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Spaceborne gravitational-wave (GW) detectors observing at milli-Hz and deci-Hz frequencies are
expected to detect large numbers of quasi-monochromatic signals. The first and second time-
derivative of the GW frequency (fo and fo) can be measured for the most favourable sources
and used to look for negative post-Newtonian corrections, which can be induced by the source’s
environment or modifications of general relativity. We present an analytical, Fisher-matrix-based
approach to estimate how precisely such corrections can be constrained. We use this method to
estimate the bounds attainable on the time evolution of the gravitational constant G(t) with differ-
ent classes of quasi-monochromatic sources observable with LISA and DECIGO, two representative
spaceborne detectors for milli-Hz and deci-Hz GW frequencies. We find that the most constrain-
ing source among a simulated population of LISA galactic binaries could yield G /Go <107 8yr™t,
while the best currently known verification binary will reach G /Go < 107%yr~'. We also per-
form Monte-Carlo simulations using quasi-monochromatic waveforms to check the validity of our
Fisher-matrix approach, as well as inspiralling waveforms to analyse binaries that do not satisfy
the quasi-monochromatic assumption. We find that our analytical Fisher matrix produces good
order-of-magnitude constraints even for sources well beyond its regime of validity. Monte-Carlo
investigations also show that chirping stellar-mass compact binaries detected by DECIGO-like de-

tectors at cosmological distances of tens of Mpc can yield constraints as tight as G/Go <10 HMyr

I. INTRODUCTION

One of the cornerstones of general relativity is the prin-
ciple of local position invariance, according to which the
outcome of a local nongravitational experiment is inde-
pendent of the experiment’s position in time and space
[1]. Alternatives to general relativity, on the other hand,
can violate local position invariance: scalar-tensor the-
ories, for instance, introduce a new field that mediates
gravitational interactions [2, 3] and can lead to a time
dependence in the effective gravitational constant G(t)
[4, 5] replacing Newton’s constant G. Probing whether
the gravitational constant is indeed constant constitutes
a direct test of one of the fundamental principles of gen-
eral relativity, which could potentially provide new in-
sights on the underlying properties of the gravitational
interaction at different temporal and spatial scales.

Several strategies have been used over the years to
measure the first time derivative of the gravitational cou-
pling, G, assuming a linear dependence of G(t) on time
(see, e.g., Ref. [6]). Stringent bounds on G come from
Big Bang Nucleosynthesis (BBN) data [7-9], from which
it has been estimated that G/Go < 10~ 2yr~!, from the
Cosmic Microwave Background (CMB) [10], and from
Type-IA Supernovae [11]. In the local environment, con-
straints come from the study of globular clusters [12]
and (at distances below ~1 AU) from lunar ranging ex-
periments, which currently provide the most stringent
bounds: G/Go < 107 H4yr=1 [13].
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Gravitational-wave (GW) observations have also been
used to constrain the running of the gravitational con-
stant. A key difference from previous constraints is that
GW observations can probe intermediate epochs in cos-
mic history and are more local in time and space, while
cosmological bounds need to assume that the gravita-
tional constant evolved at a constant rate across the en-
tire history of the Universe. In other words, GWs test
the first derivative of G(t) at the spatial and temporal lo-
cation of the source, without requiring any assumptions
on the general form of G(t) at other times. On the other
hand, cosmological measurements of G (such as CMB
or BBN analyses) assume that G(t) is varying linearly in
time from the early universe until today. Thus, GW tests
of G represent a unique way to probe the local variation
of G(t) at cosmological distances.

Binary pulsars were the earliest GW sources used to
place constraints on G [4, 14, 15]. Recently, measure-
ments of component masses of binary neutron stars (NS)
have also been used to constrain G /Gy < 10~8yr—! [16].
It has also been estimated that chirping massive black-
hole binaries (MBHBs) and extreme mass-ratio inspi-
rals (EMRIs), which are expected to be detected with
the planned LISA mission, could be used to constrain
G/Go < 0107 %)yr~! and G/Gy < O(10~8)yr~? re-
spectively, assuming a 10° M, central BH and optimistic
SNRs of 100 for an EMRI with symmetric mass ratio
of 107® and 1000 for an equal-mass MBHB [17]. From
stellar-mass binaries, another target of spaceborne GW



detectors like LISA, Ref. [18] forecasts constraints in
the range G/Go < 107 8yr=! to 107 1%r~!, when these
sources are observed both by LISA and some configura-
tions of terrestrial detectors [see their Fig.(13)]. In Fig. 1
we summarize current constraints on the variation of the
gravitational constant (in black), together with predic-
tions for future GW observations (dashed) and predic-
tions from this paper (in red), plotting them against the
reference distance at which those constraints have been
derived. From the figure it is clear that GWs offer the
best way to test local variations of G(t) at cosmological
distances in the late-time universe.

The goal of this paper is to further assess what con-
straints stellar-mass compact binaries detected by space-
borne GW interferometers can yield on the running of
Newton’s constant of gravitation. The LISA mission is
expected to detect tens of thousands of stellar-mass bi-
naries from our Galaxy at milli-Hz frequencies, mostly
double white dwarfs (DWDs) [21-24]. Some galactic bi-
naries, known as verification binaries, are already known
to emit in the LISA band, and are guaranteed detections
[25-27]. At large separation, the signals from DWDs
are almost monochromatic. For most of these, the first
time derivatives of the signal’s frequencies can be mea-
sured and used to constrain the binary’s chirp mass. In
favourable conditions, the second derivative of the fre-
quency can also be measured, allowing us to measure rel-
ativistic effects such as tides [28-30] and putative modi-
fications to the environment of the DWDs or of the un-
derlying theory of gravity. Milli-Hz signals are particu-
larly interesting sources to place constraints on G, as the
negative post-Newtonian (PN) corrections that G would
induce influence the binaries’ motion at the large sepa-
rations at which these signals will be observed.

Likewise, spaceborne detectors operating at deci-Hz
frequencies are expected to detect thousands of bina-
ries containing NS and/or stellar to intermediate-mass
black holes (BHs) [31], which could provide stringent con-
straints to alternative theories of gravity [32]. One exam-
ple of deci-Hz detector is DECIGO [33, 34], though its
actual deployment remains uncertain. In this paper we
consider DECIGO as a representative spaceborne deci-
Hz detector. For low enough chirp masses and frequen-
cies, DECIGO binaries are quasi-monochromatic, which
allows us to treat them similarly to LISA’s DWDs. For
a larger part of the parameter space, low-mass binaries
in DECIGO cannot be treated as quasi-monochromatic
anymore, as the chirp becomes a dominant feature of
the inspiral and the frequency evolution cannot be ig-
nored. Constraints on G from deci-Hz detectors’ inspi-
ralling sources have not been estimated in the literature
and will be provided here for the first time.

The paper is organised as follows. Using a Fisher
matrix for quasi-monochromatic signals, we derive in
Sec. II an analytic estimate of the error attainable
in measurements of G that includes correlations with
other signal parameters. We then use this expres-
sion to forecast constraints using LISA and DECIGO’s

quasi-monochromatic binaries in Sec. III. We first es-
timate the lowest possible G/Gq constraints attainable
from currently known verification DWDs for LISA [25-
27], and then survey the parameter space of low-chirp
mass galactic binaries in LISA, We further estimate
the constraints from a population study with realistic
DWD catalogues. We finally survery the parameter
space of almost-monochromatic binaries in DECIGO. We
find that the loudest known LISA verification binary
(ZTF J1539+5027) can be used to constraint G/Gy <
10~4yr=!, while the loudest sources in the simulated
DWD population improve this constraint to G/Go <
10~%yr=! (thanks to their higher SNR). In Sec. IV, we
perform full Bayesian analyses and employ chirping wave-
forms to explore the parameter space where the quasi-
monochromatic approximation fails. We find that LISA
could bring constraints down to G/Gg < 107 yr=1 if we
were to observe stellar-mass BBHs in our Galaxy emit-
ting at the upper end of its sensitivity band. Likewise,
DECIGO could use chirping stellar-mass binaries at cos-
mological distances to constrain G/Go < 107 Hyr=1. We
discuss our results and other prospects in Sec.V.

II. PRECISION MEASUREMENTS OF G: AN
ANALYTICAL APPROACH

In this section we present an original approach to de-
rive an analytical expression for the constraints on G for
almost monochromatic GW sources. This expression will
then be used in Sec. III to assess the potential of LISA
and DECIGO to bound G.

A. The analytic Fisher matrix

The data stream d observed by a GW detector is as-
sumed to be a superposition of weakly stationary zero-
mean Gaussian noise n(t), intrinsic to the detector, and
a GW signal h(t; 0) with parameters 8 = {601, 60s, ...},

d = h(t;0) + n(t). (1)

Stationary Gaussian noise implies the likelihood is [35]
1
logp(d|0) = —5(d — h(t;0)ld — h(t;0)),  (2)

with inner product in the Fourier domain defined as [36]

PRy LRSI

Sn(f)

where Sy, (f) is the detector’s one-sided Power Spectral
Density (PSD) [37, 38], and hatted quantities stand for
the continuous Fourier transform. From this, one ob-
tains the (optimal matched-filtering) signal-to-noise ratio
(SNR) and the Fisher matrix as, respectively, p = 1/ (h|h)
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FIG. 1. Comparison of the constraints on G/Go from current data [9, 10, 13, 14, 16, 19] (in black, full line) together with
predictions for future GW detections from [18, 20] (black, dashed) and predictions from this paper (red bands). The CMB,
BBN and NS mass reported constraints assume a linear evolution of G(t) across all cosmological time and their localization
in redshift/distance is only approximate (for these reasons we mark them with an asterisk). The estimates from GWs use
as reference typical parameters of their respective sources as reported in [18, 20]. These parameters include the value of the
distance used in the figure, but the reader should keep in mind that GW constraints can in fact come at different distances
and should more properly be represented as a distance/redshift band, similar to the predictions from this paper (in red). The
horizontal axes show the distance/redshift (assuming a ACDM cosmology with Ho = 70km/s/Mpc and Q.,, = 0.3) of the
sources used in the constraints, while the vertical axis shows the constraint on the magnitude of G, expressed as a fraction of
the value of Gy at the present time (in units of yr~!). The LISA WD constraint band is obtained by considering the Fisher
Matrix estimate described in Sec. III for an equal mass DWD with total mass M = 2M,, a starting frequency fo = 0.01 Hz,
and distances ranging from 100 pc to 15 kpc. The DECIGO NS constraint band is similarly obtained by considering a typical
equal mass BNS with a total mass of M = 2.8 Mg, a starting frequency fo = 0.1 Hz, and distances between 10 Mpc and 1 Gpc.

and I';; = (9;h]0;h) (with 8; = 9/06"). This latter quan-  inner product for quasi-monochromatic sources as
tity is of particular interest since it provides an indication .
of how well parameters can be measured. 2 obs
P (@o =5 [ alopd. )
In this work, we mostly consider time-domain signals n(fo) Jo

that are quasi-monochromatic (namely, whose frequen-

cies evolve slowly in time). We model these with a sinu- with fo the starting frequency bin. The PSD can be

moved out of the integral as the PSD in Eq. (5) is es-

soid sentially constant across the frequencies spanned by the
evolution of quasi-monochromatic sources. With these
h(t;0) = Acos(27rtf +¢). (4) definitions, the expressions for the SNR and Fisher ma-
trix become
Tobs
For compactness, we have gathere'c'l the Taylogr' ;xpansion p? = 2 / " h(t; 0)2 dt, (6)
of the phase into f = fo+fot/2+f9t2/6+(9(fo). This is Sn(fo) Jo
a good approximation as long as f oTobs < fo, With Tops _ 2 Tobs ] .
the observation time of the signal. We take the signal to Tij = Su(fo) Jo 0ih(t; 0)0;h(t; )dt. (7)

depend on parameters 8 = {ln A, fj, fo. fo, ¢}. Following
Seto and Takahashi [39, 40], we define the (time-domain)  Using equations (4) and (6), an expression for the SNR



can be obtained

) 2A2 Tobs 9 N N AQTobs

P = 5. (7o) /0 cos® (2m ft + ¢)dt ~ 5. (8)
where we assumed sufficiently long observation times
foTons > 1 [40]. Equation (8) provides a relation be-
tween the amplitude A and SNR p of the signal. Us-
ing this relation and performing the integrations, use of
equation (7) yields the Fisher matrix for the signal up to

o(f) [41]
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The measurement precision on the parameter 6; is then
given by the square root of the diagonal elements of the
covariance matrix, namely the inverse of the Fisher ma-
trix: AHZ = (F_1>ii-

In general relativity and in vacuum, measuring the
chirp fy of quasi-monochromatic binaries allows one to
break the degeneracy between distance and chirp mass of
the source, and it thus gives access to physical parameters
of interest [42]. The measurement of fo, while compara-
tively harder to obtain for quasi-monochromatic sources,
would give access to potential tidal interactions in the
binary [26]. If gravity is described by an alternative the-
ory, or if we take into account the binary’s environment,
these effects can also be accessed through the measure-
ment of fj, assuming they dominate over potential tidal
interactions.

Let us start with a general derivation on how well an
additional parameter can be constrained from measure-
ments of fo and fo. Consider the case in which the chirp
fo and second derivative fo depend on two parameters
01 (such as the chirp mass) and 02 (any modification to
GR or the binary’s env1r0nment) Using the chain rule,
we can swap the fo and fo entries in the Fisher matrix I'
with 0; and 6. The new Fisher matrix I has parameters
0 = {log A, fo, 01,02, 6} and is given by

T=JITJy, (10)

where (-)7 denotes the transpose operation and Jy is the
Jacobian

1 0 0 0 0
0 1 0 0 0
fo  0fo 8fo 8fo 8f
Jo=|oma of, o0, o6: 9o | - (11)
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The estimates of measurement precision, Af; and Afs,
can then be obtained by inverting I' and reading off the
diagonal elements. For sufficiently simple first and sec-
ond chirp derivatives, the expressions are analytical and
therefore cheap to evaluate, but still automatically incor-
porate correlations between parameters.

B. Time-varying gravitational constant: a
nonperturbative model for the GW frequency

We now demonstrate how to use the analytical ap-
proach for quasi-monochromatic sources reported above
to place constraints on the time variation of the gravita-
tional constant G(t).

We first expand G(t) = Go + G(t — to) + O[(t — t0)?]
about Newton’s gravitational constant G at the initial
time of observation ty, with G = G(ty). Previously,
waveforms accounting for the running of Newton’s con-
stant had been presented in Ref. [17]. That analysis
focused on chirping binaries, for which an expansion of
G(t) around the time of coalescence of the binary (rather
than the initial time) is more appropriate. Waveforms
in Ref. [17] were also only valid up to leading order in
G. This approximation breaks down in some of the pa-
rameter space we explore: higher orders in G can only be
safely neglected at sufficiently high frequencies, for which
G/Go < f 8/SGS/SM2/30_5 (as seen comparing the first
and second terms in Eq. (13) below). In this work, we de-
rive quasi-monochromatic waveforms valid to all powers
in a constant G in the phase. )

We start by solving the balance equation £ = —Lgw,
with E and Lgw the binary’s binding energy and GW
emission power, respectively, at leading PN order [43]
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These determine the evolution of the frequency as a func-

tion of time. Defining fy = f(to), the expressions for
fo = f(to) and fo = f(to) from the balance law are
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From the expression for fy, it is apparent that G formally
enters at —4PN order, i.e., its correction scales as f2"/3
with n = —4 relative to the leading-order general rela-
tivistic term. This is also true for fy and all other higher
derivatives of the frequency, assuming an expansion in G
to linear order. Note that with respect to the analysis in
Ref. [17] we are keeping all terms in Eqgs. (13), in partic-
ular the first and last term on the right hand side respec-
tively of the first and second line of Egs. (13), since we are
not assuming the condition G/Gy < fg/3G(5)/3M¢5:/3c’5.

In the LISA band, for instance, for galactic binaries of
M. = 0.5My, at frequencies fy = 10~2Hz the first term



in fo dominates for values G /Go > 107% yr=!, and must
therefore be included. Note that for low-enough frequen-
cies, the terms of G in both fy and fy may imply that
foTobs > fo, thus breaking the quasi-monochromatic as-
sumption. We take into account this limitation in our
analysis. . _

The expressions (13) foM¢,G) and
fo(Me, @) in terms of two new parameters of in-
terest, the chirp mass #; = M. and the parameter
f; = G: ultimately, we want to extract information
about the latter, keeping track of correlations with the
former (along with those with A, fo and ¢). Using
Egs. (11) and (13), we can recast the Fisher matrix
(10) in terms of the M. and G parameters using the
results derived in Sec. II A. The measurement error on

G can then be obtained through AGpy = 1/(f_1)GG~

The expression we obtain is rather cumbersome, but
it can be shown to be well approximated by a simpler
expression. Defining the quantities

G - G/GO Tobs
G- Tors = 001 <102yr1> ( lyr) : (14)

provide
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the measurement error reads
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Since €1 and ey remain generally small for the sources
we are interested in — see values in Egs. (14), (15) — we
find that AG,pp. is a good and simple approximation to

estimate the error on G. However, we use AGqu in the
analytical estimates below for completeness.

III. CONSTRAINTS ON ¢ FROM THE
ANALYTIC FISHER MATRIX

By using the analytical expression Eq. (16), in this sec-
tion we explore the constraints on G across the whole pa-
rameter space of low-mass, quasi-monochromatic binaries

. 2°
72378, 7 (565G + 41673/ 30 GY M)

detected by LISA and deci-Hz detectors, using DECIGO
as an example.

Following Cornish [44], we define the angle-averaged
gravitational wave amplitude of a quasi-monochromatic
source,

2/3
A:%(GOMDCZCQ)W (WCfO) LY

for Dy, the luminosity distance to the source. For the
amplitude in equation (18), we approximate G ~ Gy, as
GW detectors are in any case less sensitive to modula-
tions of the amplitude compared to modulations of the
phase. We compute LISA SNRs with the noise PSD from
Ref. [44], and DECIGO SNRs using the noise PSD from
Ref. [45].

In the present section, we consider G to be measur-
able if its 1o relative error reaches a 50% precision or
lower [41], AGs/G < 0.5. For quasi-monochromatic
sources, this condition can be analytically evaluated us-
ing Eq. (16), allowing us to cheaply survey the param-
eter space. We will quote measureable values of G cor-
responding to the minimum G we can detect for a given
set of parameters. Values lower than those quoted would
imply a degradation in the precision of the measurement;
higher values would imply an even better detection of G.

We limit our survey to regions of parameter space
where the quasi-monochromatic approximation applies
by requiring that the third time derivative of the fre-
quency f, is such that it’s contribution to the Taylor-
expanded frequency evolution is mnegligible, namely
foTobs < fo. The third time-derivative can easily be
found from f and f in Eq. (13). Constraining the pa-
rameter space in this way singles out two source classes of
interest: binaries with NSs, BHs or DWDs in our galaxy
(observable with LISA), and NS or BH binaries at cos-
mological distances of tens of Mpc (observable with DE-

CIGO).

A. LISA

The first sources we consider are ultra-compact bina-
ries in our Galaxy. These are short-period (P < 1 hour)
binaries generally composed of white dwarves, NSs and
compact helium-stars, which we expect to detect in the
tens of thousands with LISA [21-24]. Some of these bi-
naries are so loud that they will be detectable within the
first few weeks of mission operation. Others have already
been detected by EM telescopes and will act as verifica-
tion binaries for the detector’s performance.

Using the frequencies, masses and distances quoted in
Refs. [25-27], we can estimate the lowest measurement
of G attainable with LISA verification binaries. We fo-
cus on detached binaries, namely those that are not un-
dergoing mass transfer (which would modify the chirp
more than any expected effect from G), and on systems
where the two binary stars are clearly distinguishable in



TABLE 1. Forecast constraints on G from LISA verification (detached) binaries. The values refer to 4.5 years of continuous
observation.

Source Ref. |fo[mHz] mi[Me] ma[Ms] Dy [kpc]|G/Go [yr™!]
ZTF J1539+5027 [46, 47]| 4.8 0.61 0.21 2.34 2.05 x107*
ZTF J0538+1953 [46] 2.3 0.45 0.32 0.68 |2.76 x10~*
PTF J0533+0209 [46] 1.6 0.65 0.17 1.74 |9.56 x10™*
ZTF J2029+1534  [46] | 1.6 032 030 202 |1.05 x10~°
ZTF J0722—-1839 [46] 1.5 0.38 0.33 0.93 7.20 x107*
ZTF J1749+0924 [46] 1.3 0.40 0.28 1.55 1.27 x1073
ZTF J2243+5242 48] | 38 035 038 212 |2.44 x107*
SDSS J0651+2844  [49] | 2.6 026 051  1.00 |2.86 x107*
SDSS J0935+4411  [50] | 1.7 032 014 066 |7.54 x10~4
SDSS J2322+40509  [51] 1.7 0.27 0.24 0.76 |6.85 x10™*
SDSS J1630+4233  [52] 0.8 0.30 0.30 0.70 |2.41 x107*
SDSS J1235+1543  [53] 0.6 0.35 0.17 0.39 |[3.61 x1073
SDSS J0923+3028  [54] 0.5 0.28 0.76 0.28 |2.62 x107®
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FIG. 2. The color maps display the smallest G /Go observable with 50% precision as a function of the chirp mass of the source,
M., and frequency fo. In the regions in the top-right corners above the solid red line, the quasi-monochromatic approximation
is not valid. In the LISA plot, the quasi-monochromatic approximation also breaks down in the bottom-left corner, where the
value of G increases significantly and its effect dominates over radiation backreaction. Dashed black lines mark SNR levels,
while sources above the dashed white lines merge within the observational time of 4.5 yr. The coloured dots display bounds
sampled through an MCMC analysis using chirping waveforms.

EM observations, implying negligible tidal effects. The
results are reported in Table I, where we assumed 4.5
years of continuous observations by LISA. The shortest-
period verification binary known to date, ZTF J1539
(with angle-averaged SNR= 138), yields the most strin-
gent constraint for G at G/Gy < 10~ *yr~!. In general,
currently known verification binaries lead to constraints
between G/Go < 10 3yr—! and 10~ #yr~—1.

While the constraints from verification binaries fall
short of prospective constraints from chirping massive

BH binaries with LISA [18, 20], these constraints are
guaranteed. Moreover, the strength of galactic DWDs
lies in numbers. We therefore explore how well a full,
realistic population of galactic DWDs will constrain G.
Analyzing a dataset produced by the population synthe-
sis code SEBA used in [55-57] (assuming 4 years of ob-
servations), we find that the best constraint LISA could



obtain from a single DWD in the population is
G

— <3.0x 10 Cyrt, (19)
Go

best DWD

Assuming for simplicity that LISA’s DWD observations

are independent!, and assuming that G takes the same

value across the Galaxy, we can combine all constraints in

the population and improve slightly over the best event.
. . -1/2 .

Requiring AG = (Zpop. AGfﬁl) < 0.5G, we find
G

— <28 x 10 Cyr . (20)
Go

DWD pop.

This marks a significant improvement from the con-
straints one can set with verification binaries alone, but
only a minor improvement with respect to the most sig-
nificant binary in the population which yields the con-
straint (19). The constraints attainable with a realis-
tic population of DWDs are in fact competitive with
those achievable with massive BH binaries and EMRIs
observed by LISA [18, 20].

We also perform a parameter-space survey of all galac-
tic sources potentially detectable by LISA, with masses
that encompass both DWDs and other more massive pop-
ulations of nearby compact-object binaries. In Fig. 2
we show results for frequencies and chirp masses within
fo =[107%,3 x 1072] Hz and M, = [0.1,100] Mg, re-
spectively. We further assume that all binaries are equal-
mass, as the results do not depend on the mass ratio, see
Egs. (16-17). The high-end of the mass spectrum corre-
sponds to intermediate-mass BHs that might be present
in the Milky Way’s globular clusters, see e.g., Ref. [58]
for discussions about this scenario, or Ref. [59] for an
example of the potential compact object population of
a Galactic globular cluster. Throughout the parame-
ter space we fix the observation time to Tops = 4.5 yr
and the distance to Dy = 8.5 kpc, which corresponds
to the Milky Way’s Galactic center where the majority
of DWDs are expected to reside. The SNR varies with
the source’s chirp mass, as indicated by the black dashed
lines in Fig. 2.

The survey confirms that in the LISA band, for the
small masses of Galactic binaries and small values of
G, most signals are quasi-monochromatic and can con-
strain values down to G/Go < 10~ 7yr~!. This constraint
will be achieved with massive sources at low frequen-
cies (Galactic intermediate-mass BH binaries) or lighter
sources at higher frequencies. The quasi-monochromatic,
analytic estimates in the upper right corner of Fig. 2 sug-
gest that LISA could achieve even better constraints if

1 In reality, DWDs will be observed simultaneously in LISA and
there could be small correlations between their inferred param-
eters, which would degrade measurements of other common pa-
rameters.

it detects stellar-mass BH binaries in our Galaxy. We
explore this scenario further in Sec. IV using chirping
waveforms.

We have also explored the constraints LISA could ob-
tain from extra-Galactic (D = 100 Mpc) stellar- and
intermediate-mass BHs. At these distances, however,
LISA could provide only modest constraints G/Gog <
10~2yr—! for a restricted region of parameter space. We
conclude that for more massive binaries at cosmological
distances, chirping sources work best to constrain G, as
argued in Ref. [17].

B. DECIGO

Deci-Hz detectors are sensitive to NS and BH bina-
ries up to redshift z ~ 10 [31, 40]. Those observed
at large separations may be approximated as quasi-
monochromatic signals. We can therefore perform a simi-
lar parameter-space survey for these sources. We investi-
gate sources detected by DECIGO at a fixed cosmological
distance Dy = 10 Mpc, and assume equal-mass sources
and an observation time of 4.5 yrs.

In the right panel of Fig. 2 we see that, in the DECIGO
frequency band, only binaries with chirp masses (and
roughly equal component masses) < 15Mg are quasi-
monochromatic. These include binaries containing low-
mass stellar-origin BHs or NSs, or one of each. For these,
the best constrains are around G/Go < 10~ 4yr~1.

Fig. 2 shows that, for essentially all source masses, ob-
serving the chirping phase will be crucial to obtain good
constraints on G. Note that the rates of NS binaries
(the observable quasi-monochromatic sources in the right
panel of Fig. 2) so close to us are uncertain; however, even
for those that are further away than what is suggested
here, observing the chirping phase will improve bounds
by orders of magnitude [16].

IV. FULL BAYESIAN ANALYSIS

The predictions obtained with the Fisher matrix for-
malism are particularly useful to quickly estimate the
constraints on G over the parameter space. However,
this formalism is known to provide a reliable estimate
of the measurement precision only in the regime where
the linear signal approximation is valid, which requires
the SNR to be high. Therefore, in this section we use
Markov Chain Monte Carlo (MCMC) methods to sample
from the posterior distribution and check the predictions
of the Fisher matrix formalism. For sampling, we use the
emcee package [60].

We also want to compare the Fisher Matrix analysis
and the full Bayesian analysis in the region of parame-
ter space where the quasi-monochromatic approximation
fails, since we also expect that fully chirping binaries pro-
vide the tightest constraints. In the full Bayesian analy-
sis, we use either quasi-monchromatic waveforms of the



kind defined by Eq. (4) or chirping waveforms, depending
on the parameters of the source. The ‘chirping’ waveform
we employ has an IMRPhenomD phase [61, 62] modified
to include the effect of the running of G to leading or-
der in G. The latter is analogous to the leading phase
contribution due to mass accretion [63] (replacing the
accretion parameter fraq/T With Go/Gyo) or peculiar ac-
celeration [64].

A. Quasi-monochromatic LISA sources

In this section, we use the quasi-monochromatic wave-
forms of Eq. (4) in the Bayesian analysis, as these are
the ones that can be directly compared to the Fisher
estimates, which was also obtained assuming the signal
model given in Eq. (4). Here, we check the measurement
of G for one of the best performing verification binaries,
ZTF J1539+5027. As predicted by the Fisher matrix
(see Table I), any value above G/Gq > 2.05 x 10~ 4yr~1
will be measured with a relative precision larger than
50%. Therefore, we use G/Gg = 1 x 1073yr~1, above
the detection limit, and use the frequency, mass and dis-
tance parameters of ZTF J1539+5027 [46, 47] to inject
the signal. The resulting parameter values are: A =
L.77x107%2, fo = 4.8x107*Hz, fo = —1.5x10"¥Hzs™ !,
fo=9.7x10"2*Hzs72, ¢ = 0.2rad.

We first transform the waveform (4) to the Fourier
domain with the 1st order stationary phase approxima-
tion (valid for the system we selected). We sample over
the parameters 8 = {A, fo, fo, fo, ¢} as commonly done
in the literature [47, 65]. The posterior samples from
the MCMC are then converted into posterior samples in
fo, G, M, through Eq. (13).

We show the marginalized posterior for the ZTF-like
binary in Fig. (3). The derivative of Newton’s constant
is measured as G/Gy = 0.001723°7% yr=1. Most im-
portantly, the width of the posterior distribution agrees
with the Fisher matrix prediction with a ratio of the
two uncertainties approximately equal to 1.02. This val-
idates the results presented in the previous section, and
in particular in Fig. 2, within the limits of validity of the
monochromatic approximation.

B. Chirping LISA sources

In order to assess the limitations of the quasi-
monochromatic approximation, we perform full Bayesian
analysis with a chirping waveform model for sources in
the upper right corner of the parameter space in Fig. 2.
Sources falling in this region of parameter space would
be BH or NS binaries residing in our Galaxy and with
rapid frequency evolution, see Ref. [66].

We aim to find the constraint on G using the same tech-
nique employed in the Fisher Matrix analysis: find the
smallest G measurable at 50% precision at 1o. We per-

form several MCMC runs with different injected values
of G, and identify as our constraint the value that pro-
duces a 1o relative error between 40% and 50%. When
using the chirping waveform, convergence is easier when
sampling on M, 0, fo, ¢, Dr and G.

We find that LISA could actually achieve con-
straints comparable to the ones predicted by our quasi-
monochromatic approximation everywhere in the upper
right corner of Fig. 2. The best constraint that we iden-
tified was G//Go = 8.5 x 10712yr~! achieved with a bi-
nary emitting at a frequency fy ~ 0.0158 Hz and with
a chirp mass M, ~ 60Mg. These results clearly show
that the monochromatic analytical estimate of G can be
considered as a good rough approximation for all Galac-
tic binaries detectable by LISA, even for high mass, high
frequency binaries where the most reliable results are ob-
tained using a chirping waveform as the frequency evolu-
tion cannot be ignored. We will now see that this is not
the case for the parameter space of DECIGO.

C. Chirping DECIGO sources

For DECIGO, the right hand panel of Fig. 2 shows that
the quasi-monochromatic approximation breaks down in
the same region where the Fisher matrix predicts inter-
esting constraints on G. We show that competitive con-
straints can indeed be achieved with these sources.

We perform a series of MCMC analyses with the same
techniques described in the previous subsection in the
area to the right of the red line in the right panel of
Fig. 2. We find that chirping waveform models applied
to DECIGO binaries can achieve constraints down to
G/Go < 1071 yr=! with the most favourable binaries
in the sampled parameter space.

Even though the monochromatic approximation
breaks down at higher frequencies and masses, we see
that the quasi-monochromatic analytical Fisher matrix
always predicts the true constraints within approxi-
mately an order of magnitude. Our quasi-monochromatic
Fisher matrix analyis is more optimistic in the top right
corner of parameter space, while it perfectly matches the
MCMC chirping-waveform results close to the red line,
where the quasi-monochromatic approximation starts to
be valid. This is expected, as in the delimiting region
the chirping waveform model effectively resembles the
Taylor-expanded model. We also note that, while usually
higher masses and higher frequencies produce better con-
straints, that is not always the case: for example, binaries
with a chirp mass of log;,(M./Mg) = 1.4 and a starting
frequency of logy(fo/Hz) = —1.1 perform worse than
binaries with a chirp mass of log;y(M./Mg) = 1 and a
starting frequency of log,(fo/Hz) = —1.4. This is due
to the fact that higher-mass, higher-frequency binaries
spend less time inside the DECIGO frequency band since
they quickly chirp out of band. This provides an effec-
tively lower SNR with respect to the quasi-monochrmatic
analysis which assumes that the binary is observed for the
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FIG. 3. Marginalized posterior distribution (blue) of G for a binary with the frequency and distance of ZTF J1539+5027,
observed by LISA. For a true value of G/Go = 1 x 1073 yr™! (red), we predict a measurement of G/Go = 0.001723¢75 yp~1
(68 % credible interval, in black). The Fisher matrix prediction for the posterior (dashed green) is in good agreement with the
result of MCMC sampling, with the width of the posterior agreeing with the Fisher matrix estimate to within 2%.

full duration of the DECIGO mission (4.5 yr). Combin-
ing this effect with the usual trend dictating that higher
masses and higher frequency provides better constraints,
we find a sweet line a little below the top right corner
of the right panel of Fig. 2 where DECIGO constraints
on G will be the most stringent. Such a region corre-
sponds to binaries whose time to coalescence at the start
of observations matches the total time duration of obser-
vations, i.e. to the higher frequency, higher mass bina-
ries that can be observed the longest. As expected the
bounds obtained in this region, as shown by the darker
blue points along the white dashed line in the right panel
of Fig. 2, represent in fact the best estimates we obtain
in this paper.

V. DISCUSSION AND CONCLUSIONS

In this work, we forecast how well space-borne GW de-
tectors could constrain the time evolution of the gravita-
tional constant, G, with low-mass binaries. The bounds
we forecast are in some sense guaranteed, since sources
like double WDs, binary NSs and binary stellar-mass
BHs have already been observed either by EM surveys
(DWDs) or by ground-based GW detectors (binary BHs
and NSs). This is not the case for other GW sources that
can be used to forecast similar constraints on G, such as
massive BH binaries or EMRIs [20].

According to our results, LISA will achieve the best
constraints if our Galaxy hosts just one stellar-mass BH
binary emitting at the upper end of LISA’s frequency
sensitivity range, for which we estimate to reach bounds

of the order of G/Go < 10~'yr~!. Recent simulations
predict that LISA will detect tens to hundreds of bi-
nary BHs and NSs in the Milky Way [66], some of which
might fall in the most constraining region of parame-
ter space. Lower-mass galactic binaries, in particular
DWDs which LISA will detected in the tens of thou-
sands, provide weaker constraints. The most promis-
ing currently known DWD emitting GWs in the LISA
band (usually referred to as verification binary) will give
a bound G/GO < 10~*yr~!. If, however, LISA detects
at least one DWD at higher frequency, as predicted by
population synthesis studies, then the bound is brought
down to G/Go < 107 %yr—1.

The quasi-monochromatic assumption is quite restric-
tive for the parameter space covered by deci-Hz detectors.
The region in which the assumption is valid does not yield
competitive constraints for stellar-mass binaries detected
with DECIGO at cosmological distances, the main target
population of deci-Hz detectors. For this reason, we have
decided to include forecasts based on chirping waveforms
within the stationary-phase approximation, analogously
to what was done in Ref. [20]. We find that indeed these
give the best constraints overall in this paper, namely
G/Go < 107 yr=1, for binaries at Dy, ~ 10 Mpc which
merge towards the end of the mission duration (i.e. for
which 7 ~ T, with 7 the time to coalescence).

The constraints forecast in this paper complement
other analyses in the literature. The analytical approach
developed here is comparable to the one used to find con-
straints on G with pulsar timing, since they both target
deviations in the GW emission at low-frequency and at
Galactic distances. Although pulsar timing constraints



are already surpassing the expectations from LISA [14],
this spaceborne detector expected to fly in the 2030s
will have access to GW sources all over the Milky Way
and will test whether Gy is indeed constant at differ-
ent Galactic locations, with a method complementary to
EM observations. Note that at galactic distances only
pulsar timing and GWSs are known to give competitive
constraints on G (cf. Fig. 1). The situation is different
at cosmological distances, where competitive constraints
can be achieved with other binary sources detectable
by spaceborne GW detectors (e.g. SOBH, EMRIs, or
SMBHs) or Earth-based GW detectors (SOBHs or NSs).
At those distances, deci-Hz detectors such as DECIGO
are expected to provide constraints comparable to (if not
better than) the ones forecast with other GW sources.
Multi-band GW sources, detectable by spaceborne and
then Earth-based interferometers, are expected to pro-
vide even more stringent constraints, as recent analyses
combining LISA and third-generation Earth-based detec-
tors suggest [18]. Such multi-band analyses are outside
the scope of our present work, and are left for future
considerations.

Our results fall short of existing constraints obtained
with very different methods and at very different dis-
tances. Solar System tests, for instance, already con-
strain G/Go < 107 14yr=1 [13]. Although orders of mag-
nitude better than achievable with GW observations, this
constraint is only valid locally, and obtained in a very
different environment than the Galactic and cosmolog-
ical ones probed by GWs. Cosmological measurements
from the early universe are also obtained in a completely
different environment and with very different techniques.
Moreover, cosmological constraints are sensitive to the
global change in the value of G(t) from the early universe
to today, rather than the local time-derivative of G(t) at
the time of GW emission. This is also true for tests of
the running of G based on NS masses [16], which probe
similar cosmological distances compared to binary coa-
lescences, but can only measure the global variation of
the value of G from the time of merger to today. GW
inspiralling binaries, on the other hand, offer a method
to test localised time-variation of G at any Galactic and
cosmological distance, up to Gpc scales.

We stress that to reach our results we have performed
an extensive study of the parameter space of quasi-
monochromatic binaries, for both milli-Hz and deci-Hz
sources, and we have confirmed the results with targeted
MCMC analyses. Such an approach allowed us to iden-
tify the most constraining region in parameter space, and
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consequently to identify the best GW source population
to use to search for variations in G.

While we have focused here on the upcoming LISA
mission and the proposed DECIGO detector, our study
could be easily extended to other low-frequency detec-
tor designs, such as TianQin [67], pAres [68], ALIA [69]
or other deci-Hz designs [70]. The analytical framework
outlined in Sec. I could also be applied to explore a wide
range of effects that might influence binary inspirals at
large separations. Further corrections to the phase of
the GWs at —4PN are predicted to arise from binaries’
peculiar accelerations [71-75], matter accretion [76-79],
dynamical friction [79] and enhanced black hole evapora-
tion due to extra dimensions [80, 81]. These effects are
all degenerate to a first approximation, so any of these
effects can only be detected individually if we can as-
sume it dominates over the others (depending, e.g., on
the astrophysical configuration of the binary), or if it
can be discerned using a population of binaries for which
the same effect may be different for different binaries,
as expected for example for peculiar accelerations. Note
also that here we find that the binaries yielding the best
constraints are the one merging around the time GW ob-
servations stops, namely for which 7 = T,s. This is in
agreement with what found in previous work targeting
similar -4PN effects [71, 72].

To conclude our results show that stellar-mass GW bi-
naries detectable with future spaceborne detectors can
offer new, complementary and possibly competitive con-
straints on the local time-evolution of Newton’s constant
at distances ranging from Galactic to cosmological scales.
Testing the constancy of G, and more in general the va-
lidity of general relativity, at different scales and with
different methods will definitely help us better under-
stand the behaviour of the gravitational interation in our
universe.
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