = Hgis + 6hH, where H,, appears as a random pertur-
bation. For small §h we have the following operator distance
[|...]| characterizing the deviation between the time evolution
operators UOi = exp[—iT (Hais £0hH})] and exp(—iT Hg;s)
(Hgis can be treated as an unperturbed effective Hamiltonian
to approximate the transient dynamics at early times)

UG — exp(—iTHais)|| ~ O(6AT).

This distance can be used to estimate the deviation (or the
heating rate) after a single evolution block. Thus we see that,
for a single evolution block the two limits 7" — 0 and 6k — 0
are indeed equivalent: both of them lead to vanishing devia-
tions after a single block.

Now consider the evolution after m evolution blocks, with
UOi selected randomly in each block. The distance between
the true evolution operator for random driving (with Ugt se-
lected randomly on each cycle) and the “ideal” localized evo-
lution exp(—iT Hg;s) accumulates linearly with the number

of periods, m, becoming~":
H U_U+U+U_ el — exp(finiSmT)H
~—_———
m random blocks

(AT)
~ O(mT5h) ~ O(toh).



While reducing 7' gives an improvement of the deviation per
evolution block (period), i.e., in stroboscopic time, at a fixed
absolute time ¢ = mT the deviation does not scale with T'.
Hence taking 7" — 0 has little effect on the long-time dynam-
ics in absolute time. In contrast, taking h — 0 meaning-
fully leads to a prolongation of stability. Rigorous proofs and
detailed discussions can be found in Ref.””>""; this argument
can also be generalized to time-dependent Hamiltonians in the
form of Eq. AS.

Now we turn to random multipolar driving, where the life-
time obtains a nontrivial dependence on 7' and Jh, both in
stroboscopic time and in absolute time. Specifically, the main
advantage of using n-RMD is that, for any nonzero integer n,
the heating rate is further suppressed by a power of the inverse
driving period™”, and the operator distance for the time evolu-
tion at (absolute) time ¢ scales as O(t1™). The dependence
on dh is complicated and model dependent, but most impor-
tantly the deviation generically scales with different powers
of §h and of T'. The additional power-law suppression in 7T is
universal, implying a power-law increase of the lifetime in ab-
solute time. This shows how genuinely long-lived prethermal
states may be stabilized by random multipolar driving.

Appendix B: Magnetization density
Here we follow Ref.”" and define the magnetic density used
to identify the topological property of the bulk. Micromotion
of particles in this system can be characterized via the orbital

magnetization
1 i N
M(t) = 5(1‘ x 1(t)) - z, (B1)
with #(¢) = —i[r, H(t)]. M(t) is equivalent to the response

of the Hamiltonian to an applied uniform magnetic field B,
M(t) = —0H(t)/0B. The orbital magnetic density associ-
ated with each plaquette p can be defined as
OH (t)
oy

where ¢, represents the magnetic flux applied through the pla-

my(t) = 6= [ @B, @)
P

quette p. For a state |1(t)), one can define the time-averaged
expectation value of an operator O(t) as

1 T
©) =1 [ @wwlowkn).  ©

0
According to Ampere’s law on the lattice ", if the particle
density p is stationary throughout the system over the time
averaging interval, i.e., (p), = 0, the time averaged current

on the bond between neighboring plaquettes p and g equals

the difference between the associated time-averaged magnetic
densities

<Ipq>r = <mp>T - (mq>T . (B4)

In our model, although time translation symmetry is broken,
such stationary states can still be approximately achieved for
T = MT with integer M during the long-lived prethermal
regime before heating happens. Particle density only signif-
icantly changes within a strip of width D around the bound-
ary of the filled region (as shown later in Fig. 5), where D
represents the localization length of the prethermal localized
states. Therefore, at the distance d from the boundary and for
d > D, particle density changes exponentially small in the
ratio d/D. Hence, all bond currents vanish in regions deep in-
side the droplet and the associated magnetic density becomes
uniform.

This uniform value of magnetic density is system size de-
pendent for finite-size systems (finite size effect will be later
discussed in Sec. D). For a plaquette p at distance d from the
boundary, in the case of the AFAI (which is stable in the long
time limit) one has lim o (M) = Moo + O(e~%P), with
Moo denoting the value in the thermodynamic limit. It has
been shown in Ref.”® that m is quantized as the bulk topo-
logical order parameter for the anomalous Floquet Anderson
insulators. For a non-vanishing m.,, Ampere’s law (Eq. B4)
implies that the time-averaged orbital current lim,_, o (Ic)._
(see definition of I in the main text) passing through a cut
(the length of the cut needs to be larger than the localization
length D) around the boundary of the droplet is also quantized
and equals M. up to a correction exponentially small in the
localization length. See Ref.”" for more details.

As shown in the main text, for the aperiodic driving pro-
tocol, localization in our system has a finite prethermal life-
time 7p,re. Therefore, instead of employing 7., which needs
infinitely long time average, one can consider a temporal av-
erage over a time window 7’ such that 7/ < Tppe. In prac-
tice, we numerically compute the orbital current (Ic) . av-
eraged over each block of duration 7' to identify the cor-
responding time-averaged magnetization density mr(t) =
(my) 1 (t) + O(e~4/P) for plaquette p deep in the droplet.
Although m(t) now becomes time-dependent, as shown in
Fig. 3 (b) in the main text, it remains approximately constant
and quantized in the prethermal regime.

Appendix C: Density profiles for TM driving

Here we show additional density plots at different times us-
ing the same parameters as in Fig. 3 of the main text. As



0.26

0.24

FIG. 5. Evolution of the particle density under Thue-Morse driving
for a single random disorder realization for 1/T" = 20.Jy. The times
shown in the three panels correspond to 257, 2257, 23T, The pa-
rameters are 0J = 1Jo, Amax = 20Jo,0h = 7Jo.

shown in Fig. 5, the upper left panel shows the same results
att ~ 103J; !
most the same as the initial distribution. The upper right panel
shows the density around ¢ ~ 1.5 x 10°.J; ! Clearly the dy-
namics is not limited to the boundary of the square. A large

as in Fig. 3 (a) where the density remains al-

region of the whole lattice has a nonzero density. After a suf-
ficiently long time, e.g., t ~ 2 x 10%J; !, the system exhibits
a homogeneous distribution at particle density 0.25 indicating

the eventual delocalization (bottom panel).

Appendix D: Finite size effects

Here we discuss the boundary effect which causes notable
consequences to the lifetime of the prethermal localization.
With periodic boundary conditions (PBCs), our model is sim-
ilar to a localized system coupled to a thermal bath at infinite
temperature”’. The effect of the aperiodic drive on Ander-
son localization can be treated as classical noise source. For
open boundary conditions (OBCs), instead of being localized,
states prepared at the boundary exhibit chiral propagation and
quickly delocalize within a strip of the boundaries during the
prethermal regime. Therefore, coupling to the delocalized
boundary states further destablizes the Anderson localization
in the bulk on top of the local random noise. This coupling
decays exponentially with distance. Hence such boundary ef-
fects can be well-controlled by either going to larger system
sizes or stronger disorder strengths (corresponding to shorter
bulk localization lengths).

To demonstrate this phenomenon, in Fig. 6 we depict the
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FIG. 6. Dynamics of PRy, /N for initial states prepared at L; sites
away from the boundary of the cylinder of size 70 x 70. L; = 0 and
34 in panel (a) and (b), respectively. We use parameters L, =L, =

70,0J = 1Jo, 6h = 7Jo, Rmaz = 6Jo. T~ is in the unit of Jo.
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FIG. 7. Scaling of the delocalization time versus driving rates for
different L;. We use parameters L, = L, = 70,0J = 1Jo,dh =

7Jo, hmaz = 6Jo. T~ is in the unit of J.

evolution of the participation ratio PRz, /N defined by
ﬁLi - <PRm>Lu

where the average is performed over all sites at distance L;
from the top boundary of a cylinder of size 70 x 70 and
PR,, is as defined in the main text. Panels (a) and (b) of
Fig. 6 show the result for L, = 0 and L,
sponding to the boundary and the center of the cylinder, re-

= 34, corre-

spectively. For L; = 0, the system first slowly delocalizes
around t ~ 102J;".
larger driving rate 1/7. Dynamics of the participation ratio

This onset time does not change for

follow the form PRy/N ~ logt over a large time window,
e.g., from 1027, * to 1087, * for 1/T = 19.J, followed by a
pronounced increase to the final plateau at 0.5. For L; deep in
the bulk, as in panel (b), the boundary effect is negligible and
a prethermal Anderson localization can be identified similarly
to Fig. 2 of the main text, which was obtained with PBC.

The dependence of the delocalization time 71y (L;) on the
driving rate 1/7T and distance to the boundary, L;, is plotted in
Fig. 7. For each value of L;, 7ryi(L;) is extracted by the pro-
cedure described in the main text as the average of times when
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FIG. 8. Dynamics of the edge current and its lifetime scaling for
L, = L, = 70. We use parameters d.J = 1Jo, 5h = TJo, hmae =
6.Jo and 7" in the unit of Jo .

PRy,/N increases above the values 0.1 + 0.03,0.1 + 0.06
for L; = 34,15, or 0.1 &+ 0.005,0.1 £+ 0.01 for L; = 0.
The black dashed lines are described by the functional form
TTM ~ ec[ln(T_l/g)]Q, and the fitted slope a corresponds
to v/C. Note that the scaling exponent increases if the ini-
tial state is far from the edge, with a maximum value around
1.2. If we instead use a larger threshold value for determining
7rm(L;), e.g., 0.4, a similar scaling exponent around 1 will be
reproduced even for L; = 0. Such behavior indicates that at
the boundary, only the late stage of delocalization can be cap-
tured by the divergence of higher order operators of the TM
sequence’’. As a comparison, for layers away from the open
boundary, localization is stable and its lifetime scales similar

as the system with PBC.

Boundary effects also affect the scaling of the lifetime of
edge current when we have a half-filled cylinder. The left
panel in Fig. 8 shows the dynamics of the (approximately)
quantized current at the boundary between filled and empty
sites. The lifetime of this prethermal phenomenon is numeri-
cally extracted by averaging the times when the current drops
below 0.7/7,0.7+0.2/T,0.7+£0.1/T. As shown in the right
panel, the lifetime again fits well with 7py; ~ eCln(T=/ 9)]2,
but the fitted slope (« corresponds to v/C) is smaller than the
largest value in Fig. 6 for L; = 34. This is reasonable as the
deviation from the quantized current is induced by the delo-
calization around the central region of the lattice, for instance
L; € [L,/2 — 6L, L,/2], where §L is a small finite integer
and should be proportional to the localization length of the
system. As shown in Fig. 6, for finite system sizes, the de-
localization scaling exponent might still be dependent on L;
and decrease for smaller L;. Hence the scaling exponent for
the current lifetime, which should involve contributions from
layers of sites within [L, /2 — § L, L, /2], is slightly below the
maximum delocalization scaling exponent.

In Fig. 9 we also plot the prethermal life time of edge cur-
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rent for different system sizes. Deviations from the expected
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FIG. 9. Scaling of the prethermal lifetime of edge current for dif-
ferent system sizes L, = 20,50,70. We use parameters d.J =
1Jo,8h = 5Jo, hmaz = 6Jo and T~ in the unit of Jy .
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FIG. 10. Dynamics of the edge current and its scaling for n =
0,1,2,3 RMD. We use parameters J = 1Jo, Amaz = 10Jo, 6h =
7Jo and system size 40 x 40.

scaling 7py ~ eCln(@ /9l

can be clearly observed for
small system sizes at larger driving frequencies. But for suf-
ficiently large system size, the scaling behavior converges for

the numerically accessible time scales.

Appendix E: RMD current

In Fig. 10, we show the scaling of the lifetime mr\p for
the ARMDI with different n—RMD protocols. The lifetime is
numerically extracted by averaging the times when the current
drops below 0.96/7,0.96 &+ 0.015/7,0.96 + 0.0075/T. The
numerical results fit well with Tayp ~ 7T ~° with 8 ~ 2n+1
for n > 1. Note that, compared with Fig. 2 of the main con-
tent, here we use a stronger disorder strength to reduce finite
size effects. Consequently, the lifetime obtained for purely
random driving n = 0 (blue dot in Fig. 10) also scales with
the driving rate but with a very small exponent. We expect
that for a weaker disorder and sufficiently large system size,
the lifetime for n = 0 should be independent of driving rate.
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