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The predictive value of absolute
lymphocyte counts on tumor progression
and pseudoprogression in patients with
glioblastoma
Jing Xi1,2†, Bilal Hassan3†, Ruth G. N. Katumba1, Karam Khaddour4 , Akshay Govindan5,6, Jingqin Luo7,
Jiayi Huang8 and Jian L. Campian1*

Abstract

Background: Differentiating true glioblastoma multiforme (GBM) from pseudoprogression (PsP) remains a
challenge with current standard magnetic resonance imaging (MRI). The objective of this study was to explore
whether patients’ absolute lymphocyte count (ALC) levels can be utilized to predict true tumor progression and
PsP.

Methods: Patients were considered eligible for the study if they had 1) GBM diagnosis, 2) a series of blood cell
counts and clinical follow-ups, and 3) tumor progression documented by both MRI and pathology. Data analysis
results include descriptive statistics, median (IQR) for continuous variables and count (%) for categorical variables, p
values from Wilcoxon rank sum test or Fisher’s exact test for comparison, respectively, and Kaplan-Meier analysis for
overall survival (OS). OS was defined as the time from patients’ second surgery to their time of death or last follow
up if patients were still alive.

Results: 78 patients were included in this study. The median age was 56 years. Median ALC dropped 34.5% from
baseline 1400 cells/mm3 to 917 cells/mm3 after completion of radiation therapy (RT) and temozolomide (TMZ). All
study patients had undergone surgical biopsy upon MRI-documented progression. 37 had true tumor progression
(47.44%) and 41 had pseudoprogression (52.56%). ALC before RT/TMZ, post RT/TMZ and at the time of MRI-
documented progression did not show significant difference between patients with true progression and PsP.
Although not statistically significant, this study found that patients with true progression had worse OS compared
to those with PsP (Hazard Ratio [HR] 1.44, 95% CI 0.86–2.43, P = 0.178). This study also found that patients with high
ALC (dichotomized by median) post-radiation had longer OS.
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Conclusion: Our results indicate that ALC level in GBM patients before or after treatment does not have predictive
value for true disease progression or pseudoprogression. Patients with true progression had worse OS compared to
those who had pseudoprogression. A larger sample size that includes CD4 cell counts may be needed to evaluate
the PsP predictive value of peripheral blood biomarkers.

Keywords: Absolute lymphocyte count, Pseudoprogression, Prognosis, Glioblastoma

Background
Gliomas are the most common form of central nervous
system (CNS) malignant tumors in adults [1]. Current
research in the United States (U.S) shows that six cases
of gliomas are diagnosed per 100,000 people every year
[2]. Glioblastomas (GBM), an aggressive form of high-
grade gliomas (HGG), make up 16% of all primary brain
tumors [3]. The current standard treatment for patients
with HGG includes surgery followed by three lympho-
toxic therapies: temozolomide (TMZ), radiation (RT),
and glucocorticoids. These three treatments result in
toxicity to lymphocytes and immunosuppressive effects
in HGG patients contributing to death.
Previous literature has demonstrated that the immune

system plays a major role in suppressing the develop-
ment and growth of primary brain tumors [4–7]. Pa-
tients with pretreatment lymphopenia were found to
have poor clinical outcomes. Furthermore, treatment-
related lymphopenia (TRL) has been correlated with in-
ferior overall survival (OS) due to tumor progression [6].
Current standard treatment regimens for brain tumors
deliver lymphotoxic radiation doses to 99% of circulating
blood resulting in significant lymphopenia and conse-
quently shorter overall survival [8]. Partial brain RT may
independently result in systemic lymphopenia and this is
further aggravated by chemotherapy. TRL in patients
with malignant gliomas is common and is also associ-
ated with significant adverse clinical outcomes [5]. Two
previous studies showed that GBM patients receiving
concurrent chemoradiation, which may result in TRL,
had shorter OS [6, 7]. Similar findings were reported in
patients with pancreatic adenocarcinoma [4, 9, 10], and
stage III non-small cell lung cancer (NSCLC) [4, 11].
TRL was also found to be associated with early disease
progression in patients with newly diagnosed squamous
head and neck cancer (HNSCC) [12].
Evaluation of post-treatment glioblastoma presents nu-

merous challenges, including pseudoprogression (PsP) –
also known as treatment effect, which appears on mag-
netic resonance imaging (MRI) as an enhancing lesion
weeks to months after radiotherapy [13–15]. By mimick-
ing tumor progression without actual clinical deterior-
ation, PsP affects a substantial number of glioblastoma
patients. PsP most likely stems from a temporary pause
in myelin biosynthesis due to oligodendrocyte injury or

local inflammatory reactions as a result of treatment
[14]. Distinguishing true tumor progression from PsP is
essential for the evaluation of patient outcomes. Current
techniques to characterize PsP, such as MRI and posi-
tron emission tomography (PET), lack strong criteria for
differentiating post-treatment effects from actual tumor
progression [14]. Additionally, these methods, along with
invasive techniques such as tissue biopsy and resection,
are expensive, labor-intensive, and pose serious risks to
patients [16].
Circulating glioma biomarkers are a novel modality

that have been actively investigated recently as a poten-
tial tool to augment the differentiation between true
tumor progression and the PsP in glioma. Several classes
of biomarkers including angiogenesis, inflammation re-
lated proteins, circulating tumor cells (CTCs) and im-
mune cells have been studied [17]. CD4+ and CD8+
tumor infiltrating lymphocytes (TILs) have been well
documented in gliomas as a predictor of post-treatment
patient outcomes and high percentages of CD4+ and
CD8+ TILs have been correlated with the presence of
PsP [18]. In addition, it has been reported that the levels
of peripheral blood CD4 cell counts are associated with
longer survival in patient with GBM [6]. However, CD4
cell counts are not routinely tested. On the contrary,
ALC is often available from routine CBC testing and it
can be utilized as a surrogate for CD4 cell counts. Low
ALC post chemoradiation has been associated with re-
duced survival in elderly patients with GBM [19]. Based
on prior promising research findings. This retrospective
study was designed to investigate whether ALC could
potentially be a useful biomarker for augmentation of re-
sponse assessment in glioma. This study hypothesizes
that high ALC will correlate with PsP in GBM patients.

Methods
Patient population
The study was reviewed and granted approval by the In-
stitutional Review Board (IRB) of Washington University
in St. Louis. Patients were identified retrospectively
through a collaborative database of GBM patients at
Washington University School of Medicine in St. Louis
and Barnes-Jewish Hospital. The required eligibility cri-
teria included (1) ≥ 18 years of age, (2) GBM initial diag-
nosis between 2010 and 2018, (3) a series of cell blood
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Table 1 Patient demographics, clinical data and lab lymphocytes summary, by all and by pathology (tumor vs. non-tumor) at the
second surgery

All Patients
(n = 78)

Non-Tumor
(n = 41)

Tumor
(n = 37)

P-value

Demographics

Age at diagnosis: median (range) 56 (44.25–63.5) 59 (51–65) 53 (38–60) 0.015994

Male: No. (%) 39 (50) 20 (48.78) 19 (51.35)

Race: No. (%) 0.046301

White, non-Hispanic 74 (94.87) 41 (100) 33 (89.19)

Black/African American, non-Hispanic 4 (5.13) 0 (0) 4 (10.81)

Clinical Data

Histology 0.652495

Glioblastoma multiforme: No. (%) 74(94.87) 39(95.12) 35(94.59)

Glioblastoma small cell variant: No. (%) 1(1.28) 1(2.44) 0(0)

Glioblastoma with oligodendroglioma: No. (%) 1(1.28) 1(2.44) 0(0)

Glioblastoma, small cell variant: No. (%) 1(1.28) 0(0) 1(2.7)

High grade glioneuronal tumor: No. (%) 1(1.28) 0(0) 1(2.7)

Extent of surgical resection (N = 77) 0.040166

biopsy 5(6.49) 0(0) 5(13.51)

GTR 55(71.43) 32(80) 23(62.16)

subtotal 17(22.08) 8(20) 9(24.32)

MGMT Methylation Status (N = 70) 1

Methylated: No. (%) 21(30) 11(28.95) 10(31.25)

Unmethylated: No. (%) 49(70) 27(71.05) 22(68.75)

KPS 85(80 ~ 90) 90(80 ~ 90) 80(70 ~ 90) 0.100858

Prior RT 0.046301

No 74(94.87) 41(100) 33(89.19)

Yes 4(5.13) 0(0) 4(10.81)

Prior chemo 0.221778

No 76(97.44) 41(100) 35(94.59)

Yes 2(2.56) 0(0) 2(5.41)

Prior immune suppression tx 1

No 76(97.44) 40(97.56) 36(97.3)

Yes 2(2.56) 1(2.44) 1(2.7)

Baseline steriod use (N = 76) 1

No 38(50) 21(51.22) 17(48.57)

Yes 38(50) 20(48.78) 18(51.43)

Treatment regimen 0.494838

Concurrent RT/TMZ 76(97.44) 39(95.12) 37(100)

RTonly 2(2.56) 2(4.88) 0(0)

Adjuvant Chemo 1

No 1(1.28) 1(2.44) 0(0)

Yes 77(98.72) 40(97.56) 37(100)

Infection 0.702159

No 71(91.03) 38(92.68) 33(89.19)

Yes 7(8.97) 3(7.32) 4(10.81)

Pathology at 2nd Surgery 0.000000
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counts, (4) with clinical follow-up monitored, (5) KPS
score ≥ 70, and (6) tumor progression status (absence/
presence of tumor) documented by both MRI and path-
ology. A total of 78 patients were identified as eligible
and were included in the analysis.

Treatment and total lymphocyte count examination
Information related to prognostic factors in glioblast-
oma multiforme (WHO grade IV) was obtained from
each patient’s medical record. GBM prognostic factors
included MGMT methylation status, KPS, and extent
of surgical resection. The degree of surgical resection
was defined as gross total resection, subtotal resec-
tion, or biopsy. Additional data collected included age
at diagnosis, sex, race, prior radiotherapy, prior
chemotherapy, prior immunotherapy, baseline steroid
use, anticonvulsant use, radiotherapy fractions, adju-
vant chemotherapy, presence of infection, as well as
glioma histopathology, tumor grade, tumor size,
tumor location, second surgery histopathology, and

ALC with CD4 counts at specific time points where
available. The variables were dichotomized or further
categorized as necessary. Baseline steroid use was de-
fined as any glucocorticoid therapy use before the ini-
tiation of treatment. ALC data was collected along
with CD4 counts (if available) at baseline before be-
ginning chemoradiation, after chemoradiation, and at
the time of MRI-demonstrated tumor progression.
Surgical samples from the secondary surgery for each pa-
tient were subject to pathological examination to confirm
true or PsP. PsP or treatment effect was largely character-
ized by evidence of significant tissue necrosis without ac-
tive tumor growth whereas documented mixed
progression involved histopathological residual tumor and
necrotic cells. For purposes of comparative analyses, both
necrosis and mixed progression were categorized as pseu-
doprogression (non-tumor). Overall survival was calcu-
lated from the date of second surgery until the date of
death or censored at the date of the last clinic follow-up if
patients were still alive.

Table 1 Patient demographics, clinical data and lab lymphocytes summary, by all and by pathology (tumor vs. non-tumor) at the
second surgery (Continued)

All Patients
(n = 78)

Non-Tumor
(n = 41)

Tumor
(n = 37)

P-value

mixed 29(37.18) 29(70.73) 0(0)

necrosis/tx effect 12(15.38) 12(29.27) 0(0)

tumor 37(47.44) 0(0) 37(100)

Laboratory Data

ALC_beforeRT (N = 75): median (range) 1.4 (0.9–1.9) 1.2 (0.9–1.9) 1.4 (0.9–2.3) 0.303656

ALC_postRT (N = 73): median (range) 0.9 (0.6–1.3) 1 (0.6–1.3) 0.9 (0.68–1.23) 0.742197

ALC_MRIProgression (N = 74): median 1 (0.7–1.5) 1 (0.72–1.5) 0.95 (0.7–1.62) 0.777925

Baseline CD4 counts (N = 14): median (range) 908 (619–1070.5) 1054 (888.25–1172.5) 763.5 (593.25–950) 0.217997

POST RT/Chemo CD4 count (N = 23): median (range) 344 (269.5–490.5) 404.5 (276.75–530.25) 344 (263–345) 0.377232

CD4 count_MRIProgression (N = 15): median (range) 340 (253–532) 484.5 (321–705.25) 253 (175–299.5) 0.048736

Fig. 1 Boxplot of Absolute lymphocyte count (ALC) before concurrent radiation therapy and temozolomide (RT/TMZ), after RT/TMZ, and at the
first MRI documented progression
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Statistical analysis
Patient baseline characteristics were summarized
using descriptive statistics, and the difference between
lymphopenia groups were compared using Chi-square
test, Fisher’s exact test, Wilcoxon rank sum test as
appropriate. Wilcoxon rank sum test was used to
compare ALC between true progression and pseudo-
progression at each time point. ROC curves of ALC
at each time point were generated for true progres-
sion versus PsP. ALC was analyzed in binary scale as
dichotomized by 1. Empirical survival probability was
estimated using the Kaplan-Meier product limit
method and survival difference between groups was
compared using log-rank test. Hazard ratio was esti-
mated from Cox proportional hazard model, accom-
panied with 95% confidence interval. All analyses
were two-sided and significance was set at an alpha

level of 5%. Statistical analysis was performed using R
(version 3.1, https://cran.r-project.org/).

Results
Seventy eight adult patients were included in the study
analysis. The median age at diagnosis for patients in this
cohort was 56 (range = 28–72), half of the study patients
were male, 94.87% were white (n = 74), and median KPS
at baseline was 85 (range = 80–90). Patients who were
found to have PsP after their second surgery had higher
baseline median KPS (median = 90, range = 80–90) com-
pared to those who had true progression after their sec-
ond surgery (median = 80, range = 70–90). This
difference was not statistically significant. Furthermore,
30% of patients (n = 21) had detected MGMT (O6-
methylguanine–DNA methyltransferase) DNA-repair

Fig. 2 ALC Median Curve

Fig. 3 CD4 and ALC at the same time point are correlated
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gene and 71.43% of patients (n = 55) had undergone a
gross total resection.
More than 97% of study patients had received concur-

rent chemoradiation and adjuvant chemotherapy, 50% of
study patients were using steroids at baseline (n = 38)
and 97.44% of patients had had no prior immunosup-
pression treatment. Only 5.13 and 2.56% of study pa-
tients had had prior RT (n = 4) and prior chemotherapy
(n = 2), respectively. Pathology results from the second
surgery (to confirm MRI-documented progression) re-
vealed that 47.44% of patients (n = 37) had true tumor
progression, and 41 had PsP (52.56%), including 29 who
had mixed treatment effect and residual tumor (37.18%),
and 12 who had necrosis (15.38%). At the time of study
analysis, 59 out of 78 study patients (75.64%) had died.
Between patients with true progression and PsP, there
were no significant differences in demographic data,
histology, MGMT methylation status, KPS, prior chemo-
therapy, prior immunosuppression therapy, baseline
steroid use, treatment regimen (concurrent RT/TMZ
versus RT only), adjuvant chemotherapy, presence of

infection at baseline and laboratory data (baseline ALC
and CD4 count).
Baseline demographic and clinical information for this

cohort of patients has been summarized in Table 1.
The baseline median ALC for all patients before che-

moradiation was 1400 cells/mm3 (900–1900 cells/mm3).
After the completion of RT/TMZ, ALC dropped to a
median of 900 cells/mm3 (600–1300 cells/mm3). Median
ALC when MRI documented progression was 1000
cells/mm3 (700–1500 cells/mm3), slightly increased from
the post radiation ALC. ALC before RT/TMZ, post RT/
TMZ and at the time of MRI-demonstrated progression
(confirmed by second surgical biopsy) did not differ sig-
nificantly between the patients with true progression
and pseudoprogression (See Figs. 1 and 2). Study results
demonstrated significant differences between these two
groups of patients in extent of surgical resection, prior
RT, and pathology after their second surgery (to confirm
true progression vs. pseudoprogression).
Furthermore, study analyses demonstrated that CD4

and ALC at the same time point were highly correlated

Fig. 4 ALC % change post RT and at progression from prior to RT

Fig. 5 ROC analysis of ALC % change for tumor/non tumor
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(See Fig. 3), based on the available CD4 counts reported
in approximately 20% of the patients. Percentage (%)
changes in ALC post RT and at progression from prior
to RT were not significantly different between patients
with true progression and PsP (See Fig. 4). ROC analysis
of ALC at each time point and % change in ALC post

RT and at progression from prior to RT demonstrated
that within this study, ALC did not have predictive value
in the differentiation between true tumor progression
and PsP (See Figs. 5 and 6). Although not statistically
significant, study survival analysis demonstrated that pa-
tients with true progression had worse OS compared to

Fig. 6 ROC analysis of each of the ALC at before, post RT and at progression

Fig. 7 Comparison of overall survival between patients with tumor progression and PsP
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those who had pseudoprogression (Hazard ratio = 1.44,
95% CI 0.86–2.43, log rank test P = 0.178) (See Figs. 7, 8
and 9). Although survival analysis results showed that
patients with higher ALC (dichotomized by median) ap-
pear to have longer OS, these results were not statisti-
cally significant. Therefore, in this study cohort, ALC
was not prognostic of OS at any treatment time point
including before RT/TMZ, after RT/TMZ and at time of
MRI documented progression (See Fig. 10).

Discussion
Evaluating treatment of GBMs using MRI remains a
problematic task. Although recent adoption of utilizing
machine learning algorithm with MRI imaging is gaining
increased attention in the field, the majority of current
studies have been retrospective in nature, with small
sample sizes, without second biopsy pathology confirm-
ation, and require further validation [20, 21]. PsP pre-
sents a major challenge in GBM treatment either by
leading to unnecessary treatment due to mistaken dis-
ease progression, or by delaying therapy when the true
disease progression fails to be recognized. In a recent
meta-analysis including 73 studies, 36% of MRI demon-
strated progression were PsP [22]. Despite increasing re-
search endeavors to work out easily accessible serum
biomarkers that may differentiate PsP from true tumor
progression in post-treatment GBM patients, the vast

majority of study results have been conflicting, and none
of the biomarkers studied have been validated [17].
Prior research has suggested that high percentages of

CD4+ and CD8+ TILs are correlated with the presence
of PsP [18]. Another study investigated the predictive
value of Neutrophil to Lymphocyte Ratio (NLR),
Lymphocyte to Monocyte Ratio (LMR) as well as Platelet
to Lymphocyte Ratio (PLR) to patient survival in newly
diagnosed GBM patients. This study found increased
LMR (> 1.88) was associated with worse OS. No associ-
ation between LMR and NLR with survival was reported
[23]. ALC, as a sensitive and accurate metric for measur-
ing the number of CD4 cells [24], has never been studied
to explore its value as a predictor of PsP versus true
tumor progression in GBM patients. Therefore, our
study compared ALCs between two cohorts (true pro-
gression vs. PsP) at different treatment points hoping to
identify a predictive pattern. Unfortunately, this study
found no statistically significant differences between the
groups, a limitation owed greatly to the small sample
size. Study results demonstrated a trend that suggested
that at the post-treatment and MRI documented-
progression time points, median ALC was consistently
lower in true progression group as compared to PsP
group.
Relatedly, a previous study found that clinical out-

comes of glioblastoma are positively correlated with the
number of CD4+ and CD8+ T cells [18]. In addition,

Fig. 8 Comparison of overall survival between patients who received GTR versus those who received either Subtotal resection or Biopsy
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CD4 counts have also been used to monitor immuno-
suppression due to temozolomide therapy in glioma pa-
tients [6]. These findings prompted this study’s
investigation into the correlation between CD4 counts
and ALC, as well as ALC’s predictive value of PsP. Al-
though CD4 counts were missing for many patients, our
analysis of the available data showed a strong positive
correlation between the CD4 count and ALC. These re-
sults support the plausibility of using ALC as a surrogate
marker for CD4 counts, pending further large sample
size validation. Conversely, a few other studies suggested
that ALC values may not be correlated with the presence
of TILs [25, 26]. This could explain why our efforts to
demonstrate that ALC can be utilized as a serum bio-
marker to predict the PsP did not reveal a significant as-
sociation between ALC and PsP, although we did find
that ALC dropped significantly after the chemoradiation
and this immunosuppression lasted until the first MRI
documented progression.
Study analyses also revealed that for those who had

PsP, the overall survival was non-significantly better than
those who had the true progression, and ALC level at
baseline in both groups did not seem to be correlated
with overall survival. Recent studies have made great ef-
forts to conquer this clinical challenge outside of

imaging modalities. One study suggested that HOX
Transcript Antisense Intergenic RNA (HOTAIR), a long
noncoding RNAs (lncRNAs) that is overexpressed in
GBM and controls GBM cell proliferation, may play a
critical role in multiple cancers and may serve as a po-
tential biomarker [27, 28]. Another study suggested that
serum HOTAIR has good diagnostic value as a GBM
biomarker, and the level of HOTAIR are positively cor-
related in tumors and serum isolated from GBM patients
[29]. Exosomes isolated from peripheral blood as well as
cerebrospinal fluid may also be a potential biomarker to
help predict true GBM progression [30].
The advantage of this study is that 97% of patients in

this study had received standard treatment course with
concurrent chemoradiation followed by adjuvant chemo-
therapy, with only a small percentage (< 5%) of patients
having received prior chemotherapy or radiation therapy.
This constitutes a great representation of treatment
courses patient receive in the real world. Also, all pa-
tients with MRI-documented progression had undergone
a second biopsy to confirm or rule out tumor progres-
sion. This biopsy/pathology confirmation is extremely
important but is not always feasible in reality. Our study
also has a number of limitations, including its retro-
spective nature and limited sample size. The small

Fig. 9 Comparison of overall survival between patients who received GTR versus those who received a Subtotal resection and Biopsy
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sample size was largely due to a small number of pa-
tients who had undergone re-resection after MRI-
demonstrated tumor progression. This further empha-
sizes the importance of identifying easily accessible
serum biomarkers to facilitate the differentiation of PsP
from true tumor progression, given unreliable MRI find-
ings and the logistical challenges and risks related to re-
resection.
Although the mechanism of developing PsP is not

clear, PsP following both standard treatment and im-
munotherapy is thought to be possibly secondary to an
immune-mediated response [31]. In the era of immuno-
therapy, we still believe that immune-related biomarkers
may play a role not only in prognosticating survival but
also in predicting the treatment response. Therefore, we
believe a larger sample size with concurrent investigation
of other potential biomarkers such as NLR, MLR, CD4
count, and TILs may yield meaningful findings.

Conclusion
To our knowledge, this is the first retrospective study
that examined the predictive value of ALC in differenti-
ating PsP from true tumor progression in GBM patients
who demonstrated disease progression on MRI with
pathological tissue confirmation. This study found that
ALC dropped significantly after treatment for GBM in
both the PsP group and those with true tumor progres-
sion. This immunosuppressive effect persisted until MRI
documented progression. ALC and percent ALC changes
from the baseline to post-treatment or MRI-documented
progression were not proven to have predictive value in
differentiating PsP from true tumor progression. Those
who had true tumor progression had non-significantly
worse overall survival than those who had PsP. Future
studies with larger sample size are warranted to find eas-
ily accessible serum biomarkers to serve the purpose of
predicting PsP in post-treatment GBM patients with
MRI documented progression.
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